UNIT 7

GRAPHING TRIG FUNCTIONS

DATE	PAGE	TOPIC	HOMEWORK
$2 / 10$	2,3	The Sin graph The Cos graph	No Homework
$2 / 11$	4,5	Investigation of Amplitudes	AMPLITUDE Homework Worksheet
$2 / 12$	6	Investigation of Frequencies	FREQUENCY Homework Worksheet
$2 / 13$	7	Finding periods and sketching graphs	PERIOD Homework Worksheet
$2 / 14$	x	Graphing Sin and Cos QUIZ	No Homework
$2 / 17-$ $2 / 21$		WINER BREAK	Relax and enjoy your break
$2 / 24$	8	Graphing Tan	No Homework
$2 / 25$	x	More Tan and Review of all trig functions	FINISH REVIEW!
$2 / 26$		REVIEW	STUDY
$2 / 27$		TEST	NO HOMEWORK!

Graphing Sin x

In order to graph $y=\sin x$, we will use the x-axis as a number line in terms of pi .
We will start by filling in the chart below:

X (radians)	0	$\pi / 6$	$\pi / 3$	$\pi / 2$	$2 \pi / 3$	$5 \pi / 6$	π	$7 \pi / 6$	$4 \pi / 3$	$3 \pi / 2$	$5 \pi / 3$	$11 \pi /$

Now we will take the values that we just found and sketch a graph.

**This curve represents the basic sine

Fill in the questions below using Increases or Decreases
From 0 to pi/2 (quadrant I), $\sin x$ \qquad from 0 to 1 .

From pi/2 to pi (quadrant II), $\sin x$ \qquad from 1 to 0.

From pi to 3pi/2 (quadrant III), $\sin x$ \qquad from 0 to -1 .

From 3pi/2 to 2pi (quadrant IV), $\sin x$ \qquad from -1 to 0 .

Graphing $\operatorname{Cos} \mathbf{x}$

Now we will do the same thing for the graph of $\operatorname{Cos} x$
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline \begin{array}{l}\text { X } \\ \text { (radians) }\end{array} & 0 & \pi / 6 & \pi / 3 & \pi / 2 & 2 \pi / 3 & 5 \pi / 6 & \pi & 7 \pi / 6 & 4 \pi / 3 & 3 \pi / 2 & 5 \pi / 3 & 11 \pi / & 2 \pi \\ 6\end{array}\right]$

Fill in the questions below using Increases or Decreases

From 0 to $\mathrm{pi} / 2$ (quadrant I), $\cos \mathrm{x}$ \qquad from 0 to 1 .

From pi/2 to pi (quadrant II), $\cos x$ \qquad from 1 to 0 .

From pi to 3pi/2 (quadrant III), $\cos x$ \qquad from 0 to - 1 .

From 3pi/2 to 2pi (quadrant IV), $\cos x$ \qquad from -1 to 0 .

Investigation of Amplitude

The basic Sine and Cosine graphs can be manipulated by changing a and b in the equations below:

$Y=a \operatorname{Sin} b x$ and $y=a \operatorname{Cos} b x$

Use your Graphing Calculator to find out what the "a" does to the graph:
STEP 1: Graph $y=\sin x$ (in this case $a=1$)

- Change your window. Your x-min should be $0, x$-max should be $2 \pi, y$-min should be $-5, y$-max should be 5 .
- Go to $y=$ and input $\operatorname{Sin} x$
- Hit GRAPH

STEP 2: Investigate the graph of $y=\sin x$

- What is the maximum value of the graph? \qquad
- What is the minimum value of the graph? \qquad
- When does the graph hit the x-axis (in terms of π)? \qquad
STEP 3: Graph $y=2 \sin x \quad(a=2)$
- What is the maximum value of the graph? \qquad
- What is the minimum value of the graph? \qquad
- When does the graph hit the x-axis (in terms of π)? \qquad
STEP 4: Graph $y=3 \sin x \quad(a=3)$
- What is the maximum value of the graph? \qquad
- What is the minimum value of the graph? \qquad
- When does the graph hit the x-axis (in terms of π)? \qquad

STEP 5: Make a conjecture (best guess) about the effect of "a" on the graph of the equation $y=a \sin x$

STEP 6: Test your guess by predicting the maximum and minimum values for the graphs below:

- $Y=1 / 2 \sin x$

Max: \qquad

Min: \qquad

$$
y=4 \sin x
$$

Max: \qquad

Min: \qquad

STEP 7: Think about what would happen if "a" was negative.

- Graph $y=-\sin x$
- Graph $y=-2 \sin x$
- What happens? \qquad

STEP 8: Make a sketch.

- Sketch all of the graphs above and label them.

- What Equations are "missing" if you wanted to "complete" the picture?

1. \qquad
2. \qquad
3. \qquad

INVESTIGATION OF FREQUENCY

The basic Sine and Cosine graphs can be manipulated by changing a and b in the equations below:

$$
\mathbf{Y}=\mathbf{a} \operatorname{Sin} \mathbf{b x} \text { and } \mathbf{y}=\mathbf{a} \operatorname{Cos} \mathbf{b x}
$$

Use your Graphing Calculator to find out what the " b " does to the graph:
STEP 1: Graph $y=\sin x$ (in this case $b=1$)

- Your x-min should be $0, x$-max should be $2 \pi, y$-min should be $-5, y$-max should be 5.
- Go to $y=$ and input $\operatorname{Sin} x$
- Hit GRAPH
- Sketch the basic sin curve from $0-2 \pi$:

STEP 2: Graph $y=\sin 2 x$

- How many sin curves do you see?

STEP 3: Graph $\mathrm{y}=\sin 3 \mathrm{x}$

- How many sin curves do you see?

STEP 4: Make a Conjecture (best guess) as to what effect " b " has on the graph:

STEP 5: Testing your conjecture

- Sketch what you think $y=\sin (1 / 2) x$ will look like:
- Now graph $\mathrm{y}=\sin (1 / 2) \mathrm{x}$ in your graphing calculator. Were you right?

STEP 6: Sketching more graphs

- Sketch $\mathrm{y}=\sin 4 \mathrm{x}$:

THE PERIOD OF A GRAPH

Based on what we've learned we know that

- "a" is for \qquad and determines the \qquad of the graph.
- "b" is for \qquad and determines the number of curves
between \qquad and \qquad
- The Period of a graph is \qquad .
- To find the period of a graph use:
- To determine what interval to use on the x-axis:
1.) $y=3 \cos 1 / 2 x$

Amplitude:

Frequency:

Period:
x-interval:
3.) Sketch the graph of the curve $y=2 \cos 2 x$:
4.) Sketch the graph of the curve $y=-\sin 1 / 2 x$:

GRAPHING TAN FUNCTION

Start out by making sure that your mode is set to degrees.

Now set up your window as follows:
Xmin: -2π
Xmax: 2π
Ymin: -3
Ymax: 3
1.) In the " $Y=$ " menu, type " $\operatorname{Tan}(x)$

To see the graph use the "graph" key.
2.) There will be several vertical lines on the graph. These lines are called \qquad
3.) At the asymptotes for the function $y=\tan (x)$ is \qquad
4.) What are the x values for these asymptotes? \qquad
5.) What are the values for when $y=0$? \qquad
6.) What are the Max and min of the graph? \qquad
7.) Sketch the graph below:

