Naming Inorganic Compounds

common names systematic names

Molecular	Common	Systematic
Formula	name	name

AgCl	Lunar caustic	Silver chloride
H_2SO_4	Oil of vitriol	Sulfuric acid
MgSO ₄	Epsom salts	Magnesium sulfate

When naming chemical compounds we distinguish between

Organic compounds

- compounds containing carbon.

Exceptions: CO, CO₂, CS₂, CN⁻, CO₃²⁻, HCO₃⁻, H₂CO₃

Inorganic compounds

- all other compounds

we can break the naming of inorganic compounds into four categories:

Ionic compounds

Molecular compounds

Acids and Bases

Hydrates

Binary compounds contain two different elements

Examples: NaCl, FeBr₃, Al₂O₃, N₂O₅, P₄O₁₀

Instead of concerning ourselves with whether the compound is ionic or molecular, let's reintroduce the idea of <u>electronegativity</u>. Electronegativity

measure of an elements ability to attract electrons toward itself when bonded to another element

An <u>electronegative</u> element attracts electrons.

An <u>electropositive</u> element releases electrons.

decreasing electronegativity

Increasin	ıg el	ectro	nega	tivi	tv
Increasii	ig vi		nega		L Y

Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1A	2A	1	3B	4B	5B	6B	7B		8B		1B	2B	3A	4A	5A	6A	7A	8A
Period																			
1	1 <u>H</u>																		2 <u>He</u>
2	3 <u>Li</u>	4 <u>Be</u>												5 <u>B</u>	6 <u>C</u>	7 <u>N</u>	8 0	9 <u>F</u>	10 <u>Ne</u>
3	11 <u>Na</u>	12 <u>Mg</u>												13 <u>Al</u>	14 <u>Si</u>	15 P	16 <u>S</u>	17 <u>C1</u>	18 <u>Ar</u>
4	19 <u>K</u>	20 <u>Ca</u>		21 <u>Sc</u>	22 <u>Ti</u>	23 <u>¥</u>	24 <u>Cr</u>	25 <u>Mn</u>	26 <u>Fe</u>	27 <u>Co</u>	28 <u>Ni</u>	29 <u>Cu</u>	30 <u>Zn</u>	31 <u>Ga</u>	32 <u>Ge</u>	33 <u>As</u>	34 <u>Se</u>	35 <u>Br</u>	36 <u>Kr</u>
5	37 <u>Rb</u>	38 <u>Sr</u>		39 <u>Y</u>	40 <u>Zr</u>	41 <u>Nb</u>	42 <u>Mo</u>	43 <u>Tc</u>	44 <u>Ru</u>	45 <u>Rh</u>	46 <u>Pd</u>	47 <u>A</u> g	48 <u>Cd</u>	49 <u>In</u>	50 <u>Sn</u>	51 <u>Sb</u>	52 <u>Te</u>	53 <u>I</u>	54 <u>Xe</u>
6	55 <u>Cs</u>	56 <u>Ba</u>	*	71 <u>Lu</u>	72 <u>Hf</u>	73 <u>Ta</u>	74 <u>W</u>	75 <u>Re</u>	76 <u>Os</u>	77 <u>Ir</u>	78 <u>Pt</u>	79 <u>Au</u>	80 <u>Hg</u>	81 <u>T1</u>	82 <u>Pb</u>	83 <u>Bi</u>	84 <u>Po</u>	85 <u>At</u>	86 <u>Rn</u>
7	87 <u>Fr</u>	88 <u>Ra</u>	**	103 <u>Lr</u>	104 <u>Rf</u>	105 Db	106 Sg	107 <u>Bh</u>	108 <u>Hs</u>	109 <u>Mt</u>	110 Uun	111 <u>Uuu</u>	112 <u>Uub</u>	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
lanth	anide	3	*	57 <u>La</u>	58 <u>Ce</u>	59 <u>Pr</u>	60 <u>Nd</u>	61 <u>Pm</u>	62 <u>Sm</u>	63 <u>Eu</u>	64 <u>Gd</u>	65 <u>Tb</u>	66 <u>Dy</u>	67 <u>Ho</u>	68 <u>Er</u>	69 <u>Tm</u>	70 <u>Yb</u>		
acti	nides		**	89 <u>Ac</u>	90 Th	91 Pa	92 U	93 <u>Np</u>	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Naming Ionic Compounds

Naming binary compounds

binary compounds contain two elements

and are named as two words

first word is name of cation

second word is first part of name of anion followed by -ide

Examples of binary compounds of metals

sodium bromide:	NaBr	Na ⁺ Br ⁻
calcium oxide:	CaO	Ca ²⁺ O ²⁻
barium chloride:	BaCl ₂	Ba ²⁺ 2Cl ⁻
aluminum oxide:	Al_2O_3	2A1 ³⁺ 3O ²⁻

number of positive charges must equal number of negative charges

Writing Formulas Mg^{2+} N^{3-} Mg_3N_2

- Because compounds are electrically neutral, one can determine the formula of a compound this way:
 - The charge on the cation becomes the subscript on the anion.
 - The charge on the anion becomes the subscript on the cation.
 - If these subscripts are not in the lowest wholenumber ratio, divide them by the greatest common factor.

and lons

Common Cations

Charge	Formula	Name	Formula	Name
1+	H ⁺	hydrogen ion	NH4 ⁺	ammonium ion
	Li ⁺	lithium ion	Cu ⁺	copper(I) or cuprous ion
	Na ⁺	sodium ion		
	K ⁺	potassium ion		
	Cs^+	cesium ion		
	Ag ⁺	silver ion		
2+	Mg ²⁺	magnesium ion	Co ²⁺	cobalt(II) or cobaltous ion
	Ca ²⁺	calcium ion	Cu ²⁺	copper(II) or cupric ion
	Sr ²⁺	strontium ion	Fe ²⁺	iron(II) or ferrous ion
	Ba ²⁺	barium ion	Mn ²⁺	manganese(II) or manganous ion
	Zn ²⁺	zinc ion	Hg_{2}^{2+}	mercury(I) or mercurous ion
	Cd^{2+}	cadmium ion	Hg ²⁺	mercury(II) or mercuric ion
			Ni ²⁺	nickel(II) or nickelous ion
			Pb ²⁺	lead(II) or plumbous ion
			Sn ²⁺	tin(II) or stannous ion
3+	Al ³⁺	aluminum ion	Cr ³⁺	chromium(III) or chromic ion
			Fe ³⁺	iron(III) or ferric ion

*The ions we use most often in this course are in boldface. Learn them first. ${\scriptstyle \odot}$ 2012 Pearson Education, Inc.

Atoms, Molecules, and lons

© 2012 Pearson Education, Inc.

Common Anions

TABLE 2	.5 • Common	Anions [*]		
Charge	Formula	Name	Formula	Name
1-	H^-	hydride ion	$CH_{3}COO^{-}$ (or C ₂ H ₃ O ₂ ⁻)	acetate ion
	F ⁻	fluoride ion	ClO ₃ ⁻	chlorate ion
	Cl ⁻	chloride ion	ClO_4^-	perchlorate ion
	Br ⁻	bromide ion	NO ₃ ⁻	nitrate ion
	I_	iodide ion	MnO_4^-	permanganate ion
	CN ⁻	cyanide ion		
	OH ⁻	hydroxide ion		
2-	O ²⁻	oxide ion	CO ₃ ²⁻	carbonate ion
	O_2^{2-} S²⁻	peroxide ion	CrO_4^{2-}	chromate ion
	S ²⁻	sulfide ion	$Cr_{2}O_{7}^{2-}$	dichromate ion
			$\begin{array}{c} \text{CO}_{3}^{2-} \\ \text{CrO}_{4}^{2-} \\ \text{Cr}_{2}\text{O}_{7}^{2-} \\ \text{SO}_{4}^{2-} \end{array}$	sulfate ion
3-	N ³⁻	nitride ion	PO4 ³⁻	phosphate ion

*The ions we use most often are in boldface. Learn them first. $\ensuremath{$^\circ$}\xspace{2012 Pearson Education, Inc.}$

Atoms, Molecules, and lons

Example

- (a) potassium sulfide
 - **K**+
 - **S**2-
- Answer: K₂S

But some metals can form more than one type of cation

Often, but not always, a transition metal

Binary compounds of metals (cont'd)

When metal can form more than one type of cation, indicate charge by Roman numeral in parenthesis

MnOmanganese(II) oxideMn2O3manganese(III) oxideMnO2manganese(IV) oxide

use of the suffixes -ous and -ic is discouraged

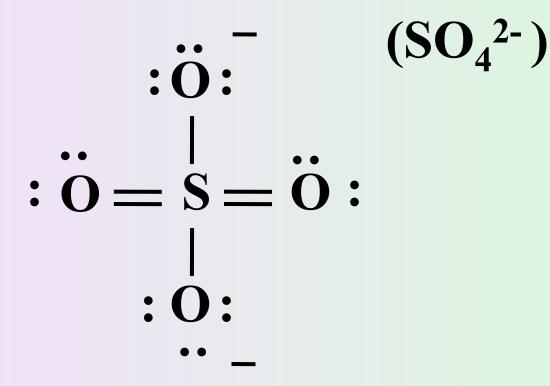
Commonly encountered cations that can exist as two different charge types

> +1, +2: Cu, Hg +2, +3: Fe, Co +2, +4: Sn, Pb

Example

(a) tin(II) fluoride
 Sn²⁺
 F Answer: SnF₂

Example


(a) mercury(II) oxide
Hg²⁺
O²⁻
Answer: HgO

Example

(a) mercury(I) iodide
Hg⁺ actually exists as Hg₂²⁺
IAnswer: Hg₂I₂

Polyatomic Ions

molecules with a charge

Polyatomic Ions

 (CO_{3}^{2-}) carbonate (CrO_4^{2-}) chromate (OH⁻) hydroxide (NO_{3}^{-}) nitrate $(Cr_2O_7^{2-})$ dichromate (ClO_{3}^{-}) chlorate

bromate Iodate peroxide

acetate

(BrO_3^-)

 (IO_{3}^{-})

 O_2^{2-} -0-0-

 $C_{2}H_{3}O_{2}^{-}$ H O H O H O H O H

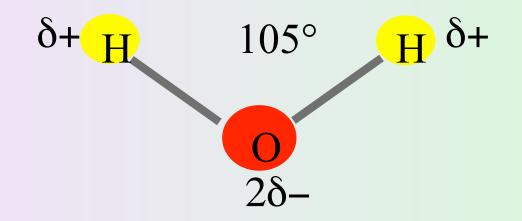
Example

Name the following ionic compounds:

(a) Cu(NO₃)₂
Cu²⁺
2NO₃Answer: copper(II)nitrate

Naming Molecular Compounds

Molecular Compounds


Electrons are shared by the atoms. **Covalent Bonds**

Electrons however are not shared equally.

Molecular Compounds

Elements that are more electronegative assume an apparent negative charge (δ -).

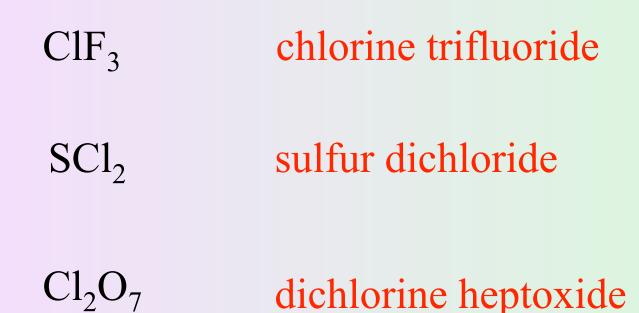
Elements that are more electropositive assume an apparent positive charge (δ +).

