Name:

Exam 03: Chapters 06 and 07

- Select and solve **three** of the following problems to the best of your ability. You must choose **one problem from each column**, and a third problem at your own discretion. *You may not solve all three problems from the same column*.
- Indicate below which three problems you wish to have graded. If you do not explicitly mark a problem to be scored, it will not be scored. If you have worked on more than three problems, select only three to be graded. I will not choose for you.

Choose At Least One	Grade this one?	Choose At Least One	Grade this one?
Problem 01		Problem 04	
Problem 02		Problem 05	
Problem 03		Problem 06	

- You may use your **calculator** and the attached **formula sheet**.
- Read and follow the directions carefully.
- Solve using the method required by the problem statement. If you are not explicitly required to use a specific technique, please be sure to show sufficient work so that your method is obvious.
- Show all your work. Work as neatly as you can. If you need scratch paper, blank sheets will be provided for you.
- It is permissible to use your calculator to solve a system of equations directly. If you do, state this explicitly.
- Express your answer as directed by the problem statement, using **three significant digits**. Include the **appropriate units**.

Your work will be scored according to the following point structure:

Problem 01:	 /34
Problem 02:	 /34
Problem 03:	 /34
Problem 04:	 /34
Problem 05:	 /34
Problem 06:	 /34

ENGR 2311: STATICS

Problem 01

The truss shown is supported by a pins at A and G, and subjected to discrete loads $P_1 = 10$ kN applied at point B, and $P_2 = 15$ kN applied at point D.

- A) Determine the reaction forces at *A* and *G*. (Hint: $A_x \neq 0!$ $G_x \neq 0!$)
- B) Use the *method of joints* to determine the forces in members *AB*, *AF*, *BF*, *BE*, and *BC*. State whether each member is in *tension* or *compression*.

ENGR 2311: STATICS

Problem 02

The truss shown is supported by a pin at *A* and a roller at *D*. It is subjected to the discrete loads $P_1 = 11kN$ and $P_2 = 22kN$.

- A) Determine the reaction forces at *A* and *D*.
- B) Use the *method of sections* to determine the forces in members *EF*, *BF*, and *BA*. State whether each member is in tension of compression.

$$\sum_{F_{y}=A-F_{BF}=0} F_{BF}=A=15\text{kN}$$

$$\sum_{F_{AB}=A=15\text{kN}} M_{F}=(2\text{m})A+(2\text{m})F_{AB}=0$$

$$F_{AB}=A=15\text{kN}$$

$$\sum_{F_{x}}F_{x}=F_{AB}-F_{EF}=0$$

$$F_{EF}=F_{AB}=15\text{kN}$$

Problem 03

For the frame shown, determine the horizontal and vertical components of the forces at pins B and C. The suspended cylinder has a **mass** of **75 kg**. (Hint: Notice that AB is a two-force member!)

2 kip/ft

3 kip/ft

Problem 05

The beam shown is supported by a pin at A and roller at B, then subjected to the distributed loads shown.

- A. Determine the reaction forces at *A* and *B*.
- B. Construct the shear and bending moment diagrams.

Problem 06

The beam shown is supported by a pin at A and roller at B, then subjected to the distributed loads shown.

- A. Determine the reactions at *A* and *B*.
- B. Construct the shear and bending moment diagrams.

$$\sum M_{B} = (6 \text{ f t})A + (1 \text{ f t})P_{1} - (3 \text{ f t})P_{2} - (7 \text{ f t})P_{3} = 0$$

$$A = \frac{-(1 \text{ f t})(900 \text{ lb}) + (3 \text{ f t})(3600 \text{ lb}) + (7 \text{ f t})(900 \text{ lb})}{(6 \text{ f t})} = 2700 \text{ lb}$$

$$\sum F_{y} = A + B - P_{1} - P_{2} - P_{3} = 0$$

$$B = 900 \text{ lb} + 3600 \text{ lb} + 900 \text{ lb} - 2700 \text{ lb} = 2700 \text{ lb}$$

12 ft

3 ft