

Nanotechnology Research Trends in the U.S.

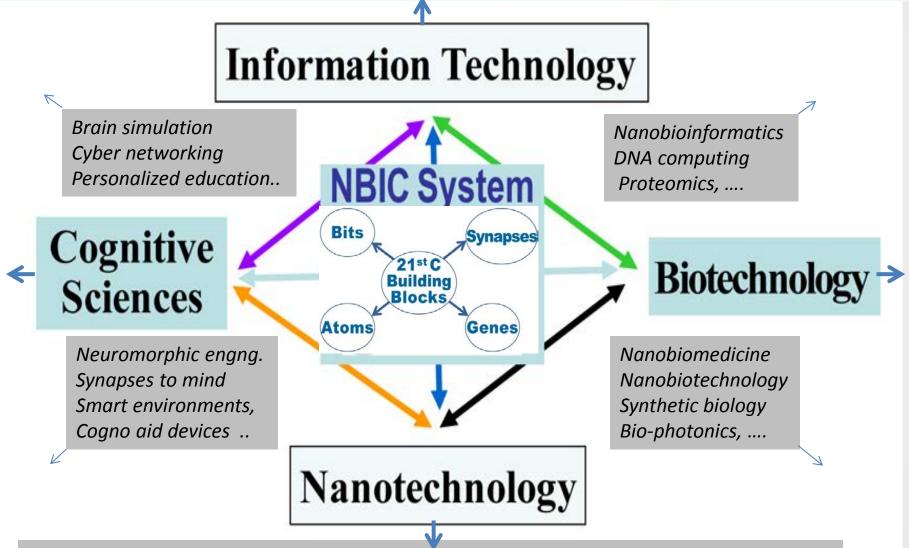
Mihail C. Roco

National Science Foundation and National Nanotechnology Initiative

Korea-US Nano Forum, Seoul, September 29, 2014

Topics

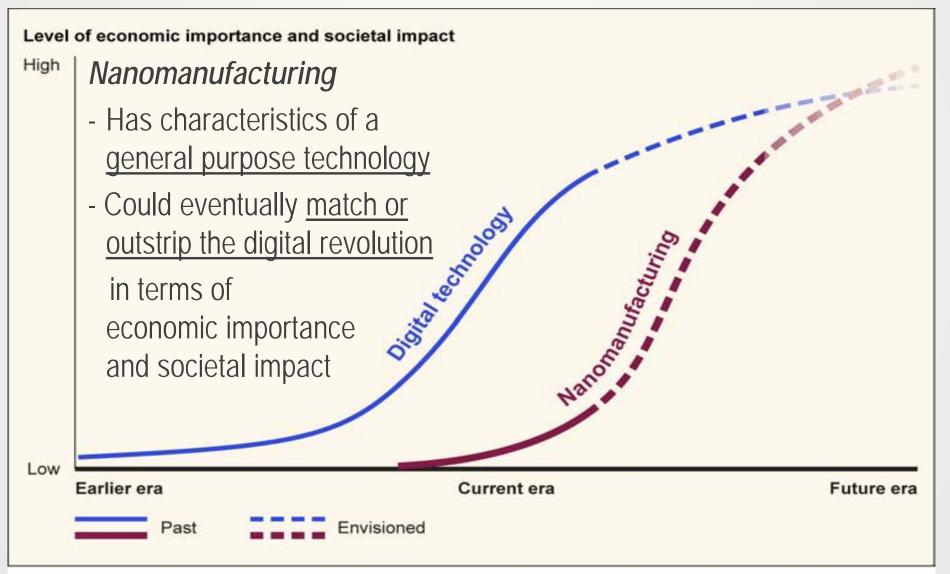
- 2000-2030 establishing nanotechnology
- Funding nanotechnology at NSF
- Several research trends in: nanomanufacturing, composite materials and systems, and convergence (including brain research)

