NASA
Technical
Paper 3096

AVSCOM
Technical
Report
91-C-020

August 1991

A Method for Determining Spiral-Bevel Gear Tooth
Geometry for Finite
Element Analysis

Robert F. Handschuh
and Faydor L. Litvin

A Method for Determining Spiral-Bevel Gear Tooth Geometry for Finite Element Analysis

Robert F. Handschuh
Propulsion Directorate
U.S. Army-AVSCOM

Lewis Research Center
Cleveland, Ohio

Faydor L. Litvin
University of Illinois at Chicago
Chicago, Illinois

MNS

National Aeronautics arid Space Administration
Office of Management
Scientific and Technical Information Program

Summary

An analytical method has been developed to determine gearwoth surface coordinates of tace-milled spiral bevel gears. The method uses the basic gear design parameters in conjunction with the kinematical aspects of spiral bevel gear manufacturing machinery, A computer program entitled "SURFACE" was developed to calculate the surface coordinates and provide three-dimensional model data that can be used for finite element analysis. Development of the modeling method and an example case are presented in this report. This method of analy sis could also be applied in gear inspection and near-netshape gear forging die design.

Introduction

Spiral bevel gears are currently used in all helicopter power transmission systems. This type of gear is required to turn the corner from a horizontal engine to the vertical rotor shaft. These gears carry large loads and operate at high rotational speeds. Recent research has focused on understanding many aspects of spiral bevel gear operation. including gear geometry (refs. I to 12). gear dynamics (refs. 13 to 15). lubrication (ref. 16), stress analysis and measurement (refs. 17 to 21). misalignment (refs. 22 and 23). and coordinate measurements (refs. 24 and 25), as well as other areas.

Research in gear geometry has concentrated on understanding the meshing action of spiral bevel gears (refis. 8 (1) 11). This meshing action often results in much vibration and noise due to an inherent lack of conjugation. Vibration studies (ref. 26) have shown that in the frequency spectrum of an entire helicopter transmission. the highest response can be that from the spiral bevel gear mesh. Therefore if noise reduction techniques are to be implemented effectively, the meshing action of spiral nevel gears must be understood.

Also. investigators (refs. 18 and 19) have found that typical design stress indices for spiral hevel gears can be signilicantly different from these measured experimentally. In addition to making the design process one of trial and error forcing one (1) rely on past experience). this inconsistency makes extrapolating ower a wide range of sizes difficult, and an owerly concervative design can result.

Research has heen ongoing in atl attempt to prediet streses (i.e. . hending and contate) by using the finite element method. A great deal of work (reth. 27 (0, 30) has gone into) limite
element modeling of parallel axis gears to determine the stress field. Loads are typically applied at the point of highest single tooth contact, and then the stress in the fillet region is examined. Computer programs that pertorm this type of analysis are usually two dimensional in nature and have computer storage requirements that are small enough for personal computers. These attributes make them very popular and attractive to designers. However, a limited number of researchers (refs. 16 and 21) have investigated finite element analysis of spiral bevel gears.

Parallel axis components (involute tooth geometry) hate closed-form solutions that determine surface coordinates. These coordinates can be used as input to finite element methods and other analysis tools. Spiral bevel gears, on the other hand. do not have a closed-form solution to describe their surface coordinates. Coordinate locations must be solved numerically. This process is accomplished by modeling the kinematies of the cutting or grinding machinery and the geometry of the basic gear design.

The objective of the research reported herein was to develop a method for calculating spiral bevel gear-tooth surface coordinates and a three-dimensional model for finite element analysis. Accomplishment of this task required a basic understanding of the gear manufacturing proces. Which is described herein by use of differential geometry techniquen (ref. I). Both the manufacturing machine settings and the basic gear design data were used in a numerical analysis procedure that yielded the tooth surface coordinates. After the tooth surfaces (drive and coast sides) were described. a three dimensional model for the tooth was assembled. A computer program. SURFACE. Was developed to automate the calculation of the tooth surface coordinates, and hence, the coordinates for the gear-tooth three-dimensional linite element model. The development of the analytical model is explained. and an example of the finite element method is prevented.

Determination of Tooth Surface Coordinates

The spiral gear mathining proces dencribed in this paper is that of the face-milled type. Spiral betel gears manufactured in this way are used extensively in acrospace power tramomisoiom (i.e., helicopter main tail rotor tramminomb) to tramomit ponce between horimontal gas turbme engimes and the vertical rotor
shaft. Because spiral bevel gears can accommodate various shaft orientations, they allow greater freedom for overall aircraft layout.

