The following are rules for naming ionic compounds. These are basic rules, which allow for the naming of many, but not all ionic compounds.

This post is divided into the following sections:

- [A] <u>Resource page of monatomic and polyatomic ions</u>
 - (1) **Table I** Table of Ions
 - (2) **Table II** Basic Rules for Naming Compounds
 - (3) **Table III** Table of Cations and Anions, Set #1
 - (4) **Table IV** Table of Cations and Anions, Set #2
- [B] <u>Crossover Rule</u>
- [C1] Naming Compounds with Polyatomic Anions
- [C2] <u>Naming Compounds with Polyatomic Anions practise examples</u>
- [D] <u>Naming Compounds with Multiple Oxidation States</u>
- [E] <u>Determining Charge of an Ion</u>
- [F] Oxoacids & Oxoanions
- [G1] <u>Practise Problems, Part 1</u>
- [G2] <u>Answers to problems in G1</u>
- [H1] Practise Problems, Part 2
- [H2] <u>Answers to problems in H1</u>
- 1. In Section **[A]**, I review the basics of using the Periodic Table for determining the charge for monatomic cations and anions.

For ionic compounds, metal atoms will lose electrons and non-metal atoms will gain electrons, thus forming charged ions (ref: Silberberg, Chemistry, 5th Edition, p. 60).

A Periodic Table has the elements sectioned into metals and non-metals. For metals in Group IA (Group 1) and Group IIA (Group 2), the ion that can be formed will have a charge that is the same as the group number, i.e., Na^+ , (Group 1) and Mg^{2+} (Group 2) respectively and is based on the number of electrons that the element can lose to another element.

When using these elements for naming an ionic compound, retain the element name, e.g., Na^+ in an ionic compound would be sodium, refer to **Table II**.

For non-metals in Group IVA (Group 14), Group VA (Group 15), Group VIA (Group 16) and Group VIIA (Group 17), the ion that can be formed will have a charge that is equal to the group number *minus* 8, for example, $O^{2-} = 6 - 8 = -2$ and $CI^- = 7 - 8 = -1$, respectively and is based on the number of electrons that it can gain from another element. Using this rule, the *most negative* oxidation state is obtained and additionally, it is noted that these elements can have more than one oxidation state (ref: Silberberg, Chemistry, 5th Edition, p. 561).

When using these elements for naming an ionic compound, the non-metal element name ends in "ide", e.g., chlorine \rightarrow chloride, refer to **Table II**.

1. It is also noted that the *most positive* oxidation state of the group A elements is equal to the group number, e.g., magnesium (Group 2) = Mg^{2+} (O.N. = +2). Carbon (Group 4) has at least two oxidation states, i.e., C^{4-} {4 - 8 = -4, i.e. charge 4⁻ or O.N. = -4} and O.N. = +4 {Group 4}. Likewise for nitrogen {N³⁻, 5-8 = -3, i.e. charge 3⁻ or O.N. = -3} and O.N. = +5 and phosphorus {P³⁻, 5-8 = -3, i.e. charge 3⁻ and O.N. = -3} and O.N. = +5 in Group 5. For sulfur: {S²⁻, 6-8 = -2, i.e. charge 2⁻ and O.N. = -2} and O.N. = +6, Group 6.

The carbide ion (methanide), C^{4-} , is worth noting. Metal elements can form ionic compounds with carbon, e.g., beryllium carbide (Be₂C) and aluminum carbide (Al₄C₃), (ref: Mortimer, Chemistry, 5th Edition, p. 570). Carbon can also form the acetylide ion (C₂⁻²⁻), which can form ionic compounds with the Group 1 and Group 2 metals, e.g., calcium carbide (CaC₂), {ref: Mortimer, p.570}.

For the polyatomic anions, I use the acronym SCO to help me remember the ions of 2[°] charge from other ions of 1[°] charge. Refer to **Table I (B)** and **III**.

For polyatomic anions that differ by one oxygen atom, the name of the ion ends in either "ate" or "ite", e.g., $SO_4^{2-} \rightarrow sulfate$ and $SO_3^{2-} \rightarrow sulfate$. Also, the prefix - suffix "per - ate" and hypo - ite" refer to ions that contain either 1 more oxygen than the "ate" ion or 1 less oxygen than the "ite" ion. These conventions are used for families that contain either 2 or 4 oxoanions.

