
Cloud Native
Application
Architecture

N A N O D E G R E E P R O G R A M S Y L L A B U S

Cloud Native Application Architecture | 2

Overview
In this program, students will learn to run and manage scalable applications in a cloud native environment,
using open source tools and projects like ArgoCD, gRPC and Grafana. Students will learn to identify the
best application architecture solutions for an organization’s needs, design a microservice architecture
by leveraging cloud native tools and patterns, implement best practices in Kubernetes security, and use
dashboards to diagnose, troubleshoot and improve site reliability.

Prerequisites:
• Understand the

basics of http
• Basic Python
• Ability to use Git,

Linux machines
and Linux
Command Line

• Familiar with
web application
development in
any language

Flexible Learning:
Self-paced, so
you can learn on
the schedule that
works best for you.

Estimated Time:
4 Months at
10hrs/week

IN COLL ABOR ATION WITH

Technical Mentor
Support:
Our knowledgeable
mentors guide your
learning and are
focused on answering
your questions,
motivating you and
keeping you on track

Cloud Native Application Architecture | 3

Course 1: Cloud Native Fundamentals
Throughout this course, students will learn how to structure, package and release an application to
a Kubernetes cluster, while using an automated CI/CD pipeline. Students will start by applying a suite
of good development practices within an application, package it with Docker and distribute it through
DockerHub. This will transition to the exploration of Kubernetes resources and how these can be used to
deploy an application. At this stage, students will be comfortable using k3s to bootstrap a lightweight and
functional Kubernetes cluster. Next, students will examine template configuration managers, such as Helm,
to implement the parameterization of Kubernetes declarative manifests. Towards the end of the course,
students will learn the fundamentals of Continuous Integration and Continuous Delivery (CI/CD) with GitHub
Actions and ArgoCD and completely automate the release process for an application.

Course Project 1:
TechTrends

TechTrends is an online website used as a news sharing platform
that enables users to access the latest news within the cloud-native
ecosystem. Students will need to extend the project to export and
visualize the logs, metrics and status of the application. They will
apply their acquired knowledge to package, store and distribute the
code as a Docker image. In its turn, the artifact (or Docker image)
will be deployed to a cluster using Kubernetes resources, such as
deployments and services. By the end of the project, students will
use Helm to template the Kubernetes manifests and automate the
TechTrends project release using GitHub Actions and ArgoCD.

LEARNING OUTCOMES

LESSON ONE
Welcome to
Cloud Native
Fundamentals

• Evaluate the cloud native ecosystem

• Explore CNCF (Cloud Native Computing Foundation) and
cloud native tooling

LESSON TWO

Architecture
Consideration
for Cloud Native
Applications

• Choose monolith or microservice based-architecture for an
application

• Consider and evaluate the involved trade-offs for monoliths
and microservices

• Apply good development practices to an application

LESSON THREE
Container
Orchestration
with Kubernetes

• Use Docker to package an application and distribute it via
DockerHub

• Bootstrap a Kubernetes cluster using k3s

• Explore Kubernetes resources for an application deployment

• Differentiate between declarative and imperative
Kubernetes management techniques

Cloud Native Application Architecture | 4

LEARNING OUTCOMES

LESSON FOUR Open Source PaaS
• Understand the usage and abstracted components while

using a Platform as a Service (PaaS) solution

• Explore application deployment with Cloud Foundry

LESSON FIVE CI/CD with Cloud
Native Tooling

• Explain CI/CD and its benefits

• Apply Continuous Integration fundamentals using GitHub
Actions

• Apply Continuous Delivery fundamentals using ArgoCD

• Use Helm, as a configuration template manager, to
parametrize declarative Kubernetes manifests

• Deploy an application using ArgoCD and a Helm chart

Cloud Native Application Architecture | 5

Course 2: Message Passing
In this course, students will learn how to refactor microservice capabilities from a monolithic architecture
and employ different forms of message passing in microservices. To begin, students will create a migration
strategy to refactor a service from a monolith to its own microservice and implement the migration. Next,
students will be introduced to industry standard best practices for message passing in a service architecture.
Finally, students will focus on design decisions and the implementations of different forms of message passing
in development and production systems.

Course Project 2:
Refactor UdaConnect

In this project, students will refactor UdaConnect, an existing
application that facilitates professional networking at conference
and trade shows. UdaConnect ingests and uses location data to
find connections between individuals who have been near one
another at an event. The current version of the application is built
as a proof-of-concept with a monolith architecture. Your task is to
apply strategies that you have learned in the course to refactor
this application into a microservice architecture and implement
message passing strategies to improve its design.

