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Abstract

A numerical investigation is reported of turbulent incompressible jets confined in

two ducts, one cylindrical and the other conical with a 5 ° divergence. In each case,

three Craya-Curtet numbers are considered which correspond, respectively, to flow

situations with no, moderate and strong recirculation. Turbulence closure is achieved

by using the K-e model and a recently proposed realizable Reynolds stress algebraic

equation model that relates the Reynolds stresses explicitly to the quadratic terms

of the mean velocity gradients and ensures the positiveness of each component of the

turbulent kinetic energy. Calculations are carried out with a finite-volume procedure

using boundary-fitted curvillnear co-ordinates. A second-order accurate, bounded

convection scheme and sufficiently fine grids are used to prevent the solutions from

being contaminated by numerical diffusion. The calculated results are compared

extensively with the available experimental data. It is shown that the numerical

methods presented are capable of capturing the essential flow features observed in

the experiments and that the realizable Reynolds stress algebraic equation model

performs much better than the K-e model for this class of flows of great practical

importance.

1 Introduction

This paper is concerned with numerical computations of confined turbulent jets.

The general features of the flow under consideration are sketched in Fig.1. At

the entrance, two uniform flows, a jet of high velocity and an ambient stream of

low velocity, are discharged into the duct. Due to turbulent entrainment, the jet

increases its mass flux while spreading and this causes an equal decrease in the

mass flux of the ambient stream. An adverse pressure gradient is thus set up by

the decrease in the velocity of the ambient stream which can be considered as a



potential flow. When the ratio of jet to ambient velocities at the entrance is above

a critical value, a recirculation zone occurs at the duct waU downstream of the inlet

plane. This is because the jet has consumed the whole ambient flow before reaching

the wall and further entrainment must create reverse flows in order to maintain the

total mass flux conservation. For a given geometry, recirculation as well as adverse

pressure gradients can be intensified by increasing the jet to ambient velocity ratio

at the entrance. These features are common to many flows involving two streams of

different velocities in industrial apparatus, in particular, in combustion chambers in

which recirculating currents are used to enhance flame mixing and stability, and in

ejectors whose role as a jet pump is achieved through the pressure rise generated by

the jet entrainment. Therefore, the understanding of confined jet flows is of great

practical importance to the design of such devices.

A large amount of theoretical and experimental research has been devoted to

confined jets (lZajaratnam, 1976). Early theoretical studies were restricted to the

development of integral methods based on similarity assumptions (Craya and Curtet,

1955, Curtet, 1960, HiLl, 1967 and 1973, Mikhail 1960 and Razinsky and Brighton,

1972). The essential features of these methods are presented in detail in Rajaratnam

(1976). Among the most wen-known of them is the approximate confined jet theory

of Craya and Curtet. They found that confined jets in constant area ducts can form

a family characterized by a single non-dimensional parameter Ct termed the Craya-

Curtet number, provided that the flows remain self-similar. This condition cannot

be satisfied in general, especially in the presence of recirculation, and the Craya-

Curtet number is not constant in variable area ducts. Nevertheness, the values of Ct

at the entrance remain useful to characterize the inlet flow conditions. Experimental

studies can be found in Barchilon and Curtet (1964), Barchilon (1969), Binder and

Kian (1983), Kian (1981) and Razinsky and Brighton (1911). Experiments show

that recirculation occurs in cylindrical ducts when Ct < 0.96 and in a conical duct

with a 5° divergence when Ct < 1.1.

The general applicability of the classical integral method is invalidated by the

complexities of the flow. At the present time, the only feasible theoretical solution

is to use the differential method that solves the complete governing equations with

the aid of turbulence modeling. Several authors (Cosman et al., 1979, Habib and

Whitelaw, 1979 and 1981, Jones and Marquis, 1985, Khalil et al., 1975 and Zhu,

1986) have reported the relevant calculations using such differential methods. In

these calculations, turbulence effects were represented either by the K-e model or

by second-moment closures. The success of the differential methods depends, to

a large extent, on the performance of the turbulence model used. These numeri-

cal studies showed that the calculations with the K-e model could reproduce some



basic flow characteristicsobservedin the experiments in general, but large discrep-

ances were present in detail. These discrepances were mostly attributed to inherent

imperfections of the model such as the isotropic eddy-viscosity representation and

the insensitivity to streamline curvature effects. Second-moment closures have no

such drawbacks and represent a higher level of turbulence modeling beyond the

eddy-viscosity level. However, it was found in a systematical numerical study (Zhu,

