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Abstract 

There are millions of sample medical cases recorded in many digital medical 

datasets that can be used by the data mining techniques for predicting any 

particular disease. Improving the classification accuracy in medical diagnosis 

based on patterns extracted from the available medical datasets is a challenging 

research problem as the medical datasets contain many complex patterns. In 

artificial intelligence, hybrid intelligent systems can support the data mining 

process to improve the accuracy of classification for medical diagnosis. Hybrid 

intelligent system is an integrated design of different artificial intelligence 

techniques such as neuro-fuzzy, genetic-fuzzy, etc., that has been successful in 

many applications such as data mining, computer vision, speech synthesis, etc. 

This paper proposes a hybrid intelligent method of integrating Naïve Bayes 

classifier and parallel fuzzy systems for the classification of type 2 diabetes. The 

proposed method employs multiple hybrid fuzzy systems in a parallel structure 

for effective classification on the data. The proposed method showed better 

classification accuracy of 90.26% when tested using the Pima diabetes dataset. 

Keywords: Diabetes mellitus, Fuzzy logic, Medical data mining, Naïve Bayes. 
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1.  Introduction 

The medical and healthcare data that are available in the digital world can be analysed 

by using the artificial intelligence techniques which can facilitate medical diagnosis. 

For example, the machine learning algorithms has a great potential to discover 

patterns from the medical datasets for detection of various diseases.  Diabetes mellitus 

is one of the serious diseases in the world that requires careful attention. Diabetes can 

cause death if not treated correctly at the earlier stage [1].  Both male and female can 

have chance for diabetes [2]. Diabetes can be extremely difficult for pregnant women. 

There are different types of diabetes such as type 1, type 2, and gestational diabetes 

[3]. Among these types, type 2 diabetes can be controlled by taking appropriate 

medications and following proper lifestyle guidelines [4].  

In recent years, many hybrid intelligent architectures were proposed for 

classifying type 2 diabetes, out of which the hybrid fuzzy system [5, 6] is the most 

popular one. A fuzzy expert system is an implementation of fuzzy logic technique 

which is used for complex domains that involves analysis of complicated data.  The 

fuzzy systems have an advantage over machine learning algorithms. The machine 

learning algorithms that extract patterns from the diabetic datasets will show 

outcomes only based on the datasets. The risk level of diabetes is not identified by 

the machine learning algorithms. For example, in the diabetic dataset where the 

outcome classes are non-diabetic and diabetic, the machine learning algorithms 

trained with the diabetic dataset will only be able to classify whether the person is 

non-diabetic or diabetic. But the risk level of diabetes between non-diabetic and 

diabetic is not identified. Designing a hybrid fuzzy system by integrating the machine 

learning algorithms with the fuzzy logic technique can benefit in identifying the risk 

level of diabetes from the dataset. The accuracy of the fuzzy system is based on the 

design of fuzzy sets and fuzzy rule base. As diabetes is a complicated disease, the 

design of proper fuzzy rule base for accurate prediction of diabetes is a research 

problem. There are various hybrid fuzzy approaches proposed for optimizing the 

fuzzy rules in fuzzy system to support the type 2 diabetes diagnosis.  

Mansourypoor and Asadi [7] proposed a reinforcement learning-based 

evolutionary fuzzy rule-based system (RLEFRBS) for type 2 diabetes diagnosis. 

According to their proposed model, the numerical data are used to form the initial 

rules, then the genetic algorithm (GA) [8] is used to choose proper subset of rules 

for creating an initial rule base, then the evolutionary approach is used to tune the 

membership functions (MFs) of the rules, and then the reinforcement learning [9] 

is used to adjust rule weights to enhance the consistency among the rules in fuzzy 

system. The performance of RLEFRBS showed a classification accuracy of 84% 

when tested using Pima diabetes dataset [10].  

Vaishali et al. [11] studied the classification of type 2 diabetes by combining 

the GA and multiple objective evolutionary (MOE) fuzzy classifier [12] where GA 

is used for feature selection. Their investigations applied MOE fuzzy classifier for 

the type 2 diabetes diagnosis because it functions based on the principle of 

maximum classification rate and minimum rules. Their proposed algorithm showed 

a classification accuracy of 83.04% when tested using Pima diabetes dataset. 

Chen et al. [13] proposed a decision tree based neuro-fuzzy approach for 

classification of type 2 diabetes where the decision tree learning [14] is used to 

optimize the fuzzy rule base in adaptive neuro-fuzzy inference system (ANFIS) 

[15]. According to their proposed approach, initially a crisp rule base is produced 
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using decision tree learning, then the crisp rule base is transformed into fuzzy rule 

base where the Gaussian MFs is used for replacing the crisp intervals. The 

transformed fuzzy rule base is finally given as input to ANFIS. The performance 

of their proposed model showed a classification accuracy of 75.67% when tested 

using Pima diabetes dataset.  