LEARNING OUTCOMES

LESSON ONE Introduction to
Message Passing

• Define message passing

• Understand historical context of how and why message
passing is used

LESSON TWO Refactoring From
a Monolith

• Analyze and identify the first service or capability to
decompose a monolith

• Create a dependency map in order to prioritize how to
refactor a service (based on business logic)

• Determine the appropriate migration strategy

• Migrate a service from a monolith into its own microservice

• Apply the strangler pattern for migrating a monolith
architecture

Cloud Native Application Architecture | 6

LEARNING OUTCOMES

LESSON THREE Types of Message
Passing

• Identify use cases & implement best practices of REST

• Identify use cases of gRPC

• Identify use cases & implement best practices of message
queues

LESSON FOUR Implementing
Message Passing

• Use and apply REST

• Use and apply gRPC

• Use and apply Kafka

LESSON FIVE Message Passing
in Production

• Identify use cases of communication protocol in conjunction
with one another

• Use OpenAPI

• Manage the life cycle of communication protocol

Cloud Native Application Architecture | 7

Course 3: Observability
This course covers the fundamentals of observability in distributed systems. Today, Kubernetes has become
the de facto standard for cloud native applications and is widely used for distributed systems. To be
effective as an observability expert, it is critical to understand how to monitor and respond to the health and
performance of both your Kubernetes clusters and the applications hosted on them. This course will teach
students how to collect system performance data using Prometheus, how to collect application tracing data
using Jaeger and how to visualize the results in a dashboard using Grafana.

Course Project 3:
Building a Metrics
Dashboard

In this project, you will install and use the basic tools required
to perform application tracing and performance monitoring,
including Jaeger and Prometheus. You will then learn how to
deploy and use Grafana to create dashboards and graphs
to visualize performance and trace data collected in the
Kubernetes cluster. Finally, you will practice the day-to-day
operations of a reliability engineer, such as planning SLIs and
filing tickets.

LEARNING OUTCOMES

LESSON ONE
Introduction
to Cloud
Observability

• Distinguish between black box and white box monitoring

• Identify the stakeholders involved in observability

• Identify the key tools needed to run a kubernetes cluster

LESSON TWO Observability
Tools

• Recognize the distinct roles that Prometheus, Grafana and
Jaeger play in observability

• Successfully install Prometheus, Grafana and Jaeger on a
Kubernetes cluster

Cloud Native Application Architecture | 8

LEARNING OUTCOMES

LESSON THREE SLOs, SLIs and
Error Budgets

• Identify the role observability plays in modern applications

• Recognize why we use SLOs and SLIs as metrics

• Use error budgets to make observability decisions

LESSON FOUR Tracing

• Distinguish tracing from logging and identify the benefits
tracing provides beyond standard logging

• Identify the basics of how a span is used when tracing
applications

• Identify the basics of how Jaeger helps manage a trace

LESSON FIVE Building
Dashboards

• Navigate Grafana and set up data sources

• Create dashboards and panels with various metrics

Cloud Native Application Architecture | 9

COURSE 4: Microservices Security
In this course, students will learn how to harden a Docker and Kubernetes microservices architecture. To
begin, students will learn STRIDE to threat model and reason about microservice security. Next, students will
dig deep to explore the Docker and Kubernetes attack surface and be introduced to industry open-source
tools such as Docker-bench and Kube-bench to evaluate and harden Docker and Kubernetes weaknesses.
Students will then learn about software composition analysis with Trivy and Grype to evaluate image layers
and common application security vulnerabilities and provide remediation. Finally, students will deploy
runtime security monitoring to introspect running microservices for security signals and learn how to respond
to a security incident.

Course Project 4:
Hardened Microservices
Environment

In this project, students will be presented with a real-life
scenario to threat-model and harden a Kubernetes environment
in response to security concerns brought to them by their
company’s CTO. Students will use an openSUSE base image
to create a hardened Docker container and deploy it to a
Docker Hub image registry. Students will then use it to deploy
a Kubernetes cluster with a pre-configured Falco DaemonSet
and harden the cluster using what we learned from the course.
Students will introduce a security incident intentionally, then work
on identifying the payload, remediating it and conducting a post-
mortem. Students will create alerting for this payload, review
lessons learned and write an incident response report.