- Table IV provides some basic rules for naming ionic compounds. Note: The oxidation state and oxidation number (O.N.) are the same term. The ion with the higher charge has the suffix "ic" and the lower charge has the suffix "ous".
- 3. Section **[B]** reviews the cross-over rule for determining the formula of a compound, when the name of the compound is provided. For example, magnesium nitride:

 $Mg^{2+}\!\!\!,\ N^{3-} \ \rightarrow Mg_N_ \ \rightarrow \ Mg_3N_2$

Since magnesium has a charge of 2^+ , nitrogen will be subscript 2. Since nitride has a charge of 3^- , magnesium will be subscript 3.

Furthermore, if the resulting subscripts are of equal numeric value, reduce the formula to its simplest form, e.g.,

 $Zn^{2+}, O^{2-} \rightarrow Zn_O \longrightarrow Zn_2O_2 \rightarrow ZnO \{ simplest form or$ *empirical* $formula \}$

- 4. Section [C1] reviews the procedure for naming ionic compounds with either one polyatomic anion (no brackets needed around the anion) or more than one polyatomic anion (brackets needed around the anion). Section [C2] provides some practise examples.
- 5. Section **[D]** reviews the procedure for determining the formula for an ionic compound which contains a metal ion that can have more than one charge (i.e., has more than one oxidation state), e.g.,

Iron (III) chloride:

 $\underline{\operatorname{Fe}^{3+,\,2+}},\operatorname{Cl}^{-}\to\operatorname{Fe}^{3+},\operatorname{Cl}^{-},\operatorname{Fe}_\operatorname{Cl}_\to\operatorname{Fe}_{1}\operatorname{Cl}_{3}\to\operatorname{Fe}\operatorname{Cl}_{3}$

Since iron can have two oxidation states, i.e., 3^+ and 2^+ , one has to refer to the name of the compound in order to proceed with the cross-over rule. In this case, the name indicates that the charge is 3^+ , based on the Roman numeral III.

- 6. Section [E] reviews the procedure for determining the charge of an ion, if the formula is known.
- 7. Section **[F]** reviews the oxoacids / oxoanions for the elements Chlorine, Nitrogen, Sulfur and Phosphorous.
- 8. Sections **[G]** & **[H]** provide practise problems, with answers.
- 9. As indicated at various points in the text, the following references were used:
 - 1. Silberberg, Chemistry, 5th Edition, 2009.
 - 2. Mortimer, Chemistry, 5th Edition, 1983.
 - 3. Harris, Quantitative Chemical Analysis, 7th Edition, 2007.

- [A] <u>Resource page of monatomic and polyatomic ions</u>
 - (1) Notes on Ions
 - 1. Ions are divided into Cations & Anions
 - monatomic ions that contain only 1 atom, e.g., Na⁺, Cl⁻
 - polyatomic ions that contain 2 or more atoms, e.g., NH_4^+ , NO_3^- , SO_4^{-2-}
 - 2. Charges on Cations can be determined from the Group number on the Periodic Table
 - 1. Group IA (Group 1) has a charge of 1^+ , Na⁺
 - 2. Group IIA (Group 2) has a charge of 2^+ , Mg^{2+}
 - 3. The charge is based on the number of electrons that it can lose to another element.
 - 3. Charges on Anions can be determined from the Group number on Periodic Table
 - 1. Group IVA (Group 14) has a charge of 4, C^{4-} ; (ref: Mortimer, p.570; Silberberg, p.561)
 - 2. Group VA (Group 15) has a charge of 3', N^{3-}
 - 3. Group VIA (Group 16) has a charge of 2° , $O^{2^{\circ}}$
 - 4. Group VIIA (Group 17) has a charge of 1⁻, Cl⁻
 - 5. The charge is based on the number of electrons that it can gain from another element.
 - 4. Oxoanions contain an element bonded to one or more oxygen atoms , e.g., NO_3^- , SO_4^{-2-} , CrO_4^{-2-}

Fable I	Table	e of Ions		most ions from Silberbe	rg, p. 68, Table 2.5)	
(A)	$\frac{\text{Cations}}{1^+}$	<u>Formula</u> NH4 ⁺	Name ammonium			
(B)	Anions (SC	0); Anions with {sulfate/sul	n a 2 ⁻ charge can be re fite/sulfide//chromate	emembered using the acr e/dichromate/carbonate//	ronym <mark>SCO</mark> , /oxide/peroxide}	
	2 ⁻ 8	SO ₄ ²⁻ SO ₃ ²⁻ S ²⁻	sulfate sulfite sulfide	SC	0	
	С	$ \frac{{\rm CrO_4^{2^-}}}{{\rm Cr_2O_7^{2^-}}} \\ {\rm CO_3^{2^-}} $	chromate di <u>chromate</u> carbonate	sulfate, sulfite, sulfite sulfide	mate, <u>comate</u> , per <u>oxic</u>	<u>le</u>
	0	O^{2-} O_2^{2-}	oxide per <u>oxide</u>	<u>Formula</u>	Name	
(C)	<u>Anions</u> 1 ⁻	MnO4 ⁻ CH3COO ⁻ OH ⁻ HSO4 ⁻ HSO3 ⁻ HCO3 ⁻	permanganate acetate hydroxide bisulfate bisulfite bicarbonate	perchlorate chlorate chlorate chlorite chlorite chlorite intrate intrate intrate chlorite chl	$C10_{4}^{-}$ $C10_{3}^{-}$ $C10_{2}^{-}$ $C10^{-}$ $N0_{3}^{-}$ $N0_{2}^{-}$	
		5			=	

