Unit 4B- Electron Configuration- Guided Notes

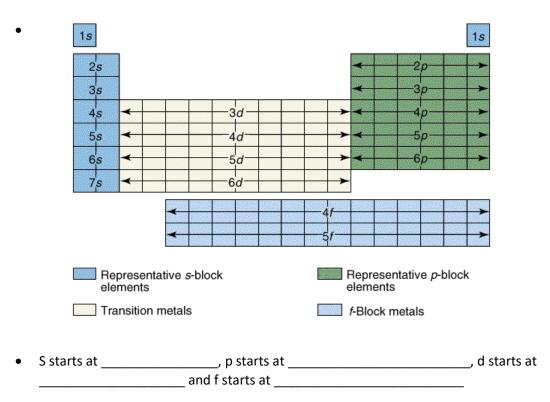
Atomic Structure

- Electrons are arranged in ______ or
 - around the nucleus of an atom
 - First shell can hold a maximum of ______ electrons
 Second shell can hold a maximum of ______ electrons
 - Third shell can hold a maximum of ______electrons

Energy Levels

- Further away from the nucleus means ______ energy
- Energy levels have sublevels called ______ and each subshell has ______
- _____are in the outer most energy level
- Every orbital can hold up to _______ electrons

Subshell	# of Orbitals	Maximum # of electrons	Starts at energy level	Picture


• There are two ways to represent atomic structure of an element:

1.

2.

Electron Configuration

- Is a form of notation showing how ______ are distributed among ______ and ______.
- The format for writing electron configuration includes a series of
- Standard Notation of Fluorine: 1s²2s²2p⁵

Writing Electron Configuration- Selenium

- 1. Find the element you are looking for on the periodic table.
- 2. Always start your configuration at hydrogen
- 3. Write the energy number and letter, then as a superscript write the number of electrons you pass in that section to get the desired element

Selenium:

- Practice: Write the electron configuration of the following elements
 - 1. Beryllium
 - 2. Cadmium
 - 3. Bromine
 - 4. Iodine
 - 5. Iron

Electron Configuration with Ions

When doing electron configuration with ions, write the configuration and then add (if it is a
 _____) or subtract (if it is a ______) the charge from
 the number of electrons (superscript)

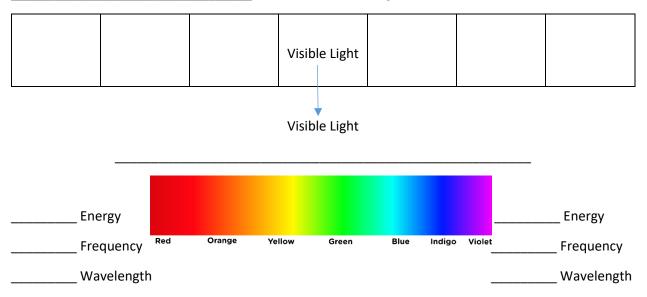
- Example: O⁻²
 - o Oxygen:
 - Oxygen ion:
- Practice: Write the electron configuration of the following ions
 - 1. Ca⁺²
 - 2. P⁻³
 - 3. Mg⁺²
 - 4. F⁻¹

Noble Gas Notation (AKA shorthand notation)

- Use the last noble gas that is located in the periodic table right before the element.
 - The easiest way to find this is to find your element; Go up one period; go to the end of the period to the noble gases
- Write the symbol of the noble gas in brackets.
- Write the remaining configuration after the brackets.
- Ex: Fluorine ______
- Practice: Write the noble gas configuration for the following elements:
 - 1. Chlorine : _____
 - 2. Tellurium: ______
 - 3. Barium : _____
 - 4. Argon: _____
 - 5. K⁺: _____
 - 6. F⁻:_____

Orbital Diagrams

- Orbital diagrams are very similar to ______
- They show the ______ of electrons in an atom
- _____are used to represent orbitals
 - S has _____ orbital
 - P has _____ orbitals
 - D has _____ orbitals
 - F has _____ orbitals
- The energy level and sublevel are written ______ the boxes (example 1s or 2p)
- Electrons are represented by ______
- ONLY ______ arrows per box pointing opposite directions
- 3 Rules for Orbital Diagrams:
 - 1. <u>Aufbau principle</u>: Electrons occupy orbitals of ______ energy levels first
 - Hund's Rule: In a set of orbitals, the electrons will fill the orbitals in a way that would give the ______ number of unpaired electrons.
 - Analogy: Students could fill each seat of a school bus, one person at a time, before doubling up
 - 3. <u>Pauli Exclusion Principle:</u> An orbital can hold only ______ electrons and they must have ______ spin
 - One arrow points up, the other points down
- Example: Draw the orbital diagram for Nitrogen:
 - 1. Write the configuration for Nitrogen
 - 2. Draw the boxes you need and label them
 - 3. Fill in arrows following Aufbau's, Hund's, and Pauli's rules
 - 4. Why are the arrows in 2p in separate boxes?


- Practice:
 - 1. Draw the orbital diagram for Boron
 - 2. Draw the orbital diagram for Bromine (you may use short hand just don't for get to include the noble gas before the element in brackets [])
 - 3. Draw the orbital diagram for Titanium

Electrons and Energy Levels

- Electrons in their energy levels are considered to be in their
- If electrons are given energy, they can jump ______ in energy levels
 - We call this the ______
- When they fall back to their energy level, they release a ______ of light
 - A photon of light is ______
 - The ______ of the light corresponds to the amount of energy the electron released when it goes from its excited state to its ground state

Electromagnetic Spectrum: The range of ______or

_____ over which electromagnetic radiation extends