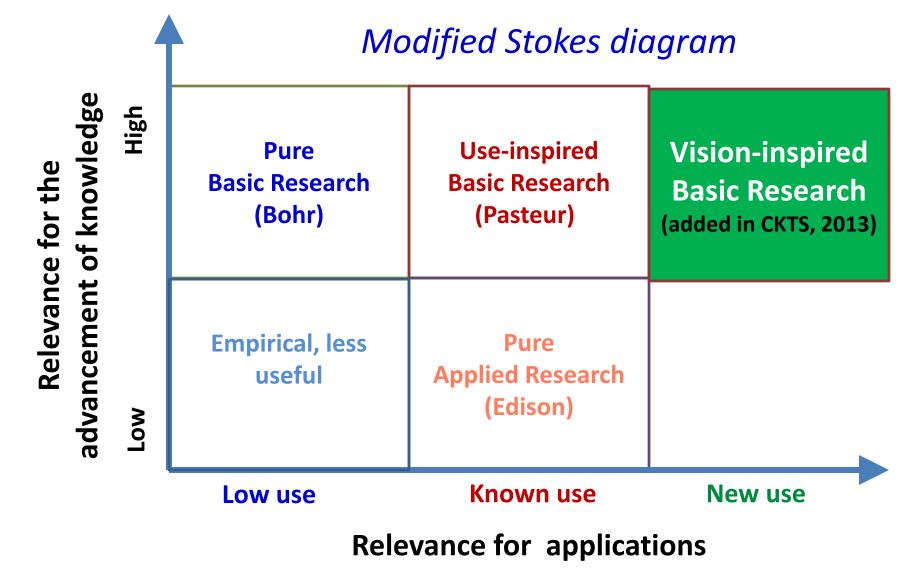

Current trends

- Nanotechnology is an essential megatrend in S&E, the most exploratory field as a general foundation as compared to IT and BIO
- Nanotechnology continues <u>exponential growth</u> by vertical science-to-technology transition, horizontal expansion to areas as agriculture/ textiles/ cement, and <u>spin-off areas</u> (~20) as spintronics/ metamaterials/...
- After 2020, nanotechnology promises to become the primary S&T platform for investments & venture funds once design & manufacturing methods are established

Converging foundational technologies - NBIC

Information Technology Spin-offs : Large-data bases, topical computer-aided –design, cyber networks, ...


Roco and Bainbridge, 2013, Fig 2 [Ref 1]


Nanotechnology Spin-offs : Nanophotonics, plasmonics, materials genome, mesoscale S&E, metamaterials, nanofluidics, carbon electronics, nanosustainability, wood fibers, DNA NT, ...

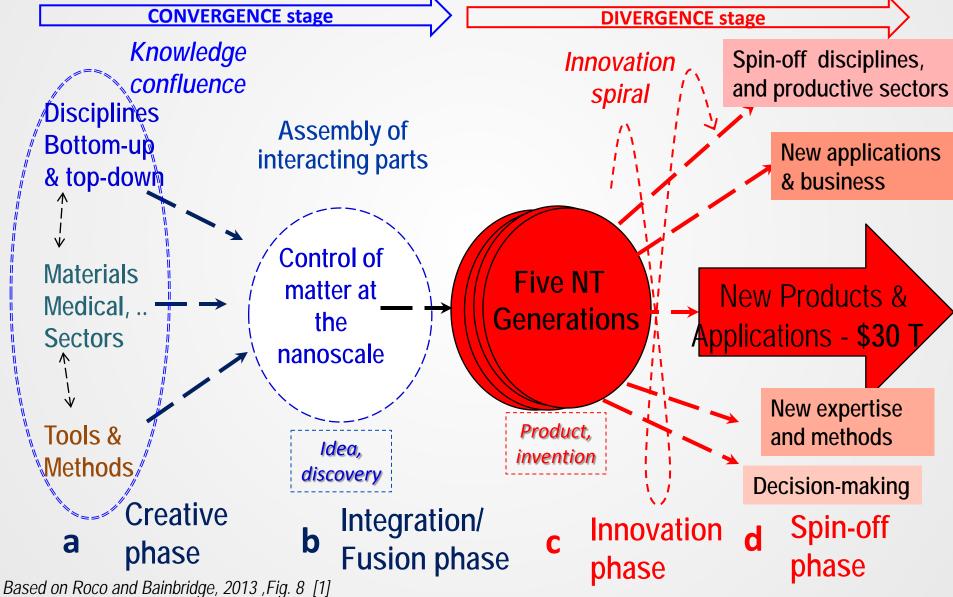
Conceptualization of "Nanomanufacturing" and "Digital Technology" megatrends

(GAO-14-181SP Forum on Nanomanufacturing, Report to Congress, 2014, Fig. 3)