(D) Ions ending in "-ate" & "-ite", indicating 1 less oxygen atom

- SO₄²⁻ sulfate
- SO_3^{2-} sulfite
- NO₃⁻ nitrate
- NO_2^- nitrite
- ClO_3 chlorate
- ClO_2 chlorite

Cations	Formula	Name
	Li ⁺	Lithium
1+	Na ⁺	Sodium
	K ⁺	Potassium
	Cs^+	Cesium
	Be ²⁺	Beryllium
2 ⁺	Mg ²⁺	Magnesium
-	Ca ²⁺	Calcium
	Sr ²⁺	Strontium
	Ba ²⁺	Barium
Anions		
4	C ⁴⁻	carbide (methanide)
3-	N ³⁻	nitride
	P ³⁻	phosphide
2-	O ²⁻	oxide
2	S ²⁻	sulfide
	F	fluoride
T.	Cl	chloride
I	Br	bromide
	Ι-	iodide

Table IITable of Cations and Anions, Set #1

Table IIITable of Cations and Anions, Set #2

Cations	Formula	Name
1 ⁺	$\mathrm{NH_4}^+$	ammonium
Anions		
	SO ₄ ²⁻	sulfate
	SO ₃ ²⁻	sulfite
	$\operatorname{CrO_4}^{2-}$	chromate
2	$Cr_2O_7^{2-}$	di <u>chromate</u>
SCO	CO ₃ ²⁻	carbonate
	C ₂ ²⁻	carbide (acetylide)
	O ²⁻	oxide
	O ₂ ²⁻	per <u>oxide</u>
	MnO ₄	permanganate
17	CH ₃ COO ⁻	acetate
1	HSO ₄ ⁻	bisulfate
	OH ⁻	hydroxide

Substance	Name	Formula
(1) Element	Name of element, e.g. silver (Ag), copper (Cu) molecular elements (ref: Silberberg, 5th Ed, p92)	Symbol, e.g., Ag, Cu; Molecular elements: H ₂ , N ₂ , O ₂ , F ₂ , Cl ₂ , Br ₂ , I ₂ as diatomic molecules
(2) Monatomic [*] cations ([*] ref: Silberberg, p. 60)	Name of the element followed by the term "ion", e.g. sodium ion. If element has more than 1 charge, element name is followed by ion charge in Roman numerals	Symbol of element followed by superscript to indicate charge, Na ⁺ ion. Chromium (II) or Chromium (III).
(3) Polyatomic cations	Ammonium ion	NH4 ⁺
(4) Monatomic anions	Name of element changed to end in "-ide", bromine \rightarrow bromide oxygen \rightarrow oxide nitrogen \rightarrow nitride; carbon \rightarrow carbide	Symbol of element followed by a superscript to indicate charge: Br ⁻ , O ²⁻ , N ³⁻ , C ⁴⁻
(5) Polyatomic anions,(2 oxoanions in family)	Oxoanions with <i>more</i> oxygen atoms - "-ate". Oxoanions with <i>fewer</i> oxygen atoms - "-ite".	SO_4^{2-} = sulfate; NO_3^- = nitrate SO_3^{2-} = sulfite; NO_2^- = nitrite
 (6) Polyatomic anions, (4 oxoanions in family, Silberberg, p. 68) O.N Mortimer, p. 361 	perchlorate – ion with the <i>most</i> oxygen atoms chlorate – <i>one fewer</i> oxygen atoms chlorite – <i>two fewer</i> oxygen atoms hypochlorite – ion with the <i>least</i> oxygen atoms	$CIO_{4}^{-}, [O.N. = +7]$ $CIO_{3}^{-}, [O.N. = +5]$ $CIO_{2}^{-}, [O.N. = +3]$ $CIO^{-}, [O.N. = +1]$
(7) Polyatomic anions	hydroxide & cyanide	OH · & CN ·
(8) Ionic compounds	Name comes from the metal element and the non-metal element.	NaCl – Sodium chloride
(9) Binary & ternary ionic compounds	Binary – compounds containing 2 elements, Ternary – compounds containing 3 elements, at least 1 metal and non-metal. Name comes from metal & non-metal or polyatomic anion.	KCl KNO3
(10) Aqueous acids(binary acids)	Prefix "hydro-" followed by the name of the second element and ends in "-ic".	Hydrochloric – HCl Hydrofluoric – HF Hydroiodic – HI
 (12) Aqueous acids (Oxoacid) (ternary acids) higher charge ends in "ic" lower charge ends in "ous" 	Composed of hydrogen, a non-metal and oxygen. The name comes from the middle element and is changed to end in "-ic", e.g., chlorine \rightarrow chloric, nitrogen \rightarrow nitric	$\begin{array}{l} Chloric-HClO_{3}\\ Nitric-HNO_{3},[O.N.=+5]\\ Nitrous-HNO_{2},[O.N.=+3]\\ Sulfuric-H_{2}SO_{4},[O.N.=+6]\\ Sulfurous-H_{2}SO_{3},[O.N.=+4]\\ Carbonic-H_{2}CO_{3}\\ Phosphoric-H_{3}PO_{4} \end{array}$
(13) Other anions[oxidation state of Mn][O.N.]	(i) $SO_4^{2^\circ}$, sulfate $\rightarrow HSO_4^{-}$, hydrogen sulfate or bisulfate (ii) $SO_3^{2^\circ}$, sulfite $\rightarrow HSO_3^{-}$, hydrogen sulfite or bisulfite (iii) $CO_3^{2^\circ}$, carbonate $\rightarrow HCO_3^{-}$, hydrogen carbonate or bicarbonate (iv) MnO_4^{-} , permanganate, $[Mn = +7]$; MnO_4^{-2} , manganate, $[Mn = +6]$, Silberberg, p.1028.	