Cheruku et al. [16] proposed a model for generating fuzzy rules by combining 

rough set theory (RST) [17] and bat optimization algorithm (BA) [18]. According 

to their proposed model, RST based QUICK-REDUCT [19] algorithm is used for 

feature selection from the dataset. Then the BA with Ada-Boosting [20] technique 

is applied to generate fuzzy rules. Their proposed model showed a classification 

accuracy of 85.33 % when tested on Pima diabetes dataset.  

The curse of dimensionality is the major issue in these approaches where the 

number of fuzzy rules rises exponentially with the number of input variables. For 

a large number of input fuzzy sets, the fuzzy expert system will become difficult to 

implement because of the size of rule base. Different types of fuzzy system 

architectures such as hierarchical or parallel architectures [21-23] can be utilized to 

overcome this drawback where the number of rules rises only linearly with the 

number of input variables. 

The objective of this paper is to present an effective hybrid parallel fuzzy 

method that can overcome the curse of dimensionality problem found in the hybrid 

fuzzy systems and improve the classification accuracy in type 2 diabetes diagnosis. 

A hybrid intelligent method called Naïve Bayes (NB) based multiple parallel fuzzy 

reasoning (NB-MPFR) method is proposed in this paper which combines the NB 

classifier and parallel fuzzy reasoning approach for type 2 diabetes diagnosis. The 

NB-MPFR method utilizes the benefits of machine learning technique and parallel 

fuzzy reasoning approach where the NB classifier is used for selecting rules in the 

fuzzy rule base and the parallel fuzzy reasoning approach is used to overcome the 

curse of dimensionality problem found in fuzzy systems. The NB-MPFR method 

showed a good classification accuracy for type 2 diabetes diagnosis when 

implemented in a three-layered parallel fuzzy system.  

The remaining part of this paper is organized as follows. A brief overview of 

fuzzy logic and NB algorithm is given in Section 2. The NB-MPFR method is 

described in Section 3. The application of NB-MPFR method in classification of 

type 2 diabetes is discussed in Section 4. The performance of NB-MPFR method 

in classification of type 2 diabetes is discussed in Section 5. Finally, the conclusion 

and future work are given in Section 6. 

2.  Background 

2.1. Fuzzy logic 

The fuzzy logic which is a kind of many valued logic was introduced by Zadeh [24] 

in the proposal of fuzzy set theory in the year 1965. Fuzzy logic has the ability to 

capture uncertainty in the data by supporting the concept of partial truth. In fuzzy 

logic, the truth values of variables may be of any value between 0 and 1 which 

represent completely false and completely true respectively. The fuzzy logic is 

implemented in the fuzzy expert system. There are different types of fuzzy 

inference systems and the most commonly used is the Mamdani fuzzy inference 

system [25]. In general, the fuzzy expert system involves the following steps. 
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2.1.1. Fuzzification 

Fuzzification involves designing the fuzzy sets with appropriate degree of 

membership for all inputs and output values. The degree of membership is set 

within the interval [0,1]. There are different types of MFs [26] such as triangular, 

trapezoidal, gaussian, sigmoid, etc. 

2.1.2. Rule execution 

After creating the input and output fuzzy sets, a number of rules are defined in the 

rule base to perform fuzzy operation on the fuzzy sets using AND or OR operator. 

In each rule, the MFs of the input fuzzy sets are taken as antecedents and the MFs 

of the output fuzzy set are the consequent. When executing the rules, the outputs of 

all rules in the rule base are unified to form a single aggregate output fuzzy set [25]. 

2.1.3. Defuzzification  

Defuzzification involves converting the aggregate output fuzzy set into a crisp 

output value. Out of different types of existing defuzzification methods, the most 

common method that is used in data mining applications is the centre of gravity 

(COG) method. The COG is computed over a continuum of points in the aggregate 

output fuzzy set by using Eq. (1) [27] 

COG =  
∑ 𝜇𝐴(𝑥)𝑥
𝑏
𝑥=𝑎

∑ 𝜇𝐴(𝑥)
𝑏
𝑥=𝑎

                 (1) 

where A is the fuzzy set on the interval [a, b], and 𝜇𝐴(x) is the membership degree 

of the element x in the fuzzy set A. 

2.2. NB  

NB algorithm can be viewed as a probability classifier that employs Bayes theorem 

and is based on a strong independent assumption between all variables in the 

dataset, given the class variable [28]. The NB algorithm is easy to implement and 

has proved to be effective for many applications particularly in classification of 

large datasets by showing good classification accuracy despite of its simplified 

assumption. Suppose there is an instance xi having n attributes, A1, A2, …, An with 

m classes, c1, c2, ..., cm in the dataset. The NB classifier classifies xi in ci if and only 

if P(ci|xi) > P(cj|xi), for 1≤ j ≤ m, j ≠ i. P(ci|xi) is computed using the Bayes 

theorem as shown in Eq. (2) and (3) 

P(ci|xi) = 
𝑃(𝑥𝑖|𝑐𝑖)𝑃(𝑐𝑖)

𝑃(𝑥𝑖)
                 (2) 

where P(xi|ci) = ∏ 𝑃(𝑥𝑘| 𝑐𝑖)
𝑛
𝑘=1                 (3) 

Here, P(xi|ci) is the probability of xi for a given class ci, P(ci) is the priori 

probability of ci, and P(xi) is the priori probability of xi.  

