Polygons

A polygon is a closed plane figure formed by three or more line segments that meet at points called vertices. You can classify a polygon by the number of sides and the number of angles that it has.
Congruent figures have the same size and shape. In a regular polygon, all sides are congruent and all angles are congruent.

Classify the polygon below.

Polygon	Sides	Angles	Vertices
Triangle	3	3	3
Quadrilateral	4	4	4
Pentagon	5	5	5
Hexagon	6	6	6
Heptagon	7	7	7
Octagon	8	8	8
Nonagon	9	9	9
Decagon	10	10	10

How many sides does this polygon have?

5 sides

 How many angles does this polygon have? 5 anglesName the polygon. \qquad
Are all the sides congruent? \qquad
Are all the angles congruent? \qquad no

So, the polygon above is a pentagon. It is not a regular polygon.
Name each polygon. Then tell whether it is a regular polygon or not a regular polygon.
1.

> quadrilateral; not a regular polygon

triangle;
not a regular
polygon
3.

pentagon;

regular
polygon

4.

octagon;
regular
polygon

Triangles

You can classify triangles by the length of their sides and by the measure of their angles. Classify each triangle.

Use a ruler to measure the side lengths.

- equilateral triangle

All sides are the same length.

- isosceles triangle

Two sides are the same length.

- scalene triangle

All sides are different lengths.

Use the corner of a sheet of paper to classify the angles.

- acute triangle

All three angles are acute.

- obtuse triangle

One angle is obtuse. The other two angles are acute.

- right triangle

One angle is right. The other two angles are acute.

Classify the triangle according to its side lengths. It has two congruent sides.

The triangle is an isosceles triangle.

Classify the triangle according to its angle measures. It has one right angle.
The triangle is a right triangle.

Classify each triangle. Write isosceles, scalene, or equilateral.
Then write acute, obtuse, or right.
1.

2.

3.

scalene; acute

equilateral; acute

isosceles; acute
4.

5.

scalene; right
6.

isosceles; obtuse

Quadrilaterals

You can use this chart to help you classify quadrilaterals.

Classify the figure.

The figure has 4 sides, so it is a quadrilateral. The figure has exactly one pair of parallel sides, so it is a trapezoid.

quadrilateral, trapezoid

Classify the quadrilateral in as many ways as possible. Write quadrilateral, parallelogram, rectangle, rhombus, square, or trapezoid.
1.

quadrilateral,
parallelogram, rectangle
3.

quadrilateral, trapezoid
2.

quadrilateral
4.

quadrilateral, parallelogram

Problem Solving • Properties of Two-Dimensional Figures

Haley thinks hexagon $A B C D E F$ has 6 congruent sides, but she does not have a ruler to measure the sides. Are the 6 sides congruent?

Read the Problem	Solve the Problem
What do I need to find? I need to determine if sides $A B, B C, C D, D E, E F \text {, and } F A$	Trace the hexagon and cut out the shape. Step 1 Fold the hexagon to match the sides $A B$ and $E D$, sides $F E$ and $F A$, and sides $C D$ and $C B$. The sides match, so they are congruent. Step 2 Fold along the diagonal between B and E to match sides $B A$ and $B C$, sides $A F$ and $C D$, and sides $E F$ and $E D$. Fold along the diagonal between A and D to match sides $A F$ and $A B$, sides $F E$ and $B C$, and sides $D E$ and $D C$. Step 3 Use logic to match sides $A B$ and $C D$, sides $A B$ and $E F$, sides $B C$ and $D E$, and sides $D E$ and $F A$. The sides match, so they are congruent.
have the same length	
What information do I need to use? The figure is a \qquad hexagon with \qquad 6 sides and \qquad 6 congruent angles.	
How will I use the information? I will \qquad act it out by tracing the figure and then folding the	
figulre to match all the sides to see if they are congruent	

1. Justin thinks square STUV has 4 congruent sides, but he does not have a ruler to measure the sides. Are the sides congruent? Explain.
Possible answer: Yes. A square by definition has 4 congruent sides. If he folds the square in half both ways and along both diagonals, then the sides will match.
2. Esther knows octagon OPQRSTUV has 8 congruent angles. How can she determine whether the octagon has 8 congruent sides without using a ruler?
Possible answer: she could trace the octagon cut it out, and fold the figure to match the sides.
\qquad
\qquad

Three-Dimensional Figures

A polyhedron is a solid figure with faces that are polygons.
You can identify a polyhedron by the shape of its faces.

