\qquad Class \qquad Date \qquad
ELL Support
Congruent Figures

Concept List

algebraic equation	angle measure	congruency statement
congruent angles	congruent polygons	congruent segments congruent triangles proof

Choose the concept from the list above that best represents the item in each box.

1. $\overline{G H} \cong \overline{S T}$ congruency statement	2. $m \angle A=45$ angle measure	3. congruent polygons
4. $Y Z=M N$ congruent segments	5. $\triangle A B C \cong \triangle X Y Z$ congruent triangles	6. Given: $\overline{B D}$ is the angle bisector of $\angle A B C$, and $\overline{B D}$ is the perpendicular bisector of $\overline{A C}$. Prove: $\triangle A D B \cong \triangle C D B$ proof
7. $\begin{aligned} & m \angle H=5 x \\ & m \angle W=x+28 \end{aligned}$ Solve $5 x=x+28$ to find the measures of $\angle H$ and $\angle W$. algebraic equation	8. $B C=3 \mathrm{~cm}$ segment measure	9. $\angle A D B$ and $\angle S D T$ are vertical angles. So, $\angle A D B \cong \angle S D T$. congruent angles

\qquad
\qquad
\qquad

4-1
 Think About a Plan
 Congruent Figures

Algebra Find the values of the variables.

Know

1. What do you know about the measure of each of the non-right angles?

The measure of each of the non-right angles are complementary.
2. What do you know about the length of each of the legs?

All of the legs are equal in length.
3. What types of triangles are shown in the figure?
isosceles right triangles

Need

4. What information do you need to know to find the value of x ?

You need to know that the measure of each of the non-right angles is 45.
5. What information do you need to know to find the value of t ?

You need to know that the length of each of the legs is 4 in .

Plan

6. How can you find the value of x ? What is its value?

Answers may vary. Sample: Set $3 x$ equal to 45 . So, $3 x=45 ; x=15$.
7. How do you find the value of t ? What is its value?

Answers may vary. Sample: Set $2 t$ equal to 4 . So, $2 t=4 ; t=2$.
\qquad
\qquad
\qquad
Practice

Congruent Figures

Each pair of polygons is congruent. Find the measures of the numbered angles.
1.

$m \angle 1=110 ; m \angle 2=120$
$m \angle 3=90 ; m \angle 4=135$
$\triangle C A T \cong \triangle J S D$. List each of the following.
3. A

$m \angle 5=140 ; m \angle 6=90$;
$m \angle 7=40 ; m \angle 8=90$

$W X Y Z \cong J K L M$. List each of the following.
6. four pairs of congruent sides
$\overline{W Z} \cong \overline{J M}, \overline{W X} \cong \overline{J K}, \overline{X Y} \cong \overline{K L}, \overline{Z Y} \cong \overline{M L}$
7. four pairs of congruent angles
$\angle W \cong \angle J, \angle X \cong \angle K, \angle Y \cong \angle L, \angle Z \cong \angle M$

For Exercises 8 and 9, can you conclude that the triangles are congruent? Justify your answers.
8. $\triangle G H J$ and $\triangle I H J$

Yes; $\angle G H J \cong \angle I H J$ by Third Angles Thm. and by the Refl. Prop. $\overline{J H} \cong \overline{J H}$. Therefore, $\Delta G H J \cong \Delta I H J$ by the Def. of \cong triangles.
9. $\triangle Q R S$ and $\triangle T V S$

No; $\angle Q S R \cong \angle T S V$ because vert. angles are congruent, and $\angle Q R S \cong \angle T V S$ by Third Angles Thm., but none of the sides are necessarily congruent.
10. Developing Proof Use the information given in the diagram.

Give a reason that each statement is true.
a. $\angle L \cong \angle Q$ Given
b. $\angle L N M \cong \angle Q N P$ Vert. angles are \cong.
c. $\angle M \cong \angle P$ Third Angles Thm.
d. $\overline{L M} \cong \overline{Q P}, \overline{L N} \cong \overline{Q N}, \overline{M N} \cong \overline{P N}$ Given

e. $\triangle L N M \cong \triangle Q N P$ Def. of \cong triangles
\qquad
\qquad
\qquad

Practice (continued)
Form G
Congruent Figures

For Exercises 11 and 12, can you conclude that the figures are congruent? Justify your answers.
11. AEFD and EBCF

No; answers may vary. Sample:
 $\angle D$ does not have to be a right angle.

Algebra Find the values of the variables.
13.

12. $\triangle F G H$ and $\triangle J K H$

K $\angle F \cong \angle J$ and $\angle G \cong K$ by the Alt. Int. Angles Thm. and $\angle F H G \cong \angle J H K$ by the Vert. Angles Thm., so all corresp. parts are congruent.

Algebra $A B C D \cong F G H J$. Find the measures of the given angles or lengths of the given sides.
15. $m \angle B=3 y, m \angle G=y+5075$
16. $C D=2 x+3 ; H J=3 x+25$
17. $m \angle C=5 z+20, m \angle H=6 z+1070$
18. $A D=5 b+4 ; F J=3 b+814$
19. $L M N P \cong Q R S T$.

Find the value of x. 35

20. Given: $\overline{B D}$ is the angle bisector of $\angle A B C$.
$\overline{B D}$ is the perpendicular bisector of $\overline{A C}$.
Prove: $\triangle A D B \cong \triangle C D B$
Because $\overline{B D}$ is the angle bisector of $\angle A B C, \angle A B D \cong \angle C B D$. Because $\overline{B D}$ is the perpendicular bisector of $\overline{A C}, \overline{A D} \cong \overline{C D}$
 and $\angle A D B \cong \angle C D B . \overline{B D} \cong \overline{B D}$ by the Reflexive Property of Congruence. So, because the corresponding parts are all congruent, $\triangle A B D \cong \triangle C B D$.
\qquad
\qquad
\qquad

Practice

Congruent Figures

Each pair of polygons is congruent. Find the measures of the numbered angles.
1.

90; 40

2.

95; 60

Use the diagram at the right for Exercises 3-7. $\triangle A B C \cong \triangle X Y Z$. Complete the congruence statements.
3. $\overline{A B} \cong \overline{X Y}$

To start, use the congruence statement to identify the points that correspond to A and B.
A corresponds to \triangle. B corresponds to Y.
4. $\overline{Z Y} \cong \overline{C B}$
5. $\angle Z \cong \angle C$
6. $\angle B A C \cong \angle Y X Z$
7. $\angle B \cong \angle Y$
$F O U R \cong M A N Y$. List each of the following.
8. four pairs of congruent angles $\angle F \cong \angle M ; \angle O \cong \angle A ; \angle U \cong \angle N ; \angle R \cong \angle Y$
9. four pairs of congruent sides $\overline{F O} \cong \overline{M A} ; \overline{O U} \cong \overline{A N} ; \overline{U R} \cong \overline{N Y} ; \overline{R F} \cong \overline{Y M}$

For Exercises 10 and 11, can you conclude that the figures are congruent? Justify your answers.
10. $\triangle S R T$ and $\triangle P R Q$

No; $\angle S R T \cong \angle P R Q$ because vert. \angle are \cong, and $\angle R S T \cong \angle R P Q$ by Third Angles Thm., but none of the sides are necessarily congruent.
11. $\triangle A B C$ and $\triangle F G H$

Yes; $\angle B A C \cong \angle G F H$ by Third Angles Thm. Therefore, $\triangle A B C \cong \triangle F G H$ by the def. of \cong triangles.
\qquad
\qquad
\qquad

Practice (continued)

Congruent Figures

12. Given: $\overline{A D}$ and $\overline{B E}$ bisect each other.

$$
\overline{A B} \cong \overline{D E} ; \angle A \cong \angle D
$$

Prove: $\triangle A C B \cong \triangle D C E$

Statements
Reasons

1) $\overline{A D}$ and $\overline{B E}$ bisect each other. $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$
2) $\overline{A C} \cong \overline{C D}, \overline{B C} \cong \overline{C E}$
3) $\angle A C B \cong \angle D C E$
4) $\angle B \cong \angle E$
5) $\triangle A C B \cong \triangle D C E$
6) Given
7) ? Definition of bisect
8) ? Vertical angles are \cong.
9) ? Third Angles Theorem
10) ? Definition of \cong Triangles
13. If $\triangle A B C \cong \triangle J K L$, which of the following must be a correct congruence statement? C
(A) $\angle A \cong \angle L$
(C) $\angle B \cong \angle K$
(B) $\overline{A B} \cong \overline{J L}$
(D) $\triangle B A C \cong \triangle L K J$

14. Reasoning A student says she can use the information in the figure to prove $\triangle A C B \cong \triangle A C D$. Is she correct? Explain. No; explanations may vary. Sample: Corresponding parts are not congruent. The figure can be used to prove $\triangle A C B \cong \triangle C A D$.

Algebra Find the values of the variables.
15. $\triangle X Y Z \cong \triangle F E D ~ 3 ; 15$

16. $\triangle A B D \cong \triangle C D B 15$

Algebra $\triangle F G H \cong \triangle Q R S$. Find the measures of the given angles or the lengths of the given sides.
17. $m \angle F=x+24 ; m \angle Q=3 x 36 ; 36$
18. $\overline{G H}=3 x-2 ; \overline{R S}=x+6$ 10; 10
\qquad
\qquad
\qquad

4-1
 Standardized Test Prep
 Congruent Figures

Multiple Choice

For Exercises 1-6, choose the correct letter.

1. The pair of polygons at the right is congruent. What is $m \angle J$?
(A) 45
(C)
135
(B) 90
(D) 145

A

2. The triangles at the right are congruent. Which of the following statements must be true? I
(F) $\angle A \cong \angle D$
(H) $\overline{A B} \cong \overline{D E}$
(G) $\angle B \cong \angle E$
(I) $\overline{B C} \cong \overline{F D}$

3. Given the diagram at the right, which of the following must be true? B

$$
\begin{aligned}
& \text { (A) } \triangle X S F \cong \triangle X T G \quad \text { C } \triangle F X S \cong \triangle X G T \\
& \text { (B) } \triangle S X F \cong \triangle G X T \quad \text { (D) } \triangle F X S \cong \triangle G X T
\end{aligned}
$$

4. If $\triangle R S T \cong \triangle X Y Z$, which of the following need not be true? I
(F) $\angle R \cong \angle X$
(G) $\angle T \cong \angle Z$
(H) $\overline{R T} \cong \overline{X Z}$
(I) $\overline{S R} \cong \overline{Y Z}$
5. If $\triangle A B C \cong \triangle D E F, m \angle A=50$, and $m \angle E=30$, what is $m \angle C$? C
(A) 30
(B) 50
(C) 100
(D) 120
6. If $A B C D \cong Q R S T, m \angle A=x-10$, and $m \angle Q=2 x-30$, what is $m \angle A$? F
(F) 10
(G) 20
(H) 30
(I) 40
[2] $\angle A B D \cong \angle C D B$ and $\angle A D B \cong \angle C B D$, both by the Alt. Int Angles Thm. So, by Third Angles Thm., $\angle A \cong \angle C$. Because $\overline{D B} \cong \overline{B D}$ by the Refl. Prop. of Congruence, and we know $\overline{A B} \cong \overline{C D}$ and $\overline{A D} \cong \overline{C B}$, then all the corresponding parts are congruent and $\triangle A B D \cong \triangle C D B$.
[1] incomplete proof [0] no proof or incorrect proof

Short Response

7. Given: $\overline{A B}\|\overline{D C}, \overline{A D}\| \overline{B C}, \overline{A B} \cong \overline{C D}, \overline{A D} \cong \overline{C B}$

Prove: $\triangle A B D \cong \triangle C D B$

\qquad
\qquad
\qquad

4-1
 Enrichment

Congruent Figures

Shared Implications

Sometimes different statements share one or more implications. For example, " $\overline{Q R} \perp \overline{S T}$ " and " $\overline{Q R}$ is the perpendicular bisector of $\overline{S T}$ " share the implication that $\overline{Q R}$ meets $\overline{S T}$ at a right angle. The statements below refer to the diagram at the right.

1. $\overline{D J} \perp \overline{J K}$;
2. $\overline{D J} \perp \overline{A D}$;
3. $\overline{A D} \| \overline{J K}$;
4. $\angle A \cong \angle K$;
5. $\overline{D X} \cong \overline{J X}$;
6. $\overline{A D} \cong \overline{K J}$;
7. $\overline{A K}$ bisects $\overline{D J}$;
8. $\overline{D J}$ bisects $\overline{A K}$;

9. $m \angle D=m \angle J=90$

Identify shared implications and reduce the number of given statements.

1. What implication is shared by Statement 5 and Statement 7 ?

Answers may vary. Sample: Both statements imply that $\overline{D X} \cong \overline{J X}$.
2. What implication is shared by Statement 3 and Statement 4 ?

Answers may vary. Sample: Both statements imply that $\angle A \cong \angle K$.
3. Which two statements share at least one implication with Statement 9 ?

Answers may vary. Sample: Statements 1 and 2
4. Can you prove $\triangle A D X \cong \triangle K J X$ using only five of the statements above? If so, identify them, then complete the proof. Yes; Sample: statements 4, 6, 7, 8, and 9; $\overline{A K}$ bisects $\overline{D J}$, so $\overline{D X} \cong \overline{J X} . \overline{D J}$ bisects $\overline{A K}$, so $\overline{A X} \cong \overline{K X} . \overline{A D} \cong \overline{K J}$ is given, so all corresponding sides are congruent. $\angle A X D$ is congruent to $\angle K X J$ by the Vert. Angles Thm. $m \angle D=m \angle J=90$ and $\angle A \cong \angle K$ are given, so all corresponding angles are congruent. So, $\triangle A D X \cong \triangle K J X$.
5. Can you prove $\triangle A D X \cong \triangle K J X$ using only four of the statements above? If so, identify them, then complete the proof.
Yes; Sample: statements $6,7,8$, and $3 . \overline{A K}$ bisects $\overline{D J}$, so $\overline{D X} \cong \overline{J X} . \overline{D J}$ bisects $\overline{A K}$, so $\overline{A X} \cong \overline{K X} . \overline{A D} \cong \overline{J K}$ is given, so all corresp. sides are congruent. $\angle A X D \cong \angle K X J$ by the Vert. Angles Thm. Because $\overline{A D} \| \overline{J K}, \angle D \cong \angle J$, and $\angle A \cong \angle K$, by the Alt. Int. Angles Thm., all corresp. angles are congruent. So, $\triangle A D X \cong \triangle K J X$.
6. Can you prove $\triangle A D X \cong \triangle K J X$ using only three of the statements above if the only way to prove triangles congruent is through the definition of congruent triangles? If so, identify them, then complete the proof. no
\qquad
\qquad
\qquad

4-1
 Reteaching
 Congruent Figures

Given $A B C D \cong Q R S T$, find corresponding parts using the names. Order matters.
For example, $A B C D \quad$ This shows that $\angle A$ corresponds to $\angle Q$.
Therefore, $\angle A \cong \angle Q$.
For example, $A \overparen{B C D}$
This shows that $\overline{B C}$ corresponds to $\overline{R S}$.
Therefore, $\overline{B C} \cong \overline{R S}$.

Exercises

Find corresponding parts using the order of the letters in the names.

1. Identify the remaining three pairs of corresponding angles and sides between
$A B C D$ and QRST using the circle technique shown above.
$\angle B \cong \angle R, \angle C \cong \angle S, \angle D \cong \angle T, \overline{A B} \cong \overline{Q R}, \overline{C D} \cong \overline{S T}$, and $\overline{D A} \cong \overline{T Q}$
Angles: $A B C D \quad A B C D \quad A B C D \quad$ Sides: $A B C D \quad A B C D \quad A B C D$
QRST QRST QRST
QRST QRST QRST
2. Which pair of corresponding sides is hardest to identify using this technique?
Answers may vary. Sample: $\overline{A D}$ and $\overline{Q T}$

Find corresponding parts by redrawing figures.

3. The two congruent figures below at the left have been redrawn at the right.

Why are the corresponding parts easier to identify in the drawing at the right?

Answers may vary. Sample: The drawing at the right shows figures in same orientation.
4. Redraw the congruent polygons at the right in the same orientation. Identify all pairs of corresponding sides and angles. Check students' work. $\angle A$ and $\angle P, \angle B$ and $\angle Q, \angle C$ and $\angle R, \angle D$ and $\angle S, \angle E$ and $\angle T, \overline{A B}$ and $\overline{P Q}, \overline{B C}$ and $\overline{Q R}, \overline{C D}$ and $\overline{R S}, \overline{D E}$ and $\overline{S T}$, and $\overline{E A}$ and $\overline{T P}$ all correspond.

5. $M N O P \cong Q R S T$. Identify all pairs of congruent sides and angles.
$\angle M \cong \angle Q, \angle N \cong \angle R, \angle O \cong \angle S, \angle P \cong \angle T$,
$\overline{M N} \cong \overline{Q R}, \overline{N O} \cong \overline{R S}, \overline{O P} \cong \overline{S T}$, and $\overline{P M} \cong \overline{T Q}$

\qquad
\qquad
\qquad

4-1 Reteaching (continued)
 Congruent Figures

Problem

Given $\triangle A B C \cong \triangle D E F, m \angle A=30$, and $m \angle E=65$, what is $m \angle C$?
How might you solve this problem? Sketch both triangles, and put all the information on both diagrams.
$m \angle A=30$; therefore, $m \angle D=30$. How do you know? Because $\angle A$ and $\angle D$ are corresponding parts of
 congruent triangles.

Exercises

Work through the exercises below to solve the problem above.

6. What angle in $\triangle A B C$ has the same measure as $\angle E$? What is the measure of that angle? Add the information to your sketch of $\triangle A B C$. $\angle B ; 65$
7. You know the measures of two angles in $\triangle A B C$. How can you find the measure of the third angle?
Answers may vary. Sample: Use Triangle Angle-Sum Thm. Set sum of all three angles equal to 180.
8. What is $m \angle C$? How did you find your answer?

85; answers may vary. Sample: $m \angle C=180-(60+35)$

Before writing a proof, add the information implied by each given statement to your sketch. Then use your sketch to help you with Exercises 9-12.