 Table IV
 Basic Rules for Naming Compounds

- [**B**] CROSSOVER RULE 1. Magnesium nitride $Mg^{2+}, \ N^{3-} \ \rightarrow \ Mg_N_ \ \rightarrow \ Mg_3N_2$ 2. Potassium chromate K^+ , $CrO_4 \xrightarrow{2-} \rightarrow K CrO_4 \rightarrow K_2CrO_4$ Calcium bromide 3. $Ca^{2+}, Br^{-} \rightarrow Ca_Br_ \rightarrow$ CaBr₂ 4. Cesium sulfide $Cs^+, S^{2-} \rightarrow Cs_S_ \rightarrow$ Cs_2S
- 5. Zinc oxide

 $Zn^{2+}, O^{2-} \rightarrow Zn_O \longrightarrow Zn_2O_2 \rightarrow ZnO \{ simplest form \}$

{note: when reduced to simplest form, this represents the *empirical* formula}

NOTE: If the subscript is 1, do not include it in the formula.

[C1] NAMING COMPOUNDS WITH POLYATOMIC ANIONS

Examples with only one polyatomic anion; thus, no brackets needed.

1. Sodium nitrate

 Na^+ , $NO_3^- \rightarrow NaNO_3$

2. Sodium nitrite

 Na^+ , $NO_2^- \rightarrow NaNO_2$

3. Sodium sulfate

 Na^+ , $SO_4^{2-} \rightarrow Na_2SO_4$

Examples where there is more than one polyatomic anion; thus, need brackets surrounding the anion.

4. Calcium acetate

 Ca^{2+} , $CH_3COO^- \rightarrow Ca(CH_3COO)_2$

5. Nickel (II) nitrate

$$Ni^{2+}$$
, $NO_3^- \rightarrow Ni(NO_3)_2$

NAMING COMPOUNDS WITH POLYATOMIC ANIONS - practise questions	
Sodium carbonate	
Na ⁺ , CO ₃ ²⁻ \rightarrow	Na ₂ CO ₃
Potassium permanganate	
$K^+, MnO_4^- \rightarrow $	KMnO ₄
Sodium sulfite	
Na ⁺ , SO ₃ ²⁻ \rightarrow	Na_2SO_3
Potassium dichromate	
$K^+, Cr_2 O_7^{2-} \rightarrow $	$K_2 Cr_2 O_7$
Nickel (II) nitrite	
$Ni^{2+}, NO_2^- \rightarrow$	Ni(NO ₂) ₂
Nickel (III) nitrite	
$Ni^{3+}, NO_2^- \rightarrow$	Ni(NO ₂) ₃
	NAMING COMPOUNDS WITH POLYATOMIC ANIONS - practise questions Sodium carbonate Na ⁺ , CO ₃ ²⁻ → Potassium permanganate K ⁺ , MnO ₄ ⁻ → Sodium sulfite Na ⁺ , SO ₃ ²⁻ → Potassium dichromate K ⁺ , Cr ₂ O ₇ ²⁻ → Nickel (II) nitrite Ni ²⁺ , NO ₂ ⁻ → Nickel (III) nitrite Ni ³⁺ , NO ₂ ⁻ →