When handling continuous data, the assumption is made that the continuous 

values associated with each class are distributed according to a gaussian 

distribution. For the gaussian distribution, the conditional probability P(xi|ci) is 

computed using Eq. (4)   

P(xi|ci) = 
1

√2𝜋𝜎2
 exp (− 

(𝑥𝑖− 𝑚)

2𝜎2
)                              (4) 

where the parameter m is the mean, and 𝜎2 is the variance.  
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3.  The proposed method 

The NB-MPFR method presents a hybrid fuzzy reasoning approach in a parallel 

structure for the data classification problem by using several low-dimensional sub 

fuzzy systems (SFSs) which are integrated with the gaussian NB classifiers. The 

NB-MPFR method is strongly based on the training dataset. In NB-MPFR method, 

the training dataset is split into groups based on the attributes and accordingly the 

number of SFSs are created. The quartile values computed from each training 

dataset group are used to define the MFs of fuzzy sets in the corresponding SFSs. 

The gaussian NB classifier trained using each training dataset group is used to 

define the fuzzy rules in the corresponding SFSs. After the defuzzification process 

in all the SFSs, the average value of the crisp outputs obtained from all the SFSs is 

taken as the final output. The NB-MPFR method is described in detail through the 

following steps. 

3.1. Splitting dataset into groups for SFSs 

At first, the training dataset is split into groups based on the attributes such that 

each dataset group contains the data values of maximum of three input attributes 

and the data of target attribute. A number of SFSs are developed based on the 

dataset groups. For instance, if there are three dataset groups formed from the 

training dataset, then three SFSs are developed. Each SFS will correspond to each 

dataset group. The input attributes and the output classes of each dataset group will 

be the inputs and outputs of the corresponding SFS respectively.  

3.2. Finding quartiles from dataset 

For each input attributes in the SFSs, the minimum and maximum data values are 

identified from the corresponding dataset. Using the quartile concept, the number 

of data points in each attribute is divided around four equal parts. According to the 

quartile concept, the lower quartile or first quartile is the middle number between 

the minimum and median data value of the attribute. The second quartile is the 

median data value of the attribute. The upper quartile or third quartile is the middle 

number between the median and maximum data value of the attribute. Then finally, 

the middle number between the upper quartile and maximum data value of the 

attribute is considered as the uppermost quartile. For each input attribute, the lower 

quartile, second quartile, upper quartile and uppermost quartile values are 

computed from the corresponding dataset. Using these values, the input fuzzy set 

is designed for each input attribute. For each input attribute, the fuzzy set is 

designed in such a way that, the quartile values are used to define the parameters 

value of the MFs on x-axis of the fuzzy set. Each quartile value will represent the 

peak value of each MF in the fuzzy set. The endpoint of x-axis in the fuzzy set will 

be the minimum and maximum data value of the corresponding input attribute.  

3.3. Fuzzification of dataset attributes in SFSs 

The gaussian MF is used to set the membership degree in each input fuzzy set of 

the SFS. The gaussian MF for any two points on x-axis of the fuzzy set ‘A’ can be 

represented by its mean m and standard deviation σ as shown in Eq. (5)  

𝜇𝐴 (x) = exp(−
(𝑥−𝑚)2

2𝜎2
)                 (5) 
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Suppose there are 𝐴𝑖 attributes where i = 1, 2, …, n is the number of attributes. 

Let 𝑎𝑖  be the data value of the 𝐴𝑖  and let 𝑎𝑚𝑖𝑛
𝑖 , 𝑎𝐿𝑄

𝑖 , 𝑎𝑆𝑄
𝑖 , 𝑎𝑈𝑄

𝑖 , 𝑎𝑈𝑀𝑄
𝑖 , 𝑎𝑚𝑎𝑥

𝑖  be the 

minimum, lower quartile, second quartile, upper quartile, uppermost quartile and 

maximum data value of the input attribute respectively. Initially, 𝑎𝑚𝑖𝑛
𝑖  and 𝑎𝑚𝑎𝑥