Add the information implied by each given statement.
9. Given: $\angle A$ and $\angle C$ are right angles.
$m \angle A=m \angle C=90, \overline{D A} \perp \overline{A B}$ and $\overline{D C} \perp \overline{B C}$
10. Given: $\overline{A B} \cong \overline{C D}$ and $\overline{A D} \cong \overline{C B}$.
$A B C D$ is a parallelogram because it has
 opposite sides that are congruent.
11. Given: $\angle A D B \cong \angle C B D$.
$\overline{A D} \| \overline{B C}$
12. Can you conclude that $\angle A B D \cong \angle C D B$ using the given information above?

If so, how?
Yes; use the Third Angles Thm.
13. How can you conclude that the third side of both triangles is congruent?

The third side is shared by both triangles and is congruent by the Refl. Prop. of Congruence.
\qquad
\qquad
\qquad

4-2 ELL Support
 Triangle Congruence by SSS and SAS

Problem

Use the figure at the right. How can you prove that $\triangle A B C \cong \triangle X Y Z$? Justify each step.
Given: The figure at the right
Prove: $\triangle A B C \cong \triangle X Y Z$

1) $\overline{A B} \cong \overline{X Y}$
2) Given
3) $\overline{B C} \cong \overline{Y Z}$
4) Given
5) $\angle A \cong \angle X$
6) Given
7) $\angle C \cong \angle Z$
8) Given
9) $\angle B \cong \angle Y$
10) Third Angles Theorem
11) $\triangle A B C \cong \triangle X Y Z$
12) Side-Angle-Side (SAS) Postulate

Exercises

1. Use the figure at the right. How can you prove that $\triangle G M H \cong \triangle T M S$? Justify each step.
Given: M is the midpoint of $\overline{H S}$ and $\overline{G T}$.
Prove: $\triangle G M H \cong \triangle T M S$

1) Given
T
2) M is the midpoint of $\overline{H S}$ and $\overline{G T}$.
3) Definition of the midpoint
4) $\overline{G M} \cong \overline{T M}$
5) Definition of the midpoint
6) $\overline{H M} \cong \overline{S M}$
7) Vertical angles are congruent.
8) $\angle G M H \cong \angle T M S$
9) Side-Angle-Side (SAS) Postulate
10) $\triangle G M H \cong \triangle T M S$
2. Use the figure at the right. How can you prove that $\Delta G H I \cong \triangle J H I$? Justify each step.
Given: H is the midpoint of $\overline{G J}$.

Prove: $\triangle G H I \cong \triangle J H I$
\qquad

1) H is the midpoint of $\overline{G J}$.
2) Given
3) $\overline{G H} \cong \overline{J H}$
4) Definition of the midpoint
5) $\overline{H I} \cong \overline{H I}$
6) Reflexive Property of \cong
7) $\overline{G I} \cong \overline{J I}$
8) Third Side Postulate
9) $\triangle G H I \cong \triangle J H I$
10) Side-Side Side (SSS) Postulate
\qquad
\qquad Date \qquad

4-2
 Think About a Plan
 Triangle Congruence by SSS and SAS

Use the Distance Formula to determine whether $\triangle A B C$ and $\triangle D E F$ are congruent. Justify your answer.
$A(1,4), B(5,5), C(2,2)$
$D(-5,1), E(-1,0), F(-4,3)$

Understanding the Problem

1. You need to determine if $\triangle A B C \cong \triangle D E F$. What are the three ways you know to prove triangles congruent?
If all corresponding parts are congruent, if all three sides are congruent, or, if two sides
and the included angle are congruent, then the triangles are congruent.
2. What information is given in the problem?
the coordinates for each vertex of each triangle

Planning the Solution

3. If you use the SSS Postulate to determine whether the triangles are congruent, what information do you need to find?
the lengths of the three sides of each triangle
4. How can you find distances on a coordinate plane without measuring?

Use the Distance Formula.
5. In an ordered pair, which number is the x-coordinate? Which is the
y-coordinate?
The x-coordinate is the first number and the y-coordinate is the second number.

Getting an Answer

6. Find the length of each segment using the Distance Formula,
$D=\sqrt{\left(y_{1}-y_{2}\right)^{2}+\left(x_{1}-x_{2}\right)^{2}}$. Your answers may be in simplest radical form.
$\overline{A B} \sqrt{17}$
$\overline{D E} \sqrt{17}$
$\overline{B C} 3 \sqrt{2}$
$\overline{E F} 3 \sqrt{2}$
$\overline{C A} \sqrt{5}$
$\overline{F D} \sqrt{5}$
7. Using the SSS Postulate, are the triangles congruent? Explain.

Yes; the triangles are congruent, because three pairs of sides are congruent.
\qquad
\qquad
\qquad

Draw $\triangle M G T$. Use the triangle to answer the questions below.

1. What angle is included between $\overline{G M}$ and $\overline{M T}$? $\angle M$
2. Which sides include $\angle T$? $\overline{G T}$ and $\overline{T M}$

3. What angle is included between $\overline{G T}$ and $\overline{M G}$? $\angle G$

Would you use SSS or SAS to prove the triangles congruent? If there is not enough information to prove the triangles congruent by SSS or SAS, write not enough information. Explain your answer.

Not enough information; two pairs of corresponding
5.

SAS; two pairs of corresponding sides and their included angle are congruent.
6.

SSS; three pairs of corresponding sides are congruent. sides are congruent, but the congruent angle is not included.
7.

Not enough information; two pairs of corresponding sides are congruent, but the congruent angle is not the included angle.
8.

9.

SAS; two pairs of corresponding sides and their included right angle are congruent.
10.

Not enough information; one pair of corresponding sides and corresponding angles are congruent, but the other pair of corresponding sides that form the included angle must also be congruent.

SSS; three corresponding sides are congruent.
11.

SAS; two pairs of corresponding sides and their included vertical angles are congruent.
12.

SSS or SAS; three pairs of corresponding sides are congruent, or, two pairs of corresponding sides and their included vertical angles are congruent.
\qquad
\qquad
\qquad
4-2
Practice (continued)
Form G
Triangle Congruence by SSS and SAS
13. Draw a Diagram A student draws $\triangle A B C$ and $\triangle Q R S$. The following sides and angles are congruent:
$\overline{A C} \cong \overline{Q S} \quad \overline{A B} \cong \overline{Q R} \quad \angle B \cong \angle R$
Based on this, can the student use either SSS or SAS to prove that $\triangle A B C \cong \triangle Q R S$?
If the answer is no, explain what additional information the student needs. Use a sketch to help explain your answer.
No; $\angle B$ and $\angle R$ are not the included angles for the sides given. To prove congruence, you would need to know either that $\overline{B C} \cong \overline{R S}$ or $\angle Q \cong \angle A$.

14. Given: $\overline{B C} \cong \overline{D C}, \overline{A C} \cong \overline{E C}$

Prove: $\triangle A B C \cong \triangle E D C$

Statements	Reasons
1) $\overline{B C} \cong \overline{D C}$	1) Given
2) $\overline{A C} \cong \overline{E C}$	2) Given
3) $\angle B C A \cong \angle D C E$	3) Vertical $₫$ are \cong.
4) $\triangle A B C \cong \triangle E D C$	4) SAS

15. Given: $\overline{W X} \| \overline{Y Z}, \overline{W X} \cong \overline{Y Z}$

Prove: $\triangle W X Z \cong \triangle Y Z X$
Statements

Reasons

1) $\overline{W X} \| \overline{Y Z}$
2) $\angle W X Z \cong \angle Y Z X$
3) $\overline{W X} \cong \overline{Y Z}$
4) $\overline{Z X} \cong \overline{X Z}$
5) $\triangle W X Z \cong \triangle Y Z X$
6) Given

7) Alternate Interior $₫$ are \cong.
8) Given
9) Reflexive Property
10) SAS
16. Error Analysis $\triangle F G H$ and $\triangle P Q R$ are both equilateral triangles. Your friend says this means they are congruent by the SSS Postulate. Is your friend correct? Explain. Incorrect; both triangles being equilateral means that the three angles and sides of each triangle are congruent, but there is no information comparing the side lengths of the two triangles.
17. A student is gluing same-sized toothpicks together to make triangles. She plans to use these triangles to make a model of a bridge. Will all the triangles be congruent? Explain your answer. Yes; because all the triangles are made from the same-sized toothpick, all three corresponding sides will be congruent.
\qquad
\qquad
\qquad

4-2

Practice
Triangle Congruence by SSS and SAS

1. Developing Proof Copy and complete the flow proof.

Given: $\overline{R X} \cong \overline{S X}, \overline{Q X} \cong \overline{T X}$
Prove: $\triangle Q X R \cong \triangle T X S$

What other information, if any, do you need to prove the two triangles congruent by SAS? Explain. To start, list the pairs of congruent, corresponding parts you already know.
2.

$$
\overline{A B} \cong \overline{H G} \text { and } \overline{B C} \cong \overline{G F}
$$

3.

$$
\begin{aligned}
& \overline{X Z} \cong \overline{R T} \text { and } \overline{\overline{Z Y}} \cong \overline{T S} \text { and } \\
& \angle Y
\end{aligned} \frac{\angle S}{}
$$

Need $\angle B \cong \angle G$; these are the included \angle.

Would you use SSS or SAS to prove these triangles congruent? If there is not enough information to prove the triangles congruent by SSS or SAS, write not enough information. Explain your answer.
4.

SSS; third side is shared by both S and is \cong to itself by Refl. Prop. of \cong.
5.

SAS; vertical $_$s are \cong.
\qquad
\qquad
\qquad

4-2
 Practice (continued)

Use the Distance Formula to determine whether $\triangle F G H$ and $\triangle J K L$ are congruent. Justify your answer.
6. $F(0,0), G(0,4), H(3,0)$ To start, find the lengths of the corresponding sides.
$J(1,4), K(-3,4), L(1,1)$

$$
\begin{aligned}
F G & =\sqrt{(0-4)^{2}+(0-0)^{2}}=4 \\
J K & =\sqrt{(4-4)^{2}+(1-(-3))^{2}}=4
\end{aligned} \text { Yes; they are } \cong \text { by SSS. }
$$

$$
G H=5 \quad K L=5 \quad H F=3 \quad L J=3
$$

7. $F(-2,5), G(4,-3), H(4,3)$ No; they are not \cong because $\overline{F H}$ and $\overline{J L}$ $J(2,1), K(-6,7), L(-6,1)$ have different lengths.

Can you prove the triangles congruent? If so, write the congruence statement and name the postulate you would use. If not, write not enough information and tell what other information you would need.
8.

Yes; $\triangle Q R S \cong \triangle Y X W$ by SAS.
9.

not enough information; need $\overline{F H} \cong \overline{H K}$ to apply SSS or $\angle G \cong \angle J$ to apply SAS
10. Reasoning Suppose $\overline{A B} \cong \overline{D E}, \angle B \cong \angle E$, and $\overline{A B} \cong \overline{B C}$. Is $\triangle A B C$ congruent to $\triangle D E F$? Explain. Not necessarily; $\overline{E F}$ may not be \cong to $\overline{B C}$.
11. Given: $\overline{B D}$ is the perpendicular bisector of $\overline{A C}$.

Prove: $\triangle B A D \cong \triangle B C D$

Statements

1) $\overline{B D}$ is the perpendicular bisector of $\overline{A C}$.
2) $\overline{A D} \cong \overline{C D}$
3) $\angle A D B$ and $\angle C D B$ are right $\angle s$.
4) ? $\angle A D B \cong \angle C D B$
5) ? $\overline{B D} \cong \overline{B D}$
6) ? $\triangle B A D \cong \triangle B C D$

Reasons

1) Given
2) Definition of segment bisector
3) Definition of perpendicular
4) ? All right angles are \cong.
5) ? Reflexive Property of \cong
6) ? SAS
\qquad Class \qquad
\qquad

4-2 Standardized Test Prep
 Triangle Congruence by SSS and SAS

Multiple Choice

For Exercises 1-4, choose the correct letter.

1. Which pair of triangles can be proved congruent by SSS? C
(A)

(B)

(C)

(D)

2. Which pair of triangles can be proved congruent by SAS? G

(G)

(I)

3. What additional information do you need to prove $\triangle N O P \cong \triangle Q S R$? D
(A) $\overline{P N} \cong \overline{S Q}$
(C) $\angle P \cong \angle S$
(B) $\overline{N O} \cong \overline{Q R}$
(D) $\angle O \cong \angle S$

4. What additional information do you need to prove $\triangle G H I \cong \triangle D E F$? F
(F) $\overline{H I} \cong \overline{E F}$
(H) $\angle F \cong \angle G$
(G) $\overline{H I} \cong \overline{E D}$
(1) $\overline{G I} \cong \overline{D F}$

Short Response

5. Write a two-column proof.

Given: M is the midpoint of $\overline{L S}, \overline{P M} \cong \overline{Q M}$.
Prove: $\triangle L M P \cong \triangle S M Q$
[2] Statements: 1) M is the midpoint of $\overline{L S}$; 2) $\overline{L M} \cong \overline{S M}$;
3) $\angle L M P \cong \angle S M Q$; 4) $\overline{P M} \cong \overline{Q M}$; 5) $\triangle L M P \cong \triangle S M Q$; Reasons:

1) Given; 2) Def. of a midpoint; 3) Vert. \triangle are \cong; 4) Given;
2) SAS [1] incomplete proof [0] incorrect or no proof
\qquad
\qquad
\qquad

4-2 Enrichment

Triangle Congruence by SSS and SAS

Complete each proof using the given information and figure $A D G J$.

Given: Rectangle $A D G J$ is a square.

$$
\begin{array}{ll}
\overline{A D}\|\overline{L E}\| \overline{K F} \| \overline{J G} & \overline{L E} \perp \overline{D G} \\
\overline{A F} \| \overline{L G} & \overline{F A} \cong \overline{L G} \\
\overline{B J}\|\overline{C I}\| \overline{D H} & \overline{B J} \cong \overline{C I} \cong \overline{D H} \\
\overline{A J} \perp \overline{K F} & \overline{L R} \cong \overline{F T}
\end{array}
$$

1. Prove: $\triangle A K F \cong \triangle G E L$

Statements

1) $\overline{L A} \cong \overline{K L} \cong \overline{E F} \cong \overline{F G}$
2) $L A+K L=A K, E F+F G=G E$
3) $\overline{A K} \cong \overline{G E}$
4) $\overline{L E} \perp \overline{D G}, \overline{A J} \perp \overline{K F}, \overline{L E} \| \overline{K F}$
5) $\overline{L E} \perp \overline{A J}, \overline{D G} \perp \overline{K F}$
6) $L E F K$ is a rectangle
7) $\overline{L E} \cong \overline{F K}$
8) $m \angle A K F=90, m \angle G E L=90$
9) ? $\angle A K F \cong \angle G E L$
10) $\triangle A K F \cong \triangle G E L$

Reasons

1) ? Given
2) ? Segment Addition Postulate
3) ? Substitution Property
4) ? Given
5) _? Perpendicular Transversal Theorem
6) Definition of a rectangle
7) Opposite sides of a rectangle are \cong.
8) ? Definition of perpendicular lines
9) Definition of congruence
10) \qquad SAS
2. Prove: $\triangle J R G \cong \triangle D T A$

Statements

1) $\overline{L R} \cong \overline{F T}, \overline{F A} \cong \overline{L G}$
2) $L R+R G=L G, T F+T A=F A$
3) ? $L R+R G=T F+T A$
4) ? $\overline{R G} \cong \overline{T A}$
5) $\overline{A D}\|\overline{K F}, \overline{A F}\| \overline{L G}, \overline{J G} \| \overline{K F}$
6) $\angle D A T \cong \angle A F K, \angle A F K \cong \angle F W G$
7) $\angle F W G \cong \angle R G J$
8) ? $\angle D A T \cong \angle R G J$
9) $A D G J$ is a square.
10) ? $\overline{A D} \cong \overline{G J}$
11) $\triangle J R G \cong \triangle D T A$

Reasons

1) Given
2) ? Segment Addition Postulate
3) Substitution Property
4) Segment Subtraction Postulate
5) ? Given
6) ? Alternate interior angles are \cong.
7) ? Alternate interior angles are \cong.
8) Transitive Property of Congruence
9) ? Given
10) Definition of a square
11) ?

SAS
\qquad
\qquad
\qquad

4-2
 Reteaching

Triangle Congruence by SSS and SAS

You can prove that triangles are congruent using the two postulates below.

Postulate 4-1: Side-Side-Side (SSS) Postulate

If all three sides of a triangle are congruent to all three sides of another triangle, then those two triangles are congruent.

If $\overline{J K} \cong \overline{X Y}, \overline{K L} \cong \overline{Y Z}$, and $\overline{J L} \cong \overline{X Z}$, then $\triangle J K L \cong \triangle X Y Z$.
In a triangle, the angle formed by any two sides is called the included
 angle for those sides.

Postulate 4-2: Side-Angle-Side (SAS) Postulate

If two sides and the included angle of a triangle are congruent to two sides and the included angle of another triangle, then those two triangles are congruent.

If $\overline{P Q} \cong \overline{D E}, \overline{P R} \cong \overline{D F}$, and $\angle P \cong \angle D$, then $\triangle P Q R \cong \triangle D E F$. $\angle P$ is included by $\overline{Q P}$ and $\overline{P R}$. $\angle D$ is included by $\overline{E D}$ and $\overline{D F}$.

Exercises

1. What other information do you need to prove
$\triangle T R F \cong \triangle D F R$ by SAS? Explain. $\overline{D F} \cong \overline{T R}$; by the Reflexive Property of Congruence, $\overline{R F} \cong \overline{F R}$. It is given that $\angle T R F \cong \angle D F R$. These are the included angles for the corresponding congruent sides.

2. What other information do you need to prove $\triangle A B C \cong \triangle D E F$ by SAS? Explain. $\angle B \cong \angle E$; These are the included angles
 between the corresponding congruent sides.
3. Developing Proof Copy and complete the flow proof.

Given: $\overline{D A} \cong \overline{M A}, \overline{A J} \cong \overline{A Z}$
Prove: $\triangle J D A \cong \triangle Z M A$

\qquad
\qquad
\qquad

Would you use SSS or SAS to prove the triangles congruent? If there is not enough information to prove the triangles congruent by SSS or SAS, write not enough information. Explain your answer.
4.