[D] NAMING COMPOUNDS WITH MULTIPLE OXIDATION STATES

1. Iron (III) chloride

<u>Fe^{3+, 2+}</u>, Cl⁻ \rightarrow Fe³⁺, Cl⁻, Fe Cl \rightarrow Fe₁Cl₃ \rightarrow FeCl₃

2. Chromium (III) sulfide

 $\underline{Cr}^{3+, 2+}, S^{2-} \rightarrow Cr^{3+}, S^{2-} \rightarrow Cr \quad S \quad \rightarrow Cr_2S_3$

Tin (II) flouride, (stannous flouride) 3.

 $\underline{Sn}^{4+, 2+}, F^- \rightarrow Sn^{2+}, F^- \rightarrow Sn_F_- \rightarrow Sn_1F_2 \rightarrow SnF_2$

Iron (III) oxide, (ferrous oxide) 4.

$$\underline{\operatorname{Fe}^{3+,\,2+}}, \operatorname{O}^{2-} \to \operatorname{Fe}^{3+}, \operatorname{O}^{2-} \to \operatorname{Fe}_\operatorname{O}__ \to \operatorname{Fe}_2\operatorname{O}_3$$

5. Chromium (II) sulfide

 $\underline{Cr^{3+, 2+}}, S^{2-} \rightarrow Cr^{2+}, S^{2-} \rightarrow Cr_S_ \rightarrow Cr_2S_2 \rightarrow CrS \text{ {note: reduce to simplest form}}$

----- continued on next page -----

[E1] DETERMING CHARGE FOR AN ION

1.

2.

3.

4.

 Cr_2S_3 - what is the charge on the Cr ion? - S (sulfide) has a charge of 2^{-} , - since there are 3 sulfide ions = $3 \times (-2) = -6$ - formula charge = 0; thus, cation = 6- $Cr^{x+} + Cr^{x+}$: x + x = 6, 2x = 6, thus x = 3 - Cr has a charge of 3^+ {Cr can be either 3^+ or 2^+ } $FeCl_3$ - what is the charge on the Fe ion? - Cl (chloride) has a charge of 1^{-} , - since there are 3 chloride ions = $3 \times (-1) = -3$ - formula charge = 0; thus, cation = 3- Fe^{x+} : x = 3, - Fe has a charge of +3. {Fe can be either 3^+ or 2^+ } Ni_2O_3 - what is the charge on the Ni ion? - O (oxide) has a charge of 2^{-} , - since there are 3 oxide ions = $3 \times (-2) = -6$ - formula charge = 0; thus, cation = 6- Ni^{x+} + Ni^{x+} : x + x = 6, 2x = 6, thus x = 3 - Ni has a charge of 3^+ {Ni can be either 3^+ or 2^+ } $Ni(NO_3)_3$ - what is the charge on the Ni ion?

```
- NO<sub>3</sub> (nitrate) has a charge of 1^{-},
```

- since there are 3 nitrate ions = $3 \times (-1) = -3$
- formula charge = 0; thus, cation = 3
- Ni^{x+}: x = 3
- Ni has a charge of 3^+

```
{Ni can be either 3^+ or 2^+}
```

[E2] COMMON NAME FOR IONS WITH MORE THAN ONE OXIDATION STATE

Cations	Formula	Name
iron (III)	Fe ³⁺	ferric
iron (II)	Fe ²⁺	ferrous
chromium (III)	Cr ³⁺	chromic
chromium (II)	Cr ²⁺	chromous
copper (II)	Cu ²⁺	cupric
copper (I)	Cu^+	cuprous

As a guide to remember the charges, the charges for each ion are listed in decreasing order.

[F1] TERNARY ACIDS, (OXOANIONS, OXOACIDS)

Current terminology refers to oxoanions & oxoacids (ref: Silberberg, p. 68-70). Older terminology used the terms oxyanions & oxyacids (ref: Mortimer, p. 294).

