Name: Unit 3:1 Period: **Naming Compounds** p-----How to use this chart-Exception— Determine what the O₂ is "peroxide" and can compound is made of and What's it Made of? make polyatomic comfollow the arrows. The pounds with only 2 elechart will tell you how to ments! O2 with a non-metal name the compound. is $\underline{dioxide}$. O₂ with a metal Metal and 3 or more OR Hydrogen (acting as a non-metal non-metals elements metal) is peroxide. ionic covalent polyatomic compound compound compound **USE GREEK PREFIXES** CHECK THE CHART BELOW USE "- IDE" ENDING (NO PREFIXES!) (NO PREFIXES!) Put prefixes in front of element names to tell how many atoms are there. Use the names on the chart. Name the metal and non-metal If the polyatomic ion is the cation end the Don't use "mono" for first name, and change the ending to "ide". second name with "-ide". but always for second name. Li₂S NaNO₃ N_2O_4 Metal and non-metal—ionic 3 elements — polyatomic 2 non-metals—covalent Check chart (see below) Lithium Sulfide Na - sodium (di = 2 and tetra = 4)NO₃ - nitrate (on chart) (not dilithium sulfide— "Dinitrogen tetroxide" no prefixes for ionic compounds) Sodium nitrate Why are ionic compounds so easy **Greek Prefixes** to name? Because most ionic compounds can only form one Mono - 1 Hexa - 6way, using the oxidation numbers. Di - 2Hepta - 7 In covalent compounds, though, Tri - 3Octa - 8 non-metals can sometimes com-Tetra - 4 Nona - 9bine in multiple ways (carbon Penta – 5 Deca - 10 monoxide; carbon dioxide). So, covalent compounds use prefixes.

Transition Metals Can Have More Than One Oxidation Number

Iron (II) has an oxidation number of 2+ Iron (III) has an oxidation number of 3+. When naming them you must specify WHICH ONE.

> FeO—Iron (II) oxide Fe₂O₃— Iron (III) oxide

Hints to remember prefixes:

Monorail – one rail train Monocle – glasses for one eye with only a single lens.

<u>Di</u>lemma – struggle between 2 choices.

<u>Tri</u>cycle – 3 wheels

<u>Pentagon</u> – 5 five sided military building in Washington, D.C.

Octopus – 8 legs

Decade - 10 years

Polyatomic Ions						
Oxidation #	Name	Formula				
1+	ammonium	$\mathrm{NH_4}^+$				
1-	acetate	$C_2H_3O_2$				
2-	carbonate	CO ₃ ²⁻				
2-	chromate	CrO ₄ ²⁻				
1-	hydrogen carbonate	HCO ₃ ¹⁻				
1+	hydronium	H_3O^+				
1-	hydroxide	OH^{1-}				
1-	nitrate	NO_3^{1-}				
2-	peroxide	O_2^{2-}				
3-	phosphate	PO ₄ ³⁻				
2-	sulfate	SO_4^{2-}				
2-	sulfite	SO_3^{2-}				

Name: ______
Period: _____

<u>M</u> etal or <u>N</u> on-metal?	Ionic or Covalent?	Name These Ionic Compounds	Use the Polyatomic Ion Chart on the front of the worksheet to name these Polyatomic Ions:
M N		MgF ₂ Magnesium Fluor <u>-ide</u>	name these I oryatomic ions.
Iron Oxide	Ionic	Li ₂ O Lithium Ox	HCO ₃ ¹⁻ <u>Hydrogen carbonate</u>
Barium Chloride		NaCl Sodium Chlor-	SO ₄ ²⁻
Carbon Dioxide		K ₂ O Potassium Ox-	O ₂ ²
Magnesium Oxide		CaSSulf	SO ₃ ² -
Aluminum Fluoride		BeI ₂ Iod	NO ₃ ¹⁻
Aidillilidii Tuoride		AlBr ₃ Brom-	NH ₄ ⁺
Nitrogen Tribromide		CaF ₂	CrO ₄ ²⁻
		2	OH ¹⁻
Chromium Fluoride		MgO	PO ₄ ³⁻
Potassium Oxide		LiCl	CO ₃ ²⁻

Define these (Greek Prefixes	1. CO ₂	A. Carbon monoxide	Name These Covalent Compounds
Penta =	Tetra =	2. C ₂ O ₄	B. Carbon dioxide	Si ₂ O ₃ Disiliconoxide
Nona =	Hexa =	3. C ₃ O ₅	C. Dicarbon monoxide	N ₃ Cl ₄ nitrogen tetrachloride
Mono =	Hepta =	4. CO	D. Tricarbon pentoxide	SO ₂ Sulfuroxide
Octa =	Deca =	5. C ₂ O	E. Dicarbon tetroxide	PO ₅ Phosphorousox
Tri =	Di =	6. CO ₈	F. Carbon octoxide	S_2F_4 sulfurfluor

these Polyatomic Compounds	Classify and Name These Compounds		
emember — no prefixes!)	Ionic, Co	valent, or Polyatomic	Name
Calcium	1. BaCl ₂	Ionic	Barium chloride
carbonate	2. CO _		
Copper (I)	3. Ag ₂ O _		
chloride	4. K ₂ SO ₄ _		
Magnesium	5. MgBr ₂ _		
Potassium	6. SO ₃ _		
Lithium	7. P ₂ O ₄ _		
M H	8. Be(CrO ₄) _		
AP	9. LiF _		
	11. CO ₂		
	12. OF ₂		
	Calcium carbonate Copper (I) chloride Magnesium Potassium Lithium A	Ionic, Co Calcium 1. BaCl ₂	Ionic, Covalent, or Polyatomic

