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Resolution of Unstructured Names

Problem
I Assume you want to develop a "peer-to-peer" version of the

backup service on the Internet.
I How do you locate the peers storing a given chunk of a file?

I Each file has a 256-bit id
I This id is unstructured

No solution Broadcasting/multicasting
I It just does not scale beyond a LAN

Issue How do we resolve efficiently an unstructured name on the
Internet?

Solution Use a distributed hash table (DHT)
I Answer provided by academia to the problem of locating an

entity in P2P system
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Distributed Hash Table (DHT)
I A DHT is similar to a hash-table

I It maps a key to a value
I The key is an object identifier
I The value is an address

I assume it is the address of the node/peer responsible for the key

I The key-value pairs are stored in a potentially very large number
of nodes

I A DHT provides a single operation:
lookup(key) returns the address of the node responsible for the

key
I The address can be used to insert an object, to access to an

object ...
I In a DHT-based system, node identifiers and key values are

drawn from the same set, e.g. a number with m bits
I The node responsible for a key value is the one whose identifier

is closer to that key
I Depending on the definition of distance we get different DHTs
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DHT Example: Chord
I Chord uses identifiers with m-bits ordered in a ring (mod2m)
I Each "object" has an m-bit random identifier: the key of DHT

entries (m = 128 in the original paper - used MD5)
I Obtained by hashing the object’s key

I Each node has an m-bit random identifier
I Obtained, e.g., by hashing the node’s IP address

I The node responsible for key
k is the successor of key k ,
succ(k):
succ(k) is the node with the

smallest id that is larger or
equal to k (succ(k) ≥ k , in
modular arithmetic)
I Given a key k the node

responsible for it will have
an id higher or equal to k .

src: Stoica et. al. 2001
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Key Resolution in Chord (1/2)

Problem Given a key k , how do you find succ(k)?
No Solution 1 Each node n keeps information about its successor,

i.e. the next node in the ring (succ(n + 1))
I Simple solution
I ... but it does not scale. Why?

No Solution 2 Each node n keeps information about all nodes in the
ring
I Constant time name resolution
I ... but it does not scale. Why?
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Key Resolution in Chord (2/2)
Solution In addition to a pointer to the next node in the ring each

node keeps pointers that allow it to reduce at least in half the
distance to the key

nn+ 2m−1

n+ 2m−2

n+ 20

n+ 21

n+ 2m−3

I Because nodes that are 2i

apart may not be active, each
node n keeps a pointer to the
succ(n + 2i) for i = 0 . . .m − 1

I This scheme has 3 important properties:
1. Each node keeps information on only m nodes
2. Each node knows more about nodes closer to it than about nodes

further away
3. The table in a node may not have information on the succ(k), for

some k – i.e. a node may be unable to resolve a key by itself
I Key resolution requires O(log(N)) steps, where N is the number

of nodes in the system
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Chord: Finger Table (1/2)

I The Finger table, FTn[], is an array with m pointers:

FTn[i] = succ(n + 2i−1)mod2m where i = 1 . . .m
I FTn[1] is n’s successor in the Chord ring

I To resolve (lookup) a key k , node n forwards the request to:
I The next node, i.e. FTn[1], if n < k ≤ FTn[1]
I To node n′ = FTn[j], where j is the largest index st. FT [j] < k

(All arithmetic in modulo 2m)
Algorithmically, n′ can be computed by:

1. Traversing the FT from the last to the first element
2. Stopping at the element FTn[j] st: n < FTn[j] < k

I Each element of the FT includes not only the node identifier but
also its IP address (and port)

I Chord works correctly iff FTn[1] is correct
I Chord tolerates transient inconsistencies in other elements of

FTn[], by trying the resolution again (may not be necessary even)
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Chord: Finger Table (2/2)
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Chord: Finger Table (3/3)
Finger table of node 21

i 2(i−1) succ
(
21 + 2(i−1)

)
1 1 succ(21 + 1) = 28
2 2 succ(21 + 2) = 28
3 4 succ(21 + 4) = 28
4 8 succ(21 + 8) = 1
5 16 succ((21 + 16) mod 32) = succ(5) = 9

Resolution Start at the last element of the FT, and move up until:
either FT entry is smaller than key being resolved;
or reached the first element

I If first element is larger than key, then it is its owner
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Chord: Other Issues
Node Joining Node n can ask any node to locate succ(n)

I The crux is to get the FTx [1] correct
I Every node needs also to keep information about its

predecessor
I Periodically:

1. A node queries its successor about its predecessor, p
I If p is between itself an successor
I Then update successor to p, and

notify p (new successor)

2. Updates the elements of its FT, one at a time
3. Checks if its predecessor is still in the ring

Node Failure Rather than keep a single successor, a node keeps a
list of r successors
I If the successor fails, a node can replace it with next one

Identifiers Generation To achieve some tolerance to denial-of-service
(DoS) attacks, identifiers should be generated using a
cryptographic hash function, e.g. SHA256
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Virtual Topology Issues (1/2)

Problem Chord, and other P2P systems, use an overlay network
I If the topology of the overlay network is oblivious to the

underlying physical network, routing of messages along the
overlay network may be inefficient
I Messages may follow an erratic route, e.g. bouncing between

hosts in different continents

Sol. 1: Assign identifiers according to the underlying topology
I I.e. assign identifiers so that the overlay topology is close to

that of the underlying physical topology.
I This is not always possible. E.g. it is not possible in Chord.
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Virtual Topology Issues (2/2)

Sol. 2: Route messages according to the underlying topology
I For example, Chord could keep several nodes per interval

[n + 2i−1,n + 2i ] rather than a single one, and when resolving a
key, might use the closest node

Sol. 3: Pick neighbors according to the underlying topology
I In some algorithms, nodes can pick their neighbors, i.e.

establish the links of the overlay network.
I This is not always possible. E.g. it is not possible in Chord.
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Further Reading

I Subsection 5.2.3, Tanenbaum and van Steen, Distributed
Systems, 2nd Ed.

I I. Stoica et al., "Chord: A scalable peer-to-peer lookup protocol
for Internet applications", IEEE/ACM Transactions on Networks,
(11)1:17-32, Feb 2003 (acessível via biblioteca digital da ACM
“dentro da FEUP”)

http://portal.acm.org/ft_gateway.cfm?id=638336&type=pdf&coll=portal&dl=ACM&CFID=59475436&CFTOKEN=92586931
http://portal.acm.org/ft_gateway.cfm?id=638336&type=pdf&coll=portal&dl=ACM&CFID=59475436&CFTOKEN=92586931
http://portal.acm.org/ft_gateway.cfm?id=638336&type=pdf&coll=portal&dl=ACM&CFID=59475436&CFTOKEN=92586931