Not enough information; two pairs of corresponding sides are congruent, but the congruent angles are not the included angles.
7. Given: $\overline{P O} \cong \overline{S O}, O$ is the midpoint of $\overline{N T}$.
5.

Not enough information; you need to know if $\overline{G C} \cong \overline{D Y}$.

Prove: $\triangle N O P \cong \triangle T O S$

Statements: 1) $\overline{P O} \cong \overline{\text { SO }}$; 2) O is the midpoint of $\overline{N T} ; 3$) $\overline{N O} \cong \overline{T O}$;
4) $\angle N O P \cong \angle T O S$; 5) $\triangle N O P \cong \triangle T O S$; Reasons: 1) Given; 2) Given; 3) Def. of midpoint; 4) Vert. \& are \cong; 5) SAS
6.

Not enough information; only two pairs of corresponding sides are congruent. You need to know if $\overline{A B} \cong \overline{X Y}$ or $\angle Z \cong \angle C$.
8. Given: $\overline{H I} \cong \overline{H G}, \overline{F H} \perp \overline{G I}$

Prove: $\triangle F H I \cong \triangle F H G$

Statements: 1) $\overline{F H} \cong \overline{F H} ; 2) \overline{H I} \cong \overline{H G}$, $\overline{F H} \perp \overline{G l} ; 3) \angle F H G$ and $\angle F H I$ are rt. \mathbb{E}; 4) $\angle F H G \cong \angle F H I ; 5) \Delta F H I \cong \triangle F H G$; Reasons: 1) Refl. Prop.; 2) Given; 3) Def. of perpendicular; 4) All rt. $₫$ are \cong; 5) SAS
9. A carpenter is building a support for a bird feeder. He wants the triangles on either side of the vertical post to be congruent. He measures and finds that $\overline{A B} \cong \overline{D E}$ and that $\overline{A C} \cong \overline{D F}$. What would he need to measure to prove that the triangles are congruent using SAS? What would he need to measure to prove
 that they are congruent using SSS?
For SAS, he would need to determine if $\angle B A C \cong \angle E D F$; for SSS, he would need to determine if $\overline{B C} \cong \overline{E F}$.
10. An artist is drawing two triangles. She draws each so that two sides are 4 in. and 5 in. long and an angle is 55°. Are her triangles congruent? Explain.
Answers may vary. Sample: Maybe; if both the 55° angles are between the 4 -in. and $5-\mathrm{in}$. sides, then the triangles are congruent by SAS.
\qquad Class \qquad Date \qquad

4-3 ELL Support
 Triangle Congruence by ASA and AAS

Problem

Given: The figure at the right
Prove: $\triangle A B Q \cong \triangle X Y Q$

Explain	Work	Justify
First, list the information that is given directly in the diagram.	$\overline{B Q} \cong \overline{Y Q}$ $\angle A$ and $\angle X$ are right \angle.	Given
Second, use the fact that all right angles are congruent to each other.	$\angle A \cong \angle X$	All right angles are congruent.
Next, use the fact that vertical angles are congruent.	$\angle A Q B \cong \angle X Q Y$	Vertical Angles Theorem
Finally, determine which theorem can be used to prove the triangles congruent using the information listed above.	$\triangle A B Q \cong \triangle X Y Q$	Angle-Angle-Side (AAS) Theorem

Exercise

Given: The figure at the right
Prove: $\triangle H J L \cong \triangle K L J$

Explain	Work	Justify		
First, list the information that is given directly in the diagram.	$\begin{aligned} & \overline{H J} \\| \overline{K L} \\ & \overline{H L} \\| \overline{K J} \end{aligned}$	Given		
Second, use the fact that alternate interior angles are congruent when parallel lines are cut by a transversal.	$\begin{aligned} & \angle H J L \cong \angle K L J \\ & \angle H L J \cong \angle K J L \end{aligned}$	Alternate Interior Angles Theorem		
Next, recall that any line segment is congruent to itself.	$\overline{J L} \cong \overline{L J}$	Reflexive Property of Congruence		
Finally, determine which theorem can be used to prove the triangles congruent using the information listed above.	$\triangle H J L \cong \triangle K L J$	Angle-Side-Angle (ASA) Postulate		

\qquad
\qquad Date \qquad

4-3
 Think About a Plan
 Triangle Congruence by ASA and AAS

Given: $\overline{A B}\|\overline{C D}, \overline{A D}\| \overline{C B}$
Prove: $\triangle A B C \cong \triangle C D A$

1. What do you need to find to solve the problem?

Sample: at least three corresponding pairs of sides or angles that I can prove
to be congruent
2. What are the corresponding parts of the two triangles?
$\angle C A B$ and $\angle A C D ; \angle D$ and $\angle B ; \angle D A C$ and $\angle B C A ; \overline{A C}$ and $\overline{C A} ; \overline{A B}$ and $\overline{C D}$;
and $\overline{B C}$ and $\overline{D A}$
3. What word would you use to describe $\overline{A C}$? transversal
4. What can you show about angles in the triangles that can indicate congruency?

I can find congruent angles using alternate interior angles of the transversal $\overline{A C}$.
5. What do you know about a side or sides of the triangles that can be used to show congruency?
The transversal is part of both triangles, so it is congruent to itself by the
Reflexive Property of Congruence.
6. Write a proof in paragraph form.

Answers may vary. Sample: $\overline{A B} \| \overline{D C}$ and $\overline{A D} \| \overline{B C}$ are given. Therefore $\overline{A C}$ is a
transversal. $\angle C A B \cong \angle A C D$ and $\angle D A C \cong \angle B C A$ by the Alternate Interior Angles
Theorem. The transversal is part of both triangles, so $\overline{A C} \cong \overline{C A}$ by the Reflexive
Property of Congruence. $\triangle A B C \cong \triangle C D A$ by the ASA Postulate.
\qquad
\qquad
\qquad
4-3 Practice
Triangle Congruence by ASA and AAS

Name two triangles that are congruent by ASA.
1.

$\Delta H I J \cong \triangle M L K$
2.

$\triangle R S T \cong \triangle Y X Z$
3. Developing Proof Complete the proof by filling in the blanks.

Given: $\angle H I \cong \cong \angle K I J$
$\angle I J H \cong \angle I J K$
Prove: $\triangle H I J \cong \triangle K I J$

Proof: $\angle H I J \cong \angle K I J$ and $\angle I J H \cong \angle I J K$ are given.
$\bar{I} \cong \overline{I J}$ by ? . Refl. Prop. of Congruence
So, $\triangle H I J \cong \triangle K I J$ by $?$? ASA
4. Given: $\angle L O M \cong \angle N P M, \overline{L M} \cong \overline{N M}$

Prove: $\triangle L O M \cong \triangle N P M$
Proof: $\angle L O M \cong \angle N P M$ and $\overline{L M} \cong \overline{N M}$ are given.
$\angle L M O \cong \angle N M P$ because vert. \triangle are \cong. So,
$\triangle L O M \cong \triangle N P M$ by AAS.

5. Given: $\angle B$ and $\angle D$ are right angles.
$\overline{A E}$ bisects $\overline{B D}$
Prove: $\triangle A B C \cong \triangle E D C$

Statements
Reasons

1) $\angle B$ and $\angle D$ are right angles.
2) $\angle B \cong \angle D$
3) $\angle B C A \cong \angle D C E$
4) $\overline{A E}$ bisects $\overline{B D}$
5) $\overline{B C} \cong \overline{C D}$
6) $\triangle A B C \cong \triangle E D C$
7) Given
8) All right angles are congruent.
9) Vertical angles are congruent.
10) Given
11) Def. of bisector
12) ASA
\qquad
\qquad
\qquad
4-3
Triangle Congruence by ASA and AAS
6. Developing Proof Complete the proof.

Given: $\angle 1 \cong \angle 2, \overline{A B} \perp \overline{B L}, \overline{K L} \perp \overline{B L}, \overline{A B} \cong \overline{K L}$
Prove: $\triangle A B G \cong \triangle K L G$

Proof:

7. Write a flow proof.

Given: $\angle E \cong \angle H$

$$
\angle H F G \cong \angle E G F
$$

Prove: $\triangle E G F \cong \triangle H F G$

$\underbrace{\angle H F G \cong \angle E G F}_{\text {Given }} \rightarrow \underset{\text { Given }}{\angle E G \cong \cong \triangle H \text { AS Theorem }}$
Reflexive Prop. of \cong

Prove: $\triangle J K L \cong \triangle P M L$

Statements	Reasons
$\angle K \cong \angle M$	Given
$\overline{K L} \cong \overline{M L}$	Given
$\angle J L K \cong \angle P L M$	Vert. \angle are \cong.
$\triangle J K L \cong \triangle P M L$	ASA Postulate

For Exercises 9 and 10, write a paragraph proof.

$$
\text { 9. Given: } \begin{aligned}
\angle D & \cong \angle G \\
\overline{H E} & \cong \overline{F E}
\end{aligned}
$$

Prove: $\triangle E F G \cong \triangle E H D$

$\angle D \cong \angle G$ is given. $\angle D E H \cong \angle G E F$ because vert. \mathbb{S} are $\cong . \overline{H E} \cong \overline{F E}$ is given. So, $\triangle E F G \cong \triangle E H D$ by AAS.
10. Given: $\overline{J M}$ bisects $\angle J$.

$$
\overline{J M} \perp \overline{K L}
$$

Prove: $\triangle J M K \cong \triangle J M L$

$\overline{J M}$ bisects $\angle J$ is given. $\angle K J M \cong \angle L J M$ by def. of an \angle bisector. $J M \cong \overline{J M}$ by the Refl. Prop. of $\cong . \overline{J M} \perp \overline{K L}$ is given. $\angle L M J$ and $\angle K M J$ are right $\varangle<$ by the def. of perpendicular. Therefore, $\angle L M J \cong \angle K M J$ because all right \triangle are \cong. So, $\triangle J M K \cong \triangle J M L$ by ASA.
\qquad
\qquad
\qquad
4-3

Triangle Congruence by ASA and AAS

Name the two triangles that are congruent by ASA.
1.

$\triangle R Q S \cong \triangle T U V$
2.

3.

$\triangle A B C \cong \triangle J K L$
4. Developing Proof Complete the two-column proof by filling in the blanks.
Given: $\overline{B D} \perp \overline{A C}, \overline{B D}$ bisects $\angle A B C$
Prove: $\triangle A B D \cong \triangle C B D$

Statements

1) $\overline{B D} \perp \overline{A C}, \overline{B D}$ bisects $\angle A B C$.
2) ? $\angle A D B$ and $\angle C D B$ are right \measuredangle.
3) $\angle A D B \cong \angle C D B$
4) $\angle A B D \cong \angle C B D$
5) ? $\overline{B D} \cong \overline{B D}$
6) ? $\triangle A B D \cong \triangle C B D$

Reasons

1) Given
2) Definition of perpendicular
3) ? All right angles are \cong.
4) ? Definition of \angle bisector
5) Reflexive Property of \cong
6) ASA
5. Given: $\overline{K J} \cong \overline{M N}, \angle K J L \cong \angle M N L$

Prove: $\triangle J K L \cong \triangle N M L$

Statements

Reasons

1) $\overline{K J} \cong \overline{M N}, \angle K J L \cong \angle M N L$
2) $\angle K L J \cong \angle M L N$
3) ? $\angle L K J \cong \angle L M N$
4) Third Angles Theorem
5) ? $\triangle J K L \cong \triangle N M L$
6) ASA
\qquad
\qquad
\qquad
4-3
Practice (continued)
Triangle Congruence by ASA and AAS
6. Given: $\overline{P T} \cong \overline{R S}, \angle P T R \cong \angle R S P$

Prove: $\triangle P Q T \cong \triangle R Q S$

Statements

Reasons

1) ? $\overline{P T} \cong \overline{R S}, \angle P T R \cong \angle R S P$
2) $\angle P Q T \cong \angle R Q S$
3) ? $\triangle P Q T \cong \triangle R Q S$
4) Given
5) ? Vertical $\&$ are \cong.
6) AAS
7. Given: $\overline{B D}$ is the angle bisector of $\angle A B C$ and $\angle A D C$.

Prove: $\triangle A B D \cong \triangle C B D$

Statements

1) ? $\overline{B D}$ is the angle bisector of $\angle A B C$ and $\angle A D C$.
2) ? $\angle A B D \cong \angle C B D, \angle A D B \cong \angle C D B$
3) $\angle B A D \cong \angle B C D$
4) $\overline{B D} \cong \overline{B D}$
5) ? $\quad \triangle A B D \cong \triangle C B D$

Reasons

1) ? Given
2) Definition of \angle bisector
3) ? Third Angles Theorem
4) ? Reflexive Property of \cong
5) AAS
8. Reasoning A student tells you that he can prove the AAS Theorem using the SAS Postulate and the Third Angles Theorem. Do you agree with him? Explain.
(Hint: How many pairs of sides does the SAS Postulate use?)
No; answers may vary. Sample: the SAS Postulate requires two pairs of corresp. \cong sides.
9. Reasoning Can you prove the triangles congruent? Justify your answer.
No; answers may vary. Sample. there are no included sides or included \measuredangle that correspond in both $₫$, and you cannot use the Third Angles Theorem.

\qquad
\qquad
\qquad

4-3 Standardized Test Prep
 Triangle Congruence by ASA and AAS

Multiple Choice

For Exercises 1-4, choose the correct letter.

1. Which pair of triangles can be proven congruent by the ASA Postulate? C
(A)

(C)

(B)

(D)

2. For the ASA Postulate to apply, which side of the triangle must be known? F
(F) the included side
(G) the longest side
(H) the shortest side
(I) a non-included side
3. Which pair of triangles can be proven congruent by the AAS Theorem? D
(A)

(c)

(B)

(D)

4. For the AAS Theorem to apply, which side of the triangle must be known? I
(F) the included side
(G) the longest side
(H) the shortest sidea non-included side [2] $\angle 3 \cong \angle 5$ is given. $\angle 1 \cong \angle 5$ because vert. $\angle \mathrm{s}$ are $\cong . \angle 3 \cong \angle 1$ by the Trans. Prop. of $\cong . \angle 2 \cong \angle 4$ is given. $\overline{V X} \cong \overline{V X}$ by the Refl. Prop. of \cong. $\triangle V W X \cong \triangle V Y X$ by ASA. [1] incomplete proof [0] incorrect or no proof
\qquad
\qquad
\qquad

4-3
 Enrichment

Triangle Congruence by ASA and AAS

Follow these steps to create a stunt plane from a sheet of $8 \frac{1}{2}$-in.-by-11-in. paper.

1. Fold the paper in half vertically. Using the definition of segment bisectors, note the congruent segments. Check students' work.
2. Fold the upper corners to lie on either side of the center line. Using the definitions of angle bisectors and right angles, note the angles that are congruent.
a. What theorem allows you to conclude that the two triangles you created are congruent? ASA

b. Identify the congruent angles and sides. Check students' work.
3. Fold the top point down along a line that is 1 in . below the

Step 3 to lie on either side of the center line.

a. What theorem allows you to conclude that the two triangles you created are congruent? ASA
b. Identify the congruent angles and sides. Check students' work.
4. Fold the small triangle up along the line formed by the bottom sides of the triangles formed in Step 3. This exposes two more congruent triangles. The two triangles are congruent by ASA.
a. Explain which angles are congruent and why. Check students' work.
b. Name the congruent sides, and explain how you know the sides are congruent. The included sides are congruent because the fold in Step 1 found the midpoint of the width of the paper, thus creating two equal segments.
5. Fold along the vertical fold line formed in Step 1 so that the triangles formed in Step 4 are on the outside of the airplane.
6. Turn the paper so that the long edge is at the bottom. To complete Step 5
 the paper airplane, fold each top edge down to meet the bottom edge, and crease.

Follow the Steps to create a dart plane from a sheet of $8 \frac{1}{2}$-in.-by- 11 -in. paper.
7. Repeat Steps 1 and 2 above.
8. Fold the upper side corners to lie on either side of the center line. Step 8
a. What theorem allows you to conclude that the two triangles you created are congruent? ASA
b. Identify the congruent angles and sides. Check students' work.
9. Turn the paper over. Fold the outer edges in so that they lie on
 either side of the center line.
10. Fold the paper in half along the original fold made in Step 7.
11. Adjust the wing flaps until they are at right angles with the body to complete the dart.
\qquad
\qquad
\qquad

4-3 Reteaching
 Triangle Congruence by ASA and AAS

Problem

Can the ASA Postulate or the AAS Theorem be applied directly to prove the triangles congruent?

a. Because $\angle R D E$ and $\angle A D E$ are right angles, they are congruent. $\overline{E D} \cong \overline{E D}$ by the Reflexive Property of \cong, and it is given that $\angle R \cong \angle A$. Therefore, $\triangle R D E \cong$ $\triangle A D E$ by the AAS Theorem.

Exercises

Indicate congruences.

b. It is given that $\overline{C H} \cong \overline{F H}$ and $\angle F \cong \angle C$. Because $\angle C H E$ and $\angle F H B$ are vertical angles, they are congruent. Therefore, $\triangle C H E \cong \triangle F H B$ by the ASA Postulate.
1.

2.

1. Copy the top figure at the right. Mark the figure with the angle congruence and side congruence symbols that you would need to prove the triangles congruent by the ASA Postulate.
2. Copy the second figure shown. Mark the figure with the angle congruence and side congruence symbols that you would need
 to prove the triangles congruent by the AAS Theorem.
3. Draw and mark two triangles that are congruent by either the ASA Postulate or the AAS Theorem. Check students' work.