LEARNING OUTCOMES

LESSON ONE
Introduction to
Microservices
Security

• Define microservices security

• Understand the difference between microservices security
and traditional infrastructure security

LESSON TWO Threat Modeling
with STRIDE

• Examine the STRIDE methodology for threat modeling as
part of the Software Development Lifecycle (SDLC)

• Apply the STRIDE methodology to the primary Docker
components

• Apply the STRIDE methodology to the primary Kubernetes
components

Cloud Native Application Architecture | 10

LEARNING OUTCOMES

LESSON THREE
Docker Attack
Surface Analysis
and Hardening

• Apply Docker security properties in-depth, including client,
host and registry, evaluating threat models

• Implement CIS benchmarks to harden docker images via
docker-bench

• Implement image signing using Docker content trust to
verify the integrity of the image

LESSON FOUR
Kubernetes Attack
Surface Analysis
and Hardening

• Examine Kubernetes security properties in-depth, including
cloud-controller-manager, etcd, kube-apiserver, kube-
controller-manager, kube-proxy and kube-scheduler

• Evaluate findings against CIS benchmarks and apply a
methodology for hardening and testing changes

LESSON FIVE
Software
Composition
Analysis

• Examine examples of supply chain tampering with recent
Solarwinds incidents and why software analysis composition
is vital to security

• Examine common application security vulnerabilities and
provide remediation

• Examine and remediate common vulnerable libraries and
application security vulnerabilities in a Flask application

LESSON SIX
Runtime
Monitoring and
Incident Response

• Examine security considerations for dangerous commands
and ongoing runtime security

• Implement Sysdig Falco as a DaemonSet with a basic rule
set to monitor node processes and send to Grafana for
visualization and alerting

• Define a security response playbook to triage and respond
to alerts

Cloud Native Application Architecture | 11

Our Classroom Experience
REAL-WORLD PROJECTS
Build your skills through industry-relevant projects. Get
personalized feedback from our network of 900+ project
reviewers. Our simple interface makes it easy to submit
your projects as often as you need and receive unlimited
feedback on your work.

KNOWLEDGE
Find answers to your questions with Knowledge, our
proprietary wiki. Search questions asked by other students,
connect with technical mentors, and discover in real-time
how to solve the challenges that you encounter.

WORKSPACES
See your code in action. Check the output and quality of
your code by running them on workspaces that are a part
of our classroom.

QUIZZES
Check your understanding of concepts learned in the
program by answering simple and auto-graded quizzes.
Easily go back to the lessons to brush up on concepts
anytime you get an answer wrong.

CUSTOM STUDY PLANS
Create a custom study plan to suit your personal needs
and use this plan to keep track of your progress toward
your goal.

PROGRESS TRACKER
Stay on track to complete your Nanodegree program with
useful milestone reminders.

Cloud Native Application Architecture | 12

Learn with the Best

Katie Gamanji
 ECOS YS TEM ADVOC ATE FOR CNCF
(CLOUD N AT I V E COMPU T ING F OUNDAT ION)

Katie is the Ecosystem Advocate for CNCF
(Cloud Native Computing Foundation),

steering the End User Community. Katie’s
focus is to foster the growth and visibility

of the End User Community while bridging
the gap with other ecosystem units, such

as project maintainers, TOCs and SIGs.
In the past roles, Katie contributed to

the build-out of platforms that gravitate
towards cloud-native principles and open-

source tooling, with Kubernetes as the
focal point. These projects started with
the automation of application delivery

on OpenStack-based infrastructure,
which transitioned into the creation of a
centralized, globally distributed platform

at Condé Nast.

Justin Lee
DATA PL ATFORM ENGINEER AT

S TITCH F IX

Justin is an engineer specializing in
designing modern data platforms

and scalable systems. He has been a
consultant for Fortune 500 companies

and has traveled the world to work with
his clients. He provides mentorship
and interviews developers through

Codementor and has a BS in Computer
Science from UCLA.

Cloud Native Application Architecture | 13

Learn with the Best

Nick Reva
 TECHNIC AL MANAGER , ENGINEERING

SECURIT Y, SNAPCHAT

Nick has been working in Security
Engineering his entire career, for over 14
years now. Over the last five years, he’s

been a Technical Manager leading teams
to build highly scalable security services
at tech companies, including SpaceX and
Snapchat. In his current role at Snapchat,

he lead security engineering teams to
build and maintain security services

across our cloud native environment.
Snapchat are big fans of open source and

CNCF projects like Envoy.