Anion prefix / suffix	Acid prefix / suffix	Acid formula/name
per – ate	per – ic	HClO ₄
perchlorate (ClO ₄ ⁻)	perchloric	Perchloric acid
- ate	- ic	HClO ₃
chlorate (ClO ₃ ⁻)	chloric	Chloric acid
- ite chlorite (ClO ₂ ⁻)	- ous chlorous	HClO ₂ Chlorous acid
hypo – ite	hypo - ous	HClO
hypochlorite (ClO ⁻)	hypochlorous	Hypochlorous acid
- ate	- ic	HNO ₃
nitrate (NO ₃ ⁻)	nitric	Nitric acid
– ite	- ous	HNO ₂
nitrite (NO ₂ ⁻)	nitrous	Nitrous acid
- ate	- ic	H ₂ SO ₄
sulfate (SO ₄ ²⁻)	- sulfuric	Sulfuric acid
- ite sulfite (SO ₃ ²⁻)	- ous - sulfurous	H ₂ SO ₃ Sulfurous acid
- ate phosphate (PO ₄ ³⁻)	- ic - phosphoric	H ₃ PO ₄ Phosphoric acid
- ite phosphite (HPO ₃ ²⁻)	- ous - phosphorous	H ₃ PO ₃ Phosphorous acid ⁽¹⁾
hypo – ite	hypo - ous	H ₃ PO ₂
hypophosphite (H ₂ PO ₂ ⁻)	- hypophosphorous	Hypophosphorous acid ⁽²⁾

⁽¹⁾ Reference: Silberberg, p. 602, phosphite ion (HPO_3^{2-}) ⁽²⁾ Reference: Mortimer, p. 559.

[F2] ACIDS OF SULFUR: The oxoanions of sulfur.

> Sulfuric acid (O.N. of sulfur = +6, Mortimer, p. 531) \rightarrow H⁺ + HSO₄ \rightarrow H⁺ + SO₄². H_2SO_4 sulfuric acid \rightarrow H⁺ + hydrogen sulfate \rightarrow H⁺ + sulfate (Mortimer, p.533)

Sulfurous acid (O.N. of sulfur = +4; Mortimer p. 529)

 $\begin{array}{cccc} H_2SO_3 & \rightarrow & H^+ + & HSO_3 & \rightarrow & H^+ + & SO_3 & ^{2-} \\ sulfurous acid & \rightarrow & H^+ & + & hydrogen sulfite & \rightarrow & H^+ & + & sulfite & (Mortimer, p.529) \end{array}$

Peroxy acids: Sulfur.

An acid that contains a peroxide group (-O-O-) is termed a peroxy acid (Mortimer, p. 534).

- $H_2S_2O_8$ (peroxydisulfuric acid), which contains the peroxydisulfate ion ($S_2O_8^{2^-}$) (Mortimer, p. 535). (i) $S_2O_8^{2-}$ may also be termed *persulfate* (Harris, p. 335).
- Hydrolysis of peroxydisulfuric acid yields H₂SO₅ (peroxymonosulfuric acid) (Mortimer, p. 535). (ii)

<u>Thiosulfate</u> $S_2O_3^{2-}$, which is oxidized to <u>tetrathionate</u> $S_4O_6^{2-}$ (Mortimer, p. 535-536).

[F3] <u>ACIDS OF PHOSPHORUS:</u> The oxoanions of phosphorous.

<u>Phosphoric acid</u> (O.N. of phosphorus = +5, Mortimer, p. 556)

 $H_3PO_4 \rightarrow H^+ + H_2PO_4^- \rightarrow H^+ + HPO_4^{-2} \rightarrow H^+ + PO_4^{-3-}$

phosphoric acid \rightarrow H⁺ + dihydrogen phosphate \rightarrow H⁺ + hydrogen phosphate \rightarrow H⁺ + phosphate (Silberberg, p.602)

<u>Phosphorous acid</u> (O.N. of phosphorus = +3, Mortimer, p.559)

 $H_3PO_3 \rightarrow 2H^+ + HPO_3^{-2}$ (Mortimer, p. 559; H does not dissociate) phosphorous $\rightarrow 2H^+ + phosphite$

<u>Hypohosphorous acid</u> (O.N. of phosphorus = +1, Mortimer, p.559)

 $H_3PO_2 \rightarrow H^+ + H_2PO_2^-$ (Mortimer, p. 559; two **H** do not dissociate) hypophosphorous $\rightarrow H^+ +$ hypophosphite

Note: (i) The naming of the phosphorus oxoanions are based on the scheme reported in Silberberg, p. 602, i.e., phosphite ion $(\text{HPO}_3^{2^-})$, as well as Mortimer, p. 548, hypophosphite $(\text{H}_2\text{PO}_2^{-})$. *Current naming conventions may be different.*

- (ii) For phosphorus acid, only two of the hydrogens are dissociable and the 3rd hydrogen is bonded to the phosphorous atom; thus, is not dissociable (not acidic).
- (iii) For hypophosphorus acid, only one of the hydrogens is dissociable and the other two hydrogen atoms are bonded to the phosphorous atom; thus, is not dissociable (not acidic).
- (iv) O.N. based on Mortimer, p. 362.