𝑖  

are used as the limits of x-axis in the input fuzzy sets. Then the values of 

𝑎𝐿𝑄
𝑖 , 𝑎𝑆𝑄

𝑖 , 𝑎𝑈𝑄
𝑖 , 𝑎𝑈𝑀𝑄

𝑖  are used to design four gaussian MFs on the fuzzy sets such 

that each quartile value on x-axis of the fuzzy set will be the mean value for each 

gaussian MF. For each gaussian MF, the mean value is the corresponding quartile 

value, and the standard deviation is computed for the continuous data between the 

preceding quartile and succeeding quartile value. That is, for the first gaussian MF, 

the mean value is 𝑎𝐿𝑄
𝑖  and the standard deviation is computed between 𝑎𝑚𝑖𝑛

𝑖  and 

𝑎𝑆𝑄
𝑖 . For the second gaussian MF, the mean value is 𝑎𝑆𝑄

𝑖  and the standard deviation 

is computed between 𝑎𝐿𝑄
𝑖  and 𝑎𝑈𝑄

𝑖 . For the third gaussian MF, the mean value is 

𝑎𝑈𝑄
𝑖  and the standard deviation is computed between 𝑎𝑆𝑄

𝑖  and 𝑎𝑈𝑀𝑄
𝑖 . Finally, for the 

fourth gaussian MF, the mean value is 𝑎𝑈𝑀𝑄
𝑖  and the standard deviation is 

computed between 𝑎𝑈𝑄
𝑖  and 𝑎𝑚𝑎𝑥

𝑖 . Figure 1 shows the sample of how the MFs are 

designed on input fuzzy sets based on the quartile values. 

 

Fig. 1. Sample input fuzzy set based on quartile values. 

The output fuzzy set of each SFS is based on the number of output classes in target 

attribute of the training dataset. Trapezoidal MF is used to plot the output class in the 

output fuzzy set. The trapezoidal MF can be represented by four parameters {a, b, c, 

d} which represent the lower limit, lower support limit, upper support limit, and upper 

limit respectively on x-axis of the fuzzy set A as shown in Eq. (6)  

𝜇𝐴(x) =  

{
 
 

 
 

0,                𝑖𝑓 𝑥 ≤ 𝑎
𝑥−𝑎

𝑏−𝑎
,     𝑖𝑓 𝑎 ≤  𝑥 ≤  𝑏

1,          𝑖𝑓 𝑏 ≤  𝑥 ≤  𝑐 
𝑑−𝑥

𝑑−𝑐
,     𝑖𝑓 𝑐 ≤  𝑥 ≤  𝑑

0,             𝑖𝑓 𝑑 ≤  𝑥

                (6) 

For the output fuzzy set, the limits of x-axis in the fuzzy set are set randomly and 

the x-axis is split into equal parts to plot all trapezoidal MFs in the output fuzzy set. 

For instance, if the target attribute has two output classes, then two trapezoidal MFs 

are created for the output fuzzy set. Figure 2 shows the sample of output fuzzy set 

which has two trapezoidal MFs representing two output classes of the target attribute.  
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Fig. 2. Sample output fuzzy set. 

3.4. Gaussian NB trained with dataset for fuzzy rule base 

Gaussian NB classifiers are trained using the dataset groups. The gaussian NB 

classifier trained by a dataset group is used to define the fuzzy rules in the 

corresponding SFS. In the input fuzzy sets of each SFS, the quartile values marked 

on the x-axis represents the peak value of each MF. To define the fuzzy rules based 

on gaussian NB classifier, it is assumed that each quartile value on the x-axis 

represents the corresponding MF. For all possible combinations of the quartile 

values between different input fuzzy sets, their outcomes are predicted using the 

corresponding trained gaussian NB classifier which is in turn used to set the 

consequent MFs for the corresponding combinations of MFs between different 

input fuzzy sets in the fuzzy rule base.  

Suppose 𝑎𝐿𝑄
𝑖 , 𝑎𝑆𝑄

𝑖 , 𝑎𝑈𝑄
𝑖 , 𝑎𝑈𝑀𝑄

𝑖  represent the MFs: 𝜇𝐴𝑖 [MF1], 𝜇𝐴𝑖 [MF2], 

𝜇𝐴𝑖[MF3], 𝜇𝐴𝑖[MF4] respectively in the input fuzzy set. Let 𝐼𝐶𝑘 be the combination 

of quartile values between different input attributes where k = 1, 2, …, n represent the 

number of possible combinations of quartile values between different input attributes 

and let 𝑅𝑘 be the rule in which the antecedents are the combination of MFs between 

different input fuzzy sets where k = 0, 2, …, n represent the number of possible 

combinations of MFs between different input fuzzy sets.  