A pyramid is a polyhedron with one polygon base. The lateral faces of a pyramid are triangles that meet at a common vertex.

triangular pyramid	The base and faces are triangles.
rectangular pyramid	The base is a rectangle. square pyramid
The base is a pentagonal pyramid	The base is a pentagon. hexagonal pyramid
	The base is a hexagon.

A prism is a polyhedron with two congruent polygons as bases. The lateral faces of a prism are rectangles.

triangular	The two prism
	bases are triangles.

square prism

 or cube pentagonal prismhexagonal prism rectangles.

All faces are squares.

The two bases are pentagons.

The two bases are hexagons.

A solid figure with curved surfaces is not a polyhedron.

Classify the solid figure. Write prism, pyramid, cone, cylinder, or sphere.
The solid figure has one base.
The rest of its faces are triangles.
So, the solid figure is a \qquad pyramid

Classify each solid figure. Write prism, pyramid, cone, cylinder, or sphere.
1.

cylinder
2.

pyramid
3.

rectangular
4.

cone

Unit Cubes and Solid Figures

A unit cube is a cube that has a length, width, and height of 1 unit. You can use unit cubes to build a rectangular prism.

Count the number of cubes used to build the rectangular prism.

The length of the prism is made up of \qquad unit cubes.

The width of the prism is made up of \qquad unit cubes.

The height of the prism is made up of \qquad unit cube.

The number of unit cubes used to build the rectangular prism is 16

Count the number of unit cubes used to build each solid figure.
1.

9 unit cubes
3.

\qquad unit cubes
2.

4.

8 unit cubes

7 unit cubes

Understand Volume

The volume of a rectangular prism is equal to the number of unit cubes that make up the prism. Each unit cube has a volume of 1 cubic unit.

Find the volume of the prism. 1 unit cube $=1$ cubic inch

Step 1 Count the number of unit cubes in the bottom layer of the prism.
There are $\underline{4}$ unit cubes that make up the length of the first layer.
There are \qquad unit cubes that make up the width of the first layer.

There is 1 unit cube that makes up the height of the first layer.
So, altogether, there are 8 unit cubes that make up the bottom layer of the prism.
Step 2 Count the number of layers of cubes that make up the prism.
The prism is made up of \qquad layers of unit cubes.

Step 3 Find the total number of cubes that fill the prism.
Multiply the number of layers by the number of cubes in each layer.

$$
3 \times 8=\underline{24} \text { unit cubes }
$$

Each unit cube has a volume of 1 cubic inch. So, the volume of the prism is 24×1, or $\underline{24}$ cubic inches.

Use the unit given. Find the volume.

1.

Each cube $=1 \mathrm{cu} \mathrm{ft}$
Volume $=\underline{45}$ cu ft

Each cube $=1 \mathrm{cu} \mathrm{cm}$
Volume $=\underline{72} \mathrm{cu} \underline{\mathrm{CM}}$

Estimate Volume

You can estimate the volume of a larger box by filling it with smaller boxes.

Mario packs boxes of markers into a large box. The volume of each box of markers is 15 cubic inches. Estimate the volume of the large box.

The volume of one box of markers is 15 cubic inches.
Use the box of markers to estimate the volume of the large box.

- The large box holds 2 layers of boxes of markers, a top layer and a bottom layer. Each layer contains 10 boxes of markers. So, the large box holds about 2×10, or 20 boxes of markers.
- Multiply the volume of 1 box of markers by the estimated number of boxes of markers that fit in the large box.

$$
\underline{20} \times \underline{15}=\underline{300}
$$

So, the volume of the large box is about $\underline{300}$ cubic inches.

Estimate the volume.

1. Each box of toothpaste has a volume of 25 cubic inches.

There are 30 boxes of toothpaste in the large box.
The estimated volume of the large box is $\underline{30} \times 25=\underline{750}$ cubic inches.
2. Volume of CD case: 80 cu cm

about 4,800
Volume of large box: $\mathbf{C U C M}$

Volume of Rectangular Prisms

Jorge wants to find the volume of this rectangular prism. He can use cubes that measure 1 centimeter on each side to find the volume.