What additional information would you need to prove each pair of triangles congruent by the stated postulate or theorem?
4. ASA Postulate $A \quad B \quad C$ $\angle A B D \cong \angle C B D$

5. AAS Theorem

$$
\begin{aligned}
& \angle J M K \cong \angle L K M \\
& \angle J K M \cong \angle L M K \\
& \angle J M K \cong \angle L M K, \text { or } \\
& \angle J K M \cong \angle L K M
\end{aligned}
$$

6. ASA Postulate $\angle Z X Y \cong \angle Z V U$

7. AAS Theorem
$\angle Y \cong \angle O$

8. AAS Theorem $\angle P \cong \angle A$

9. ASA Postulate $\angle C Y L \cong \angle A L Y$

\qquad
\qquad
\qquad

4-3 Reteaching (continued)
 Triangle Congruence by ASA and AAS

10. Provide the reason for each step in the two-column proof.

Given: $\overline{T X} \| \overline{V W}, \overline{T U} \cong \overline{V U}, \angle X T U \cong \angle W V U$, $\angle U W V$ is a right angle.
Prove: $\triangle T U X \cong \triangle V U W$

Statements

1) $\angle U W V$ is a right angle.
2) $\overline{V W} \perp \overline{X W}$
3) $\overline{T X} \| \overline{V W}$
4) $\overline{T X} \perp \overline{X W}$
5) $\angle U X T$ is a right angle.
6) $\angle U W V \cong \angle U X T$
7) $\overline{T U} \cong \overline{V U}$
8) $\angle X T U \cong \angle W V U$
9) $\triangle T U X \cong \triangle V U W$

Reasons

1) \square Given
2) ? Definition of perpendicular lines
3) ? Given
4) ?

Perpendicular Transversal Theorem
5) ? Definition of perpendicular lines
6) ? All right angles are congruent.
7) ? Given
8) ? Given
9) ? AAS Theorem
11. Write a paragraph proof.

Given: $\overline{W X}\|\overline{Z Y} ; \overline{W Z}\| \overline{X Y}$
Prove: $\triangle W X Y \cong \triangle Y Z W$
It is given that $\overline{W X} \| \overline{Z Y}$ and $\overline{W Z} \| \overline{X Y}$, so $\angle X W Y \cong \angle Z Y W$ and $\angle X Y W \cong \angle Z W Y$, by the Alternate Interior \angle Thm.

$\overline{W Y} \cong \overline{Y W}$ by the Reflexive Property of \cong. So, by ASA Post. $\triangle W X Y \cong \triangle Y Z W$.
12. Developing Proof Complete the proof by filling in the blanks.

Given: $\angle A \cong \angle C, \angle 1 \cong \angle 2$
Prove: $\triangle A B D \cong \triangle C D B$
Proof: $\angle A \cong \angle C$ and $\angle 1 \cong \angle 2$ are given. $\overline{D B} \cong \overline{B D}$ by ?.

Refl. Prop. of Congruence
So, $\triangle A B D \cong \triangle C D B$ by ?. AAS
13. Write a paragraph proof.

Given: $\angle 1 \cong \angle 6, \angle 3 \cong \angle 4, \overline{L P} \cong \overline{O P}$
Prove: $\triangle L M P \cong \triangle O N P$

$\angle 3 \cong \angle 4$ is given. Therefore, $m \angle 3=m \angle 4$, by def. of $\cong \angle s$. Because $\angle 2$ and $\angle 3$ are linear pairs, and $\angle 4$ and $\angle 5$ are linear pairs, the pairs of angles are suppl. Therefore, $\angle 2 \cong \angle 5$ by the Congruent Suppl. Thm. $\angle 1 \cong \angle 6$ and $\overline{L P} \cong \overline{O P}$ are given, so $\Delta L M P \cong \triangle O N P$, by the AAS Thm.
\qquad Class \qquad Date \qquad

4-4
 ELL Support

Using Corresponding Parts of Congruent Triangles

There are two sets of note cards below that show how to prove $\overline{B D}$ is the perpendicular bisector of $\overline{A E}$. The set on the left has the statements and the set on the right has the reasons. Write the statements and the reasons in the correct order.

Statements

$\angle B A C \cong \angle D E C$
$\overline{A C} \cong \overline{E C}$
$\triangle A C B \cong \triangle E C D$
$\overline{B D}$ is the perpendicular
bisector of $\overline{A E}$.
$\overline{B C} \cong \overline{D C} ; \angle A C B$ and
$\angle E C D$ are right angles;
$\overline{A B} \\| \overline{D E}$
$\angle A C B \cong \angle E C D$

Statements

1) $\overline{B C} \cong \overline{D C} ; ~$
are right angles; $\overline{A B} \\| \overline{D E}$
ard
2) $\angle A C B \cong \angle E C D$
3) $\angle B A C \cong \angle D E C$
4) $\triangle A C B \cong \triangle E C D$
5) $\overline{A C} \cong \overline{E C}$
6) $\overline{B D}$ is the perpendicular
bisector of $\overline{A E .}$

Reasons

Definition of the perpendicular bisector

Angle-Angle-Side (AAS) Theorem

When parallel lines are cut by a transversal, alternate interior angles are congruent.

Corresponding parts of congruent triangles are congruent.

Given

All right angles are congruent.

Reasons

1) Given
2) All right angles are congruent.
3) When parallel lines are cut by a transversal, alternate interior angles are congruent.
4) Angle-Angle-Side (AAS) Theorem
5) Corresponding parts of congruent triangles are congruent.
6) Definition of the perpendicular bisector
\qquad
\qquad
\qquad

4-4
 Think About a Plan
 Using Corresponding Parts of Congruent Triangles

Constructions The construction of $\angle B$ congruent to given $\angle A$ is shown. $\overline{A D} \cong \overline{B F}$ because they are the radii of the same circle. $\overline{D C} \cong \overline{F E}$ because both arcs have the same compass settings. Explain why you can conclude that $\angle A \cong \angle B$.

Understanding the Problem

1. What is the problem asking you to prove?
$\angle A \cong \angle B$
2. Segments $\overline{D C}$ and $\overline{F E}$ are not drawn on the construction. Draw them in. What figures are formed by drawing these segments?
two triangles
3. What information do you need to be able to use corresponding parts of congruent triangles?
$\overline{A C}$ needs to be shown as congruent to $\overline{B E}$.

Planning the Solution

4. To use corresponding parts of congruent triangles, which two triangles do you need to show to be congruent?
$\triangle A C D$ and $\triangle B E F$
5. What reason can you use to state that $\overline{A C} \cong \overline{B E}$?

They are congruent because they are radii of the same circle by construction.

Getting an Answer

6. Write a paragraph proof that uses corresponding parts of congruent triangles
to prove that $\angle A \cong \angle B$.
$\overline{A C} \cong \overline{B E}$ and $\overline{A D} \cong \overline{B F}$ because they are both radii of the same circle. $\overline{D C} \cong \overline{F E}$ because
they both have the same compass settings. Therefore, $\triangle A C D \cong \triangle B E F$ by SSS and
$\angle A \cong \angle B$ by CPCTC.
\qquad
\qquad
\qquad

Practice

Using Corresponding Parts of Congruent Triangles

For each pair of triangles, tell why the two triangles are congruent. Give the congruence statement. Then list all the other corresponding parts of the triangles that are congruent.
1.

M $\angle M K L \cong \angle H K J$ because vertical angles are congruent, so $\triangle K J H \cong \triangle K L M$ by AAS. $\angle K M L \cong \angle K H J$, $\overline{M K} \cong \overline{H K}$, and $\overline{L K} \cong \overline{J K}$.
3. Complete the proof.

Given: $\overline{Y A} \cong \overline{B A}, \angle B \cong \angle Y$
Prove: $\overline{A Z} \cong \overline{A C}$

Reasons

1) ? Given
2) Definition of vertical angles
3) ? Vertical angles are congruent.
4) ? ASA
5) ? СРСТС
4. Open-Ended Construct a figure that involves two congruent triangles. Set up given statements and write a proof that corresponding parts of the triangles are congruent. Check students' work.
\qquad
\qquad
\qquad
4-4 Practice (continued)

Using Corresponding Parts of Congruent Triangles

5. Complete the proof.

Given: $\overline{B D} \perp \overline{A B}, \overline{B D} \perp \overline{D E}, \overline{B C} \cong \overline{D C}$
Prove: $\angle A \cong \angle E$

Statements

Reasons

1) $\overline{B D} \perp \overline{A B}, \overline{B D} \perp \overline{D E}$
2) $\angle C D E$ and $\angle C B A$ are right angles.
3) $\angle C D E \cong \angle C B A$
4) ? $\angle E C D \cong \angle A C B$
5) $\overline{B C} \cong \overline{D C}$
6) ? $\triangle C D E \cong \triangle C B A$
7) $\angle A \cong \angle E$
8) ? Given
9) Definition of right angles
10) ? All right angles are congruent.
11) Vertical angles are congruent.
12) ? Given
13) ? ASA
14) ? СРСТС
6. Construction Use a construction to prove that the two base angles of an isosceles triangle are congruent.
Given: Isosceles $\triangle A B C$ with base $\overline{A C}$
Prove: $\angle A \cong \angle C$

Statements

1) $\triangle A B C$ is isosceles.
2) $\overline{A B} \cong \overline{C B}$
3) Construct the midpoint of $\overline{A C}$ and call it D. Construct $\overline{D B}$.
4) ? $\overline{A D} \cong \overline{C D}$
5) $\overline{B D} \cong \overline{B D}$
6) $\triangle A B D \cong \triangle C B D$
7) ? $\angle A \cong \angle C$

Reasons

1) ? Given
2) Definition of isosceles triangle.
3) Construction
4) Definition of midpoint
5) ? Refl. Prop. of Congruence
6) ? SSS
7) ? CPCTC
\qquad
\qquad
\qquad
4-4
Practice

Using Corresponding Parts of Congruent Triangles

1. Developing Proof State why the two triangles are congruent. Then list all other corresponding parts of the triangles that are congruent.
AAS; $\triangle Q R S \cong \triangle T W X ; \angle Q \cong \angle T, \overline{R S} \cong \overline{W X}$

2. Developing Proof State why $\triangle A X Y$ and $\triangle C Y X$ are congruent. Then list all other corresponding parts of the triangles that are congruent.
Answers may vary. Sample: SAS; $\angle A Y X \cong \angle C X Y, \overline{A Y} \cong \overline{C X}$

3. Given: $\overline{Q S} \| \overline{R T}, \angle R \cong \angle S$

Prove: $\angle Q T S \cong \angle T Q R$
To start, determine how you can prove the triangles are congruent. The triangles share a side and have a pair of congruent angles.
 Because $\overline{Q S} \| \overline{R T}$, alternate interior angles $\angle S Q T$ and $\angle R T Q$ are congruent. The triangles can be proven congruent by AAS.

Statements

1) ? $\overline{Q S} \| \overline{R T}, \angle R \cong \angle S$
2) ? $\angle S Q T \cong \angle R T Q$
3) ? $\overline{Q T} \cong \overline{T Q}$
4) ? $\quad \triangle S T Q \cong \triangle R Q T$
5) ? $\angle Q T S \cong \angle T Q R$

Reasons

1) Given
2) Alternate interior \measuredangle are \cong.
3) Reflexive Property of Congruence
4) AAS
5) Corresp. parts of \cong are \cong.

Reasoning Copy and mark the figure to show the given information. Explain how you would prove $\overline{A B} \cong \overline{D E}$.
4. Given: $\overline{A C} \cong \overline{D C}, \angle B \cong \angle D$ AAS and Corresp. parts of $\cong \mathbb{A}$ are \cong.

5. Given: $\overline{A E}$ bisects $\overline{B D}, \overline{D B}$ bisects $\overline{A E}$ SAS and Corresp. parts of $\cong \mathbb{A}$ are \cong.
6. Given: $\overline{A B} \| \overline{D E}, A C=E C$

Answers may vary. Sample: AAS and Corresp. parts of \cong © are \cong.

\qquad Class \qquad
\qquad
4-4 Practice (continued)

Using Corresponding Parts of Congruent Triangles

7. Given: $\overline{G K}$ is the perpendicular bisector of $\overline{F H}$.

Prove: $\overline{F G} \cong \overline{H G}$

Statements

1) $\overline{G K}$ is the perpendicular bisector of $\overline{F H}$.
2) ? $\overline{K F} \cong \overline{K H}$
3) $\angle G K F \cong \angle G K H$
4) ? $\overline{\mathbf{G K}} \cong \overline{\mathbf{G K}}$
5) $\triangle F G K \cong \triangle H G K$
6) ? $\overline{F G} \cong \overline{H G}$

Reasons

1) ? Given
2) Def. of perpendicular bis.
3) Def. of perpendicular bis.; all right \measuredangle are \cong.
4) Refl. Prop. of \cong
5) ? SAS
6) Corresp. parts of \cong © are \cong.
8. Given: $A B C E$ is a rectangle. D is the midpoint of $\overline{C E}$.
Prove: $\overline{A D} \cong \overline{B D}$

Statements

1) $A B C E$ is a rectangle.
D is the midpoint of $\overline{C E}$.
2) $\angle A E D \cong \angle B C D$
3) $\overline{A E} \cong \overline{B C}$
4) ? $\overline{E D} \cong \overline{C D}$
5) ? $\triangle A E D \cong \triangle B C D$
6) ? $\overline{A D} \cong \overline{B D}$

Reasons

1) Given
2) Definition of rectangle
3) Definition of rectangle
4) ? Definition of midpoint
5) ? SAS
6) ? Corresp. parts of $\cong \mathbb{A}$ are \cong.
\qquad
\qquad
\qquad

4-4
 Standardized Test Prep
 Using Corresponding Parts of Congruent Triangles

Multiple Choice

For Exercises 1-6, choose the correct letter.

1. Based on the given information in the figure at the right, how can you justify that $\triangle J H G \cong \triangle H J I$? B
(A) ASA
(C) AAS
(B) SSS
(D) ASA

2. In the figure at the right the following is true:
$\angle A B D \cong \angle C D B$ and $\angle D B C \cong \angle B D A$. How can you justify that $\triangle A B D \cong \triangle C D B$? H
(F) SAS
(H) ASA
(G) SSSСРСТС

3. $\triangle B R M \cong \triangle K Y Z$. How can you justify that $\overline{Y Z} \cong \overline{R M}$? A
(A) СРСТС
(B) SAS
(C) ASA
(D) SSS
4. Which statement cannot be justified given
only that $\triangle P B J \cong \triangle T I M$? I
(F) $\overline{P B} \cong \overline{T I}$
(G) $\angle B \cong \angle I$
(H) $\angle B J P \cong \angle I M T$
(1) $\overline{J P} \cong \overline{M I}$
5. In the figure at the right, which theorem or postulate can you use to prove $\triangle A D M \cong \triangle Z M D$? C
(A) ASA
(C) SAS
(B) SSS
(D) AAS

6. In the figure at the right, which theorem or postulate can you use to prove $\triangle K G C \cong \triangle F H E$? H
(F) ASA
(H)
SAS
(G) SSSAAS

Short Response

7. What would a brief plan for the following proof
look like?
Given: $\overline{A B} \cong \overline{D C}, \angle A B C \cong \angle D C B$
Prove: $\overline{A C} \cong \overline{D B}$

[2] $\overline{C B} \cong \overline{B C}$ by the Reflexive Property. $\triangle C B D \cong \triangle B C A$ by SAS. $\overline{A C} \cong \overline{D B}$ by CPCTC;
[1] one step missing or one reason incorrect [0] incorrect or no response
\qquad
\qquad
\qquad

4-4
 Enrichment
 Using Corresponding Parts of Congruent Triangles

String Art

Artists have always used geometry, but in some cases geometry can become the driving force in art. In string art, for example, polygons combine to make interesting patterns. To make string art, you usually start with a frame with nails at equal intervals. The frame below left was used to make the art on the right. (The string wrapping around the nails has been omitted.)

Use the diagram and information below for Exercise 1.

Given: $P Q=Q R=R S=S T=T U=U V=V W=W X=X Y=Y Z$

1. Find as many triangles as you can prove congruent in the above diagram. Name the postulate or theorem (SSS, SAS, ASA, or AAS) that justifies your answer. Answers may vary. Sample: $\triangle T U Z \cong \triangle V U P(S A S) ; ~ \triangle S U Y \cong \triangle W U Q$ (SAS);

$$
\triangle Q A P \cong \triangle Y J Z(A S A) ; \triangle T J S \cong \triangle V A W \text { (SSS) }
$$

Use the diagram and information below for Exercises 2 and 3.

Given: $Q F=R E, \overline{Q F} \perp \overline{S V} \perp \overline{R E}, \overline{F E} \| \overline{G D}$
2. Find three pairs of congruent triangles in the diagram. For each pair of triangles, name the postulate or theorem (SSS, SAS, ASA, or AAS) that justifies your answer. Sample: $\triangle Q W F \cong \triangle E W R$ (ASA); $\triangle Q F E \cong \triangle R E F(S A S) ; \triangle F W E \cong \triangle F W Q$ (ASA)
3. If $\overline{H C}\|\overline{A B}\| \overline{G D}$ and $\overline{H G}\|\overline{A F}\| \overline{C D}$, find as many congruent triangles as you can in the diagram, and give an example for each type of triangle. Sample: $7 \triangle$ congruent to $\triangle I J N$,
 23 \& congruent to $\triangle F W E, 15 \&$ congruent to $\triangle Q F E$, and $7 \mathbb{A}$ congruent to $\triangle A S D$
\qquad
\qquad
\qquad

4-4

Reteaching

Using Corresponding Parts of Congruent Triangles

If you can show that two triangles are congruent, then you can show that all the corresponding angles and sides of the triangles are congruent.

Problem

Given: $\overline{A B} \| \overline{D C}, \angle B \cong \angle D$
Prove: $\overline{B C} \cong \overline{D A}$

In this case you know that $\overline{A B} \| \overline{D C} \cdot \overline{A C}$ forms a transversal and creates a pair of alternate interior angles, $\angle B A C$ and $\angle D C A$.