For instance, let 𝐼𝐶𝑘  represents the combination of inputs: (𝑎𝐿𝑄
0 , 𝑎𝑆𝑄

2 , 𝑎𝑈𝑄
3 , …, 

𝑎𝑈𝑀𝑄
𝑛 ) and 𝑅𝑘  represents the rule having the antecedents as the corresponding 

combination of MFs as antecedent: ( 𝜇𝐴0 [MF0], 𝜇𝐴2 [MF2], 𝜇𝐴3 [MF3], …, 

𝜇𝐴𝑛 [MF4]). Then, if gaussian NB classifier prediction of 𝐼𝐶𝑘  is 1 then the 

consequent of 𝑅𝑘 is set as 𝜇𝑂𝑃[MF2 ] where 𝜇𝑂𝑃[MF2] is the MF of output fuzzy 

set representing the output class 1 of target attribute in the training dataset. That is, 

If prediction of gaussian NB (𝐼𝐶𝑘: 𝑎𝐿𝑄
0 , 𝑎𝑆𝑄

2 , 𝑎𝑈𝑄
3 , …, 𝑎𝑈𝑀𝑄

𝑛 ) = 1, then 

𝑅𝑘 ∶ IF (𝜇𝐴0[MF0], 𝜇𝐴2[MF2], 𝜇𝐴3[MF3], …, 𝜇𝐴𝑛[MF4]) THEN 𝜇𝑂𝑃[MF2] 

In this way, the gaussian NB classifiers trained by the dataset groups are used 

to set the consequent MFs of all rules for the corresponding combinations of MFs 

between different input fuzzy sets in the fuzzy rule base of all SFSs.  
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3.5.  Defuzzification and final output 

The defuzzification process of each SFS is done using the COG method to convert 

the aggregate output fuzzy set into crisp output. The final output of NB-MPFR 

method is the average value of the crisp outputs obtained from all the SFSs. Figure 

3 shows the pseudocode of complete NP-MPFR method. 

 

Fig. 3. Pseudocode of NP-MPFR method. 
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4.  Application of NB-MPFR in Diabetes Diagnosis  

The NB-MPFR method is implemented as a three-layered parallel fuzzy system 

using python programming language. Figure 4 shows the architecture of NB-MPFR 

system. The Pima diabetes dataset is used for testing the NB-MPFR method. The 

attributes of Pima diabetes dataset are number of times pregnant (Preg.), plasma 

glucose concentration 2 hours in an oral glucose tolerance test (Glu.), diastolic 

blood pressure (BP), triceps skin fold thickness (Tri.), 2-Hour serum insulin (Ser.), 

body mass index (BMI), diabetes pedigree function (Pedi), age, and the output 

classes: 0 (non-diabetic) and 1 (diabetic). The Pima diabetes dataset contains 768 

samples where 500 samples belong to the output class of non-diabetic and 268 

samples belong to the output class of diabetic [10]. As per the NB-MPFR method, 

the below steps are used for the classification of type 2 diabetes.   

 

Fig. 4. NB-MPFR system architecture. 

4.1. Splitting diabetes dataset into groups for SFSs  

The Pima diabetes dataset is initially divided into three dataset groups based on the 

attributes where the first dataset group PD1 has three input attributes: Preg., Glu., 

BP, and the target attribute, the second dataset group PD2 has three input attributes: 

Tri., Ser., BMI, and the target attribute,  the third dataset group PD3 has two input 

attributes: Pedi, age, and the target attribute. The divided dataset groups (PD1, PD2, 

PD3 ) are further divided into two groups as training dataset groups (TRPD1 , 

TRPD2, TRPD3) and testing dataset groups (TEPD1, TEPD2, TEPD3) in 80:20 ratio 

respectively. The training dataset groups: TRPD1 , TRPD2 , TRPD3  are used for 

designing the fuzzy sets and for training the gaussian NB classifier. The testing 

dataset groups: TEPD1, TEPD2, TEPD3 are used for testing the NB-MPFR system.   
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As three dataset groups are obtained from the Pima diabetes dataset, a three-

layered parallel fuzzy system is used to implement the NB-MPFR method. That is, 

three SFSs (SFS1, SFS2, SFS3) are used in a parallel architecture to implement the 

NB-MPFR method where SFS1  is based on the training dataset group, TRPD1 , 

SFS2  is based on the training dataset group, TRPD2  and SFS3  is based on the 

training dataset group, TRPD3. The inputs and outputs of the three SFSs are shown 

in Table 1 based their corresponding training dataset groups.  

Table 1. Inputs and outputs of SFSs. 

SFS Inputs Output 

SFS1 Preg., Glu., BP non-diabetic or diabetic 

SFS2 Tri., Ser., BMI non-diabetic or diabetic 

SFS3 Pedi, age non-diabetic or diabetic 

4.2. Finding quartiles from diabetes dataset 

Initially the values of 𝑎𝑚𝑖𝑛
𝑖 , 𝑎𝐿𝑄

𝑖 , 𝑎𝑆𝑄
𝑖 , 𝑎𝑈𝑄

𝑖 , 𝑎𝑈𝑀𝑄
𝑖 , 𝑎𝑚𝑎𝑥

𝑖  are computed from each 

Pima training dataset group to plot four gaussian MFs in the input fuzzy sets of 

each SFS. As per the NB-MPFR method, the values of 

𝑎𝑚𝑖𝑛
𝑖 , 𝑎𝐿𝑄

𝑖 , 𝑎𝑆𝑄
𝑖 , 𝑎𝑈𝑄

𝑖 , 𝑎𝑈𝑀𝑄
𝑖 , 𝑎𝑚𝑎𝑥

𝑖  are shown in the Table 2.  