1986) that second-moment closures, whether of the algebraic or of the transport

form, did not manifest themselves to be significantly superior to the K-_ model in

the computation of the confined jets. It should be pointed out that the previous

calculations were almost exclusively performed on coarse grids and with the hybrid

(central/upwind differencing) scheme (Spalding, 1972) that is essentially of first-

order accuracy in convection-dominated situations. Recent work of Zhu mad Rodi

(1992) has shown that the calculations of confined jets were very sensitive to the

approximation of the convection terms of transport equations and the hybrid scheme

could not yield grid-independent results, especially for the turbulent quantities, on

a grid as fine as 102x82 points. Therefore, it is certain that the early calculations

were contaminated to some extent by numerical diffusion and the performance of the

turbulence models for the confined jet flows needs to be re-assessed on a numerically

reliable basis.

Recently, Shih and Lumley (1993) have shown that the Reynolds stress, being

a second rank tensor, can be expressed as a fourth-order polynomial of the mean

velocity gradients. This is the most general stress-strain relationship within the

framework of algebraic turbulence modeling, with the linear stress-strain relation in

the Boussinesq's eddy-viscosity concept being its first-order approximation. Based

on this, Shih et al. (1993) have recently proposed a quadratic stress-strain relation in

conjunction with the two modeled equations of K and e for practical calculations.

Realizability constraints (Lumley, 1978 and Schumann, 1977) have been used to

derive appropriate functional expressions for the model coefficients, in particular,

the coefficient Gu has been naturally related to the time scale ratio of the turbulence

to the mean strain rate. As a result, the model ensures the positivity of individual

turbulent normal stresses, an important feature that is not present in most existing

turbulence models. The empirical constants in the model have been fine-tuned in the

calculation of two backward-facing step flows. As the model appears promising as a

competitive alternative in the turbulence modeling arsenal, it is of interest to test its

performance for confined jets which, due to their complicated flow structures such

as strong recirculation coupled with severe adverse pressure gradients, constitute a

challenge to the turbulence modeling.

To this end, calculations are performed for the flows studied experimentally by



Baxchilon and Curtet (1964) in a cylindrical duct and by Binder and Kian (1983)

in a conical duct with 5 ° divergence. These two experiments have been chosen in

this study because of their diverse flow conditions which vary gradually from no

to strong recirculation. The standard K-e model is also used, since it is the most

popular turbulence model used today in calculations of complicated flows and can

also be used to highlight the performance of the new model. The numerical accu-

racy of solutions is ensured by using a second-order accurate, bounded convection

scheme (Zhu, 1991a) and sufficiently fine grids. The performances of the models are

examined through extensive comparisons with experimental data.

2 Calculation Approach

2.1 Turbulence Models. Incompressible turbulent flows are governed by the

statistically averaged continuity and Navier-Stokes equations. The Reynolds or tur-

bulent stresses rlj(= -pu--/-_) appearing in these equations are calculated by using

the following two models:

1) K-6 model (Launder and Spalding, 1974)

2

_,j = M_,,_ + uj,,)- _pK_,j (1)

Pt = C_, pK2 , C_ = 0.09 (2)
¢

where the turbulent kinetic energy K and its dissipation ¢ are calculated, respec-

tively, by the modeled transport equations given in Table 1.

2) Realizable Reynolds stress algebraic equation (RRSAE) model (Shih et al., 1993)

2_,j = Mu,,j + _j,,) + T,j - _pK ,, (3)

#t = c_ PK 2_ , Cu = 2/3
A, + _ + "r_ (4)

where

TO = -(A2 + _is)e 2[C''(Ui'kUk'i + UI,_UJ,,I - II_i.i)

1- , , _fi_j)]+c.,(v_,_u,,k - 5n_,s) + c._(u_ ,uk j - (5)



II = Uj,,jUl,k , fI = U_.iU_,, (6)

KS
,1=--, S = (2&j&j) _/2

C

1 U, : + u,.,)

_ -- (90* O" _1/= •

to,,, is the rotation rate of the reference frame, and the model constaa_ts are

(7)

(s)

C,I=-4, C_2=13, C,3=-2, A2=1000. (9)

In the work of Shih et al. (1903) and Zhu and Shlh (1993), the following two sets

of values for A1,7 have been tested

A1 =5.5, 7=0 (10)

AI = 1.25, 7 = 0.9 (ii)

and both were found to give almost identical predictions for the two backward-facing

step flows. With Eq.(11), the rotational effect of the mean flow explicitly enters

into C_,. However, the values in Eq.(10) are taken in the present work. The K and

e in the RRSAE model are calculated with the same equations as in the K-e model.