Name: ______Period: _____

<u>M</u> etal or <u>N</u> on-metal?	Ionic or Covalent?	Name These Ionic Compounds	Use the Polyatomic Ion Chart on the front of the worksheet to name these Polyatomic Ions:		
M N Iron Oxide	Ionic	MgF ₂ Magnesium Fluor <u>-ide</u>	name these r of atomic folis.		
M N	.Ionic	Li₂O Lithium Ox- ¡de	HCO ₃ ¹⁻ <u>Hydrogen carbonate</u>		
Barium Chloride	10 E	NaCl Sodium Chlor-ide	SO42- <u>Sulfate</u>		
Carbon Dioxide	Covalent	K₂O Potassium Ox-jde	O_2^2 peroxide		
Magnesium Oxide	Ionic	Cas Calcium sulf-ide	SO32- <u>Sylfite</u>		
M N	——————————————————————————————————————	Belz beryllium Iod-jde	NO31- <u>nitrate</u>		
Aluminum Fluoride	Ionic _	AlBr3 Alyminum Brom-ide	NH ₄ + 2mmon îum		
Nitrogen Tribromide	Covalent	U.S. S. I.	CrO42- chromate		
MN	 Ionic	CaF2 Calcium Flyoride	OH1- hydroxide		
Chromium Fluoride	\$ 100 mm	MgO Magnesium oxide	PO43- phosphate		
Potassium Oxide	Ionic	Lici <u>Lithium chloride</u>	CO32- carbonate		

Define these (Greek Prefixes	1. CO ₂ B	A_Carbon monoxide	Name These Covalent Compound	
Penta =	Tetra = <u>4</u>	2. C ₂ O ₄ €	B Carbon dioxide	Si ₂ O ₃	Disilicon <u>fr</u> oxide
Nona =	Hexa = <u>6</u>	3. C ₃ O ₅	€. Dicarbon monoxide	N_3Cl_4	<u> †rī - nitrogen tetrachloride</u>
Mono =	Hepta = $\frac{7}{2}$	4. CO-A	D: Tricarbon pentoxide	SO_2	Sulfur <u>J</u> oxide
Octa = <u></u>	Deca = <u> </u>	5. C ₂ O ←	Æ∴ Dicarbon tetroxide	PO_5	Phosphorous penta oxide
Tri =	Di =	6. CO ₈ F	P. Carbon octoxide	S_2F_4	<u>di</u> sulfiur <u>jeta</u> fluor <u>je</u>

The second secon	these Polyatomic Compounds	Classify and Name These Compounds			
(R	temember — no prefixes!)	Ionic, Covalent, or Polyatomic Name			
CaSO ₄	Calcium _su/fate	1. BaCl ₂	Ionic	Barium chloride	
K ₂ CO ₃	Pot 355 iUM carbonate	2. CO	covalent	carbon monoxide	
CuNO ₃	Copper (1) nitrate	3. Ag ₂ O	<u> Ionic</u>	silver oxide	
NH4Cl	<u>а тырыгим</u> chloride	4. K ₂ SO ₄	polyatomic	potassium sulbte	
Mg(NO ₃) ₂	Magnesium <u>nitate</u>	5. MgBr ₂	<u>ionic</u>	magnesium bromide	
K ₃ PO ₄	Potassium phosphate	6. SO ₃	covolent	sy fur trioxide	
Li ₂ (CrO ₄)	Lithium Chromate	7. P ₂ O ₄	covelent	Ji phosphorous tetre oxide	
Mg(OH) ₂	Magnesium Hydroxide	8. Be(CrO ₄)	polystomK	beryllium chromate	
Al(PO ₄)	Aluminum Phosphate	9. LiF	-70 Mic	lithium fluoride	
K(NO ₃)	Potossium nitrate	11. CO ₂	_covatent	carbon monoxide	
Ca ₂ SO ₃	calcium sylfite	12. OF ₂	co valent	oxygen di Fluoride	

Name: _____

Period:

Oxidation Numbers, Notation, Lewis Dot Diagrams

Oxidation Numbers

The oxidation numbers tell you how many electrons an element will gain or lose. This tells you how it will combine with other elements.

Atoms gain or lose electrons when near certain other elements to fulfill the octet rule: "If I 8 I full". Full electron levels are more stable. If an atom has 1 or 2 valence electrons it will lose them to have a full inner level. If an atom has 6 or 7 valence electrons, it will gain electrons to fill an electron level.

1	-	← Oxidation Numbers ←						(1)
1A 1 H	2A		3 13A	4 14A	(-3)	-2 16A	(-1)	18A 2 He
3	4	Divides metals and	5	6	7	8	9	10
Li	Be		B	C	N	O	F	Ne
11	12	non-metals	13	14	15	16	17	18
Na	Mg		A1	Si	P	S	Cl	Ar
19	20	Transition Metals	31	32	33	34	35	36
K	Ca	(Oxidation #s vary)	Ga	Ge	As	Se	Br	Kr
1	2		3	4	(-3)	(-2)	(1)	0

column 18A (the Noble Gases) have an oxidation # of 0. This means they don't gain or lose electrons, so they don't react or form compounds. They are *INERT*.

The elements in

Metals (Positive Ions)

Positive because they *LOSE* electrons.

Non-metals (Negative Ions) Negative because they *GAIN* electrons.