You have two pairs of congruent angles, $\angle B A C \cong \angle D C A$ and $\angle B \cong \angle D$. Because you know that the shared side is congruent to itself, you can use AAS to show that the triangles are congruent. Then use the fact that corresponding parts are congruent to show that $\overline{B C} \cong \overline{D A}$. Here is the proof:

Statements

1) $\overline{A B} \| \overline{D C}$
2) $\angle B A C \cong \angle D C A$
3) $\angle B \cong \angle D$
4) $\overline{A C} \cong \overline{C A}$
5) $\triangle A B C \cong \triangle C D A$
6) $\overline{B C} \cong \overline{D A}$

Reasons

1) Given
2) Alternate Interior Angles Theorem
3) Given
4) Reflexive Property of Congruence
5) AAS
6) СРСТС

Exercises

1. Write a two-column proof.

Given: $\overline{M N} \cong \overline{M P}, \overline{N O} \cong \overline{P O}$
Prove: $\angle N \cong \angle P$

Statements

1) ? $\overline{M N} \cong \overline{M P}, \overline{N O} \cong \overline{P O}$
2) $\overline{M O} \cong \overline{M O}$
3) ? $\triangle M N O \cong \triangle M P O$
4) $\angle N \cong \angle P$

Reasons

1) Given
2) ? Reflexive Property of \cong
3) ? SSS
4) ? СРСТС
\qquad Class \qquad
\qquad

4-4

Reteaching (continued)

Using Corresponding Parts of Congruent Triangles

2. Write a two-column proof.

Given: $\overline{P T}$ is a median and an altitude of $\triangle P R S$.
Prove: $\overline{P T}$ bisects $\angle R P S$.

Statements

1) $\overline{P T}$ is a median of $\triangle P R S$.
2) ? T is the midpoint of $\overline{R S}$.
3) ? $\overline{R T} \cong \overline{S T}$
4) $\overline{P T}$ is an altitude of $\triangle P R S$.
5) $\overline{P T} \perp \overline{R S}$
6) $\angle P T S$ and $\angle P T R$ are right angles.
7) ? $\angle P T S \cong \angle P T R$
8) ? $\overline{P T} \cong \overline{P T}$
9) ? $\triangle P T S \cong \triangle P T R$
10) $\angle T P S \cong \angle T P R$
11) ? $\overline{P T}$ bisects $\angle R P S$.

Reasons

1) ? Given
2) Definition of median
3) Definition of midpoint
4) ? Given
5) ? Definition of altitude
6) ? Definition of perpendicular
7) All right angles are congruent.
8) Reflexive Property of Congruence
9) SAS
10) ? СРСТС
11) ? Definition of angle bisector
3. Write a two-column proof.

Given: $\overline{Q K} \cong \overline{Q A} ; \overline{Q B}$ bisects $\angle K Q A$.
Prove: $\overline{K B} \cong \overline{A B}$
Statements
Reasons

1) $\overline{Q K} \cong \overline{Q A} ; \overline{Q B}$ bisects $\angle K Q A$.
2) $\angle K Q B \cong \angle A Q B$
3) $\overline{B Q} \cong \overline{B Q}$
4) $\triangle K B Q \cong \triangle A B Q$
5) $\overline{K B} \cong \overline{A B}$
6) Given
7) Def. of \angle bis.
8) Refl. Prop. of Congruence
9) SAS
10) CPCTC
4. Write a two-column proof.

Given: $\overline{O N}$ bisects $\angle J O H, \angle J \cong \angle H$
Prove: $\overline{J N} \cong \overline{H N}$
Statements
Reasons

1) $\overline{O N}$ bisects $\angle J O H, \angle J \cong \angle H$
2) $\angle J O N \cong \angle H O N$
3) $\overline{O N} \cong \overline{O N}$
4) $\triangle \mathrm{JON} \cong \triangle H O N$
5) $\overline{J N} \cong \overline{H N}$
6) Given
7) Def. of \angle bis.
8) Refl. Prop. of Congruence
9) AAS
10) CPCTC
\qquad
\qquad
\qquad

$4-5$
 ELL Support
 Isosceles and Equilateral Triangles

Complete the vocabulary chart by filling in the missing information.

Word or Word Phrase	Definition	Picture or Example
base	The base of an isosceles triangle is the side included between the pair of congruent angles.	
base angles	1. The base angles are the two congruent angles of an isosceles triangle.	
corollary	2. A corollary is a theorem that can be proved easily by another theorem.	A corollary to the Isosceles Triangle Theorem is: If a triangle is equilateral, then the triangle is equiangular.
equiangular triangle	An equiangular triangle is a triangle with three congruent angles. The angles of an equiangular triangle all measure 60.	3.
isosceles triangle	4. An isosceles triangle is a triangle with two congruent sides.	
legs	The legs are the two congruent sides of an isosceles triangle.	5.
vertex angle	6. The vertex angle is the angle formed by the legs of an isosceles triangle.	7.

\qquad
\qquad
\qquad

4-5
 Think About a Plan
 Isosceles and Equilateral Triangles

Algebra The length of the base of an isosceles triangle is x. The length of a leg is $2 x-5$. The perimeter of the triangle is 20 . Find x.

Know

1. What is the perimeter of a triangle?
the sum of the sides of a triangle
2. What is an isosceles triangle?
a triangle with two sides the same length

Need

3. What are the sides of an isosceles triangle called?
base and leg
4. How many of each type of side are there?

1 base and 2 legs
5. The lengths of the base and one leg are given. What is the third side of the triangle called?
leg

Plan

6. Write an expression for the length of the third side. $2 x-5$
7. Write an equation for the perimeter of this isosceles triangle.
$x+(2 x-5)+(2 x-5)=20$
8. Solve the equation for x. Show your work.

$$
\begin{aligned}
5 x-10 & =20 \\
5 x & =30 \\
x & =6
\end{aligned}
$$

\qquad
\qquad
\qquad

4-5
 Practice
 Isosceles and Equilateral Triangles

Complete each statement. Explain why it is true.

1. $\angle D B C \cong$? $\cong \angle C D B$
$\angle B C D$; all the angles of an equilateral triangle are congruent.
2. $\angle B E D \cong$

$\angle B D E$; the base angles of an isosceles triangle are
 congruent.
3. $\angle F E D \cong$? $\cong \angle D F E$
$\angle E D F$; all the angles of an equilateral triangle are congruent.
4. $\overline{A B} \cong$? $\cong \overline{B E}$
$\overline{E A}$; all the sides of an equilateral triangle are congruent.
Algebra Find the values of x and y.
5.

6.

45; 90
7.

8.

30; 20
9.

10.

Use the properties of isosceles and equilateral triangles to find the measure of the indicated angle.
11. $m \angle A C B 135$
12. $m \angle D B C 20$
13. $m \angle A B C 55$

14. Equilateral $\triangle A B C$ and isosceles $\triangle D B C$ share side $B C$. If $m \angle B D C=34$ and $B D=B C$, what is the measure of $\angle A B D$? (Hint: it may help to draw the figure described.) 172
\qquad
\qquad
\qquad

$4-5$
 Practice (continued)

Use the diagram for Exercises 15-17 to complete each congruence statement. Explain why it is true.
15. $\overline{D F} \cong$?
$\overline{D B}$; Converse of the Isosceles Triangle
Theorem
16. $\overline{D G} \cong$? $\overline{D A}$; Converse of the Isosceles Triangle

17. $\overline{D C} \cong$? $\overline{D E}$; Converse of the Isosceles Triangle
18. The wall at the front entrance to the Rock and Roll Hall of Fame and Museum in Cleveland, Ohio, is an isosceles triangle. The triangle has a vertex angle of 102. What is the measure of the base angles? 39
19. Reasoning An exterior angle of an isosceles triangle has the measure 130. Find two possible sets of measures for the angles of the triangle.
50,50 , and $80 ; 50,65$, and 65
20. Open-Ended Draw a design that uses three equilateral triangles and two isosceles triangles. Label the vertices. List all the congruent sides and angles. Check students' work.

Algebra Find the values of m and n.

22.

44; 68
23.

24. Writing Explain how a corollary is related to a theorem. Use examples from this lesson in making your comparison.
A theorem is a statement that is proven true by a series of steps. A corollary is a statement that can be taken directly from the conclusion of a theorem, usually by applying the theorem to a specific situation. For example, Theorems 4-3 and 4-4 are general statements about all isosceles triangles. Their corollaries apply the theorems to equilateral triangles.
\qquad
\qquad
\qquad

$4-5$
 Practice

Complete each statement. Explain why it is true.

1. $\overline{A B} \cong$?
2. $\angle B D E \cong$?
3. $\angle C B E \cong$? $\cong \angle B C E$

Answers may vary. Sample: $\angle B E C$; all the angles of an equilateral triangle are congruent.

Algebra Find the values of x and y.

4. $90 ; 30$

To start, determine what types of triangles are shown in the diagram. Then use an equation to find x.
Because two sides are marked congruent in both triangles, the triangles are both ? . isosceles
$45+45+x=180$
5.

Use the properties of isosceles triangles to complete each statement.
7. If $m \angle A D B=54$, then $m \angle C B D=$ \qquad 72
8. If $A B=8$, then $B D=$?. 8

9. You are asked to put a V-shaped roof on a house. The slope of the roof is 40°. What is the measure of the angle needed at the vertex of the roof? 100
10. Reasoning The measure of one angle of a triangle is 30 . Of the two remaining angles, the larger angle is four times the size of the smaller angle. Is the triangle isosceles? Explain. Yes, because the measure of the smaller angle is 30 .
\qquad
\qquad
\qquad

For Exercises 11 and 12, use the diagram to complete each congruence statement. Then list the theorem or corollary that proves the statement. The first one has been done for you.

$$
\angle B \cong ?
$$

Answer: $\angle B A C$ (or $\angle A C B$); Corollary to Theorem 4-3
11. $\overline{A D} \cong$? Answers may vary. Sample: $\overline{A C}$ or $\overline{D C}$;

12. $\angle E \cong$? Answers may vary. Sample: $\angle D C E$ or $\angle C D E$; Corollary to Theorem 4-3
For Exercises 13-15, use the diagram to complete each congruence statement.
Then list the theorem or corollary that proves the statement.
13. $\overline{P R} \cong$ \qquad $\overline{Q R}$; Converse of the Isosceles Triangle Theorem
14. $\angle R U V \cong$? $\angle R V U$; Isosceles Triangle Theorem
15. $\overline{S R} \cong$ \qquad $\overline{T R} ;$ Converse of the Isosceles
Triangle Theorem

16. Reasoning An equilateral triangle and an isosceles triangle share a common side as shown at the right. What is the measure of the vertex angle? Explain.
120; the congruent angles in the diagram both have a measure of 60 . The base angles of the isosceles triangle have a measure of 30 because one is the other angle in a right triangle. The vertex
 angle must measure 120 if the base angles both measure 30 .

Algebra Find the values of m and n.

130; 105
18.

67.5; 45
\qquad Class \qquad Date \qquad

4-5 $\quad \frac{\text { Standardized Test Prep }}{\text { Isosceles and Equilateral Triangles }}$

Gridded Response

Solve each exercise and enter your answer on the grid provided.
Refer to the diagram for Exercises 1-3.

1. What is the value of x ?

2. What is the value of y ?
3. What is the value of z ?
4. The measures of two of the sides of an equilateral triangle are $3 x+15 \mathrm{in}$. and $7 x-5 \mathrm{in}$. What is the measure of the third side in inches?
5. In $\triangle G H I, H I=G H, m \angle I H G=3 x+4$, and $m \angle I G H=2 x-24$. What is $m \angle H I G$?

Answers

2.

3.

4.

5.

\qquad Class \qquad Date \qquad

4-5
 Enrichment
 Isosceles and Equilateral Triangles

The swan below is composed of several triangles. Use the given information and the figure to find each angle measure. Note: Figure not drawn to scale.

Given: $\triangle A B C$ is equilateral; $\angle B C D \cong \angle B D C ; \overline{D E} \cong \overline{C E} \cong \overline{E F} ; \angle C G F \cong \angle C F G$;

$$
\begin{aligned}
& \triangle G C F \cong \triangle G K F \cong \triangle J H M ; \triangle K F H \cong \triangle K L H ; \overline{K O} \cong \overline{F O} ; \\
& \angle H K N \cong \angle H N K ; \overline{J N} \cong \overline{J O}
\end{aligned}
$$

1. $m \angle A B C 60$	2. $m \angle B C A 60$	3. $m \angle C A B 60$	4. $m \angle B C D 70$
5. $m \angle B D C 70$	6. $m \angle C B D 40$	7. $m \angle E D C 72$	8. $m \angle E C D 72$
9. $m \angle C E D 36$	10. $m \angle E C F 30$	11. $m \angle E F C$ 30	12. $m \angle C E F 120$
13. $m \angle C G F 80$	14. $m \angle C F G 80$	15. $m \angle G C F 20$	16. $m \angle K G F 80$
17. $m \angle K F G 80$	18. $m \angle G K F 20$	19. $m \angle F K H 41$	20. $m \angle F H K 23$
21. $m \angle K F H 116$	22. $m \angle K H L 23$	23. $m \angle H K L 41$	24. $m \angle K L H 116$
25. $m \angle H J M 80$	26. $m \angle H M J 80$	27. $m \angle J H M 20$	28. $m \angle O F K 82$
29. $m \angle O K F 82$	30. $m \angle K O F 16$	31. $m \angle H K N 78.5$	32. $m \angle H N K 78.5$
33. $m \angle O K N 37.5$	34. $m \angle J N O 40$	35. $m \angle J O N 40$	36. $m \angle$ NJO 100

\qquad
\qquad Date \qquad

4-5
 Reteaching
 Isosceles and Equilateral Triangles

Two special types of triangles are isosceles triangles and equilateral triangles.
An isosceles triangle is a triangle with two congruent sides. The base angles of an isosceles triangle are also congruent. An altitude drawn from the shorter base splits an isosceles triangle into two congruent right triangles.

An equilateral triangle is a triangle that has three congruent sides and three congruent angles. Each angle measures 60°.

You can use the special properties of isosceles and equilateral triangles to find or prove different information about a given figure.

Look at the figure at the right.

You should be able to see that one of the triangles is equilateral and one is isosceles.

Problem

What is $m \angle A$?

$\triangle A B C$ is isosceles because it has two base angles that are congruent. Because the sum of the measures of the angles of a triangle is 180 , and $m \angle B=40$, you can solve to find $m \angle A$.

$$
\begin{aligned}
m \angle A+m \angle B+m \angle B E A & =180 & & \text { There are } 180^{\circ} \text { in a triangle. } \\
m \angle A+40+m \angle A & =180 & & \text { Substitution Property } \\
2 m \angle A+40 & =180 & & \text { Combine like terms. } \\
2 m \angle A & =140 & & \text { Subtraction Property of Equality } \\
m \angle A & =70 & & \text { Division Property of Equality }
\end{aligned}
$$

Problem

What is FC?
$\triangle C F G$ is equilateral because it has three congruent angles.

$$
C G=(2+2)=4, \text { and } C G=F G=F C .
$$

So, $F C=4$.
\qquad
\qquad
\qquad

4-5
 Reteaching (continued)
 Isosceles and Equilateral Triangles

Problem

What is the value of x ?
Because x is the measure of an angle in an equilateral triangle, $x=60$.

Problem

What is the value of y ?

$$
\begin{array}{rlrl}
m \angle D C E+m \angle D E C+m \angle E D C & =180 \\
60+70+y & =180 \\
y & =50 & & \text { There are } 180^{\circ} \text { in a triangle. } \\
\text { Substitution Property } \\
\text { Subtraction Property of Equality }
\end{array}
$$

Exercises

Complete each statement. Explain why it is true.

1. $\angle E A B \cong$?
$\angle E B A$; base angles of an isosceles triangle are congruent.
2. $\angle B C D \cong$? $\cong \angle D B C$
$\angle C D B$; the angles of an equilateral triangle are congruent.
3. $\overline{F G} \cong$? $\cong \overline{D F}$

$\overline{G D}$; the sides of an equilateral triangle are congruent.
Determine the measure of the indicated angle.
4. $\angle A C B 60$
5. $\angle D C E 65$
6. $\angle B C D 55$

Algebra Find the value of x and y.
7.

35; 35
8.

9. Reasoning An exterior angle of an isosceles triangle has a measure 140.

Find two possible sets of measures for the angles of the triangle. 40, 40, 100; 40, 70, 70
\qquad
\qquad Date \qquad

4-6
 ELL Support
 Congruence in Right Triangles

The column on the left shows the steps used to prove that $\overline{A B} \cong \overline{E D}$. Use the column on the left to answer each question in the column on the right.

Problem \cong in Right Triangles Given: C is the	1. What is the definition of the midpoint of a line segment? The midpoint is halfway between		
and $\overline{B D}$.	the two endpoints. It divides the line		
Prove: $\overline{A B} \cong \overline{E D}$	segment into two equal halves.		
1) C is the midpoint of $\overline{A E}$ and $\overline{B D}$; $\overline{A B} \\| \overline{D E} ; m \angle B=90$ Given	2. How do you know that $\overline{A B} \\| \overline{D E}$ and $m \angle B=90$? by reading the diagram		
2) $\overline{A C} \cong \overline{E C} ; \overline{B C} \cong \overline{D C}$ Definition of midpoint	3. What does the symbol \cong between two line segments mean? The line segments are congruent.		
3) $\angle B \cong \angle D$ Alternate Interior Angles Theorem	4. What does the word interior mean? Interior means on the inside of.		
4) $\angle B$ and $\angle D$ are right angles. Definition of a right angle	5. What is the measure of $\angle D$? 90		
5) $\triangle A B C \cong \triangle E D C$ Hypotenuse-Leg (HL) Postulate	6. What information is necessary to apply the HL Postulate? Two right triangles must have congruent hypotenuses and one congruent leg.		
6) $\overline{A B} \cong \overline{E D}$ Corresponding parts of congruent triangles are congruent.	7. What are the corresponding angles and sides for $\triangle A B C$ and $\triangle E D C$? $\angle B$ and $\angle D, \angle A$ and $\angle E, \angle B C A$ and $\angle D C E, \overline{A B}$ and $\overline{E D}, \overline{A C}$ and $\overline{E C}, \overline{B C}$ and $\overline{D C}$		

\qquad
\qquad Date \qquad

4-6
 Think About a Plan
 Congruence in Right Triangles

Algebra For what values of x and y are the triangles congruent by HL?

