Name Resolution in Flat Name Spaces Distributed Hash Tables (DHTs)

Pedro F. Souto (pfs@fe.up.pt)

April 20, 2021

Resolution of Unstructured Names

Problem

- Assume you want to develop a "peer-to-peer" version of the backup service on the Internet.
- How do you locate the peers storing a given chunk of a file?
- Each file has a 256-bit id
- This id is unstructured

No solution Broadcasting/multicasting

- It just does not scale beyond a LAN

Issue How do we resolve efficiently an unstructured name on the Internet?

Solution Use a distributed hash table (DHT)

- Answer provided by academia to the problem of locating an entity in P2P system

Distributed Hash Table (DHT)

- A DHT is similar to a hash-table
- It maps a key to a value
- The key is an object identifier
- The value is an address
- assume it is the address of the node/peer responsible for the key
- The key-value pairs are stored in a potentially very large number of nodes
- A DHT provides a single operation:
lookup(key) returns the address of the node responsible for the key
- The address can be used to insert an object, to access to an object ...
- In a DHT-based system, node identifiers and key values are drawn from the same set, e.g. a number with m bits
- The node responsible for a key value is the one whose identifier is closer to that key
- Depending on the definition of distance we get different DHTs

DHT Example: Chord

- Chord uses identifiers with m-bits ordered in a ring (mod2 2^{m})
- Each "object" has an m-bit random identifier: the key of DHT entries ($m=128$ in the original paper - used MD5)
- Obtained by hashing the object's key
- Each node has an m-bit random identifier
- Obtained, e.g., by hashing the node's IP address
- The node responsible for key k is the successor of key k, $\operatorname{succ}(k)$:
$\operatorname{succ}(k)$ is the node with the smallest id that is larger or equal to $k(\operatorname{succ}(k) \geq k$, in modular arithmetic)
- Given a key k the node responsible for it will have

src: Stoica et. al. 2001 an id higher or equal to k.

Key Resolution in Chord (1/2)

Problem Given a key k, how do you find $\operatorname{succ}(k)$?
No Solution 1 Each node n keeps information about its successor,
i.e. the next node in the ring $(\operatorname{succ}(n+1))$

- Simple solution
- ... but it does not scale. Why?

No Solution 2 Each node n keeps information about all nodes in the ring

- Constant time name resolution
- ... but it does not scale. Why?

Key Resolution in Chord (2/2)

Solution In addition to a pointer to the next node in the ring each node keeps pointers that allow it to reduce at least in half the distance to the key

- Because nodes that are 2^{i} apart may not be active, each node n keeps a pointer to the $\operatorname{succ}\left(n+2^{i}\right)$ for $i=0 \ldots m-1$
- This scheme has 3 important properties:

1. Each node keeps information on only m nodes
2. Each node knows more about nodes closer to it than about nodes further away
3. The table in a node may not have information on the succ(k), for some k - i.e. a node may be unable to resolve a key by itself

- Key resolution requires $O(\log (N))$ steps, where N is the number of nodes in the system

Chord: Finger Table (1/2)

- The Finger table, $F T_{n}[]$, is an array with m pointers:
$F T_{n}[i]=\operatorname{succ}\left(n+2^{i-1}\right) \bmod ^{m}$ where $i=1 \ldots m$
- $F T_{n}[1]$ is n 's successor in the Chord ring
- To resolve (lookup) a key k, node n forwards the request to:
- The next node, i.e. $F T_{n}[1]$, if $n<k \leq F T_{n}[1]$
- To node $n^{\prime}=F T_{n}[j]$, where j is the largest index st. $F T[j]<k$ (All arithmetic in modulo 2^{m})
Algorithmically, n^{\prime} can be computed by:

1. Traversing the FT from the last to the first element
2. Stopping at the element $F T_{n}[j]$ st: $n<F T_{n}[j]<k$

- Each element of the FT includes not only the node identifier but also its IP address (and port)
- Chord works correctly iff $F T_{n}[1]$ is correct
- Chord tolerates transient inconsistencies in other elements of $F T_{n}[]$, by trying the resolution again (may not be necessary even)

Chord: Finger Table (2/2)

Chord: Finger Table (3/3)

Finger table of node 21

i	$2^{(i-1)}$	$\operatorname{succ}\left(21+2^{(i-1)}\right)$
1	1	$\operatorname{succ}(21+1)=28$
2	2	$\operatorname{succ}(21+2)=28$
3	4	$\operatorname{succ}(21+4)=28$
4	8	$\operatorname{succ}(21+8)=1$
5	16	$\operatorname{succ}((21+16) \bmod 32)=\operatorname{succ}(5)=9$

Resolution Start at the last element of the FT, and move up until: either FT entry is smaller than key being resolved; or reached the first element

- If first element is larger than key, then it is its owner

@ node 1			@ node 18			@ node 20			@ node 21	
1	4		1	20		1	21	<26	1	28
2	4		2	20	<26	2	28		2	28
3	9	\longrightarrow	3	28	\longrightarrow	3	28	\longrightarrow	3	28
4	9		4	28		4	28		4	1
5	18	< 26	5	4		5	4		5	9

Chord: Other Issues

Node Joining Node n can ask any node to locate $\operatorname{succ}(n)$

- The crux is to get the $F T_{x}$ [1] correct
- Every node needs also to keep information about its predecessor
- Periodically:

1. A node queries its successor about its predecessor, p

- If p is between itself an successor
- Then update successor to p, and notify p (new successor)

2. Updates the elements of its FT, one at a time
3. Checks if its predecessor is still in the ring

Node Failure Rather than keep a single successor, a node keeps a list of r successors

- If the successor fails, a node can replace it with next one

Identifiers Generation To achieve some tolerance to denial-of-service
(DoS) attacks, identifiers should be generated using a cryptographic hash function, e.g. SHA256

Virtual Topology Issues (1/2)

Problem Chord, and other P2P systems, use an overlay network

- If the topology of the overlay network is oblivious to the underlying physical network, routing of messages along the overlay network may be inefficient
- Messages may follow an erratic route, e.g. bouncing between hosts in different continents
Sol. 1: Assign identifiers according to the underlying topology
- I.e. assign identifiers so that the overlay topology is close to that of the underlying physical topology.
- This is not always possible. E.g. it is not possible in Chord.

Virtual Topology Issues (2/2)

Sol. 2: Route messages according to the underlying topology

- For example, Chord could keep several nodes per interval $\left[n+2^{i-1}, n+2^{i}\right]$ rather than a single one, and when resolving a key, might use the closest node
Sol. 3: Pick neighbors according to the underlying topology
- In some algorithms, nodes can pick their neighbors, i.e. establish the links of the overlay network.
- This is not always possible. E.g. it is not possible in Chord.

Further Reading

- Subsection 5.2.3, Tanenbaum and van Steen, Distributed Systems, 2nd Ed.
- I. Stoica et al., "Chord: A scalable peer-to-peer lookup protocol for Internet applications", IEEE/ACM Transactions on Networks, (11)1:17-32, Feb 2003 (acessível via biblioteca digital da ACM "dentro da FEUP")