Notation

The above notation tells you that each of the Sodium atoms lost 1 electron. Since there are 2 Sodium atoms, there were 2 electrons lost (1 each). The charge is the oxidation number.

Losers of electrons become positive (a positive ion).

Electrons are negative, so losing negatives makes it more positive.

$$Mg^{2+}$$
 Lost 2 electrons

Gainers of electrons become negative (a negative ion).

Electrons are negative, so gaining negatives makes it more negative.

$$\bigcap_{n}$$
 Gained 2 electrons

Subscripts tell you the number of atoms in a molecule.

O₂ 2 Oxygen atoms

No number means 1 atom

H₂O ² Hydrogen atoms 1 Oxygen atoms

 $SO_4 \ {}^{1\, Sulfur\ atom}_{4\ Oxygen\ atoms}$

Lewis Dot Diagrams

Dot Diagrams (sometimes known as Lewis dot diagrams) are a depiction of an atom's valence electrons. They are a powerful tool in helping you understand, see, and even predict molecular bonding.

The dots represent valence electrons

Neon has 8 valence electrons and no openings. Neon has fulfilled the octet rule and will not react with other atoms. Openings show where electrons can be gained or shared from other atoms.

Oxygen has 6 valence electrons, so it wants 2 more to be full.

Electrons can move around for bonding.

Magnesium has 2 valence electrons. It will lose them to a non-metal and become a positive ion.

X's can be used to keep track of electrons from other atoms.

The x shows that Lithium gives its one valence electron to Chlorine. Chlorine now has 8 and is full.

T	r	2.0	
	IN1T	3.7	

Name:	 	
Period:	 	

1. Oxidation #s 2. Negative ion 3. Positive ion 4. Subscript 5. Lewis Dot Diagrams Calcium (Ca)		1. Metals 2. Nonmetals 3. Octet Rule 4. Noble Gases 5. Transition Metals Give these elements with oxidation # in ion notation Oxygen (O) O ²⁻ . Fluorine () Nitrogen () Lithium () Beryllium () Calcium () Boron () Bromine ()				
Aluminum () MgCl ₂ Hov Li ₂ O Hov Al ₂ O ₃ Hov Cl ₂ H ₂₂ O ₁₁ Hov CO ₂ Hov H ₂ O Hov How many electr Na ¹⁺ Lost 1 Al ³⁺ O ²⁻ He ⁰ He ⁰	MgCl ₂ How many total atoms? Li ₂ O How many total atoms? Al ₂ O ₃ How many total atoms? C ₆ H ₁₂ O ₆ How many total atoms? CO ₂ How many total atoms? H ₂ O How many total atoms? Draw the Lewis Dot Diagrams for the following. Carbon Magnesium Oxygen Helium			lowing.		
Give abbreviations Oxygen (O)	Nitrogen () Hydrogen ()	Aluminum	Argon	Lithium	Fluorine	
Aluminum () Which of these is in A. × B. Be ×	Neon ()	Draw 3 different of Draw Lewis Dotathem together to Juliahium Oxy	Diagrams for find how they	· Lithium and Ox	tygen, then put	

1.	Oxidation #s
1.	Oxidation #8

- 2. Negative ion
- 3. Positive ion B
- 4. Subscript (1)
- 5. Lewis Dot Diagrams
- A. Show the number of atoms in a molecule.
- B. An atom that lost electrons.
- C. Shows the number of electrons commonly gained or lost.
- D. Way to show an atom's valence electrons to visualize bonding.
- E. An atom that gains electrons.

1. Metals

- 2. Nonmetals
- 3. Octet Rule
- 4. Noble Gases
- 5. Transition Metals 🖂
- A. Elements in column 18A that don't combine into molecules.
- B. The oxidation numbers of these elements can vary.
- C. Elements that lose electrons.
- D. Elements that gain electrons.
- E. Atoms tend to be more stable with 8 valence electrons.

Give abbreviations and oxidation numbers

Calcium (<u>Ca</u>) <u>+2</u>	
Potassium (K)	-44
Chlorine (Cl) -	

Nitrogen (N)Hydrogen () Helium (He) O Magnesium (Mg) Z

Carbon (C)

Aluminum (A) 3 Krypton (K) 0

Give these elements with oxidation # in ion notation

Oxygen (<u>O</u>)O ²⁺
Nitrogen (N)
Beryllium (Be) Be ^{Z+}
Silicon $(5i)$ $\leq i^{4+}$

Boron (B)

Fluorine (F		F	- -
Lithium (L)	25	1+
			5.1

Hydrogen (H)

τ↓ \- MgCl 2	How many Chlorines?	2
	How many Oxygen?	
	How many Aluminums?	Z
$-7C_{12}H_{22}O_{11}$	How many Hydrogens?	22

CO₂ How many Carbons? H₂O How many Hydrogens? 2

MgCl₂ How many total atoms? Li₂O How many total atoms?

Al₂O₃ How many total atoms?

CO₂ How many total atoms? H₂O How many total atoms?

How many electrons are gained or lost?

•
Lost 1
10st3
a=sned Z
none

Cu2+ 105+7 Cl1- 4=140

Draw the Lewis Dot Diagrams for the following.

Carbon	Magnesium	Oxygen	Helium
e ('	Mg o	06	·He"
Aluminum	Argon	Lithium	Fluorine
Å\°	Ar.	17 3	, + 0

Give abbreviations and valence electrons

Oxygen (\underline{O})	6	
Lithium (\overline{Li}		
Lithium (Lī	يلــد	_

Silicon (Si) Nitrogen (M)

Helium (He) _

Bromine (BY) + Hydrogen (H) \mathbb{Z} Magnesium $(\mathbb{H}q)$ \mathbb{Z}

Draw 3 different Lewis Dot Diagrams for Nitrogen.