Know

1. For two triangles to be congruent by the Hypotenuse-Leg Theorem, there must be a pair of right angles, and the lengths of the hypotenuses and one of the legs of each triangle must be equal.
2. The length of the hypotenuse of the triangle on the left is \qquad $3 y+x$ and the hypotenuse of the triangle on the right is \qquad $y+5$.
3. The length of the leg of the triangle on the left is \qquad and the length of the leg of the triangle on the right is \qquad $x+5$.

Need

4. To solve the problem you need to find the values of x and y.

Plan

5. What system of equations can you use to find the values of x and y ?
$3 y+x=y+5 ; y-x=x+5$
6. What method(s) can you use to solve the system of equations?

Sample: Solve one equation for y and substitute into the other equation; graph
both equations.
7. What is the value of y ? What is the value of x ? $3 ;-1$
\qquad
\qquad
\qquad

4-6

Practice

Congruence in Right Triangles

1. Developing Proof Complete the paragraph proof.

Given: $\overline{R T} \perp \overline{S U}, \overline{R U} \cong \overline{R S}$.
Prove: $\triangle R U T \cong \triangle R S T$
Proof: It is given that $\overline{R T} \perp \overline{S U}$. So, $\angle R T S$ and $\angle R T U$ are right angles
 because perpendicular lines form right angles. $\overline{R T} \cong \overline{R T}$ by the Reflexive Property of Congruence. It is given that $\overline{R U} \cong \overline{R S}$. So, $\triangle R U T \cong \triangle R S T$ by HL .
2. Look at Exercise 1. If $m \angle R S T=46$, what is $m \angle R U T$? 46
3. Write a flow proof. Use the information from the diagram to prove that $\triangle A B D \cong \triangle C D B$.

Reflexive Property of Congruence
4. Look at Exercise 3. Can you prove that $\triangle A B D \cong \triangle C D B$ without using the Hypotenuse-Leg Theorem? Explain. Yes; answers may vary. Sample: You know that $\overline{A B} \cong \overline{C D}$ from the diagram and $\overline{D B} \cong \overline{B D}$ by the Reflexive Property of Congruence. Because the triangles are right triangles, the sides are related by the Pythagorean Theorem. If we let the legs $=x$ and the hypotenuses $=y$, then the length of the other leg will be $\sqrt{y^{2}-x^{2}}$ on both triangles. So, by SSS $\triangle A B D \cong \triangle C D B$.
Construct a triangle congruent to each triangle by the
Hypotenuse-Leg Theorem.
5.

6.

\qquad
\qquad
\qquad

Practice (continued)
Congruence in Right Triangles

Algebra For what values of x or x and y are the triangles congruent by HL?
7.

8.

9.

3; 6
10.

11. Write a paragraph proof.

Given: $\overline{A D}$ bisects $\overline{E B}, \overline{A B} \cong \overline{D E} ; \angle E C D, \angle A C B$ are right angles.
Prove: $\triangle A C B \cong \triangle D C E \triangle A C B$ and $\triangle D C E$ are right triangles because each contains a right angle (definition of a right triangle). It is given that $\overline{A B} \cong \overline{D E}$, so the hypotenuses of these right triangles are congruent. Because $\overline{A D}$ bisects $\overline{E B}$, point C is the
 midpoint of $\overline{E B}, \overline{E C} \cong \overline{B C}$ (definition of a midpoint), so the triangles have a pair of congruent legs. $B y H L, \triangle A C B \cong \triangle D C E$.

What additional information would prove each pair of triangles congruent by the Hypotenuse-Leg Theorem?

$\angle A$ and $\angle Q$ are right angles.
14.

$\overline{L N} \cong \overline{X Z}$

$\angle B$ and $\angle D$ are right angles.
15.

16. Reasoning Are the triangles congruent? Explain. No; they are both right triangles, and one pair of legs is congruent, but the hypotenuse of one triangle is congruent to a leg of the other triangle.

\qquad
\qquad
\qquad

4-6

Practice

Congruence in Right Triangles

1. Developing Proof Complete the proof.

Given: $\angle W V Z$ and $\angle V W X$ are right angles.

$$
\overline{W Z} \cong \overline{V X}
$$

Prove: $\triangle W V Z \cong \triangle V W X$
To prove that right triangles $\triangle W V Z$ and $\triangle V W X$ are congruent,
 you must prove that the hypotenuses are congruent and that one ? is congruent. leg
Statements

Reasons

1) ? $\angle W V Z$ and $\angle V W X$ are right \measuredangle.
2) ? $\overline{W Z} \cong \overline{V X}$
3) ? $\overline{W V} \cong \overline{V W}$
4) ? $\triangle W V Z \cong \triangle V W X$
5) Given
6) Given
7) Reflexive Property of Congruence
8) HL Theorem
2. Look at Exercise 1. If $m \angle X=54$, what is $m \angle Z$? 54
3. Look at Exercise 1. If $m \angle X=54$, what is $m \angle V W Z$? 36
4. Study Exercise 1. Can you prove that $\triangle W V Z$ and $\triangle V W X$ are congruent without using the HL Theorem? Explain.
Yes; answers may vary. Sample: by using the Pythagorean Theorem to find another pair of congruent sides
Algebra For what values of x and y are the triangles congruent by HL?
5.

6.

7. Reasoning The LL Theorem says that two right triangles are congruent if both pairs of legs are congruent. What theorem or postulate could be used to prove that the LL Theorem is true? Explain.
Answers may vary. Sample: The SAS Postulate could be used to prove the LL Theorem because the two right triangles would have two pairs of congruent legs and the included right angles would also be congruent.
\qquad
\qquad Date \qquad

Practice (continued)
Form K
Congruence in Right Triangles

What additional information would prove each pair of triangles congruent by the Hypotenuse-Leg Theorem?
8.

$\overline{A C} \cong \overline{D F}$
9.

$\angle M$ and $\angle S$ are right angles.
10.

11. W

$$
\overline{W Z} \cong \overline{Y X} \text { or } \overline{W X} \cong \overline{Y Z}
$$

$\overline{J L} \cong \overline{M O}$ or $\overline{K L} \cong \overline{N O}$
Coordinate Geometry Use the figure at the right for Exercises 12-14.
12. Complete the paragraph proof that shows that $\overline{A C}$ and $\overline{C D}$ are perpendicular.
The slope of $\overline{A C}$ is -2 . The slope of $\overline{C D}$ is 0.5 . The product of the two slopes is -1 . Therefore the line segments are \qquad perpendicular

13. How do you know that $A B=C D$?

The Distance Formula shows that both line segments have length $2 \sqrt{5}$.
14. Complete the paragraph proof below that shows that $\triangle A C D \cong \triangle D B A$. right angle
$\angle A C D$ is a ? from Exercise 12. You can also use the product of slopes to show that $\angle A B D$ is a right angle. $\triangle A C D$ and $\triangle A B D$ share the same hypotenuse. You can use the ? to show that $A B=C D$. Therefore, by the ? , $\triangle A C D \cong \triangle D B A$. Distance Formula
HL Theorem
\qquad
\qquad
\qquad

4-6
 Standardized Test Prep
 Congruence in Right Triangles

Multiple Choice

For Exercises 1-4, choose the correct letter.

1. Which additional piece of information would allow you to prove that the triangles are congruent by the HL theorem? C
(A) $m \angle D F E=40$
(C) $\overline{A B} \cong \overline{D E}$
(B) $m \angle F=m \angle A B C$
(D) $\overline{A C} \cong \overline{D F}$

2. For what values of x and y are the triangles shown congruent? F
(F) $x=1, y=4$
(H) $x=4, y=1$
(G) $x=2, y=4$
(I) $x=1, y=3$

3. Two triangles have two pairs of corresponding sides that are congruent. What else must be true for the triangles to be congruent by the HL Theorem? D
(A) The included angles must be right angles.
(B) They have one pair of congruent angles.
(C) Both triangles must be isosceles.
(D) There are right angles adjacent to just one pair of congruent sides.
4. Which of the following statements is true? H
(F) $\triangle B A C \cong \triangle G H I$ by SAS.
(G) $\triangle D E F \cong \triangle G H I$ by SAS.
(H) $\triangle B A C \cong \triangle D E F$ by HL.
(1) $\triangle D E F \cong \triangle G H I$ by HL.

Extended Response

5. Are the given triangles congruent by the HL Theorem? Explain. [4] No; they are right triangles, and have a pair of congruent legs ($\overline{A B} \cong \overline{B C}$), but the hypotenuses, $\overline{D B}$ and $\overline{D C}$, are not congruent. So, the triangles only meet two of the three conditions for congruence by the HL Theorem.
[3] appropriate response plus a discussion of two of the three criteria for congruence [2] recognition only that the hypotenuses are not congruent [1] recognition that the triangles are not congruent [0] incorrect or no response

\qquad
\qquad
\qquad

4-6
 Enrichment
 Congruence in Right Triangles

Right Triangle Patterns

An art student wants to make a painting with a simple geometric pattern. She starts with a square. She divides this square into two congruent triangles. Then she divides each of these triangles into two smaller congruent triangles. She repeats the process seven more times. What does her pattern look like in the end?

1. Show that the two triangles are congruent using the Hypotenuse-Leg Theorem. Sample: Each is a right triangle. They have at least one pair of congruent legs and they have congruent hypotenuses.
2. Use your knowledge of the Hypotenuse-Leg Theorem to divide each triangle in the figure above into two smaller congruent triangles. Repeat the process six more times. Check students' work.
3. How do you know that the triangles at each step are congruent? Sample: Each is a right triangle, with equal legs and hypotenuses.
4. How many triangles of the smallest size are shown? 256
5. How many triangles are shown if they each contain 64 of the smallest-sized unit? 32
6. How many triangles are shown if they each contain nine of the smallest-sized unit? 168
7. Challenge Find the sizes of all 16 different-sized triangles in the diagram. 1, 2, 4, 8, 9, 16, 18, 25, 32, 36, 49, 50, 64, 72, 98, 128
\qquad
\qquad
\qquad

4-6
 Reteaching
 Congruence in Right Triangles

Two right triangles are congruent if they have congruent hypotenuses and if they have one pair of congruent legs. This is the Hypotenuse-Leg (HL) Theorem.

$\triangle A B C \cong \triangle P Q R$ because they are both right triangles, their hypotenuses are congruent $(\overline{A C} \cong \overline{P R})$, and one pair of legs is congruent $(\overline{B C} \cong \overline{Q R})$.

Problem

How can you prove that two right triangles that have one pair of congruent legs and congruent hypotenuses are congruent (The Hypotenuse-Leg Theorem)?

Both of the triangles are right triangles.
$\angle B$ and $\angle E$ are right angles.
$\overline{A B} \cong \overline{D E}$ and $\overline{A C} \cong \overline{D F}$.

How can you prove that $\triangle A B C \cong \triangle D E F$?
Look at $\triangle D E F$. Draw a ray starting at F that passes through E. Mark a point X so that $E X=B C$. Then draw $\overline{D X}$ to create $\triangle D E X$.

See that $\overline{E X} \cong \overline{B C}$. (You drew this.) $\angle D E X \cong \angle A B C$. (All right angles are congruent.) $\overline{D E} \cong \overline{A B}$. (This was given.) So, by SAS,
 $\triangle A B C \cong \triangle D E X$.
$\overline{D X} \cong \overline{A C}$ (by СРСТС) and $\overline{A C} \cong \overline{D F}$. (This was given.). So, by the Transitive
Property of Congruence, $\overline{D X} \cong \overline{D F}$. Then, $\angle D E X \cong \angle D E F$. (All right angles are congruent.) By the Isosceles Theorem, $\angle X \cong \angle F$. So, by AAS, $\triangle D E X \cong \triangle D E F$.

Therefore, by the Transitive Property of Congruence, $\triangle A B C \cong \triangle D E F$.

Problem

Are the given triangles congruent by the Hypotenuse-Leg Theorem? If so, write the triangle congruence statement.
$\angle F$ and $\angle H$ are both right angles, so the triangles are both right.
$\overline{G I} \cong \overline{I G}$ by the Reflexive Property and $\overline{F I} \cong \overline{H G}$ is given.
So, $\triangle F I G \cong \triangle H G I$.

\qquad
\qquad
\qquad

4-6
 Reteaching (continued)
 Congruence in Right Triangles

Exercises

Determine if the given triangles are congruent by the Hypotenuse-Leg Theorem. If so, write the triangle congruence statement.

1. T

not congruent

2. R

3.
4. 0

$\triangle O P Q \cong \triangle Z Y X$

Measure the hypotenuse and length of the legs of the given triangles with a ruler to determine if the triangles are congruent. If so, write the triangle congruence statement.

6.

7. Explain why $\triangle L M N \cong \triangle O M N$. Use the Hypotenuse-Leg Theorem. Because $\angle N M L$ and $\angle N M O$ are right angles, both triangles are right triangles. It is given that their hypotenuses are congruent. Because they share a leg, one pair of corresponding legs is congruent. All criteria are met for the triangles to be congruent by the Hypotenuse-Leg Theorem.

8. Visualize $\triangle A B C$ and $\triangle D E F$, where $A B=E F$ and $C A=F D$. What else must be true about these two triangles to prove that the triangles are congruent using the Hypotenuse-Leg Theorem? Write a congruence statement. $\angle B$ and $\angle E$ are right angles, or $\angle C$ and $\angle D$ are right angles. $\triangle A B C \cong \triangle D E F$ or $\triangle A B C \cong \triangle F E D$.
\qquad Class \qquad Date \qquad

4-7 ELL Support

Congruence in Overlapping Triangles

A student wanted to prove $\overline{E B} \cong \overline{D B}$ given $\angle A E D \cong \angle C D E$ and $\overline{A E} \cong \overline{C D}$. She wrote the statements and reasons on note cards, but they got mixed up.

Use the note cards to write the steps in order.

1. First, $\angle A E D \cong \angle C D E$ and $\overline{A E} \cong \overline{C D}$ are given.
2. Second, $\overline{E D} \cong \overline{D E}$ by the Reflexive Property of Congruence.
3. Third, $\triangle A E D \cong \triangle C D E$ by the Side-Angle-Side (SAS) Theorem.
4. Next, $\angle A \cong \angle C$ because corresponding parts of congruent triangles are congruent.
5. Then, $\angle A B E \cong \angle C B D$ because vertical angles are congruent.
6. Then, $\triangle A B E \cong \triangle C B D$ by the Angle-Angle-Side (AAS) Theorem.
7. Finally, $\overline{E B} \cong \overline{D B}$ because corresponding parts of congruent triangles are congruent.
\qquad
\qquad
\qquad

4-7
 Think About a Plan

Congruence in Overlapping Triangles

Given: $\overline{Q T} \perp \overline{P R}, \overline{Q T}$ bisects $\overline{P R}$, $\overline{Q T}$ bisects $\angle V Q S$

Prove: $\overline{V Q} \cong \overline{S Q}$

Know

1. What information are you given? What else can you determine from the given information and the diagram?
$\overline{Q T} \perp \overline{P R}, \overline{Q T}$ bisects $\overline{P R}, \overline{Q T}$ bisects $\angle V Q S ; \angle P Q T$ and $\angle R Q T$ are right angles, $P Q=Q R$,
$\angle V Q T \cong \angle S Q T$
2. To solve the problem, what will you need to prove?
$\overline{V Q} \cong \overline{S Q}$

Need

3. For which two triangles are $\overline{V Q}$ and $\overline{S Q}$ corresponding parts?
$\triangle P Q V$ and $\triangle R Q S$ or $\triangle V Q T$ and $\triangle S Q T$
4. You need to use corresponding parts to prove the triangles from Exercise 3 congruent. Which two triangles should you prove congruent first, using the given information? Which theorem or postulate should you use?
$\triangle P Q T$ and $\triangle R Q T$ by SAS
5. Which corresponding parts should you then use to prove that the triangles in Exercise 3 are congruent?

Answers may vary. Sample: $\angle P$ and $\angle R$

Plan

6. Use the space below to write the proof.

Statements: 1) $\overline{Q T} \perp \overline{P R}$; $\overline{Q T}$ bisects $\overline{P R}, \overline{Q T}$ bisects $\angle V Q S ; 2) m \angle P Q T=m \angle R Q T=90$;
3) $P Q=Q R$; 4) $Q T=Q T$; 5) $\triangle P Q T \cong \triangle R Q T$; 6) $\angle P \cong \angle R$; 7) $\angle P Q V$ and $\angle V Q T$ are compl. $\angle R Q S$ and $\angle S Q T$ are compl.; 8) $\angle V Q T \cong \angle S Q T ; 9) \angle P Q V \cong \angle R Q S$;
10) $\triangle P Q V \cong \triangle R Q S$; 11) $\overline{V Q} \cong \overline{S Q}$; Reasons: 1) Given; 2) Definition of perpendicular lines; 3) Definition of bisector; 4) Reflexive Property of Congruence; 5) SAS; 6) CPCTC;
7) Definition of complementary angles; 8) Definition of angle bisector;
9) Complements of $\cong \measuredangle$ are \cong; 10) ASA; 11) CPCTC
\qquad Class \qquad
\qquad

4-7
 Congruence in Overlapping Triangles

For Exercises 1-6, separate and redraw the indicated triangles. Identify any common angles or sides.

1. $\triangle A B C$ and $\triangle D C B$

Check students' work.
4. $\triangle B Y A$ and $\triangle C X A$

Check students' work.
2. $\triangle E F G$ and $\triangle H G F$
 Check students' work.
5. $\triangle G E H$ and $\triangle F E H$

Check students' work.
3. $\triangle J M L$ and $\triangle N K L$
 Check students' work.
6. $\triangle M P N$ and $\triangle M O Q$

Check students' work.

In each diagram in Exercises 7-12 the given triangles are congruent. Identify their common side or angle.
7. $\triangle A D C$ and $\triangle B C D$

10. $\triangle Q T R$ and $\triangle S R T$

8. $\triangle K N J$ and $\triangle K M L$

9. $\triangle U X V$ and $\triangle V W U$

12. $\triangle Y N I$ and $\triangle Y P Z$

$\overline{\boldsymbol{E G}}$

13. Open-Ended Draw a diagram of a pair of triangles that share a common angle and a common side.
Answers may vary. Check students' drawings. Sample:

\qquad
\qquad
\qquad

Congruence in Overlapping Triangles

14. Complete the following proof.

Given: $\overline{R U} \cong \overline{T S}, \angle R U T$ and $\angle U T S$ are right angles, V is the midpoint of $\overline{U S}$.