In the following sections the methed of determining gear-tooth surface coordinates will be described. The manutacturing process must first be understood and then analytically described. Equations must be developed that relate machine and workpiece motions and settings with the basic gear design data. The simultaneous solution of these equations must be done numerically since no closed-form solution exists. A description of this procedure follows.

Gear Manufacture

Spiral bevel gears are manufactured on a machine like the one shown in figure 1. This machine cuts away the material between the concave and convex tooth surfaces of adjacent teeth simultaneously. The machining process is better illustrated in
figure 2. The head cutter (holding the cutting blades or the grinding wheel) rotates about its own axis at the proper cutting speed. independent of the cradle or workpiece rotation. The head cutter is connected to the cradle through an eccentric that allow: adjustment of the axial distance between the cutter center and cradle (machine) center. and adjustment of the angular position between the two axes to provide the desired mean spiral angle. The cradle and workpiece are connected through a system of gears and shafts, which controls the ratio of rotational motion between the two (ratio of roll). For cutting, the ratio is constant. but for grinding. it is a variable.

Computer numerical controlled (CNC) versions of the cutting and grinding manufacturing processes are currently being developed. The basic kinematics, however. are still maintained for the generation process; this is accomplished by the CNC machinery duplicating the generating motion through point-topoint control of the machining surface and location of the workpiece.

Figure 1. Machate wed of generate piral bevel gear-louh varlace.

Figure 2.-Orientation of workpiece to generation machinery

Coordinate Transformations

The surface of a generated gear is an envelope to the family of surfaces of the head cutter. In simple terms this means that the points on the generated thoth surface are points of tangency to the cutter surface during manufacture. The conditions necessary for envelope existence are given kinematically by the equation of meshing. This equation can be stated as follows: the normal of the generating surface must be perpendicular to the relative velocity between the cuter and the gear-tooth surface at the point in question (ref. 1).
The coordinate transformation procedure that will now be dencribed is required to locate any point from the head cutter into a coordinate system rigidly attached to the gear being manufactured. Homogeneous corrdinates are used to allow rotation and translation of vectors simply by multiplying the matrix transformations. The method used for the coordinate transformation can be found in references 1. 5, and 8 to 11 .
Let us begin with the head-cutter coordinate system S, shown in figure 3. This report assumes that the cutters are straight sided (not curved as commonly used on the wheel for final grinding). Surface corordinates "/ and θ determine the location of a current point on the cutter surface as well as the orientation of the current point with respect th coordinate system S_{t}. Angles $\psi_{4,}$, and $\psi_{\text {, }}$, are the inside and outside blade angles. The inside and outside

Figure 3.-Head-culter cone surfaces
blades cut the convex and concave sides of the gear teeth. respectively. A point on the cutter blade surface is determined by the following:

$$
\mathbf{r}_{.}=\left|\begin{array}{c}
r \cos \psi-u \cos \theta \tag{1}\\
u \sin \psi \sin , \\
u \sin \cdot \cos \theta \\
1
\end{array}\right|
$$

where fixed value r is ine radius of the blade at $x_{i}=0$. and ψ is the blade angle. : arameters 14 and θ locate a point in system S_{t} and are unkr,sivns whose value will be determined.
The head-cutter coordinate system S_{S} is rigidly connected to coordinate ,ystem $S_{\text {, (fig. 4). System }} S_{\text {, }}$ is rigidly connected to the cradle that rotates about the $x_{m, 1}$ axis of the machine coordinate system S_{m}. Coordinate system S_{m} is a fixed coordinate system and is connected to the machine frame.
To reference the head cutter in coordinate system S_{0}. the following transformation is necessary:

Left-hand member; $s=\overline{\mathrm{O}_{\mathrm{c}} \mathrm{O}_{s}}$

 and $S_{\text {r.,. }}$ revpectived.
$M_{4}=\left\{\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos q & \mp \sin q & \mp \sin q \\ 0 & \pm \sin q & \cos q & \sin q \\ 0 & 0 & 0 & 1\end{array}\right.$
where q is the crade angle and s is the distance between the C(x)rdinate swem S and S origins $\left(s=\bar{O}_{1}\right)$. The upper and lower signs preceding the various term in this matrix transformation (and the rest of the paper) pertain to left- and righthand gears revpectively.

