UNIT 7

GRAPHING TRIG FUNCTIONS

DATE	PAGE	ΤΟΡΙΟ	HOMEWORK
2/10	2,3	The Sin graph	No Homework
		The Cos graph	
2/11	4,5	Investigation of Amplitudes	AMPLITUDE Homework Worksheet
2/12	6	Investigation of Frequencies	FREQUENCY Homework Worksheet
2/13	7	Finding periods and sketching	PERIOD Homework Worksheet
		graphs	
2/14	x	Graphing Sin and Cos	No Homework
		QUIZ	
2/17-		WINER BREAK	Relax and enjoy your break
2/21			
2/24	8	Graphing Tan	No Homework
2/25	х	More Tan and Review of all trig	FINISH REVIEW!
		functions	
2/26		REVIEW	STUDY
2/27		TEST	NO HOMEWORK!

Graphing Sin x

In order to graph y=sin x, we will use the x-axis as a number line in terms of pi.

We will start by filling in the chart below:

Х	0	π/6	π/3	π/2	2π/3	5π/6	π	7π/6	4π/3	3π/2	5π/3	11π/	2π
(radians)												6	
Х													
(degrees)													
_													
Sin x													

Now we will take the values that we just found and sketch a graph.

Fill in the questions below using Increases or Decreases

From 0 to pi/2 (quadrant I), sin x _____ from 0 to 1.

From pi/2 to pi (quadrant II), sin x _____ from 1 to 0.

From pi to 3pi/2 (quadrant III), sin x _____ from 0 to -1.

From 3pi/2 to 2pi (quadrant IV), sin x _____ from -1 to 0.

Graphing Cos x

Now we will do the same thing for the graph of Cos x

Х	0	π/6	π/3	π/2	2π/3	5π/6	π	7π/6	4π/3	3π/2	5π/3	11π/	2π
(radians)												6	
х													
(degrees)													
COS x													

Fill in the questions below using Increases or Decreases

From 0 to pi/2 (quadrant I), cos x		from 0 to 1.
------------------------------------	--	--------------

From pi/2 to pi (quadrant II), cos x		from 1 to 0.
--------------------------------------	--	--------------

From pi to 3pi/2 (quadrant III), cos x _____ from 0 to -1.

From 3pi/2 to 2pi (quadrant IV), cos x _____ from -1 to 0.

Investigation of Amplitude

The basic Sine and Cosine graphs can be manipulated by changing a and b in the equations below:

Y=a Sin bx and y=a Cos bx

Use your Graphing Calculator to find out what the "a" does to the graph:

STEP 1: Graph y=sinx (in this case a=1)

- Change your window. Your x-min should be 0, x-max should be 2π , y-min should be -5, y-max should be 5.
- Go to y= and input Sinx
- Hit GRAPH

STEP 2: Investigate the g	graph of y=sinx
---------------------------	-----------------

• What is the minimum value of the graph? ______

When does the graph hit the x-axis (in terms of π)? ______
 STEP 3: Graph y=2sinx (a=2)

• What is the maximum value of the graph? ______

- When does the graph hit the x-axis (in terms of π)? ______
 STEP 4: Graph y=3sinx (a=3)
 - What is the maximum value of the graph? _______
 - What is the minimum value of the graph? ______

• When does the graph hit the x-axis (in terms of π)?

STEP 5: Make a conjecture (best guess) about the effect of "a" on the graph of the equation y=asinx

STEP 6: Test your guess by predicting the maximum and minimum values for the graphs below:

•	Y=1/2 sinx	y=4sinx
	Max:	Max:
	Min:	Min:

STEP 7: Think about what would happen if "a" was negative.

- Graph y=-sinx
- Graph y=-2sinx
- What happens? ______

STEP 8: Make a sketch.

• Sketch all of the graphs above and label them.

- What Equations are "missing" if you wanted to "complete" the picture?
 - 1. _____
 - 2. _____
 - 3. _____

INVESTIGATION OF FREQUENCY

The basic Sine and Cosine graphs can be manipulated by changing a and b in the equations below:

Y=a Sin bx and y=a Cos bx

Use your Graphing Calculator to find out what the "b" does to the graph:

STEP 1: Graph y=sinx (in this case b=1)

- Your x-min should be 0, x-max should be 2π , y-min should be -5, y-max should be 5.
- Go to y= and input Sinx
- Hit GRAPH
- Sketch the basic sin curve from $0-2\pi$:

STEP 2: Graph y=sin2x

How many sin curves do you see?______

STEP 3: Graph y=sin3x

How many sin curves do you see?______

STEP 4: Make a Conjecture (best guess) as to what effect "b" has on the graph:

STEP 5: Testing your conjecture

- Sketch what you think y=sin(1/2)x will look like:
- Now graph y=sin(1/2)x in your graphing calculator. Were you right?

STEP 6: Sketching more graphs

• Sketch y=sin4x:

THE PERIOD OF A GRAPH

Based on what we've le	earned we know that
• "a" is for	and determines the of
the graph.	
• "b" is for _	and determines the number of curves
between _	and
The Period	of a graph is
• To find the	e period of a graph use:
• To determ	ine what interval to use on the x-axis:
1.) v=3cos1/2x	2.) v=1/2sin3x
Amplitude:	Amplitude:
Frequency:	Frequency:
Period:	Period:
x-interval:	x-interval:
3.) Sketch the graph of	the curve y=2cos2x:

4.) Sketch the graph of the curve y=-sin1/2x:

GRAPHING TAN FUNCTION

Start out by making sure that your mode is set to degrees.

Now set up your window as follows:

Xmin: -2π Xmax: 2π Ymin: -3 Ymax: 3

1.) In the "Y=" menu, type "Tan(x)

To see the graph use the "graph" key.

2.) There will be several vertical lines on the graph. These lines are called_____

3.) At the asymptotes for the function y=tan(x) is ______

4.) What are the x values for these asymptotes?_____

5.) What are the values for when y=0? _____

6.) What are the Max and min of the graph? _____

7.) Sketch the graph below:

8