Which of these is incorrect?

Draw Lewis Dot Diagrams for Lithium and Oxygen, then put them together to find how they combine.

Put boxes around any electrons openings

Lithium Oxygen

Combined

Period:

Ionic Compounds

Ion Charges Add

An ion is an atom with a positive or negative charge because it has gained or lost electrons. With multiple ions, their charges add together.

Oxidation Numbers

Each Sodium atom gives up 1 electron, so 2 Sodium atoms (Na₂) will give up 2 electrons and have a charge of 2+.

Opposite Ions Attract

Just as with protons and electrons: oppositely charged atoms attract. Positive ions (metals) attract negative ions (nonmetals), forming ionic compounds.

Positive ions attract Negative ions

$$\underset{\textit{ion of } 2+}{\textit{Positive}} \ Mg^{2+} \overset{\textit{attracts}}{\longleftrightarrow} \ F^{1-} \ \underset{\textit{ion of } 1-}{\textit{Negative}}$$

Electron Arrows

Electron arrows are an easy way to visualize electrons being given or accepted by atoms.

The Symbols

→ Losing 1 electron

→ Gaining 1 electron

An ionic bond

The number of electron arrows comes from the oxidation numbers. Positives give electrons; negatives receive.

$$Mg^{2+}$$

Magnesium's oxidation number is +2, so it will lose 2 electrons.

> F¹⁻
Sulfur's oxidation number is -1, so it will gain 1 electron.

Ionic Compounds

How do elements combine to form compounds? Elements rarely occur naturally as individual atoms. Instead, each sample of an element contains a huge number of atoms! When placed together most elements will begin to lose electrons (becoming a positive ion) or gain electrons (becoming a negative ion). The positive ions are attracted to negative ions and combine into ionic compounds.

Ionic compounds always combine in a particular ratio (same number of each atom) so that they are *balanced*.

The net charge must equal zero!

When elements combine there are a lot of atoms of each element. Each atom will gain or lose electrons according to its oxidation number.

Each potassium loses 1 electron.

Each oxygen gains 2 electrons.

$$K^{1+} \longrightarrow O^{2-}$$

Oxygen is not full, so it will attract another K.

$$K^{1+}$$
 \longrightarrow O^{2-}

Oxygen is now full and the compound is balanced.

Each oxygen will attract two potassiums, so potassium and oxygen will always combine as K_2O .

Limiting Reactant

As atoms combine into compounds, eventually one element will run out first. This is the limiting reactant, the reactant that is limited in amount. When one element is gone, the reaction will stop.

When the wood is all burned, the fire will stop. Wood is the limiting reactant because there is still oxygen.

Magnesium and fluorine combine in a 1 to 2 ratio: MgF₂. In this simplified example, the 8 fluorine atoms could combine with 4 magnesium atoms. Since there are only 3 magnesium atoms, the magnesium will run out first, making magnesium the limiting reactant. In the real world there are billions of atoms when they form compounds. Chemists are able to know how many atoms there are by the weight of the samples.

H	nit	3.	3

Name:	
Period:	

 Oxidation #s Zero Negative ion Positive ion Balanced 	 A. Attracted by a positive ion. B. Tells you how many electrons will be gained or lost by an element. C. Net charge of a balanced ionic compound. D. When the number of electrons given equals the number taken. E. Attracted by a negative ion. 	 6. Use the following symbols to answer the following. A. An electron being lost: B. An ionic bond: C. An electron being gained: D. Used for a metal: E. Used for a nonmetal:
7. Give abbreviation Calcium Ca ²⁺ Oxygen Sodium	Nitrogen Fluorine Aluminum	8. Give number of electrons gained or lost $Ca^{2+} = 2 lost = Ca^{2+}_3 = 6 lost = .$ $F^{1-} = F^{1-}_3 = .$ $Al^{3+} = Al^{3+}_2 = .$ $O^{2-} = O^{2-}_3 = .$ $Na^{1+} = Na^{1+}_3 = .$ $N^{3-} = N^{3-}_2 = .$

For the following six examples, combine the two given atoms using electron arrows, then give the balanced ionic compound formula.

Combine Sodium and Oxygen	Give the balanced ionic formula for Sodium Oxide.	Combine Beryllium and Fluorine	Give the balanced ionic formula for Beryllium Fluoride.
Combine Magnesium and Sulfur	Give the balanced ionic formula for <i>Magnesium Sulfide</i>	Combine Lithium and Phosphorus	Give the balanced ionic formula:
			Compound name:
Combine Calcium and Nitrogen	Give the balanced ionic formula:	Combine Aluminum and Oxygen	Give the balanced ionic formula for Beryllium Fluoride.
	Compound name:		Compound name:
Write the balanced ionic compounds for the following:		Write the balanced ionic formulas	for the following:
Be^{2+} and O^{2-} : Na ¹⁺ and S^{2-} :		Lithium and Oxygen:	
Li ¹⁺ and N ³⁻ : Ca ²⁺ and N ³⁻ :			
Al ³⁺ and Cl ¹⁻ :	K^{1+} and $(SO_4)^{2-}$:	Aluminum and Oxygen:	

Name:		
Period:		