naming binary compounds of nonmetals

- more electropositive element named first (and listed first in chemical formula)
- 2) more electronegative element named in usual way (with -ide suffix)
- 3) counting prefixes are used with each name

but mono is not used with first name

Greek prefixes used in naming molecular compounds


Prefix	Meaning	Prefix	Meaning		
Mono-	1	Hexa-	6		
Di-	2	Hepta-	7		
Tri-	3	Octa-	8		
Tetra-	4	Nona-	9		
Penta-	5	Deca-	10		

Examples

CO CO_2 SO_2 SO₃ PCl₃ PCl₅ NO_2 N_2O_4 Cl_2O_7

carbon monoxide carbon dioxide sulfur dioxide sulfur trioxide phosphorus trichloride phosphorus pentachloride nitrogen dioxide dinitrogen tetroxide dichlorine heptoxide

Name the following compounds

Naming Acids and Bases

Acids and Bases

An acid is a substance that yields hydrogen ions (H⁺) when dissolved in water.

Acids that contain hydrogen, oxygen, and another element are called oxyacids.

Acids and Bases

Bases are substances that yield hydroxide Ions (HO⁻) when dissolved in water.

NaOH, KOH, Ba(OH)₂, NH₃

Naming Acids

Naming an acid depends on whether the anion contains oxygen

If the anion does not contain oxygen the acid is named with the prefix *hydro* and the suffix --*ic*

If the anion contains oxygen the acid name is formed from the root name of the anion with the suffix *-ic or -ous*

Names for some binary acids

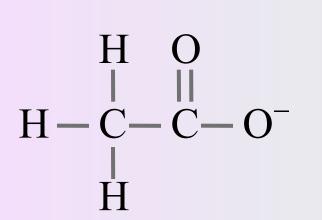
Anion Corresponding Acid

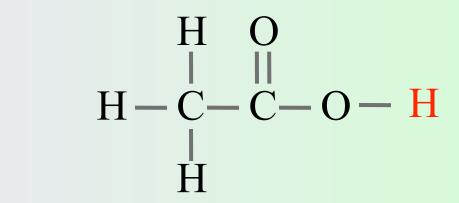
HF (hydrofluoric acid) F⁻ (fluoride) Cl⁻ (chloride) HCl (hydrochloric acid) Br⁻ (bromide) HBr (hydrobromic acid) I⁻ (iodide) HI (hydroiodic acid) CN⁻ (cyanide) HCN (hydrocyanic acid) S^{2–} (sulfide) H₂S (hydrosulfuric acid)

Polyatomic anions

- sulfite SO_3^{2-} sulfate SO_4^{2-}
- hypochlorite ClO^- chlorite ClO_2^- chlorate ClO_3^- perchlorate ClO_4^-

Ternary acids


three element acids


most ternary acids are oxyacids containing hydrogen, oxygen, and one other element

Oxyacids

acetate anion

acetic acid

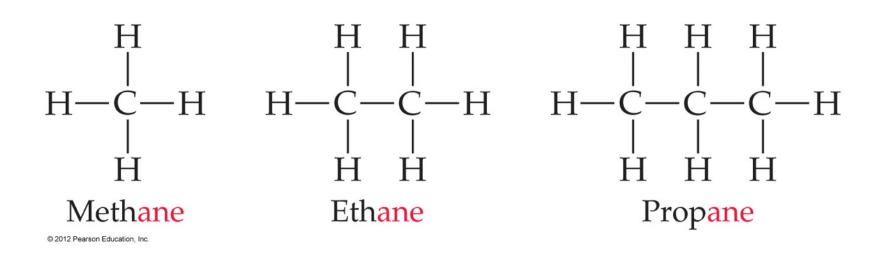
Oxyacids

sulfite SO₃²⁻ sulfurous acid H₂SO₃ HOSOOH sulfate SO₄²⁻ sulfuric acid H₂SO₄ HOSO₂OH