Prove: $\triangle R V U \cong \triangle T V S$

Statements

1) $\overline{R U} \cong \overline{T S}, \angle R U T$ and $\angle U T S$ are right angles, V is the midpoint of $\overline{U S}$.
2) $\overline{U T} \cong \overline{T U}$
3) ? $\angle R U T \cong \angle S T U$
4) ? $\triangle R U T \cong \triangle S T U$
5) $\angle R U S$ and $\angle S U T$ are complementary angles.
6) ? $\angle S T R$ and $\angle R T U$ are compl. \llcorner.
7) $\angle S U T \cong \angle R T U$
8) $\angle R U S \cong \angle S T R$
9) ? $U V=S V$
10) $\angle R V U \cong \angle T V S$
11) $\triangle R V U \cong \triangle T V S$

Reasons

1) ? Given
2) ? Refl. Prop. of \cong
3) All right angles are congruent
4) SAS
5) ? Def. of compl. $\cong \angle$
6) Definition of complementary angles
7) ? CPCTC
8) ? Compl. of \angle are \cong.
9) Definition of midpoint
10) ? Vert. \subseteq are \cong.
11) ? ASA
15. Write a paragraph proof.

Given: P is the midpoint of $\overline{Q N}, \overline{M P} \perp \overline{Q N}$
Prove: $\triangle M R Q \cong \triangle M R N$
Given that P is the midpt. of $\overline{Q N}, \overline{Q P} \cong \overline{N P} . \overline{R P} \cong \overline{R P}$ by the Refl. Prop. of \cong. Given $\overline{M P} \perp \overline{Q N}, \angle M P Q$ and $\angle M P N$ are rt. \measuredangle by the def. of \perp and $\angle M P Q \cong \angle M P N$ because all $r t \Perp$ are \cong. Therefore, Q
 $\triangle R P Q \cong \triangle R P N$ by SAS. Knowing CPCTC, $\overline{Q R} \cong \overline{N R}$ and $\angle Q R P \cong \angle N R P$. Because $\angle Q R M$ and $\angle Q R P$ are suppl. and $\angle N R M$ and $\angle N R P$ are also suppl., $\angle Q R M \cong \angle N R M$, because suppl. of \cong \measuredangle are \cong. By the Refl. Prop. of \cong, it also follows that $\overline{M R} \cong \overline{M R}$. Therefore, $\triangle M R Q \cong \triangle M R N$ by SAS.
16. In the diagram at the right, $\angle A \cong \angle C, \overline{A B} \cong \overline{C E}$, and $\overline{D A} \cong \overline{F C}$. Which two triangles are congruent by SAS? Explain. $\triangle A B D \cong \triangle C E F ;$ all necessary sides and angles given are congruent; or $\triangle A E D \cong \triangle C B F ; \angle A \cong \angle C$, $\overline{A B} \cong \overline{C E}$, and $\overline{D A} \cong \overline{F C}$ are given, and $\overline{E B} \cong \overline{B E}$ by
 the Reflexive Property. So, $\overline{C B} \cong \overline{A E}$ by segment addition, which gives $\triangle A E D \cong \triangle C B F$ by SAS.
\qquad Class \qquad
\qquad

4-7
 Congruence in Overlapping Triangles

In each diagram, the stated triangles are congruent. Identify their common side or angle.

1. $\triangle B A E \cong \triangle A B C \overline{A B}$

2. $\triangle S U V \cong \triangle W U T \angle U$

Separate and redraw the indicated triangles. Identify any common angles or sides.
3. $\triangle A C F$ and $\triangle A E B \angle A$

4. $\triangle F K J$ and $\triangle H J K \overline{J K}$

To start, redraw each triangle separately.

Complete the drawing to separate the triangles.

5. Developing Proof Complete the two-column proof.

Given: $m \angle F E H=m \angle G F E=90, \overline{E H} \cong \overline{F G}$
Prove: $\overline{H F} \cong \overline{E G}$

Statements

1) $m \angle F E H=m \angle G F E=90, \overline{E H} \cong \overline{G F}$
2) $\angle F E H \cong \angle E F G$
3) $\overline{E F} \cong \overline{F E}$
4) ? $\triangle H E F \cong \triangle G F E$
5) $\overline{H F} \cong \overline{G E}$

Reasons

1) Given

2) ? All right $\stackrel{\varepsilon}{ }$ are .
3) ? Reflexive Prop. of \cong
4) SAS
5) ? Corresp. parts of \cong are \cong.
\qquad
\qquad
\qquad
$4=7$

Congruence in Overlapping Triangles

6. Given: $\triangle A F D$ and $\triangle B G E$ are equilateral triangles.

$$
\angle A \cong \angle B, \overline{D E} \cong \overline{F G}
$$

Prove: $\overline{A D} \cong \overline{B E}$

Statements

1) $\triangle A F D$ and $\triangle B G E$ are equilateral ©.
2) $\angle A \cong \angle D \cong \angle A F D$
3) $\angle B \cong \angle G \cong \angle B E G$
4) $\angle A \cong \angle B$
5) $\angle A \cong \angle D \cong \angle B \cong \angle G$
6) $\overline{E F} \cong \overline{E F}$
7) $\overline{D E} \cong \overline{F G}$
8) $D E+E F=E F+F G$
9) ? $\overline{D F} \cong \overline{E G}$
10) ? $\triangle A F D \cong \triangle B G E$
11) $\overline{A D} \cong \overline{B E}$

Reasons

1) Given
2) ? Corollary to Theorem 4-3
3) ? Corollary to Theorem 4-3
4) Given
5) ? Transitive Prop. of \cong
6) ? Reflexive Prop. of \cong
7) Given
8) ? Addition Prop. of $=$
9) Segment Add. Post.
10) AAS
11) ? Corresp. parts of \cong are \cong.

Open-Ended Draw the diagram described.

7. Draw a line segment on your paper. Then draw two overlapping, congruent triangles that share the segment as a common side. Check students' work.
8. Draw two right triangles that share a common angle that is not a right angle.
Check students' work.
9. The pattern at the right has been designed for a square floor tile. Both $\triangle A C F$ and $\triangle D B G$ are $30^{\circ}-60^{\circ}-90^{\circ}$ right triangles. Write a paragraph proof to prove that $\triangle F G E$ is an equilateral triangle. Answers may vary. Sample: ADGF is a square, so $m \angle A F G=m \angle D G F=90 . m \angle E F G=m \angle E G F=60$ because they are complements of 30° angles; $m \angle G E F=60$ by the \triangle Angle-Sum Thm., so $\triangle F G E$ is equilateral by Thm. 4-3.

\qquad
\qquad
\qquad

4-7 Standardized Test Prep
 Congruence in Overlapping Triangles

Multiple Choice

For Exercises 1-5, choose the correct letter.

1. What is the common angle of $\triangle P Q T$ and $\triangle R S Q$? A
(A) $\angle P Q T$
(C) $\angle S R Q$
(B) $\angle S P T$
(D) \angle SUT

Use the following information for Exercises 2-5.

Given: $\triangle Z W X \cong \triangle Y X W, \overline{Z W} \| \overline{Y X}$
Prove: $\triangle Z W R \cong \triangle Y R X$

2. Which corresponding parts statement is needed to
prove $\triangle Z W R \cong \triangle Y R X$? H
(F) $\angle Z W R \cong \angle Y X R$
(H) $Z W=Y X$
(G) $\angle Z \cong \angle R$
(1) $W X=W X$
3. A classmate writes the statement $\angle Z R W \cong \angle Y R X$ to help prove the congruence of the triangles. What reason should the classmate give? D
(A) Given
(B) Angles cut by a bisector are congruent.
(C) Base angles of an isosceles triangle are congruent.
(D) Vertical angles are congruent.
4. After using the congruence statements from Exercises 2 and 3, which statement can be used to prove the triangles congruent? F
(F) $\angle Z \cong \angle Y$
(G) $\angle Z W R \cong \angle R Y X$
(H) $\overline{W X} \cong \overline{W X}$
(I) $\overline{W R} \cong \overline{R X}$
5. Which theorem or postulate will prove $\triangle Z W R \cong \triangle Y R X$? D
(A) SAS
(B) SSS
(C) ASA
(D) AAS

Short Response

6. In the diagram at the right, which two triangles should be proved congruent first to help prove $\triangle A B F \cong \triangle E D F$?
[2] $\triangle A C D$ and $\triangle E C B$ [1] Correct \triangle named but vertices do not correspond. [0] incorrect $\&$ named

\qquad Class \qquad Date \qquad

4-7
 Enrichment
 Congruence in Overlapping Triangles

Many geometric figures and patterns involve congruent triangles. These figures are made by drawing overlapping congruent triangles or by drawing a figure and then drawing diagonals to create congruent triangles. These figures are used in items such as quilts, logos, stained glass windows, and architectural designs.

Use the figure at the right to complete Exercises 1-5.

1. Name a pair of congruent triangles in the figure.

Sample: $\triangle A B D \cong \triangle A E C$
2. Separate and redraw the triangles named in Exercise 1.

Identify any common angles or sides.
common angle: $\angle A$

3. Name another pair of congruent triangles in the figure.

Sample: $\triangle D E C \cong \triangle C B D$
4. Separate and redraw the triangles named in Exercise 3. Identify any common B angles or sides. common side: $\overline{D C}$
5. What is the total number of triangles in the figure? 8

Use the figure at the right to complete Exercises 6-10.
6. Name a pair of congruent triangles in the figure.
Sample: $\triangle G N J \cong \triangle K L H$

7. Separate and redraw the triangles named in Exercise 6. Identify any common angles or sides.

8. Name another pair of congruent triangles in the figure.

Sample: $\triangle H I M \cong \triangle J I M$
9. Separate and redraw the triangles named in Exercise 8. Identify any common angles or sides. $\begin{array}{llll}\text { common side: } \overline{I M} & H \nabla^{\prime} & \nabla^{\prime} \\ & M & M\end{array}$
10. What is the total number of triangles in the figure? 4
\qquad
\qquad
\qquad

4-7
 Reteaching
 Congruence in Overlapping Triangles

Sometimes you can prove one pair of triangles congruent and then use corresponding parts of those triangles to prove another pair congruent. Often the triangles overlap.

Problem

Given: $\overline{A B} \cong \overline{C B}$,

$$
\overline{A E} \cong \overline{C D},
$$

$$
\angle A E D \cong \angle C D E
$$

Prove: $\triangle A B E \cong \triangle C B D$

Think about a plan for the proof. Examine the triangles you are trying to prove congruent. Two pairs of sides are congruent. If the included angles, $\angle A$ and $\angle C$, were congruent, then the triangles would be congruent by SAS.

If the overlapping triangles $\triangle A E D$ and $\triangle C D E$ were congruent, then the angles would be congruent by corresponding parts. When triangles overlap, sometimes it is easier to visualize if you redraw the triangles separately.

Now use the plan to write a proof.
Given: $\overline{A B} \cong \overline{C B}, \overline{A E} \cong \overline{C D}, \angle A E D \cong \angle C D E$
Prove: $\triangle A B E \cong \triangle C B D$

Statements

1) $\overline{A E} \cong \overline{C D}, \angle A E D \cong \angle C D E$
2) $\overline{E D} \cong \overline{E D}$
3) $\triangle A E D \cong \triangle C D E$
4) $\angle A \cong \angle C$
5) $\overline{A B} \cong \overline{C B}$
6) $\triangle A B E \cong \triangle C B D$

Reasons

1) Given
2) Reflexive Property of \cong
3) SAS
4) CPCTC
5) Given
6) SAS
\qquad
\qquad
\qquad

4-7 Reteaching (continued)
 Congruence in Overlapping Triangles

Separate and redraw the overlapping triangles. Identify the vertices.

1. $\triangle G L J$ and $\triangle H J L$

2. $\triangle M R P$ and $\triangle N Q S$

3. $\triangle F E D$ and $\triangle C D E$

Fill in the blanks for the two-column proof.
4. Given: $\angle A E G \cong \angle A F D, \overline{A E} \cong \overline{A F}, \overline{G E} \cong \overline{F D}$

Prove: $\triangle A F G \cong \triangle A E D$

Statements

1) $\angle A E G \cong \angle A F D, \overline{A E} \cong \overline{A F}, \overline{G E} \cong \overline{F D}$
2) ? $\triangle A E G \cong \triangle A F D$
3) $\overline{A G} \cong \overline{A D}, \angle G \cong \angle D$
4) ? $\overline{G E} \cong \overline{F D}$
5) $G E=F D$
6) $G F+F E=G E, F E+E D=F D$
7) $G F+F E=F E+E D$
8) ? \quad ? $=E D$
9) ? $\triangle A F G \cong \triangle A E D$

Reasons

1) ? Given
2) SAS
3) ? CPCTC
4) Given
5) ? Def. of \cong
6) ? Seg. Addition Post.
7) ? Substitution Property
8) Subtr. Prop. of Equality
9) ? SAS

Statements: 1) $\angle P S R$ and $\angle P Q R$ are rt. \angle; $\angle Q P R \cong \angle S R P$;
2) $\angle P S R \cong \angle R Q P$;
3) $\overline{P R} \cong \overline{R P}$;
4) $\triangle Q P R \cong \triangle S R P$;
5) $\angle S T R \cong \angle Q T P$;
6) $\overline{P Q} \cong \overline{R S}$;
7) $\triangle S T R \cong \triangle Q T P$; Reasons:

1) Given; 2) Rt. \triangle are congruent; 3) Refl. Prop. of \cong; 4) AAS; 5) Vert. $\mathbb{1}$ are \cong; 6) CPCTC; 7) AAS
\qquad
\qquad
\qquad

Chapter 4 Quiz 1

Lessons 4-1 through 4-3

Do you know HOW?

1. Two triangles have the following pairs of congruent sides: $\overline{B D} \cong \overline{F J}, \overline{D G} \cong \overline{J M}$, and $\overline{G B} \cong \overline{M F}$. Write the congruence statement for the two triangles. $\triangle B D G \cong \triangle F J M$
$\triangle Q R S \cong \triangle T U V$. Name the angle or side that corresponds to the given part.
2. $\angle Q \angle T$
3. $\overline{R S} \overline{U V}$
4. $\angle S \angle V$
5. $\overline{Q S} \overline{T V}$

State the postulate or theorem that can be used to prove the triangles congruent. If you cannot prove the triangles congruent, write not enough information.
6.

7.

8.

not enough information
9.

ASA

Use the diagram below. Tell why each statement is true.
10. $\angle A \cong \angle C$ Alternate Interior Angles Theorem
11. $\angle A X B \cong \angle C X D$ Vertical angles are congruent.
12. $\triangle A B X \cong \triangle C D X$ ASA

Do you UNDERSTAND?

13. Given: $\overline{L M} \cong \overline{N O} ; \angle L M O \cong \angle N O M$

Prove: $\triangle L M O \cong \triangle N O M$
$\overline{L M} \cong \overline{N O}, \angle L M O \cong \angle N O M$, given. $\overline{O M} \cong \overline{M O}$, Reflexive Property of Congruence; $\triangle L M O \cong \triangle N O M$, Side-Angle-Side Postulate

14. Reasoning Explain why it is not possible to have a Side-Side-Angle congruence postulate or theorem. Draw a picture if necessary.
A triangle can have two sides and a not included angle congruent to another triangle, but the "hinge effect" of one side makes it possible for two different triangles to result.
\qquad Class \qquad
\qquad

Chapter 4 Quiz 2

Lessons 4-4 through 4-7

Do you know HOW?

Explain how to use congruent triangles to prove each statement true.
1.

$$
\angle O M N \cong \angle M O P
$$

2.

$$
\overline{S P} \cong \overline{R P}
$$

Find the values of x and y.
3.

4.

Name a pair of overlapping congruent triangles in each diagram. State whether the triangles are congruent by SSS, SAS, ASA, AAS, or HL.
5.

$\triangle A B E \cong \triangle A C D$ by ASA
6.

$$
\Delta Z X W \cong \triangle Y W X \text { by SAS }
$$

Do you UNDERSTAND?

7. Reasoning Complete the proof by filling in the missing statements and reasons.

Given: $\overline{A E} \cong \overline{A D}, \angle B \cong \angle C$
Prove: $\overline{E B} \cong \overline{D C}$

Statements
Reasons

1) $\overline{A E} \cong \overline{A D}, \angle B \cong \angle C$
2) ? $\angle A \cong \angle A$
3) $\triangle A B D \cong \triangle A C E$
4) $\overline{A B} \cong \overline{A C}$
5) ? $\overline{E B} \cong \overline{D C}$
6) ? Given
7) Reflexive Property of Congruence
8) ?

AAS
4) ? CPCTC
5) Segment Addition Postulate
\qquad
\qquad
\qquad

Do you know HOW?

State the postulate or theorem you would use to prove each pair of triangles congruent. If the triangles cannot be proven congruent, write not enough information.

not enough information
4.

7.

ASA
2.

5.

not enough information
8.

SSS
3.

ASA
6.

AAS
9.

 not enough information

Find the value of x and y.

50; 65
12.

12; 8
11.

62; 59
13.

40; 15
14. $\triangle C G I \cong \triangle M P R$. Name all of the pairs of corresponding congruent parts.
$\angle C \cong \angle M ; \angle G \cong \angle P ; \angle I \cong \angle R ; \overline{C G} \cong \overline{M P} ; \overline{G I} \cong \overline{P R} ; \overline{C l} \cong \overline{M R}$
\qquad
\qquad Date \qquad

Name a pair of overlapping congruent triangles in each diagram. State whether the triangles are congruent by SSS, SAS, ASA, AAS, or HL.
15. Given: $\overline{L M} \cong \overline{L K} ; \overline{L N} \cong \overline{L J}$

17. Given: $\angle E \cong \angle D \cong \angle D C F \cong \angle E F C$

16. Given: $\angle A B C \cong \angle D C B ; \angle D B C \cong \angle A C B$

$\triangle A B C \cong \triangle D C B$ by ASA
18. Given: $\overline{H I} \cong \overline{J G}$

SHIG $\cong \triangle J G H$ by HL

Do you UNDERSTAND?