Table 2. Quartile values of input attributes. 

Input 

Attributes 
𝒂𝒎𝒊𝒏
𝒊  𝒂𝑳𝑸

𝒊  𝒂𝑺𝑸
𝒊  𝒂𝑼𝑸

𝒊  𝒂𝑼𝑴𝑸
𝒊  𝒂𝒎𝒂𝒙

𝒊  

Preg. 0 4.25 8.5 12.75 14.88 17 

Glu. 0 49.5 99 148.5 173.25 198 

BP 0 30.5 61 91.5 106.75 122 

Tri. 0 24.75 49.5 74.25 86.63 99 

Ser. 0 211.5 423 634.5 740.25 846 

BMI 0 16.78 33.55 50.32 58.71 67.1 

Pedi 0.08 0.66 1.25 1.83 2.13 2.42 

age 21 36 51 66 73.5 81 

4.3. Fuzzification of diabetes dataset attributes in SFSs 

Based on the values shown in Table 2, the input fuzzy sets are created in the SFSs 

(SFS1, SFS2, SFS3). For creating the input fuzzy sets, at first, the limits of x-axis in 

the fuzzy set are set from 𝑎𝑚𝑖𝑛
𝑖  to 𝑎𝑚𝑎𝑥

𝑖 . Then using the values: 𝑎𝐿𝑄
𝑖 , 𝑎𝑆𝑄

𝑖 , 𝑎𝑈𝑄
𝑖 , 𝑎𝑈𝑀𝑄

𝑖 , 

four gaussian MFs are plotted in the input fuzzy sets of all SFSs.  

As per the NB-MPFR method, four gaussian MFs (m, σ) are plotted in the input 

fuzzy sets of all SFSs by considering the quartile values of their corresponding 

attributes as the mean values m and the standard deviation values σ are computed 

over a continuous data between the respective preceding and succeeding quartiles 

of the mean quartiles as shown below.   

𝜇𝐴𝑖[MF0] = (𝐴𝑖, gaussian MF (m = 𝑎𝐿𝑄
𝑖 ; σ (start: 𝑎𝑚𝑖𝑛

𝑖 , stop: 𝑎𝑆𝑄
𝑖 ))) 

𝜇𝐴𝑖[MF2] = (𝐴𝑖, gaussian MF (m = 𝑎𝑆𝑄
𝑖 ; σ (start: 𝑎𝐿𝑄

𝑖 , stop: 𝑎𝑈𝑄
𝑖 ))) 

𝜇𝐴𝑖[MF3] = (𝐴𝑖, gaussian MF (m = 𝑎𝑈𝑄
𝑖 ; σ (start: 𝑎𝑆𝑄

𝑖 , stop: 𝑎𝑈𝑀𝑄
𝑖 ))) 

𝜇𝐴𝑖[MF4] = (𝐴𝑖, gaussian MF (m= 𝑎𝑈𝑀𝑄
𝑖  ; σ (start: 𝑎𝑈𝑄

𝑖 , stop: 𝑎𝑚𝑎𝑥
𝑖 ))) 
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Following this order, four gaussian MFs are created for each input fuzzy set in 

all the SFSs. Figure 5 shows the fuzzy sets of all input attributes. For the output 

fuzzy set, the limits of x-axis are set randomly from 0 to 10. As there are two output 

classes in the Pima diabetes dataset, the x-axis is split into two equal parts to plot 

two trapezoidal MFs that represent the outcome classes: non-diabetic and diabetic 

in the output fuzzy set. The output fuzzy set is same for all the three SFSs. Figure 

6 shows the output fuzzy set. Table 3 shows the parameters of MFs for input and 

output fuzzy sets. 

Fig. 5. Fuzzy sets of input attributes: (a) Preg., 

(b) Glu., (c) BP, (d) Tri., (e) Ser., (f) BMI, (g) Pedi, (h) age. 

 

Fig. 6. Output fuzzy set. 
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Table 3. Parameters of MFs for input and output fuzzy sets. 

Attributes Linguistic Terms Parameters of MFs 

Preg. 

“Low” 

“Normal” 

“High” 

“Very High” 

gaussian MF (4.25, 2.87) 

gaussian MF (8.5, 2.87) 

gaussian MF (12.75, 2.29) 

gaussian MF (14.88, 1.41) 

 

Glu. 

“Low” 

“Normal” 

“High” 

“Very High” 

gaussian MF (49.5, 28.87) 

gaussian MF (99, 28.87) 

gaussian MF (148.5, 21.94) 

gaussian MF (173.25, 14.43) 

 

BP 

“Low” 

“Normal” 

“High” 

“Very High” 

gaussian MF (30.5, 17.9) 

gaussian MF (61, 17.9) 

gaussian MF (91.5, 13.56) 

gaussian MF (106.75, 8.94) 

 

Tri. 