Vision inspired research is essential for the long-term view of nanotechnology

Nanotechnology: from scientific curiosity to immersion in socioeconomic projects

30 year vision to establish nanotechnology: changing focus and priorities


Reports available on: www.wtec.org/nano2/ and www.wtec.org/NBIC2-report/ (Refs. 2-5)

OVERVIEW: CREATING A GENERAL PURPOSE NANOTECHNOLOGY IN 3 STAGES (2000 – 2030) FIVE GENERATI (Refs. 2-5) NANOPRODUCTS 2030 New convergence platforms & economy immersion 5. NBIC ~ 2021 - Nano3 technology divergence -> ~ 2030 **Technologies** Platforms Create spin-off nano-platforms DIVERGENCE in industry, medicine and services; 4. Molecular NS&E integration for general purpose technology Nanosystems **•nano7** system integration ~ 2011 ~ 2020 Create nanosystems by science-based 3. Nanosystems design/processes/technology integration CONVERGENCE 2. Active Foundational interdisciplinary research at nanoscale Nanostructures **— Nanol** component basics ~ 2001 ~ 2010 1. Passive Create passive and active nanocomponents Nanostructures by semi-empirical design 2000

U.S. National Nanotechnology Initiative

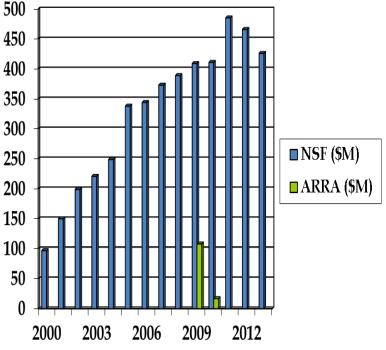
2000-2030 Convergence-Divergence Cycle for global nanotechnology development

2010-2013 (data from Lux Research world industry survey, Jan 2014) Global and US revenues from Nano-enabled products

(All budgets in \$ billion)	2010	2011	2012	2013	2010- 2013
<u>Total world</u> <u>revenues</u>	339 (10 yr ~ 25%)	514	731	1,014	+ 676
US	109.8 (10 yr ~ 24%)	170.0	235.6	318.1	+ 208
<u>World annual</u> increase	10 yr ~ 25%	52%	42%	39%	44%
US annual increase	10 yr ~ 24%	55%	39%	35%	43%
US / World	32.4% 10 yr ~ 35%	33%	32%	31%	32%

MC Roco, Sept 29 2014

Total nanotechnology product revenues annual growth > 40% in 2010-2013


NSF – discovery, innovation and education in Nanoscale Science and Engineering (NSE)

www.nsf.gov/nano, www.nano.gov

FY 2015 Budget Request - \$412 million

- Fundamental research
 ~ 5,000 active projects
 in all NSF directorates
- Establishing the infrastructure 26 large centers, 2 general user facilities, teams

Funding mechanisms (1) of research, education and infrastructure

- NNI is a NSF-wide initiative: funding for individual or smallgroup awards in all directorates BIO, CISE, GEO, E,H.R., ENG, MPS, SBE and offices (e.g. international, integrative activities) – in order to get synergism with all areas on a competitive basis and increase fundamental aspects in research and education
- Dedicated programs in key areas: in Chemistry (Macromolecular/Supramolecular/Nanochemistry Program), DMR (Metals and Metallic Nanostructures), CBET (Environmental Health and Safety of Nanotechnology), CMMI (Nanomanufacturing), BIO (Environmental Biology –CEIN)

Funding mechanisms (2) of research, education and infrastructure

- Research and education centers (5 year + 5 year awards)
 - cross directorates: NSECs, MRSECs, NERC, NISE, STCs,...
 - focused on topics in Molecular Chemistry Centers, Physics, ...
- Cross-directorate NSF solicitations: such as Nanoscale Interdisciplinary Teams (NIRT), Nanoelectronics for 2020 and Beyond (NEB), Scalable Nanomanufacturing, Two-dimensional nanomaterials, and Nanotechnology Applications and Career Knowledge for technological education
- National user facilities: NNIN, NCN-nanoHUB
- SBIR / STTR, I-Corps, GOALI, PFI (spectrum of programs)

Nanotechnology Initiative (NNI), 2011-2014 (www.nano.gov)

Sustainable Nanomanufacturing Nanoelectronics for 2020 and Beyond Nanotechnology for Solar Energy *Nanotechnology for Sensors and Sensors for Nanotechnology*

Nanotechnology Knowledge Infrastructure

New topics under consideration for 2015: nanomodular systems, water filtration, nanocellulose, nanophotonics, nano-city...