 Oxidation #s B Zero Negative ion A 	A. Attracted by a positive ion. B. Tells you how many electrons will be gained or lost by an element. C. Net charge of a balanced ionic	6. Use the following symbols to answer the following. → → → A. An electron being lost: →
4. Positive ion ∈ 5. Balanced →	compound. D. When the number of electrons given equals the number taken. E. Attracted by a negative ion.	B. An ionic bond: C. An electron being gained: D. Used for a metal: E. Used for a nonmetal:
7. Give abbreviation Calcium Ca ²⁺ Oxygen	O^{2-} Fluorine $\longrightarrow F^{1-}$	8. Give number of electrons gained or lost $Ca^{2+} = 2 lost \qquad Ca_3^{2+} = 6 lost \qquad .$ $F^{1-} = \frac{1}{9} \frac{3}{105} $
Sodium Nath	\Rightarrow Aluminum $A^{3+} \stackrel{?}{=} ?$	Na^{1+} lost Na_3^{1+} 3 lost N^3 3 gained N_2^{3-} 6 gained

For the following six examples, combine the two given atoms using electron arrows, then give the balanced ionic compound formula.

Combine Sodium and Oxygen Na 1+ Na -> - O ²⁻	Give the balanced ionic formula for Sodium Oxide.	Combine Beryllium and Fluorine Be 2+ F	Give the balanced ionic formula for Beryllium Fluoride.
Combine Magnesium and Sulfur $Mg \xrightarrow{z+} \longrightarrow 5^{z-}$	Give the balanced ionic formula for <i>Magnesium Sulfide</i> Mg	Combine Lithium and Phosphorus 2; 1+ 3- 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Give the balanced ionic formula: Compound name: Lithium phosphide
Combine Calcium and Nitrogen Color 1	Give the balanced ionic formula Compound name: Calcium Nitride	Combine Aluminum and Oxygen A13+-37-02- A1 -37-02-	Give the balanced ionic formula for Beryllium Fluoride. Ala Compound name: Aluminum oxide
Li ¹⁺ and N ³⁻ : Li ₃ N	Pounds for the following: Na^{1+} and S^{2-} : $Naz O$ Ca^{2+} and N^{3-} : $Naz O$ Na^{1+} and $Naz O$ $Naz O$	Write the balanced ionic formula Lithium and Oxygen: Magnesium and Iodine: Calcium and Sulfur: Aluminum and Oxygen:) I ₂ S

Period:

Covalent Compounds

When two nonmetals bond neither one is willing to lose their electrons. Why? Because they are too close to having a full octet of valence electrons. So they share.

Use x's or dots for different atoms

If you use only dots you won't be able to see where the electrons came from.

Hard to read

Cl Cl

Easy to read

• • × ×
• Cl • Cl ×

Remember the dots are Valence Electrons

Chlorine has 7 valence electrons Chlorine needs 1 more to be full.

Phosphorus has 5 valence electrons Phosphorus needs 3 more to be full.

And the dots can be moved to wherever you need them.

Covalent Bonding

You must fulfill two criteria when making covalent bonds:

- 1) the individual atoms must have the proper number of valence electrons;
- 2) when bonded each atom must have 8 electrons through sharing.

Oxygen does not exist as an individual atom.

Each oxygen has only 6 valence electrons and needs 2 more.

Together each oxygen has 8 valence electrons thru *sharing*.

Short Hand

Though Lewis Dot Diagrams are a powerful tool to determine how elements bond, they take a long time to draw. Chemists use lines to show bonds.

A Covalent Bond

—

Each line means 2 electrons are shared **Single bond**—each atom shares 1 electron (2 total)

A single covalent bond. Each Fluorine has 7 v.e. plus 1 for the 1 bond = 8! **Double bond**—each atom shares 2 electrons (4 total)

A double covalent bond.

Each Oxygen has 6 v.e. plus 2 for the 2 bonds = 8!

Triple bond—each atom shares 3 electrons (6 total)

A triple covalent bond.

Each Nitrogen has 5 v.e. plus 3 for the 3 bonds = 8!

Electrolytes

Electrolytes are compounds that allow electricity to flow when they are dissolved in water. Ionic compounds are good electrolytes. Covalent compounds are not.

Ionic Compounds are Electrolytes

Ionic compounds dissolve into ions. Ions conduct electricity. Dissolved ionic compound (like salt)

Covalent Compounds are NOT Electrolytes

1. X's 2. Covalent	A. A bond of negatively and positively charged atoms.B. Used instead of dots to show a	 Electrolyte Double Bond 	A. When 4 valence electrons are shared.B. Used instead of dots to simplify the writing on bonds. Means 2 electrons.
3. Ionic 4. Diatomic	different atom's valence electrons. C. A bond where electrons are shared.	3. Triple Bond	C. Shows 6 valence electrons being shared.
Molecule	D. Number of electrons each atom in a covalent compound has after sharin		D. Something dissolved in water that allows electricity to flow.
5. 8 Valence Electrons	E. A molecule of two atoms of the sar element.	ne 5. Single Bond	E. Occurs when 2 valence electrons are shared in a covalent compound.
	Decide what's wrong with these cove	lent compounds and the	n draw them correctly
Wrong	Right Wrong	Right	Wrong Right
N • × O × × × × × × × × × × × × × × × × ×	• C • × × ×		* F * • O • * O * * F * * F * * F * * F * * T *
Using the short har	nd notation, count how many electrons to	ne atoms have and if they	have a full number of valence electrons.
P ≡ # o	of electrons: 8 Full? Yes.	O — # of	electrons:Full?
C = #c	f electrons: Full?	N = # of	electrons:Full?
Cl — # 0	of electrons: Full?	=Si- # of	electrons:Full?
I = #0	of electrons: Full?	—S— # of	electrons:Full?
Draw the Lewis D	oot Diagram for molecular Chlorine (Cl ₂	Draw the Lewis	Dot Diagram for molecular Oxygen (O ₂).
	Short hand		Short hand
	s Dot Diagrams to predict how and Fluorine will combine.		wis Dot Diagrams to predict how en and Bromine will combine.
	Short han		Short hand
Are these	e Electrolytes? Yes or No?	In this setup, is the	
NaCl	Li ₂ S	dissolved compou ionic or covalent?	nd
CO ₂	Al ₂ O ₃		
MgCl ₂	SeO	How do you know	
NBr ₃ BeO	FeO		
	Li(NO ₃)		