[F4] OXIDATION NUMBER (O.N.)

The O.N. and oxidation state are equivalent terms and refers to the charge that an atom would have if the electrons are *completely transfered* to another atom(s).

For a monatomic ion, the O.N. is equal to the ion charge, e.g., Na^+ , O.N. = +1; Mg^{2+} , O.N. = +2.

For polyatomic ions, the sum of the O.N. for all atoms must equal the charge for the ion, e.g., NO_3 : since oxygen is -2, then -2 x 3 = -6. Therefore -6 + N = -1, thus, N = -1 + 6 = +5. Therefore, the O.N. for nitrogen is +5.

[G1] PRACTISE PROBLEMS

- (1) Provide the formula or name for the following:
 - (i) Cadmium sulfide (cadmium is a transition element most stable oxidation state +2)
 - (ii) Magnesium flouride
 - (iii) Zinc oxide (zinc is a transition element most stable oxidation state +2)
 - (iv) BaSO₄
 - (v) KCl
 - (vi) Na₃N
 - (vii) Sodium peroxide
 - (viii) Calcium nitride

[G1] PRACTISE PROBLEMS, continued,

- (ix) Barium hydroxide
- (x) Sodium hypochlorite {main component in bleach}
- (xi) LiOH
- (2) Provide the formula or name for the following (crossover rule):
 - (i) Ammonium carbonate
 - (ii) Sodium hydrogen phosphate
 - (iii) $Fe_2(CrO_4)_3$
 - (iv) Sodium manganate
 - (v) Calcium sulfate (commercial product Drierite, a drying agent, Harris, p. 31)
 - (vi) Magnesium oxide
- (3) Provide the formula or name for the following (cations with multiple charges multivalent):
 - (i) Iron (II) sulfide, (ferrous sulfide)
 - (ii) Iron (II) carbonate
 - (iii) Lead (IV) oxide
 - (iv) Cu₂O
 - (v) Chromous chloride
- (4) Provide the formula or name for the following (polyatomic anions):
 - (i) Calcium hydroxide
 - (ii) Barium chromate
 - (iii) BaSO₄
 - (iv) CaCO₃
 - (v) Cupric sulfate
 - (vi) K₂HPO₄
 - (vii) Magnesium perchlorate (a drying agent, Harris, p. 31)
 - (viii) Ammonium nitrate
 - _____

[G2] Answers to problems in G1

(1) Provide the formula or name for the following:

(i)	Cadmium sulfide	CdS
(ii)	Magnesium fluoride	MgF_2
(iii)	Zinc oxide	ZnO
(iv)	BaSO ₄	Barium sulfate
(v)	KCl	Potassium chloride
(vi)	Na ₃ N	sodium nitride

Answers to problems in G1 [G2] (vii) Sodium peroxide Na_2O_2 Calcium nitride (viii) Ca_3N_2 (ix) Barium hydroxide $Ba(OH)_2$ Sodium hypochlorite {bleach} NaClO (x) (xi) LiOH Lithium hydroxide (2)Provide the formula or name for the following (crossover rule): (i) Ammonium carbonate $(NH_4)_2CO_3$ (ii) Sodium hydrogen phosphate Na₂HPO₄ (iii) $Fe_2(CrO_4)_3$ Iron (III) chromate, (ferric chromate) Sodium manganate Na₂MnO₄ (forms a green coloured ion, Harris, p.336) (iv) (v) Calcium sulfate CaSO₄ Magnesium oxide (vi) MgO (3) Provide the formula or name for the following (cations with multiple charges - multivalent): Iron (II) sulfide FeS (i) (ii) Iron (II) carbonate FeCO₃ (iii) Lead (IV) oxide PbO₂ Copper (I) oxide, (cuprous oxide) (iv) Cu_2O Chromous chloride (v) $CrCl_2$ (4) Provide the formula or name for the following (polyatomic anions): (i) Calcium hydroxide $Ca(OH)_2$ (ii) Barium chromate BaCrO₄ Barium sulfate (iii) BaSO₄ Calcium carbonate (iv) CaCO₃