Nanomanufacturing

 A part of National Nanotechnology Initiative and supporting Advanced Manufacturing (NSF, NASA, DOE, DOD, NIST, USDA, ..)

- Nanotechnology Signature Initiative : Sustainable Nanomanufacturing <u>www.nano.gov/NSINanomanufacturing</u>
 - Scalable Nanomanufacturing (NSF, 2011-2015)
 - NSF National Nanomanufacturing Network (NSF, NNN), <u>http://www.internano.org/content/;</u> Newsletter <u>newsletter-bounces@nanomanufacturing.org</u>

Twelve opportunities 2010-2020 for pre-competitive nanomanufacturing R&D

- <u>1. Guided molecular assembling</u> on several length scales (using electric and magnetic fields, templating, imprinting, additive, chemical methods, etc.)
- 2. Modular and platform-based nanomanufacturing for nanosystems
- 3. Use micro/nano environments: microreactors, microfluidics, deskfactories
- 4. Designing molecules with new structures and functionalities
- 5. Nanobio-manufacturing harnessing biology for nanomanufacturing (using living cells directly, borrowed, or bio-inspiration such as folding)
- 6. Manufacturing by nanomachines advances catalysts, DNA machines, ..
- 7. Hierarchical nanomanufacturing integrate in 3D, diff. materials, functions
- 8. Scale-up, high-rate, distributed continuum manufacturing processes
- 9. Standardized tools for measurements and manufacturing
- <u>10. Predictive simulation of nanomanufacturing processes</u>
- 11. Predictive approach for toxicity of nanomaterials (ex: oxidative stress)
- 12. Development and use of nanoinformatics and intellectual property

National Nanomanufacturing Network (2006-) Its core: Four Nanomanufacturing NSECs

- Center for Hierarchical Manufacturing (CHM)
 - U. Mass Amherst/UPR/MHC/Binghamton Integrated *roll-to-roll* printed nanoelectronics
- Center for High-Rate Nanomanufacturing (CHN)
 - Northeastern/U. Mass Lowell/UNH Large-scale, *directed assembling of nanostructures*
- Center for Scalable and Integrated Nanomanufacturing (SINAM)
 - UC Berkeley/UCLA/UCSD/Stanford/UNC Charlotte *Plasmonic* processes for integrated systems
- Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems (Nano-CEMMS)
 - UIUC/ Caltech/ NC A&T. Combined methods and materials for manufacturing, using e.g. *nanofluidics*
- Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems

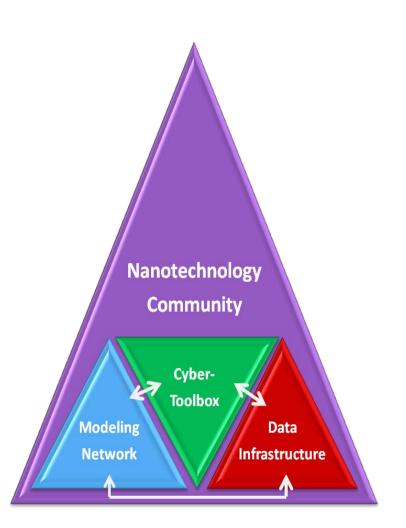
Center for High-rate Nanomanufacturing

Video

Nanosystems Engineering Research Centers Three NSF awards of \$55.5 million (2012-2017)

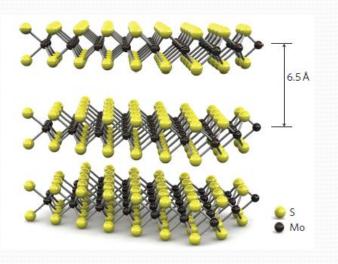
 Advanced Self-Powered Systems of Integrated Sensors and **Technology**, North Carolina State University: self-powered wearable systems that simultaneously monitor a person's environment and health

Nanomanufacturing Systems for Mobile Computing and Mobile Energy Technologies, UT-Austin: high-throughput, reliable, and versatile nanomanufacturing process systems with illustration to mobile nanodevices.