1.	X's	${\mathcal B}$
2.	Cova	lent 🔼

3. Ionic A

4. Diatomic E

Molecule

Electrons

5. 8 Valence

- A. A bond of negatively and positively charged atoms.
- B. Used instead of dots to show a
- different atom's valence electrons. e. A bond where electrons are shared.
- D. Number of electrons each atom in a covalent compound has after sharing.
- E. A molecule of two atoms of the same element.
- 1. Electrolyte
- Double Bond ↓
- 3. Triple Bond
- 5. Single Bond

- X. When 4 valence electrons are shared.
- B. Used instead of dots to simplify the writing on bonds. Means 2 electrons.
- C. Shows 6 valence electrons being shared.
- D. Something dissolved in water that allows electricity to flow.
- É. Occurs when 2 valence electrons are shared in a covalent compound.

Decide what's wrong with these covalent compounds and then draw them correctly..

Using the short hand notation, count how many electrons the atoms have and if they have a full number of valence electrons.

of electrons: 7 Full? No

of electrons:

of electrons: ______ Full? No

of electrons:

=Si − # of electrons: 7

of electrons:

-S-

of electrons: Full? Yes

Draw the Lewis Dot Diagram for molecular Chlorine (Cl2).

Short hand

Draw the Lewis Dot Diagram for molecular Oxygen (O2).

Short hand

Using Lewis Dot Diagrams to predict how Oxygen and Fluorine will combine.

Short hand

Using Lewis Dot Diagrams to predict how Nitrogen and Bromine will combine.

Are these Electrolytes? Yes or No?

NaCl CO₂MgCl₂ Li2S Al_2O_3 SeO

FeO Li(NO₃) dissolved compound ionic or(covalent?)

In this setup, is the

How do you know? so not ionic.

NBr₃

BeO

Name: ______Period: _____

Changes of Matter Review

	T						
1. Transition Metals			positive ions.	r nagativa i	1. Oxidation #s	A.	Tells you that atoms are more stable with 8 valence electrons.
2. Noble Gases			ctrons, becoming nds formed whe		2. Octet Rule	B.	A molecule of two atoms of the same
3. Metals		shared.	nas formed wife	n elections are	3. Diatomic		element.
4. Nonmetals	1	Do not h numbers	ave consistent o	xidation	Molecule 4. Electrolyte	C.	When dissolved in water, a compound that allows electricity to pass.
5. Ionic	E. I	Do not c	ombine into con	npounds.		D.	,
6. Covalent	F. C	Compou and nega	nds formed betw tively charged a	veen positively toms.	5. Valence Electrons	E.	lost. Outermost electrons of an atom.
Give the symbol	Give the symbol and atomic number of these elements.						nber of valence electrons for these:
Oxygen (O)	<u> </u>		Boron ()		Aluminum (<u>Al</u>)	13	<u>B.</u> Beryllium ()
Nitrogen ()			Bromine ()		Neon ()		Sodium ()
Helium ()			Iron ()		Chlorine ()		Calcium ()
Sodium ()_			Mercury ()		Boron ()		Sulfur ()
Give the symbol	and n	umber o	f protons for th	ese elements.	Give these elemen	its w	vith oxidation # in ion notation
Aluminum (<u>Al</u>)	13	<u>_</u>	Lithium ()		Oxygen O ²⁻		Boron
Phosphorus (_)		Magnesium		Nitrogen		Bromine
Argon ()			Silver ()		Helium Potassium		
Copper ()			Gold ()		Carbon		Hydrogen
How many Alur	ninums	s in Al ₂ C) ₃ ?		How many total atoms in Al ₂ O ₃ ?		
How many Mag	nesium	s in Mg	Cl ₂ ?		How many total atoms in MgCl ₂ ?		
How many Sodi	ums in	Na ₃ N?			How many total atoms in Na ₃ N?		
How many Oxy	gens in	Li(NO ₃)?		How many total atoms in Li(NO ₃)?		
How many ele	ectrons	are gair			How many electrons will be gained or lost by:		
$ \begin{array}{c c} K^{1+} & Lost 1 \\ B^{3+} \end{array} $	_		Fe ²⁺		K <u>Lost 1</u>		Ar
S ²⁻			N ³⁻		Al O		Br Ca
He ⁰			Si ⁴⁺		Be		Н
Draw the I	ewis D	Oot Diag	rams for the foll	lowing.	Draw 3 different	Leu	vis Dot Diagrams for Aluminum.
Carbon	Lithi	ium	Sulfur	Argon			
Aluminum	NT:4	200	Magnasi	Chlorie -	Use Electron Arro	ows t	to Combine Magnesium and Fluorine
Aluminum	Nitro	ogen	Magnesium	Chlorine			
		ı					