“Thin” 

“Medium” 

“Thick” 

“Very Thick” 

gaussian MF (24.75, 14.72) 

gaussian MF (49.5, 14.72) 

gaussian MF (74.25, 11.25) 

gaussian MF (86.63, 7.21) 

 

Ser. 

“Low” 

“Normal” 

“High” 

“Very High” 

gaussian MF (211.5, 122.4) 

gaussian MF (423, 122.4) 

gaussian MF (634.5, 92.09) 

gaussian MF (740.25, 61.2) 

 

BMI 

“Underweight” 

“Normal” 

“Overweight” 

“Obese” 

gaussian MF (16.78, 10.1) 

gaussian MF (33.55, 10.1) 

gaussian MF (50.32, 7.79) 

gaussian MF (58.71, 4.9) 

 

Pedi 

“Low” 

“Medium” 

“High” 

“Very High” 

gaussian MF (0.66, 0.34) 

gaussian MF (1.25, 0.34) 

gaussian MF (1.83, 0.26) 

gaussian MF (2.13, 0.17) 

 

Age 

“Young” 

“Middle-Aged” 

“Old” 

“Very Old” 

gaussian MF (36, 8.94) 

gaussian MF (51, 8.94) 

gaussian MF (66, 6.92) 

gaussian MF (73.5, 4.32) 

 

Output 
“Non-Diabetic” 

“Diabetic” 

trapezoidal MF (0, 2, 4, 6) 

trapezoidal MF (4, 6, 8, 10) 

4.4. Gaussian NB trained with diabetes dataset for fuzzy rule base 

Gaussian NB classifiers are trained using the three training dataset groups: TRPD1, 

TRPD2, TRPD3. The gaussian NB classifier trained with TRPD1is used to set the 
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fuzzy rules in SFS1 as per the NB-MPFR method. Similarly, the gaussian NB 

classifier trained with TRPD2 is used to set the fuzzy rules in SFS2 and the gaussian 

NB classifier trained with TRPD3  is used to set the fuzzy rules in SFS3 . The 

receiver operating characteristics (ROC) graphs [29] were used to examine the 

performance of the gaussian NB classifiers. Figure 7 shows the ROC curves of 

gaussian NB for the three Pima diabetes dataset groups (PD1, PD2, PD3). Gaussian 

NB classifiers trained using the three training dataset groups: TRPD1 , TRPD2 , 

TRPD3  are used to predict the outcomes for the testing dataset groups: TEPD1 , 

TEPD2 , TEPD3  respectively and the results are plotted using the ROC curves. 

According to the shape of ROC curves, the gaussian NB classifier is reasonably 

good for all the three Pima diabetes dataset groups (PD1 , PD2 , PD3 ). When 

comparing the area under the ROC curves (AUC) of gaussian NB classifiers for the 

three dataset groups, it can be seen that the AUC of gaussian NB classifier for PD1 

is better than the AUC of gaussian NB classifier for PD2 and PD3.  

 

Fig. 7. ROC of gaussian NB for dataset groups: (a) PD1, (b) PD2, (c) PD3. 
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4.5. Final output for diabetes diagnosis 

The crisp output is obtained by using the COG defuzzification method in all the 

three SFSs. The final output of the three-layered parallel fuzzy system is the 

average value of the crisp outputs obtained from all the three SFSs. 

5.  Performance evaluation 

The performance of NB-MPFR method implemented in a three-layered parallel 

fuzzy system is evaluated by using ROC graph, sensitivity, specificity, and 

classification accuracy. The sensitivity, specificity, and classification accuracy 

measures are based on the confusion matrix. In confusion matrix, the output class 

predicted by the model is compared with the actual class specified in the dataset 

using the test outcomes: true positive (TP), true negative (TN), false positive (FP), 

false negative (FN). Where TP is the number of testing samples belonging to class 

1 (diabetic) that has been predicted correctly, TN is the number of testing samples 

belonging to class 0 (non-diabetic) that has been predicted correctly, FP is the 

number of testing samples belonging to class 1 that has been predicted incorrectly, 

and FN is the number of testing samples belonging to class 0 that has been predicted 

incorrectly. Using the confusion matrix, the sensitivity, specificity, and accuracy 

are calculated using Eqs. (7), (8), and (9) [30]. 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                 (7) 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
                 (8) 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+ 𝐹𝑁
                 (9) 

The testing dataset groups (TEPD1, TEPD2, TEPD3) are used to test the three-

layered parallel fuzzy system. Figure 8 shows the ROC curves of NB-MPFR method. 

Table 4 shows the sensitivity, specificity, and accuracy of NB-MPFR method.  

 

Fig. 8. ROC of NB-MPFR method. 