It can be seen that the RRSAE model reduces to the K-e model if the quadratic

terms Tit are set to zero.

2.2 CurvUinear Form of Governing Equations. Boundary-fitted curvilinear

co-ordinates are used in order to handle irregular flow boundaries. In such co-

ordinates, the two-dimensional, steady-state governing equations using Cartesian

velocity components Ui can be written in the following general form:

(C;¢ - D,¢).=, = r'_JS¢, i = 1,2 (12)

where the convective coefficients Ci, the diffusion terms Dis, and the source terms

S¢ are given in Table 1 for different dependent variables ¢; J is the Jacobian of the

transformation between the curvillnear coordinates zl and the reference Cartesian

coordinates yi. Eq.(12) includes both the plane (a = 0) and axisymmetrlc (a = 1)

forms. In the lattcr form, y, (- z) and y2 (= r) are in the axial and radial directions,

respcctively.

In thc curvilincar transformation, Eqs. (1) - (8) all remain the same, while the

velocity gradicnts arc calculated as follows:



Vl,2 __ 1

v, , = 1 Z;u,,._)/J

= 1u Z_u,,.,)/JU_,_ (_ _,_, +

U3,s= aU:/r

where Ui._ _ is the partial derivative of Uj with respect to x_.

Table 1. Individual terms in the transport equations

(13)

¢
1

Vl

u_

K

D1¢ D2#, S÷

0 0 0

1 2r'_FX(D , + fl_w_ + fl2w,)
J

1+ ,.o(_IT_ + _,T_,)

r_r_ 1 2

j (D, + fl_w_ +f12w2)

+ _°(Z_T,, + Z;T,,)

raFa D1
J

5_-( D, + _,_ +

+ r_(fl2,Tn+ fl_T,z)

raF2 rD 2 2
-9-_ _+_ + _)

+ _"(_T_,+_iT,,)

r° F4 D_
J

1 1p
-7(f_, .., + f_Ip,.,)

-a(2r,_ + _)

G - pe

(C,.G - C..Pe) K

, _iu_)Z_v.) =v_ = p_"(_;v, + c_ p_°(Z_v, +

ol = B_¢,_, + B_¢,._, D2 = B_¢,_,+ B_¢,_

f_j = cofactor of yj,_ in J

B_= _,_ _+ _' _, w_= _' v_,_,+ _,_u,,_,

2 K
p = p + _p (p is the mean static pressure)

J __

F.=/_+-- #t , (n= 1,2,3,4)
orn

G = rnU_,_ + r_Um + _rasUa.s -_-r_(U,._ + U_,x)

eli = 1.44, C_, = 1.92, a_ :: or: = as : 1, a_ =-- 1.3



2.3 Boundary Conditions. Computational boundaries involved are inlet, out-

let, axis of symmetry and solid wall. Among them, the inlet conditions require

special attention because they have a considerable influence on the calculations

(Zhu et al., 1987 and Zhu and Rodi, 1992). At the inlet, the jet and the ambient

flow have uniform velocities Uj and Ua (Fig.l), but the flow conditions in the initial

shear layer between the jet and the ambient flow are unknown and determination of

these conditions is not a trivial matter. In the present work, the parabolic entrance

region (PER) scheme of Zhu et al. (1987) is used. The PER scheme was developed

on the assumption that although the flow as a whole is elliptic, there is a short

region near the entrance where the flow is parabolic. A parabolic calculation is first

carried out over a short distance between z = 0 and z = ze by using the following

mixing length model

= -#,u,, , #, -- c'(,,_ - ,,)'Iv,, I (14)

where U(= [/1) is the axial mean velocity, rl and r2 are the coordinates of the inner

and outer edge of the initial shear layer (Fig.l) and C is an empirical coefficient

derived from the experiment of Rajaratnam and Pani (1972)

c 2 = 0.0042+ o.o04go/uj, 0 <_Uo/Uj <_0.2 (15)

The results of the parabolic calculation are then used as the inlet conditions at

x = x, for the elliptic calculation. At this location, the inlet values of K and e are

calculated by

K = -uv/0.3, _ = O.09pK2/#t (16)

It was found (Zhu, 1986) that the PER scheme gives satisfactory predictions in

the parabolic entrance region and that the elliptic calculations are insensitive to x_

provided that 1 _ x_/do __ 3.