(v)Cupric sulfateCuSO4(vi)K2HPO4Potassiun hydrogen phosphate(vii)Magnesium perchlorate (drying agent)Mg(ClO4)2(viii)Ammonium nitrateNH4NO3

[H1] PRACTISE PROBLEMS, part 2

- (1) Provide the formula or name for the following:
 - (i) Sodium chloride
 - (ii) Magnesium sulfide
 - (iii) Sodium oxide
 - (iv) CaF₂

[H1] PRACTISE PROBLEMS, part 2

- (v) CuBr
- (vi) ZnO
- (vii) Na₃P
- (viii) Sodium nitrite
- (ix) Sodium thiosulfate
- (x) Potassium permanganate
- (xi) Calcium carbonate
- (xii) Sodium bisulfate
- (xiii) Sodium perchlorate
- (xiv) Calcium hydroxide
- (2) Provide the formula or name for the following (crossover rule):
 - (ii) Magnesium nitride
 - (iv) Ba₃N₂
 - (v) MgO
 - (vi) Be_3P_2
 - (vii) CaO
 - (viii) FeO
- (3) Provide the formula or name for the following (cations with multiple charges multivalent):
 - (i) Iron (II) hydroxide
 - (ii) Copper (II) carbonate
 - (iii) CuS
 - (iv) Fe₂O₃
 - (v) Colbalt (II) sulfide
 - (vi) Cu₂S
- (4) Provide the formula or name for the following (polyatomic anions):
 - (i) Sodium nitrate
 - (ii) Sodium sulfate
 - (iii) Magnesium acetate
 - (iv) $Ni(NO_3)_2$
 - (v) Na_2CO_3
 - (vi) $K_2Cr_2O_7$
 - (vii) Sodium bicarbonate
 - (viii) Sodium hydrogen phosphate

[H1] PRACTISE PROBLEMS, part 2

(ix) Magnesium nitrate

[H2] Answers to H1 , part 2

(2)

(3)

(1) Provide the formula or name for the following:

		C		
(i)	Sodium chloride	NaCl		
(ii)	Magnesium sulfide	MgS		
(iii)	Sodium oxide	Na ₂ O		
(iv)	CaF ₂	Calcium fluoride		
(v)	CuBr	Copper (I) bromide		
(vi)	ZnO	Zinc oxide		
(vii)	Na ₃ P	Sodium phosphide		
(viii)	Sodium nitrite	NaNO ₂		
(ix)	Sodium thiosulfate	Na ₂ S ₂ O ₃		
(x)	Potassium permanganat	te KMNO ₄		
(xi)	Calcium carbonate	CaCO ₃		
(xii)	Sodium bisulfate	NaHSO ₄		
(xiii)	Sodium perchlorate	NaClO ₄		
(xiv)	Calcium hydroxide	Ca(OH) ₂		
Provid	e the formula or name	for the following (crossover rule):		
(ii)	Magnesium nitride	Mg_3N_2		
(iv)	Ba_3N_2	Barium nitride		
(v)	MgO	Magnesium oxide		
(vi)	Be ₃ P ₂	Beryllium phosphide		
(vii)	CaO	Calcium oxide		
(viii)	FeO	Iron (II) oxide, Ferrous oxide		
Provide the formula or name for the following (cations with multiple charges - multivalent):				
(i)	Iron (II) hydroxido	$E_{\alpha}(\Omega H)$		

(1)	Iron (II) hydroxide	$Fe(OH)_2$
(ii)	Copper (II) carbonate	CuCO ₃
(iii)	CuS	Copper (II) sulfide
(iv)	Fe ₂ O ₃	Iron (III) oxide
(v)	Colbalt (II) sulfide	CoS
(vi)	Cu ₂ S	Copper (I) sulfide

[H2] Answers to H1 , part 2

(4) Provide the formula or name for the following (cations with multiple charges - multivalent):

(i)	Sodium nitrate	NaNO ₃
(ii)	Sodium sulfate	Na ₂ SO ₄
(iii)	Magnesium acetate	Mg(CH ₃ COO) ₂
(iv)	Ni(NO ₃) ₂	Nickel (II) nitrate
(v)	Na ₂ CO ₃	Sodium carbonate
(vi)	$K_2Cr_2O_7$	Potassium dichromate
(vii)	Sodium bicarbonate	NaHCO ₃
(viii)	Sodium hydrogen phosp	hate Na ₂ HPO ₄
(ix)	Magnesium nitrate	$Mg(NO_3)_2$

_____ end of document ______