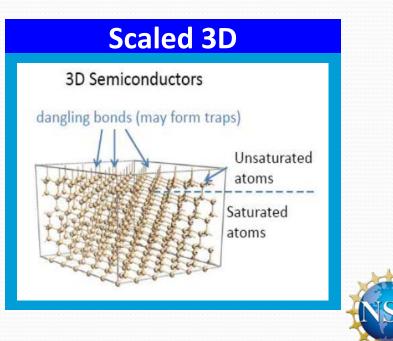

 Transformational Applications of Nanoscale Multiferroic **Systems**, UCLA: exploit nanoscale phenomena to Ferromagnetic reduce the size and increase the efficiency of components and systems whose functions rely on the manipulation of Ferroelectric either magnetic or electromagnetic fields.

Opportunities to advance nano-informatics

Nanotechnology Knowledge Infrastructure for fundamental collaborative research, a cybertoolbox, and data infrastructure for nanotechnology.


To create a community-based, solution-oriented knowledge infrastructure for nanoinformatics:

- for design,
- manufacturing,
- nano-EHS,



Nanocomposite 2D materials beyond graphene

- Other layered 2D materials exist: oxides, nitrides, sulfides
- Van der Waals solids: e.g. 2D MoS2
- MoS2 turns from indirect band-gap semiconductor to direct band-gap

- Bulk MoS2 crystal, like graphite Molybdenite – earth abundant
 Modular materials and systems
- > 3D assembling

Modular Nanosystems Example: using 2D electronic materials

- A Broad Range of Choices:
 - From Insulator to Superconductor
 - Provide Possibility for 2D Circuits

Graphene Family (C, Si, BN) MX₂ (TMD) Family (>88 members)

Semi-metal (E_a: 0 eV) Half-metal (E_g: 0-1 eV) Interconnect, Gate, RF, etc. Example: CrO₂, CrS₂ Example: Graphene Semiconductor (E_a: 1-2 eV) Metal Channel Material Interconnect, Gate , etc. Example: MoS₂, WSe₂ Example: VO₂, VS₂ All 2D Circuits 2D Metal Superconductor Insulator (E_a: ~5 eV) Example: NbSe₂ 2D Dielectric Dielectric Example: h-BN 2D Channe 2D Interconnect

Courtesy Kaustav Banerji (UCSB)

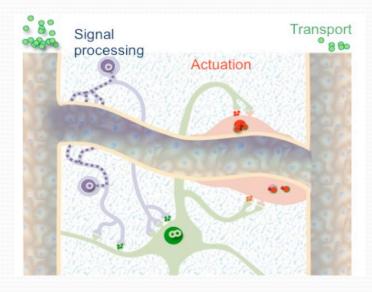
2014 NSF Awards: Two-dimensional atomic tick materials

Prop ID I	PI Last Name	Project Title	Submitting Organization
1433311	Terrones	Design, Synthesis, and Device Fabrication of Transition Metal Dichalcogenides for Active and Nonlinear Photonics	Rensselaer Polytech Inst
1433510	Lauhon	EFRI 2-DARE: Scalable Growth and Fabrication of Anti-Ambipolar Heterojunction Devices	Northwestern University
1433541	Huang	Scalable Synthesis of 2D Layered Materials for Large Area Flexible Thin Film Electronics	U of Cal Los Angeles
1433378	Redwing	2D Crystals Formed by Activated Atomic Layer Deposition	PA St U University Park
1433395	Balandin	Novel Switching Phenomena in Atomic MX2 Heterostructures for Multifunctional Applications	U of Cal Riverside
1433467	Goldberger	Enhancing Thermal and Electronic properties in Epitopotaxial Si/Ge/Sn Graphene Heterostructures	Ohio State University
1433307	Robinson	Ultra-Low Power, Collective-State Device Technology Based on Electron Correlation in Two-Dimensional Atomic Layers	PA St U University Park
1433496	Cobden	Spin-Valley Coupling for Photonic and Spintronic Devices	U of Washington
1433490	Xing	Monolayer Heterostructures: Epitaxy to Beyond-CMOS Devices	University of Notre Dame
1433459	Ye	Phosphorene, an Unexplored 2D High-mobility Semiconductor	Purdue University