Now. to transform from S, whe tixed coordinate sysm S_{m}. the roll angle of the cratle O, is used. This transformation is given by

$$
M_{\prime \prime}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{3}\\
0 & \cos o_{1} & \pm \sin o_{1} & 0 \\
0 & \mp \sin o_{1} & \cos o_{1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right.
$$

Coordinate system S_{m} locates the machine center. and coordinate system S_{f} orients the pitch apex of the gear being manufactured. The transformation from coordinate sytem S_{m} to coordinate system S_{p}, requires the machine tool settings L_{m} and E_{m} along with dedendum angle δ from the component design (see figs. 5 and 6). Machine (ox) settings L_{m} and $E_{, n,}$, an be found from the summary sheet that typically accompanies a gear. or the methods in reference 8 can be used. Reference 8 conserts standard machine tool settings for the sliding base, the offet, and the machine center-to-back into settings L_{m}, and E_{n} : as shown in table I. The transformation matrix is given by

Front view
 (0.- 0 , hemp here)

Front viow
 16. (1) , hown heres)

$$
M_{p, m}=\left[\left.\begin{array}{cccc}
\cos \delta & 0 & -\sin \delta & -L_{\ldots,} \sin \delta \tag{4}\\
0 & 1 & 0 & \pm E_{m} \\
\sin \delta & 0 & \cos \delta & L_{\ldots, \ldots} \cos \delta \\
0 & 0 & 0 & 1
\end{array} \right\rvert\,\right.
$$

This is shown in figure 5 for a right-hand member and in figure 6 for a lefthand member. Figure 7 is given to clarity the orientation of the coordinate systems and machine tool settings ($\left.I_{\ldots, \ldots}, E_{m}\right)$.

The next transformation involves rotation of system S_{p}, o S_{11}. The common origin for coordinate system S_{n} and S_{1} locates the apex of the gear under consideration with respect to coordinate system S_{m}. This requires rotation about $y_{"}$ by the pitch angle μ (see lig. 7). This is given by

$$
M_{\text {cup }}=\left[\begin{array}{cccc}
\cos \mu & 0 & \sin \mu & 0 \tag{.5}\\
0 & 1 & 0 & 0 \\
-\sin \mu & 0 & \cos \mu & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The final transformation is from coordinate system S_{a}, 0 coordinate system ς_{1}, which is lixed to the component being manufactured. A rotation about the z_{p}-axis through an angle ϕ_{11} is repuired. Angle ϕ_{11}, shown in ligure 8 , is the workpiece rotation angle; it is directly related to the angle of rotation of the cradle $\phi_{\text {c }}$ (this relationship will be described in the next section). The S_{a} to S_{w} coordinate transformation is given by

TABII: I. --SKIN CONVIENTIONS OI MACHINE-TOOL. SEITINGS
|limun ref. 8.1

Sething	Sign	Right-hand member	Leli-land member
Cranle anter a	$+$	Counlerelockwise (CCW) Clockivive (CW)	Clockwise (CW) Counterclockwise (CCW)
Machining offer. E_{m}	$+$	Nouve machine center Below machine center	Below mathine conter Above mathine center
Machine center-lo-hack. $X_{w / K}$	$+$	Work withdrawal Work advance	Work willudrawal Work advance
Slating bisce. $\mathrm{X}_{\text {S/m }}$	$+$	Work withdianal Work malvince	Work withdramal Work mevinace
Vector amin of $X_{\text {sin }}$ and X_{M} / π	$+$	$\begin{aligned} & X_{S W}+: X_{M W}- \\ & X_{S B}-: X_{M C W}+ \end{aligned}$	$\begin{aligned} & X_{M B}+: X_{M W}- \\ & X_{s b}-: X_{M C W}+ \end{aligned}$

(b) Plane π and orientation of generated gear coordinates.