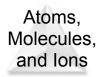
Oxyacids

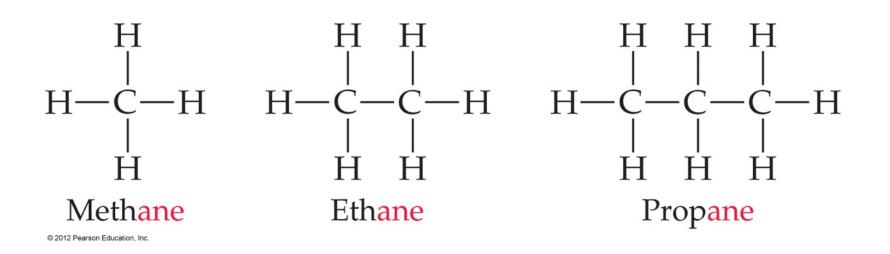
perchlorate	ClO ₄ -	perchloric acid	HClO ₄
Addition of one O at	om		HOCIO ₃
chlorate	ClO ₃ -	chloric acid	HClO ₃
removal of one O ato	m		HOClO ₂
chlorite	ClO ₂ ⁻	chlorous acid	HClO ₂
removal of two O ato	ms –		HOCIO

hypochlorite ClO- hypochlorous acid HOCl

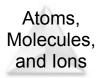

Hydrates

Compounds that have a specific number of water molecules attached to them

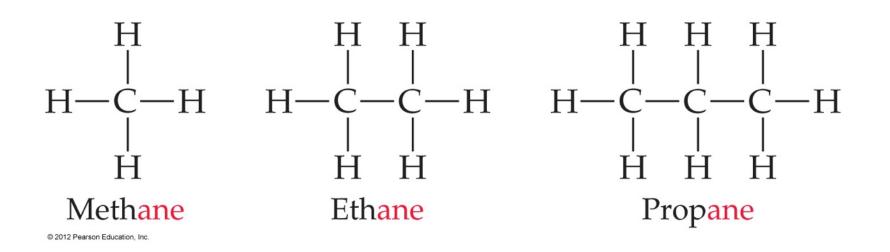

Copper(II) sulfate pentahydrate CuSO₄ • 5H₂O Copper(II) sulfate anhydrous Anhydrous - the water molecules


have been driven off by heating

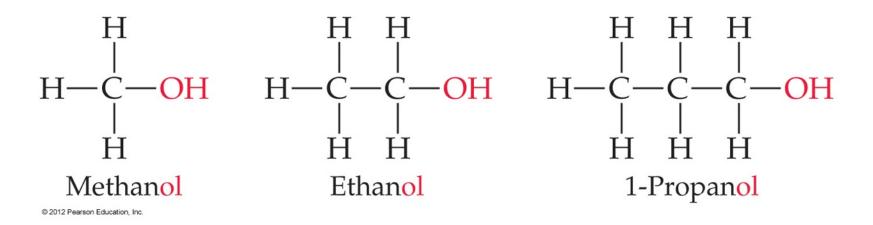
CuSO₄



- Organic chemistry is the study of carbon.
- Organic chemistry has its own system of nomenclature.



The simplest hydrocarbons (compounds containing only carbon and hydrogen) are **alkanes**.


© 2012 Pearson Education, Inc.

The first part of the names just listed correspond to the number of carbons (*meth-* = 1, *eth-* = 2, *prop-* = 3, etc.).

Atoms, Molecules, and lons

© 2012 Pearson Education, Inc.

- When a hydrogen in an alkane is replaced with something else (a functional group, like -OH in the compounds above), the name is derived from the name of the alkane.
- The ending denotes the type of compound.
 - An **alcohol** ends in -ol.

Atoms, Molecules, and lons

© 2012 Pearson Education, Inc.

Polyatomic anions

hydroxide HO- O_2^{2-} peroxide -O-O- $C_2H_3O_2^$ acetate H O| || $H - C - C - O^{-}$