MC Roco, Sept 29 2014

Tissue Engineering meets 3-D Printing

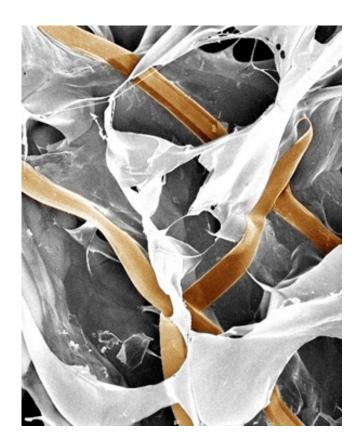
- 3D printing technology
- Tissue engineering
- Nanotechnology
- Additive manufacturing enables printing of scaffolds with nanoscale precision for tissue engineering


Coincidental convergence of four very different research directions

Novogen MMX Bipprinter Credit: Organovo, Inc.

Emerging Behaviors in Integrated Cellular Systems (STC)

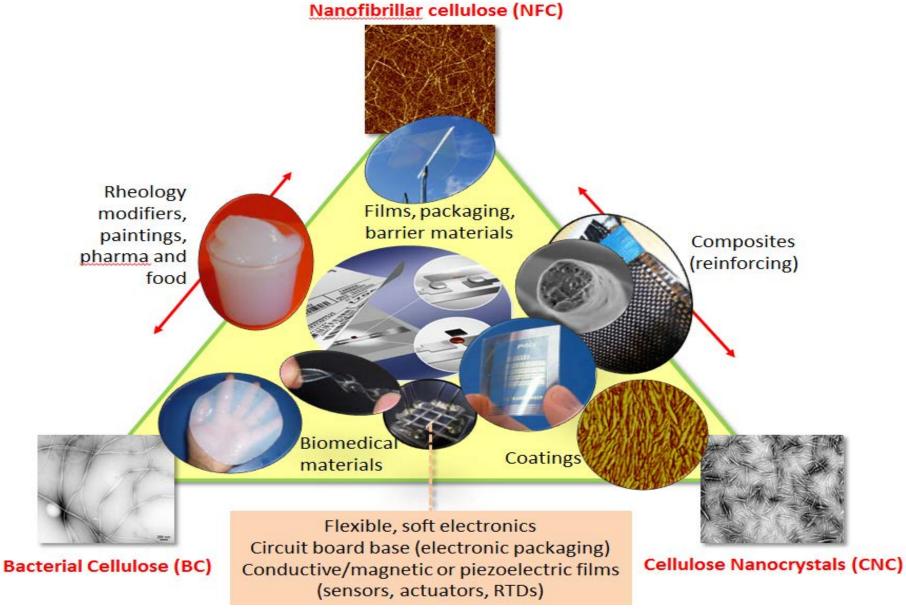
- building living, multi-cellular machines -


<u>Understand fundamental cellular behaviors</u> that are guided by integrated biological, biochemical, and physical (geometrical, mechanical, electrical, thermal) processes Develop experimental and computational tools for understanding, and controlling the complex functional behaviors of <u>interacting cell clusters or</u> <u>biological machines</u>

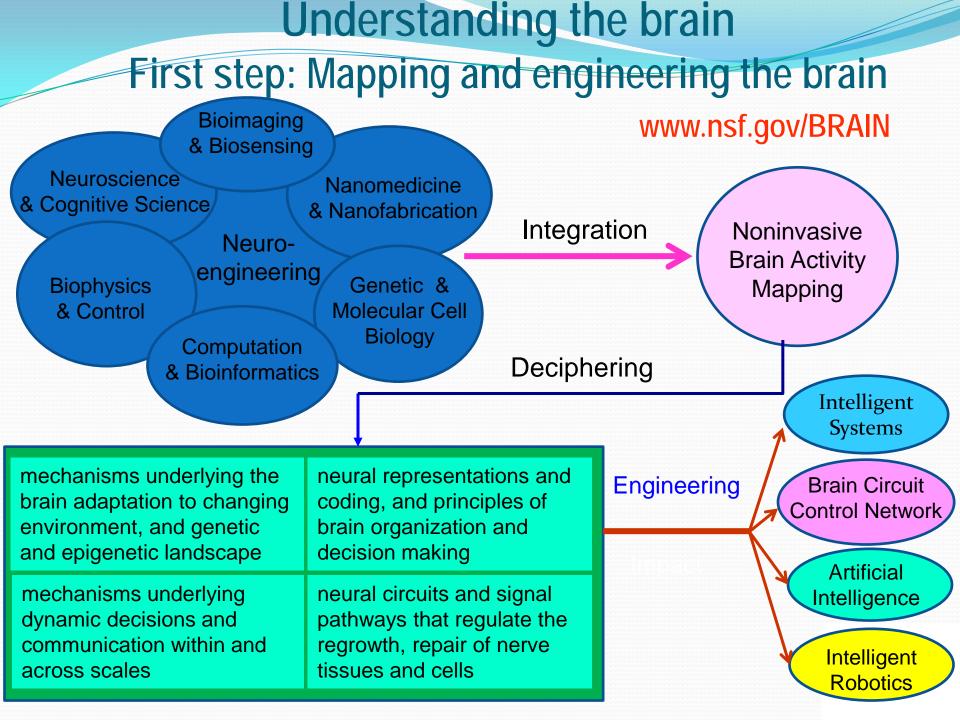
Lead MIT (Kamm); Georgia Tech, Illinois, Morehouse, UC Merced, City College NY are partner institutions.