19. Reasoning Complete the following proof by providing the reason for each statement.

Given: $\angle 1 \cong \angle 2 ; \overline{W X} \cong \overline{Z Y}$
Prove: $\angle 3 \cong \angle 4$

Statements

1) $\angle 1 \cong \angle 2$; $\overline{W X} \cong \overline{Z Y}$
2) $\overline{W P} \cong \overline{Z P}$
3) $\triangle W X P \cong \triangle Z Y P$
4) $\overline{X P} \cong \overline{Y P}$
5) $\angle 3 \cong \angle 4$

Reasons

1) ? Given
2) ? Converse of Isosc. $\Delta \mathrm{Thm}$.
3) ? SAS
4) ? CPCTC
5) ? Isosceles Triangle Theorem
20. Reasoning Write a proof for the following:

Given: $\overline{B D} \perp \overline{A C}, D$ is the midpoint of $\overline{A C}$.
Prove: $\overline{B C} \cong \overline{B A}$
$\overline{B D} \perp \overline{A C}, D$ is the midpoint of $\overline{A C}$ is given, so $\angle B D C \cong \angle B D A$ because perpendicular
 lines form congruent angles. Also, $\overline{A D} \cong \overline{C D}$ by definition of midpoint. $\overline{B D} \cong \overline{B D}$ by the Reflexive Property of \cong. So, $\triangle B A D \cong \triangle B C D$ by SAS and $\overline{B C} \cong \overline{B A}$ by CPCTC.
\qquad
\qquad
\qquad

Chapter 4 Part A Test

Lessons 4-1 through 4-3

Do you know HOW?

Complete the following statements.

1. Given: $\triangle F G H \cong \triangle W A X$
a. $\overline{G H} \cong$? $\overline{A X}$
b. $\angle W \cong$? $\angle F$
2. Given: $B I K E \cong P A T H$
a. $\angle T \cong$? $\angle K$
b. $T H P A \cong$? KEBI
3. In $\triangle H O T$ and $\triangle S U N, \angle O \cong \angle U$ and $\angle T \cong \angle N$.
a. What is the relationship between $\angle S$ and $\angle H$? $\angle S \cong \angle H$
b. If $m \angle O=27$ and $m \angle T=63$, what is $m \angle S$? 90
4. In $\triangle R U G$, name the angle that is included between the given sides.
a. $\overline{G R}$ and $\overline{R U} \angle R$
b. $\overline{U G}$ and $\overline{G R} \angle G$
5. In $\triangle P A D$, the given angle is included between which two sides?
a. $\angle P \quad \overline{A P}$ and $\overline{P D}$
b. $\angle D \overline{A D}$ and $\overline{D P}$

Use the diagram at the right. Tell why each statement is true.
6. $m \angle A D B=90$ If two \measuredangle are suppl., and one is a right \angle, then both are right \angle.
7. $\overline{B D} \cong \overline{B D}$ Refl. Prop. of \cong
8. $\triangle A D B \cong \triangle C D B$ AAS

9. Constructions Construct $\triangle J K L$ congruent to $\triangle F G H$ using SAS.

\qquad
\qquad
\qquad

Chapter 4 Part A Test (continued)

10. In $\triangle A B C$, which side is included between $\angle B$ and $\angle C$? $\overline{B C}$
11. In $\triangle X Y Z, \overline{Y Z}$ is included between which two angles? $\angle Y$ and $\angle Z$

State the postulate or theorem you can use to prove each pair of triangles congruent. If the triangles cannot be proven congruent, write not enough information.
12.

not enough information
13.

Answers may vary. Sample: AAS or ASA

Determine what other information you need to prove the two triangles congruent. Then write the congruence statement and name the postulate or theorem you would use.

Answers may vary. Sample: need $\overline{A D} \cong \overline{C D} ; \triangle A D B \cong \triangle C D B ; S S S$
15.

Answers may vary. Sample: need $\angle Y \cong \angle X ; \Delta U V Y \cong \triangle W V X ;$ AAS

Do you UNDERSTAND?

16. Reasoning If two triangles are congruent, all their corresponding parts are congruent. Write the converse of this statement. Is the converse true? Explain. Converse: If all the corresponding parts of two triangles are congruent, the triangles must be congruent; yes; by SSS, AAS, ASA, or SAS.
17. Reasoning The Third Angles Theorem can be applied to triangles that are not congruent. Explain.
Answers may vary. Sample: The sum of the measures of the angles of any triangle is 180.
18. Error Analysis Your classmate says the triangles at the right are not congruent by SSS. She explains that congruent sides do not correspond. Explain the error in her reasoning.

Answers may vary. Sample: The sides do correspond after flipping one of the triangles.
\qquad Class \qquad
\qquad

Chapter 4 Part B Test

Lessons 4-4 through 4-7

Do you know HOW?

State the postulate or theorem you can use to prove each pair of triangles congruent. If the triangles cannot be proven congruent, write not enough information.

1. A

2.

3. What is $m \angle X$?
a.

b.

4. What is the value of x ?
a.

b.

Write a congruence statement for each pair of triangles. If the triangles cannot be proven congruent, write not enough information.
5.

$$
\triangle A B D \cong \triangle C B D
$$

6.

\qquad
\qquad
\qquad

Chapter 4 Part B Test (continued)

Lessons 4-4 through 4-7

Write a congruence statement for each pair of triangles. If the triangles cannot be proven congruent, write not enough information.
7.
$\Delta F G K \cong \triangle J G H$

8.

Identify any common angles or sides for the indicated triangles.
9. $\triangle A D C$ and $\triangle B D C$ $\overline{C D}$

10. $\triangle F H J$ and $\triangle G K J \angle J$

Separate and redraw the indicated triangles.
11. W

r_{Y}^{x}

12.

Do you UNDERSTAND?

13. Error Analysis Your friend claims isosceles triangles are congruent if two corresponding sides are congruent. He explains there are only two different lengths of sides, so the third side must always be congruent. Explain the error in his reasoning. Answers may vary. Sample: The \cong sides can be corresp. legs, in which case the \angle between them can be different.
14. Compare and Contrast How can you use the Isosceles Triangle Theorem to prove that all equilateral triangles are also equiangular? Answers may vary. Sample: By using the Isosceles Triangle Thm. two times for two pairs of sides, you can show that all the $\measuredangle<$ of an equilateral Δ are \cong.
\qquad
\qquad
\qquad

Performance Tasks

Chapter 4

Task 1

Draw and label three pairs of triangles to illustrate the Side-Side-Side, Angle-Side-Angle, and Side-Angle-Side Postulates. One pair of triangles should share a common side. The figures should provide enough information to prove that they are congruent. Write the congruence statements for each pair. Check students' work.
[4] Student draws three pairs of triangles, and labels each pair. One pair of triangles shares a common side, and the three pairs demonstrate SSS, ASA, and SAS, respectively. [3] Student does three of the requirements above. [2] Student does two of the requirements above. [1] Student does one of the requirements above. [0] Student does none of the requirements above.

Task 2

A rhombus is a quadrilateral with four congruent sides.
Given: $R S T Q$ is a quadrilateral, $\angle S R T \cong \angle S T R \cong \angle R T Q \cong \angle T R Q$.
Prove: $R S T Q$ is a rhombus.

[4] $\angle S R T \cong \angle S T R \cong \angle R T Q \cong \angle T R Q$ is given and the shared side $\overline{R T}$ is congruent to itself by the Refl. Prop. of Congruence. So, $\triangle S T R \cong \triangle R T Q$ by ASA. $\triangle S T R$ and $\triangle R T Q$ are also both isosceles by the Converse of the Isosc. Triangle Thm., so $\overline{S T} \cong \overline{T Q} \cong \overline{Q R} \cong \overline{R S}$. So, this quadrilateral is a rhombus. [3] mostly complete proof [2] incomplete proof [1] proof missing many of the needed steps [0] incorrect or no proof
\qquad
\qquad

Performance Tasks (continued)

Chapter 4

Task 3

You need to design a company logo. The requirements for the logo are as listed:

- The logo must include at least six triangles.
- Some of the triangles should overlap.
- Some of the triangles should share sides.
- One triangle needs to be isosceles.
- One triangle needs to be equilateral.
- At least two pairs of triangles should be congruent pairs.

Use a straightedge, compass, and protractor to aid in your design.
Label the vertices of the triangles and describe as many congruencies as you can (sides and angles).

Describe two pairs of congruent triangles in your design and justify how you know they are congruent. Include references to geometric theorems and postulates. Check students' work.
[4] Student's logo includes at least six triangles, some of which overlap. Some of the triangles share sides. At least one is isosceles, and at least one is equilateral. At least two pairs of triangles are congruent. Student has listed all possible congruencies and proved that the two congruent triangles are congruent. [3] Student has a complete logo but has not labeled diagrams accurately or proven that the congruent triangles are congruent. [2] Student logos meet most but not all of the six requirements above. [1] Student has an incomplete logo. [0] Student gives incorrect or no response.
\qquad
\qquad
\qquad

Cumulative Review

Chapters 1-4

Multiple Choice

Use the diagram for Exercises 1 and 2. Line ℓ is parallel to line m.

1. Which best describes $\angle 1$ and $\angle 5$? C
(A) alternate interior angles
(B) alternate exterior angles
(C) corresponding angles
(D) same-side exterior angles

2. Which best describes $\angle 6$ and $\angle 7$? F
(F) vertical angles
(H) alternate exterior angles
(G) corresponding angles
(I) linear pair
3. If an animal is a mammal, then it has fur. What is the conclusion of this conditional? B
(A) An animal is a mammal.
(C) Mammals have fur.
(B) The animal has fur.
(D) Not all animals have fur.
4. Two of what geometric figure are joined at a vertex to form an angle? H
(F) points
(G) planes
(H) rays
lines
5. If $W Z=80$, what is the value of y ? C

(A) 8
(B) 9
(C) 10
(D) 11
6. If $\triangle A B C \cong \triangle D E F$, which is a correct congruence statement? H
(F) $\angle B \cong \angle D$
(G) $\overline{A B} \cong \overline{E F}$
(H) $\overline{C A} \cong \overline{F D}$
(1) $\angle A \cong \angle C$
7. Which can be used to justify stating that $\triangle F G H \cong \triangle J K L$? B
(A) ASA
(C) SSS
(B) SAS
(D) AAS

8. Which postulate can be used to justify stating that $\triangle L M N \cong \triangle P Q R ? ~ F$
(F) ASA
(H) SSS
(G) SASAAS

\qquad
\qquad
\qquad

Cumulative Review (continued)

Chapters 1-4

Short Response

9. What is the midpoint of a segment with endpoints at $(-2,2)$ and $(5,10)$? $(1.5,6)$

Use the figure at the right for Exercises 10-12.

Given: $\overline{A B} \cong \overline{E D}, \overline{B C} \cong \overline{D C}$
10. Which reason could you use to prove $\overline{A C} \cong \overline{E C}$? Segment Addition Postulate

11. Which reason could you use to prove $\angle C \cong \angle C$?

Reflexive Property of Congruence
12. Which reason could you use to prove $\triangle A C D \cong \triangle E C B$? SAS
13. What is the slope of a line that passes through $(-3,5)$ and $(4,3)$? $-\frac{2}{7}$
14. What is the slope of a line that is perpendicular to the line that passes through
$(-2,-2)$ and $(1,3) ?-\frac{3}{5}$

Extended Response

15. Draw $\triangle A B C \cong \triangle E F G$. Write all six congruence statements. Check students' work.
[4] Student draws and labels two triangles that look reasonably congruent. Student lists all six congruencies correctly. [3] Student draws and labels two triangles but lists only four congruencies correctly. [2] Student draws and labels two triangles but lists only three congruencies correctly, OR student does not draw the triangles but lists all six congruencies correctly. [1] Student draws and labels two triangles but lists only two congruencies correctly, OR student does not draw the triangles but lists four of the congruencies correctly. [0] Student gives incorrect or no response.
16. The coordinates of rectangle $H I J K$ are $H(-4,1), I(1,1), J(1,-2)$, and $K(-4,-2)$. The coordinates of rectangle $L M N O$ are $L(-1,3), M(2,3), N(2,-3)$, and $O(-1,-3)$. Are these two rectangles congruent? Explain. If not, how could you change the coordinates of one of the rectangles to make them congruent?
[4] No; answers may vary. Sample: HIJK has sides of length 3 and 5 while LMNO has sides of length 3 and 6 . Change the coordinates for N and O to $N(2,8), O(-1,8)$. [3] Student finds that the rectangles are not congruent, gives good replacement values to make them congruent, but does not fully explain. [2] Student either gives good explanation for why rectangles are not congruent or tells how to make them congruent, but not both. [1] Student finds that the rectangles are not congruent. [0] Student response is incorrect or blank.

Chapter 4 Project Teacher Notes: Tri, Tri Again

About the Project

Students will explore how engineers use triangles to construct safe, strong, stable structures. Then they will apply these ideas to build their own bridges, using toothpicks or craft sticks.

Introducing the Project

- Ask students whether they have ever built towers using playing cards. Ask them how they placed the first cards and why.
- Have students make towers using playing cards.

Activity 1: Modeling

Students will discover that triangles are more stable or rigid than quadrilaterals. Discuss with students real-world examples in which triangles are used for stability, such as ironing boards, scaffolding, and frames of roofs.

Activity 2: Observing

If students cannot find any local structures with exposed frameworks, suggest that they look in books or on the Internet for pictures of architecture or construction.

Activity 3: Investigating

Have students work in groups, keeping a log of the different models they make in their attempt to find one that supports the weight of the geometry book. Have groups compare the successful models and discuss their similarities and differences.

Finishing the Project

You may wish to plan a project day on which students share their completed projects. Encourage students to explain their processes as well as their products. Ask students to share how they selected their final bridge design. Ask students to submit their best models for a bridge-breaking competition, an event to which you could invite parents and the community.
\qquad Class \qquad
\qquad

Chapter 4 Project: Tri, Tri Again

Beginning the Chapter Project

Have you ever wondered how bridges stay up? How do such frail-looking frameworks stretch through the air without falling? How can they withstand the twisting forces of hurricane winds and the rumbling weight of trucks and trains? Part of the answer lies in the natural strength of triangles.

In your project for this chapter, you will explore how engineers use triangles to construct safe, strong, stable structures. You then will have a chance to apply these ideas as you design and build your own bridge with toothpicks or craft sticks. You will see how a simple shape often can be the strongest one.

Activities

Activity 1: Modeling

Many structures have straight beams that meet at joints. You can use models to explore ways to strengthen joints.

- Cut seven cardboard strips approximately 6 in. by $\frac{1}{2}$ in. Make a square frame and a triangular frame. Staple across the joints as shown.

- With your fingertips, hold each model flat on a desk or table, and try to Change its shape. Which shape is more stable? triangle
- Cut another cardboard strip, and use it to form a brace for the square frame. Is it more rigid? Why does the brace work? Yes; the brace makes two rigid triangles.

Activity 2: Observing

Visit local bridges, towers, or other structures that have exposed frameworks. Examine these structures for ideas you can use when you design and build a bridge later in this project. Record your ideas. Sketch or take pictures of the structures. On the sketches or photos, show where triangles are used for stability. Check students' work.
\qquad
\qquad
\qquad

Chapter 4 Project: Tri, Tri Again (continued)

Activity 3: Investigating

In the first activity, you tested the strength of two-dimensional models.
Now investigate the strength of three-dimensional models.
Use toothpicks or craft sticks and glue to construct a cube and a tetrahedron (a triangular pyramid).

- Which model is stronger? tetrahedron
- Describe how you could strengthen the weaker model.

Sample: You could add in diagonals of the cube. Check students' work.

Jse toothpicks or craft sticks and glue to construct a structure that can support the weight of your geometry book.

Finishing the Project Check students' work.

Design and construct a bridge made entirely of glue and toothpicks or craft sticks. Your bridge must be at least 8 in . long and contain no more than 100 toothpicks or 30 craft sticks. With your classmates, decide how to test the strength of the bridge. Record the dimensions of your bridge, the number of toothpicks or craft sticks used, and the weight the bridge could support. Experiment with as many designs and models as you like-the more the better. Include a summary of your experiments with notes about how each one helped you improve your design.

Reflect and Revise

Ask a classmate to review your project with you. Together, check to be sure that your bridge meets all the requirements and that your diagrams and explanations are clear. Have you tried several designs and kept a record of what you learned from each? Can your bridge be stronger or more pleasing to the eye? Can it be built using a more efficient design? Revise your work as needed.

Extending the Project

Research architect R. Buckminster Fuller and geodesic domes. Design and build a geodesic structure, using toothpicks or other materials.
\qquad
\qquad
\qquad

Chapter 4 Project Manager: Tri, Tri Again

Getting Started

As you work on the project, you will need a sheet of cardboard, a stapler, 100 toothpicks or 30 craft sticks, and glue. Keep this Project Manager and all your work for the project in a folder or an envelope.

Checklist

\square Activity l:
cardboard frames
\square Activity 2 :
observing bridgesActivity 3:
three-dimensional modelstoothpick bridge

Suggestions

Push or pull the models only along the plane of the frame.Look for small design features that are used repeatedly.Use glue that is strong but quick-drying.Test small parts of the bridge before building the entire structure. Also, decide in advance in what order you will assemble and glue the different sections.
Scoring Rubric

4 The toothpick bridge meets all specifications. The diagrams and explanations are clear. Geometric language was used appropriately and correctly. A complete account of the experiments was given, including how they led to improved designs.

3 The toothpick bridge meets or comes close to meeting all specifications. The diagrams and explanations are understandable but may contain a few minor errors. Most of the geometric language is used appropriately and correctly. Evidence was shown of at least one experimental model prior to the finished model.

2 The toothpick bridge does not meet specifications. Diagrams and explanations are misleading or hard to follow. Geometric terms are completely lacking, used sparsely, or often misused. The model shows little effort and no evidence of testing of preliminary designs.

1 Major elements of the project are incomplete or missing.
0 Project is not handed in or shows no effort.
Your Evaluation of Project Evaluate your work, based on the Scoring Rubric.

Teacher's Evaluation of Project