Jason “Jay” Smith

APP MODERNIZ ATION SPECIALIS T AT
GOOGLE CLOUD

Jason “Jay” Smith is an App Modernization
Specialist at Google Cloud. Jay has over
15 years experience in technology and

open source solutions. Currently Jay helps
Google Cloud customers modernize their
application platforms using best practices

in cloud native technologies. Prior to
joining Google, Jay had worked for other
organizations while also leading his own.

Cloud Native Application Architecture | 14

All Our Nanodegree Programs Include:

TECHNICAL MENTOR SUPPORT

MENTOR SHIP SERVICES

 • Questions answered quickly by our team of
 technical mentors
 • 1000+ Mentors with a 4.7/5 average rating
 • Support for all your technical questions

EXPERIENCED PROJECT REVIEWERS

RE VIE WER SERVICES

 • Personalized feedback & line by line code reviews
 • 1600+ Reviewers with a 4.85/5 average rating
 • 3 hour average project review turnaround time
 • Unlimited submissions and feedback loops
 • Practical tips and industry best practices
 • Additional suggested resources to improve

PERSONAL CAREER SERVICES

C AREER SUPPORT

 • Github portfolio review
 • LinkedIn profile optimization

Cloud Native Application Architecture | 15

Frequently Asked Questions
PROGR AM OVERVIE W

WHY SHOULD I ENROLL?
Cloud native architecture has been described as the future of application
development. This program was designed to help you take advantage of the
growing need for skilled cloud native architects.

WHAT JOBS WILL THIS PROGRAM PREPARE ME FOR?
The need for a strong cloud native culture in an enterprise organization is
greater than ever. The skills you will gain from this Nanodegree program will
qualify you for jobs in several industries as countless companies are trying to
keep up with digital transformation.

HOW DO I KNOW IF THIS PROGRAM IS RIGHT FOR ME?
The course is for individuals who are looking to advance their careers as cloud
native architects. This is an intermediate course that requires fluency in basic
python programming as well as a basic understanding of http, the command
line and developing web applications.

ENROLLMENT AND ADMISSION

DO I NEED TO APPLY? WHAT ARE THE ADMISSION CRITERIA?
No. This Nanodegree program accepts all applicants regardless of experience
and specific background.

WHAT ARE THE PREREQUISITES FOR ENROLLMENT?
A well-prepared learner will meet the following prerequisites:
• Understand the basics of http (like client, server and internet request)
• Basic Python (data types, Functions, REST requests, web development)
• Ability to use Git, Linux machines and Linux Command Line
• Familiar with web application development in any language
• Familiarity with Docker, exposure to a CI/CD pipeline is not required for

success in this program but is a helpful prerequisite skill to have.

IF I DO NOT MEET THE REQUIREMENTS TO ENROLL, WHAT SHOULD I DO?
If you believe you need more preparation, here are some additional Udacity
programs that can get you up to speed: Intro to Computer Science, Linux
Command Line Basics, Intro to Programming and Front End Web Developer.

Cloud Native Application Architecture | 16

FAQs Continued
TUITION AND TERM OF PROGR AM

HOW IS THIS NANODEGREE PROGRAM STRUCTURED?
The Cloud Native Application Architecture Nanodegree program is comprised
of content and curriculum to support 5 projects. We estimate that students can
complete the program in 4 months working 10 hours per week.

Each project will be reviewed by the Udacity reviewer network. Feedback will be
provided and if you do not pass the project, you will be asked to resubmit the
project until it passes.

HOW LONG IS THIS NANODEGREE PROGRAM?
Access to this Nanodegree program runs for the length of time specified above.
If you do not graduate within that time period, you will continue learning with
month to month payments. See the Terms of Use and FAQs for other policies
regarding the terms of access to our Nanodegree programs.

CAN I SWITCH MY START DATE? CAN I GET A REFUND?
Please see the Udacity Nanodegree program FAQs for policies on enrollment in
our programs.

SOF T WARE AND HARDWARE

WHAT SOFTWARE AND VERSIONS WILL I NEED IN THIS PROGRAM?
There are no software and version requirements to complete this Nanodegree
program. All coursework and projects can be completed via Student Workspaces
in the Udacity online classroom.

https://www.udacity.com/legal/en-us/terms-of-use
https://udacity.zendesk.com/hc/en-us