MC Roco, Sept 29 2014

Cyborg-like Tissue Monitors Cells Nanoelectronic scaffolding supports living tissue


SEM images of a mesh nanoES/alginate scaffold, top (I) and side (II) views. The epoxy ribbons from nanoES are false-colored in brown for clarity

Lieber, Langer et al. (Harvard U, MIT) have constructed a material that merges nanoscale electronics with biological tissues into a mesh of transistors and cells


- The **cyborg-like tissue** supports cell growth while simultaneously monitoring the activities of those cells, drug effects

- Step toward prosthetics that communicate directly with the nervous system, and tissue implants (Nature Materials, Aug 2012)

Cellulose nanomaterials

O.J. Rojas, NCSU, 2014

Twelve global trends to 2020 www.wtec.org/nano2/

- Theory, modeling & simulation: x1000 faster, essential design
- "Direct" measurements x6000 brighter, accelerate R&D & use
- A shift from "passive" to "active" nanostructures/nanosystems
- Nanosystems, some self powered, self repairing, dynamic
- Penetration of nanotechnology in industry toward mass use; catalysts, electronics; innovation– platforms, consortia
- Nano-EHS more predictive, integrated with nanobio & env.
- Personalized nanomedicine from monitoring to treatment
- Photonics, electronics, magnetics new capabilities, integrated
- Energy photosynthesis, storage use solar economic by 2015
- Enabling and integrating with new areas bio, info, cognition
- Earlier preparing nanotechnology workers system integration
- Governance of nano for societal benefit institutionalization

Long-term opportunity and challenge: NBIC systems with emerging behavior

- Evolutive nano-bio-robotic systems
- Hybrid viruses, bacteria and other organisms
- Nanosystem, synthetic biology & neurotechnology
- Control and manipulation of DNA at the nanoscale
- Human enhancement, including physic-medical, brain potential, behavior, individualized medicine, others
- Artificial organs, legal aspects & life expectancy
- Intelligent working and urban environments
- Numerous emerging NBIC platforms (see Ref [1-6])

Related publications

- 1. "The new world of discovery, invention, and innovation: convergence of knowledge, technology and society" (Roco & Bainbridge, JNR 2013a, 15)
- 2. NANO1: "Nanotechnology research directions: Vision for the next decade" (Roco, Williams & Alivisatos, Springer, 316p, 2000)
- *3. NANO2*: "Nanotechnology research directions for societal needs in 2020" (Roco, Mirkin & Hersam, Springer, 690p, 2011a)
- 4. NBIC1: "Converging technologies for improving human performance: nano-bioinfo-cognition" (Roco & Bainbridge, Springer, 468p, 2003)
- 5. NBIC2: "Convergence of knowledge, technology and society: Beyond NBIC" (Roco, Bainbridge, Tonn & Whitesides; Springer, 604p, 2013b)
- 6. "Nanotechnology: from discovery to innovation and socioeconomic projects: 2000-2020" (Roco; CEP, 2011b)
- 7. "Mapping nanotechnology innovation and knowledge: global and longitudinal patent and literature" (Chen & Roco, Springer, 330p, 2009)
- 8. "Global nanotechnology development from 1991 to 2012" (JNR 2013c)
- 9. "Long View of Nanotechnology Development: the NNI at 10 Years" (JNR, 2011d)