Step 1 The base has a length of 2 centimeters and a width of 3 centimeters. Multiply to find the area of the base.

Base $=\underline{2} \times \underline{3}$
Base $=6 \mathrm{~cm}^{2}$
Step 2 The height of the prism is 4 centimeters. Add the number of cubes in each layer to find the volume.

Remember: Each layer has 6 cubes.

Step 3 Count the cubes. \qquad cubes
Multiply the base and the height to check your answer.
Volume $=$ \qquad \times \qquad
Volume $=\underline{24}$ cubic centimeters
So, the volume of Jorge's rectangular prism is \qquad cubic centimeters.

Find the volume.

1.

Volume:
$18 \mathrm{~cm}^{3}$
3.

Volume: 32 in. 3
2.

Volume: $20 \mathrm{ft}^{3}$
4.

Volume: $54 \mathrm{~cm}^{3}$

Algebra • Apply Volume Formulas

You can use a formula to find the volume of a rectangular prism.

$$
\begin{aligned}
\text { Volume } & =\text { length } \times \text { width } \times \text { height } \\
V & =(I \times w) \times h
\end{aligned}
$$

Find the volume of the rectangular prism.
Step 1 Identify the length, width, and height of the rectangular prism.

9 in. length $=$ \qquad in. \quad width $=$ \qquad in. height $=$ \qquad 4 in.

Step 2 Substitute the values of the length, width, and height into the formula.

$$
\begin{aligned}
& V=(I \times w) \times h \\
& V=(\underline{9} \times \underline{3}) \times \underline{4}
\end{aligned}
$$

Step 3 Multiply the length by the width.

$$
\begin{aligned}
& V=(9 \times 3) \times 4 \\
& V=\underline{27} \times 4
\end{aligned}
$$

Step 4 Multiply the product of the length and width by the height.

$$
\begin{aligned}
V & =27 \times \underline{4} \\
& =\underline{108}
\end{aligned}
$$

So, the volume of the rectangular prism is 108 cubic inches.

Find the volume.

1.

$$
v=240 \mathrm{ft}^{3}
$$

2.

$$
v=\underline{512 \mathrm{~cm}^{3}}
$$

Problem Solving • Compare Volumes

A company makes aquariums that come in three sizes of rectangular prisms. The length of each aquarium is three times its width and depth. The depths of the aquariums are 1 foot, 2 feet, and 3 feet.
What is the volume of each aquarium?

1. Jamie needs a bin for her school supplies. A blue bin has a length of 12 inches, a width of 5 inches, and a height of 4 inches. A green bin has a length of 10 inches, a width of 6 inches, and a height of 5 inches. What is the volume of the bin with the greatest volume?
2. Suppose the blue bin that Jamie found had a length of 5 inches, a width of 5 inches, and a height of 12 inches. Would one bin have a greater volume than the other? Explain.

Find Volume of Composed Figures

A composite figure is a solid made up of two or more solids. To find the volume of a composite figure, first find the volume of each solid that makes up the figure. Then find the sum of the volumes of the figures.
Find the volume of the composite figure at right.
Step 1 Break apart the composite figure into two rectangular prisms. Label the dimensions of each prism.

Prism 1
Prism 2

Step 2 Find the volume of each prism.

Prism 1

$$
\begin{aligned}
& V=(I \times w) \times h \\
& V=4 \times 8 \times 4
\end{aligned}
$$

Prism 2

$$
\begin{aligned}
& V=(I \times w) \times h \\
& V=\underline{20 \times \underline{8} \times \underline{4}}
\end{aligned}
$$

$$
V=640 \mathrm{in}^{3}
$$

Step 3 Find the sum of the volumes of the two prisms.
Volume of Prism $1+$ Volume of Prism 2 = Volume of Composite Figure $\begin{aligned} 128 \mathrm{in}_{土}^{3} & \frac{640 \mathrm{in}_{土}^{3}}{768 \mathrm{in}_{-}^{3}}\end{aligned}=$ Volume of Composite Figure

So, the volume of the composite figure is $768 \mathrm{in}^{3}{ }^{3}$

Find the volume of the composite figure.

$$
V=\underline{2,400 \mathrm{ft}^{3}}
$$

2.

$$
V=\underline{105 \mathrm{in}^{3}}
$$