The outlet boundary is placed at • -- lODo which is sufficiently far away from

the main region of interest. At this boundary streamwise gradients of all variables

are set to zero. Along the axis of symmetry the normal velocity component and the

normal gradients of the other variables are set to zero. The standard wall-function

approach (Launder and Spalding, 1974) is used to bridge the viscous sublayer at the

duct wall.

2.4 Numerical Procedure. The system of transport equations (12) is solved

by using a conservative finite-volume method designed for calculating incompressible

elliptic flows with complex boundaries. The method uses a non-staggered variable



arrangement, namely, all the dependent variables are stored at the geometric center

of each control volume. The momentum interpolation of Rhie and Chow (1983)

is used to avoid checkerboard oscillations usually associated with non-staggered

grids. The velocity-pressure coupling is achieved via the SIMPLEC algorithm (Van

Doormal and Raithby, 1984). Numerical implementation of the RRSAE model is

straightforward; the linear part is treated in the same manner as in the K-e model

and the quadratic part is included in the source terms. To ensure numerical accuracy

and stability, the convection terms of all the transport equations are differenced by

the hybrid llnear/parabollc approximation (HLPA) of second-order accuracy (Zhu,

1991a), and all the other terms by the conventional central differencing scheme. The

resulting set of algebraic difference equations is solved with the strongly implicit

procedure of Stone (1968). The iterative solution process is regarded as converged

when the maximum normalized residue of all the dependent variables is below 0.5%.

The details of the present numerical procedure are given in Rodi et al. (1989) and

Zhu (1991b).

3 Results

The experiments of Barchilon and Curtet (1964) and Binder and Klan (1983)

were taken as the test cases, hereinafter termed BC- and BK-case, respectively. The

geometrical dimensions and the inlet flow conditions of both cases are given in Tables

2 and 3.

Table 2. Geometrical dimensions of the ducts

case Do(cm) do(cm) a(degree) L(cm)

BC 16 1.2 0

BK 16 1.6 2.5 64

In the BK-case, the velocity field and the pressure field were measured separately

using the different inlet velocities as shown in Table 3. The Craya-Curtet number

Ct is defined by

Ct = --_, m = (U 2 + )dS- _ (17)

where m is the total momentum flux non-dimensionalized with the total flow rate

Q and the duct area S.



Table 3. Inlet flow conditions

case Ct Us (cm/s) Uo (cm/s)
0.976 1293.6 84.48

BC 0.506 1253.8 39.81

0.152 1296.2 7.42

BK 1.230 40 4.885

(velocity 0.775 40 2.662

field) 0.590 40 2.330

BK 1.090 650 61.38

(pressure 0.842 650 46.58

field) 0.570 650 29.90

Calculations were made on the Cray YMP computer. The grid-dependency of

the solutions was examined by using the two convection schemes, HLPA and HY-

BRID (central/upwind differencing), and three grids consisting of 50x40 (grid 1),

86x50 (grid 2) and 120x80 (grid 3) points, respectively. The HYBRID scheme that

is highly diffusive in the presence of both convective dominance and flow-to-grid

skewness has been used here only to highlight the importance of using higher-order

accurate schemes. Test results obtained with the RRSAE model at Ct = 0.506

in the BC-case are shown in Fig.2 for the turbulent shear stress _--_-profiles at the

downstream location z/Do=1.875. It can be seen that the results with HLPA on

the coarse grid 1 are already very close to those on the fine grid 3, while significant

differences exist between the corresponding results with HYBRID. The HLPA re-

suits on the intermediate grid 2 can be considered as grid-independent because the

refinement from the grid 2 to the grid 3 produced differences too small to be seen

on the graph. The HYBRID solutions, however, responded to the grid refinement

in such a slow manner that they stiU have not reached the grid-independent stage

on the finest grid. The HYBRID scheme is, therefore, inappropriate for computa-

tions of confined jets in presence of recirculation. The iterations and CPU-time in

minutes required for the calculations with HLPA were 196 and 0.2 on grid 1, 640

and 1.4 on grid 2 and 1874 and 9.3 on grid 3. The calculations with HYBRID took

about 0.6---0.8 of these numbers. The grid 2 and HLPA were used for all subsequent

calculations.