T	Init	3.5

Name:	
Period:	

2.	Al_2O_3 O_2F_2 BeF_2 $K_2(CO_3)$		Use Prefixes? No	Compour Aluminu		ę	-	Metal or Non-metal? Cobalt () Sodium () Fluorine () Argon () Magnesium () Nickel ()
6.7.8.9.10.11.	N ₂ F ₃ SF ₆ Al ₂ (CrO ₄) ₃ P ₄ S ₃ NaN ₃ MgO PF ₃ CO ₂	·					Ca M Na - Al - Al	Give the total charge 12+3
Li Na Al	$^{2+}$ and O^{2-} : a^{1+} and N^{3-} :		K^{1+} and Li^{1+} and Ca^{2+} and	For the following: S ²⁻ : F ¹⁻ : I (NO ₃) ¹⁻ :	Wrate Li and Mg and Al and Mg and K and (Cl: I O: S:		formulas for the following:
	Draw the Le	ewis Dot Diagra	am for mole	cular Fluorine (F ₂). Short hand	# of eld	-C — ectrons: N≡ ectrons:		Using shorthand, make Oxygen Dichloride
Ţ	-	300s -200 -100s	nL	For the light to come or kind of compound wou to be dissolved: ionic o covalent? What do we call a computat will allow electricition?	ld need r pound	NaCl CO ₂ MgCl ₂ NBr ₃ BeO	re these F	Al ₂ O ₃

Changes of Matter Review

 Transition Metals D E Noble Gase Metals A Nonmetals Ionic F Covalent 	B. Gain ele S. Compoushared. B. Do not I numbers E. Do not of F. Compoushand negative.	combine into con ands formed betwatively charged a	n electrons are xidation npounds. ween positively toms.	 Oxidation #s Octet Rule # Diatomic Molecule Electrolyte Valence Electrons Valence Electrons Outermost electrons of an atom. Tells you that atoms are more stable with 8 valence electrons. A molecule of two atoms of the same element. When dissolved in water, a compound that allows electricity to pass. How many electrons are gained or lost. E. Outermost electrons of an atom.		
		umber of these e		Give symbols and number of valence electrons for these:		
Oxygen (O)		Boron (<u>&</u>)_		Aluminum (Al) 3 . Beryllium (Be) 2		
Nitrogen (M)		Bromine (B/-)	5-00-00-00-00-00-00-00-00-00-00-00-00-00	Neon (1/2) Sodium (1/2)		
Helium (∄€)_		Iron (Fe)		Chlorine (1) $\frac{7}{2}$ Calcium (a) $\frac{2}{2}$		
Sodium (1/2)		Mercury (Hg)	80	Boron $(\cancel{5})$ 3 Sulfur (5) 6		
Give the symb	ol and number (of protons for th	ese elements.	Give these elements with oxidation # in ion notation		
Aluminum (Al)13	Lithium ([i])	3_	Oxygen O ²⁻ Boron 3 [†]		
Phosphorus (_	P) _15	Magnesium Mg) 12	Nitrogen 1/3- Bromine Bc -		
Argon (Ar)	18	Silver (Ag)	47	Helium He Potassium K 1+		
Copper (Cu)		/	79	Carbon (4) Hydrogen H		
How many Alu	uminums in Al ₂ C	O ₃ ?		7		
How many Ma	ignesiums in Mg	:Cl ₂ ?}		How many total atoms in MgCl ₂ ?		
How many So	diums in Na ₃ N?	3	<u> </u>	How many total atoms in Na ₃ N?		
How many Ox	ygens in Li(NO:	.) _? _3		+ +3 How many total atoms in Li(NO ₃)?		
Appendix on the control of the contr	1000 Tab	And the transfer and	**	SOCIAL MICHIGANI (C. 10.0 M.) CAN PROGRAMMA CANTON AREA (C. 10.0 M.) AREA (C. 10.0 M		
How many e K ¹⁺ Lost I	lectrons are gai. I	Fe^{2+} /-c+ 2		How many electrons will be gained or lost by: (0 ×1 4, #)		
B3+ 105t	3	F1- g=ined N3- g=ined Si4+ 105+4	<u></u>	K <u>Lost 1</u> Ar <u>O</u> Al <u> </u>		
S ² - golyte	<u> </u>	N3- g=in+0	3	Al lost3 Br gsin 1 O galhad z Ca lost z		
He" hor	<u>re</u>	N	- ()	Be 105t 2 H 105t1		
Draw the	Lewis Dot Diag	grams for the foli	lowing.	Draw 3 different Lewis Dot Diagrams for Aluminum.		
Carbon	Lithium	Sulfur	Argon	× AL		
6	,	40	2 A .	Ai- Alx -Al-		
oCo	Li	· >	. HV -	X		
// //	Jų Ę.	6 V.E.	8v.F.			
4 V.E.	Nitrogen	6 ∪₁ ⊭₁ Magnesium	Chlorine	Use Electron Arrows to Combine Magnesium and Fluorine		
Aidiiiiiiiiii	INIUOgen	iviagnesium	Cinornie	MAF		
Ale	l Nis	- Mg	-1·			
0	1,	• Mg	[-			
100900000 1222-00	I		100000000 000 <u></u> 00			

Name: Period:

0		Ionic, Covalent, or Polyctomic?	Use Prefixes?	Compound Name	Metal or Non-metal? M Cobalt (6)
1.	Al_2O_3	_Ionic_	No	Alumirum Oxide	_M_ Sodium (№)
2.	O_2F_2		<u>}</u>	Jioxygen Ji Fluoride	Fluorine (F) Argon (A/~)
3.	BeF_2	<u> </u>	<u> N</u>	Bergllium Fluoride	Magnesium (M1)
4.	K ₂ (CO ₃)	<u>P</u> .	_N	Potassium Carbonate	M Nickel (N □)
5.	N_2F_3			dinitingen trifluoride	Give the total charge
6.	SF_6		<u> </u>	Sulfur hexafluoride	Ca_{3}^{2+} +6
7.	Al ₂ (CrO ₄)	13 <u>P</u>	N	Aluminum Chromate	$\operatorname{Ca}^{2+}\operatorname{O}^{2-}$
8.	P_4S_3		Υ	tetra Phosphorus trisulfide	$Mg^{2+}F^{1-}$
9.	NaN ₃	I.		sodium nitride	$Na^{1+}F_2^{1-}$
10.	MgO	<u> </u>	N	magnesium oxide	$Al^{3+}O_2^{2-}$
11.	PF_3		U	Phosphorus trifluoride	$O_3^2 - 6$
12.	CO_2		<i>V</i>	carbon dioxide	$Mg^{2+}(NO_3)^{1-}$ +
2000	Write the b	alanced ionic c	ompounds for	r the following: Write the balanced	l ionic formulas for the following: $\!$
9		le 🛧		1/ <	- 1 ⁺ / 1 1 - 2 }

Draw the Lewis Dot Diagram for molecular Fluorine (F₂).

Short hand

of electrons: 5+3 $N \equiv$ # of electrons:

Using shorthand, make Oxygen Dichloride

For the light to come on, what kind of compound would need to be dissolved:(ionic or covalent?

What do we call a compound that will allow electricity to flow? electrolyte

Are these Electrolytes? Yes or No? MUST be ionit NaCl Li_2S CO_2 Al_2O_3 SeO $MgCl_2$ FeO NBr_3 BeO Li(NO₃)

Name:

Period:

Ionic Compounds

Ion Charges Add

An ion is an atom with a positive or negative charge because it has gained or lost electrons. As ions add together, so do their charges.

Oxidation Numbers

$$Na^{1+} + Na^{1+} = 2 + charge$$

So $Na_2^{1+} = 2 + charge$

Each Sodium atom gives up 1 electron, so 2 Sodium atoms (Na₂) will give up 2 electrons and have a charge of 2+.

Opposites Ions Attract

Just as with protons and electrons: oppositely charged atoms attract. Positive ions (metals) attract negative ions (nonmetals), forming ionic compounds.

Positive ions attract Negative ions

compounds.

Balanced Ionic Compounds

Ionic compounds always combine in a particular ratio (same number of each atom) so that they are balanced. The net charge must equal zero!

If Lithium atoms are placed near Oxygen atoms they will combine and form ionic bonds in a certain ratio.

A Lithium attracts an Oxygen, but is not balanced.

$$Li^{1+}O^{2-}$$
 = 1- Still negative, so it will attract another positive.

Each Oxygen will attract 2 Lithium ions to be balanced.

Using Lewis Dot Diagrams

Oxygen needs 2 more electrons to be full. It attracts a Lithium atom and its 1 valence electron.

With only 1 Lithium, Oxygen is still not full, so it attracts one more Lithium atom.

1 more opening

Oxygen is now full, having gained 2 valence electrons from 2 Lithium atoms.

Li₂O

Lithium and Oxygen will **ALWAYS** combine in a 2:1 ratio.

Electron Arrows — An easy visual aid for you.

The Symbols

Losing 1 electron

Gaining 1 electron

An ionic bond

Magnesium loses 2 electrons Mg^{2+}

Chlorine gains 1 electron

 $-C1^{1-}$

Magnesium will combine with 2 Chlorines

 Mg^{2+} \longrightarrow Cl^{1-}

Magnesium Chloride: MgCl₂ (a 1:2 ratio)

Magnesium Sulfide: MgS Mg^{2+} Loses 2

How to Balance Ionic Compounds

Step 1: Write the symbols for each element.

Step 2: Write the oxidation numbers on each symbol.

Step 3: Balance so the # of electrons lost = # gained. If you need to, use visual aid like Lewis Dot Diagrams or Electron Arrows to help you.

Ex. Find the balanced ionic formula for Calcium Bromide.

Step 1: Ca Br

Step 2: $Ca^{2+}Br^{1-} = 1+$ Not balanced: $A = A + Br^{1-}$ Not balanced: $A = A + Br^{1-}$

Step 3: $Ca^{2+}Br_2^{1-}=0$ Balanced! Calcium Bromide is ALWAYS: CaBr₂

Name:	 	
Period:	 	

TEACHER NOTES:

p. 13 is the older "Ionic Compounds" page, which has multiple ways of showing multiple methods. The newer page (p.7) uses the electron arrows, which I believe to be superior and much easier for the students. I will try to get the keys done when I can.

I haven't had time to complete the rewrite of "Covalent Compounds" using electron arrows, but you can show this method very easily and students will make the connection very fast. See below:

$$O^{2-} \stackrel{\textstyle >}{\stackrel{\textstyle >}{\stackrel{}}} F^{1-}$$

Students easily see that neither element will give up electrons. The idea that they "share" electrons is a simple step. In the past teaching covalent compounds with Lewis Dot Diagrams was always a struggle and successful for very few students (since I didn't have enough time to push thru it for everyone). Covalent compounds works for everyone easily with the electron arrows.