Table 4. Performance of NB-MPFR method. 

Proposed 

Method 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy  

(%) 

NB-MPFR 100 86.84 90.26 
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The performance of traditional machine learning algorithms which include 

decision tree learning, k-nearest neighbor (KNN) [31], NB, random forest 

algorithm [32], and support vector machine (SVM) [33] were also tested on Pima 

diabetes dataset with same 80:20 ratio. The performance of machine learning 

algorithms was evaluated using ROC curve and classification accuracy. Figure 9 

shows the ROC curves of machine learning algorithm for Pima diabetes dataset. 

From Table 5, it can be seen that the NB-MPFR method shows a higher 

classification accuracy and AUC than decision tree, KNN, NB, random forest, and 

SVM classifiers. The NB method shows a classification accuracy of 74.68%, but 

the NB-MPFR method that integrates NB with the fuzzy system shows a higher 

classification accuracy of 90.26%. The reason is that the NB classifier is able to 

better classify the quarantine values of the input attributes. As the NB-MPFR 

method uses an effective method for designing the fuzzy sets and rule base which 

is based on the quarantine values of the dataset, the NB-MPFR method showed a 

higher AUC and classification accuracy. Table 6 compares the accuracy of NB-

MPFR method with the other hybrid fuzzy methods that were tested using the Pima 

diabetes dataset. It is evident based on the comparison that the NB-MPFR method 

shows better classification accuracy in type 2 diabetes diagnosis. 

Fig. 9. ROC of (a) decision tree,  

(b) KNN, (c) NB, (d) random forest, (e) SVM. 

Table 5. Performance comparison of  

NB-MPFR with machine learning algorithms.  

Classification  

Methods 

Classification  

Accuracy (%) 

AUC 

NB-MPFR 90.26 0.86 

Decision Tree 74.68 0.72 

KNN 72.08   0.67   

NB 74.68 0.71 

Random Forest 74.03 0.66 

SVM 75.32 0.69 
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Table 6. Performance comparison of  

NB-MPFR with other hybrid fuzzy methods.  

Classification  

Methods 

Classification  

Accuracy (%) 

NB-MPFR 90.26 

RLEFRBS [7] 84   

GA-MOE Fuzzy [11] 83.04 

Decision Tree-ANFIS [13] 75.67 

RST-BatMiner [16] 85.33 

6.  Conclusion 

The major problem with the fuzzy system is that the number rules in fuzzy rule 

base rises exponentially with the number of input fuzzy sets. Designing appropriate 

fuzzy sets and fuzzy rule base based on the application is another complicated task. 

To deal with this issue, NB-MPFR method is proposed in this paper which 

integrates the gaussian NB classifiers with multiple parallel SFSs.  

The NB-MPFR method implemented in a three-layered parallel hybrid fuzzy 

system has the advantage of minimizing the size of rule base when compared with 

the monolithic fuzzy system. The other advantage of the NB-MPFR method is that 

it is able to clear the uncertainty in the risk level of diabetes.  

Based on the diabetes dataset, the input data of the patient is classified either as 

non-diabetic or diabetic. But the risk level of diabetes is uncertain. As the output 

fuzzy set of the fuzzy system gives the value between a defined range, the hybrid 

fuzzy system based on the NB-MPFR method is able to predict the risk level from 

a given range (0-10) for each patient’s input data.  

The NB-MPFR method showed a better classification accuracy in type 2 

diabetes diagnosis when compared to the existing classification methods. The NB-

MPFR method can be applied to similar types of applications that involve 

classification of complicated data.  

The future work will be extending the NB-MPFR method to deal with more 

complicated applications by integrating it with different machine learning 

algorithms and feature selection methods. 

 

Nomenclatures 
 

P(ci) Prior probability of a given class, ci 

P(ci|xi) Posterior probability of class, ci given an instance, xi 

P(xi) Prior probability of an instance, xi 

P(xi|ci) Probability of an instance, xi for a given class, ci 
 

Greek Symbols 

µA(x) Membership degree of the element, x in the fuzzy set, A     

µA[MF] Membership function, MF for the fuzzy set, A 

𝜎 Standard deviation 

𝜎2 Variance       
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Abbreviations 

ANFIS Adaptive Neuro-Fuzzy Inference System 

BA Bat Optimization Algorithm 

BMI Body Mass Index 

COG Centre of Gravity 

FN False Negative 

FP False Positive 

GA Genetic Algorithm 

KNN K-Nearest Neighbor 

MF Membership Function 

MOE Multiple Objective Evolutionary 

NB-MPFR Naïve Bayes based Multiple Parallel Fuzzy Reasoning 

RLEFRBS Reinforcement Learning-based Evolutionary Fuzzy Rule-based System 

ROC Receiver Operating Characteristics 

RST Rough Set Theory 

SFS Sub Fuzzy System 

SVM Support Vector Machine 

TN True Negative 

TP True Positive 
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