Figs.3 and 4 show the decay of the centerline velocity Uo, normalized by the

mean velocity of the section U,,, at different Ct numbers. The figures clearly reveal

the existence of the potential core characterized by the constant Uo. Beyond the

potential core, Uo decays quickly, especially at small C_ numbers. The experimental

data show that the potential core is shorter in the BK-case than in the BC-case,

because the former has a larger mixing layer between the jet and the ambient flow

at the entrance. This feature is also reflected in the computed results. The RRSAE



model predicts a longer potential core length than the K-e model does, but it is

difficult to judge which is better because this length cannot be precisely determined

from the first and second experimental points. Overall, both models predict the

eenterllne velocity decay well, though small underpredictions occur in the K-e model

results at the intermediate and small values of Ct in both cases. Figs.5 and 6 show

the axial mean velocity profiles at four downstream locations, at the smallest value

of Ct in each case. In the BC-case, the RRSAE model results are in excellent

agreement with the experimental data whereas noticeable discrepancies exist in the

K-_ model results at the last three downstream locations. In the BK-case, the results

of RRSAE model are also better than those of the K-e model, but the agreement is

less satisfactory than in the BC-case. At the location z/Do = 1.25, the experimental

profile shows no constant ambient velocity portion while the calculated profiles by

both models still have a vertical plateau around r/R = 0.6. The comparison at the

location z/Do = 2.5 indicates that the width of the predicted reverse-flow region is

somewhat too thin. Comparing the corresponding profiles in the BC-case (Fig.5)

which has a much stronger recirculation, the experimental velocity minimum at

the last location in Fig.6 seems to be too far away from the duct wall. It is to

be noted that the flow is highly perturbed in the recirculation region in which the

measurement uncertainty is likely to be greatest.

In order to study the jet spreading, the excess flow rate Qj has been introduced

which is defined as follows

Qj = 2_r rjo,,(V_ U1)rdr (18)

where 0"1 is the ambient velocity (Fig.l). In the recirculation region, the ambient

velocity has no physical meaning and is defined as the minimum velocity (having

negative value) for analytical convenience. Figs.7 and 8 show the variation of the

excess flow rate Qj with z and Or. As a consequence of the turbulent entrainment,

the excess flow rate increases first, passes through a maximum and then decreases

in case of recirculation which corresponds to Qj/Q _> 1. This variation becomes

more pronounced as Ct decreases. The calculations agree well with the experiments

at large C_, but the agreement deteriorates as recirculation intensifies. At small Ct

(<0.6), the calculations overpredict the maximum excess flow rate in the BC-case,

while the opposite happens in the BK-case. It should be pointed out that the excess

flow rate, due to its definition, is a quantity that is highly sensitive to errors in the

velocity profiles so that a small change in Ut, especially in the recirculation zone,

will result in a large difference in Qj. Regarding the comparison between the two

models, the RRSAE model clearly performs better than does the K-e model.

The separation and reattachment points are given in Table 4. They are the

10



locations whereQi/Q=I in Figs.7 and 8. In the BK-case, only a range of 3.4 .-- 3.8Do

was given experimentally for the reattachment point due to the high unsteadiness of

the recirculating bubbles. The experiments in both the BO- and BK-cases revealed

that as Ct decreased, the separation points moved upstream while the reattchment

points remained basically unchanged. The RRSAE model captures this feature well

and predicts the locations of the recirculation bubbles better than the K-e model.

Table 4. Separation and reattachment points (z,/Do, z,/Do)

case Ct experiment K-e model RRSAE model

BC 0.506 1.70, 3.07 1.37, 2.7 1.6 , 3.03

0.152 0.45,3.07 0.40,2.95 0.5 ,3.15

BK 0.775 2.50,3.4,v3.8 1.82,3.17 2.15,3.79

0.590 1.50,3.4,,_3.8 1.43,3.22 1.45,3.81

Figs.9 and 10 show the variation of pressure coefficients along the duct walls.

Here, Cp is defined by

Ap-pv ./2
c,, = re:,�2 (19)

and Ap is the pressure difference between the location z and the entrance. The

pressure gradient is governed by the jet entrainment, the contraction and expansion

of the flow caused by recirculating eddies as well as the geometry of the duct.

As shown in Klan (1981), the entrainment and the divergence of the duct can only

produce a maximum pressure difference equal to pU_/2, while the pressure difference

created by the divergence of streamlines in the downstream part of the recirculating

bubble is of the order of

A___p,v(1 + Kc) t__v}4//7_', (20)

where the coefficient Kc is a positive quantity defined by the flow velocity, and Rc

is the minimum radius of the contracted stream. Therefore, the pressure rise in the

recirculating zone depends on the width of the recirculating bubble and can be much

larger than pU2_/2. This explains the variation of C_ with C, seen in Figs.9 and 10.

Regarding the comparison between predictions and experiments, it can be seen that

although both models predict practically the same total pressure rise which is in

very good agreement with the measurements (Fig.9), the RRSAE model captures

the location where the pressure starts to shoot up much better than the K-e model

at all the Ct numbers in both the cases. This location corresponds to the abscissa

of the maximum excess flow rate shown in Figs.7 and 8.

11



Detailed experimental data for the turbulent stresses uu, vv and _ are available

only in the BK-case at Gt = 0.59. The computed and measured radial profiles of

these quantities at four downstream locations are compared in Figs.11-13. With

regard to the turbulent normal stresses shown in Figs.ll and 12, the experimental

data are basically followed by the results of both the RRSAE model and the K-e

model, with the former predicting more anisotropy than the latter. The experimen-

tal data at z/Do = 2.5 are seen to exhibit a different trend for both _ and _-_,

which may possibly be due to measurement errors. The flow visualization in the ex-

periment indicated that the global flow pattern was highly unsteady in the presence

of recirculation. With due regard to flow complexities and measurement difficulties,

the agreement between the predictions and measurements seen in Figs.ll and 12

should be considered as reasonably good, but it is difficult to judge which model

performs better for the turbulent normal stresses, overall. For the turbulent shear

stress uv shown in Fig.13, the results obtained with the RRSAE model are clearly

better than those with the K-e model for all the locations considered. The large dis-

crepancy seen at z/Do = 2.5 is partially due to the underprediction of the width of

the backflow region and partially due to the experimental uncertainty, as evidenced

by the fact that in the experimental data, the change in sign of the shear stress

profile occurs much further away from the duct wall than the velocity minimum.

4 Concluding Remarks

A numerical study has been conducted on axisymmetric confined jets in two ducts

with and without divergence. The focus of the study was on the performance of the

two turbulence models under various flow conditions ranging from no to strong

recirculation. The RRSAE model is new, and its capability to predict this type of

flows needs to be tested. The K-e model was applied to the same problem before, but

we believe that a re-assessment is necessary because the previous studies were made

on an inaccurate numerical basis (first-order differencing together with very coarse

grids). This study has shown that the confined jet calculations are very sensitive

to the convective approximation of the transport equations. In order to achieve a

numerically credible solution without involving excessive grid points, higher-order

differencing schemes have to be adopted. In this regard, the second-order accurate

HLPA scheme behaves quite well and its solution is virtually the same as those of

third-order accurate SMART and SHARP schemes (Zhu, 1992), all three being of

oscillation-free nature. Therefore, it can be concluded with a sufficient degree of

confidence that the present calculations reflect the real predictive capability of tile

12



models for the confined jets.

The calculations have been extensively compared with the experiments. The

comparison clearly shows the superiority of the RRSAE model over the K-¢ model

under all the circumstances considered. Specifically, the former performs much bet-

ter than the latter in the predictions of the pressure distribution, the separation and

reattachment points of recirculation region, the excess flow rate, the jet expansion

and the turbulent shear stress. Only for the maximum reverse flow rate, an impor-

tant parameter to characterize the performance of combustion chambers, does the

RRSAE model result in little improvement. Since this quantity is directly related to

the flow near the wall in the recirculation region, the use of the wall function may

constitute a source of error and also measurement errors should not be excluded in

this highly perturbed region. Overall, the RRSAE model is shown to be able to

predict confined jets with an accuracy sufficient for engineering applications.
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