Figure 7. -Orientaion of machine wetting and generated gear coxordinate systems.

$$
M_{u 木}=\left[\begin{array}{cccc}
\cos \phi_{11} & \pm \sin \phi_{11} & 0 & 0 \tag{6}\\
\mp \sin \phi_{11} & \cos \phi_{11} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Using these matrix transformations. we can determine the coordinates in $S_{\text {a }}$ of a point on the generating surface from

$$
\begin{equation*}
\mathbf{r}_{\mathrm{u}}=\left|M_{\mathrm{u} / \prime}\right|\left|M_{a p}\right|\left|M_{p, n}\right|\left|M_{m}\right|\left|M_{\mathrm{v}}\right| \mathbf{r}_{\mathrm{c}} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.\mathbf{r}_{n}=\left[M_{w,} f\left(\phi_{1}\right)\right]\left[M_{c q}\right]\left[M_{p, m}\right]\left[M_{m,}\left(\phi_{c}\right)\right] \mid M_{v}\right] \mathbf{r}_{c}(u, \theta) \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{r}_{1}=\mathbf{r}_{11}\left(u, \theta, \phi_{1}\right) \tag{9}
\end{equation*}
$$

This transformation describes the location of a point in the gear fixed coordinate system based on machine settings (L_{m}. E_{m}. q. s. r. and ψ). parameters ($u, \theta_{\text {, and }} \phi_{l}$), and gear design information (μ and δ).

Figure 8. - Rotation of workpiece for left- and right-hand gears during teothsurface generation.

Tooth Surface Coordinate Solution Procedure

In order to solve for the coordinates of a spiral bevel geartooth surface, the following items must be used simultaneously: the transformation process, the equation of meshing, and the basic gear design information. The transformation process described previously is used to determine the location of a point on the head cutter in coordinate system S_{11}. Since there are three unknown quantities (u, θ, and ϕ_{c}), three equations relating them must be developed.

Values for u, θ, and ϕ_{c} are used to satisfy the equation of meshing given by references 1 and 9 :

$$
\begin{equation*}
\mathbf{n} \cdot \mathbf{V}=0 \tag{10}
\end{equation*}
$$

where \mathbf{n} is the normal vector to the cutter and workpiece surfaces at the specified location of interest. and \mathbf{V} is the relative velocity between the cutter and workpiece surfaces at the specified location. From the reference 9 equation of meshing for straight-sided cutters with a constant ratio of roll between the cutter and workpiece, equation (10) is defined as

$$
\begin{align*}
& (u-r \cot \psi \cos \psi) \cos \gamma \sin \tau \\
& \quad+s\left[\left(m_{11}-\sin \gamma\right) \cos ; \sin \theta \mp \cos \gamma \sin \psi \sin \left(q-\phi_{1}\right)\right] \\
& \pm E_{m}(\cos \gamma \sin \psi+\sin \gamma \cos \psi \cos \tau) \\
& \quad-L_{m} \sin \gamma \cos \psi \sin \tau=0 \tag{11}
\end{align*}
$$

where γ is the root angle of the component being manufactured. and

$$
\begin{equation*}
\tau=\left(\theta \mp q \pm \phi_{6}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{c u}=\frac{\omega^{(c)}}{\omega^{(1)}} \tag{13}
\end{equation*}
$$

where m_{c} is the ratio of angular velocity of the cradle to that of the workpiece. Since the ratio of roll in this report is assumed to be constant. equation (13) can be written as

$$
\omega^{(w)}=\frac{\omega^{(1)}}{m_{c w}}
$$

and

$$
\omega^{(1)}=\frac{d \phi_{1}}{d t}: \quad \omega^{(1)}=\frac{d \phi_{c}}{d t}
$$

therefore

$$
\left.\int \phi_{\mathrm{w}} d t=\frac{1}{m_{c \mathrm{w}}} \right\rvert\, \phi_{\mathrm{c}} d t
$$

or

$$
\begin{equation*}
\phi_{w}=\frac{\phi_{i}}{m_{c w}} \tag{14}
\end{equation*}
$$

Equation (14) is the relationship between the cradle and workpiece for a constant ratio of roll and is used directly in equation (6).

Gear design information is then used to establish an allowable range of values of the radial (r) and axial (z) positions that are known to exist on the gear being generated. This is shown in figure 9.

First the equation of meshing must be satisfied. This was shown earlier to be

$$
\mathbf{n} \cdot \mathbf{V}=0
$$

or

$$
\begin{equation*}
f_{1}\left(\mu, \theta, \phi_{1}\right)=0 \tag{15}
\end{equation*}
$$

Figure 9.-Orientation of gear to be gencrated. with awumed proitions r and:

The axial position must match the value found from transforming the cutter coordinates S, to workpiece coordinates S_{11}. This is satisfied by the following (fig. 9):

$$
\begin{equation*}
z_{11}-z=0 \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{2}\left(u, \theta, \phi_{\cdot}\right)=0 \tag{17}
\end{equation*}
$$

Finally the radial location from the work axis of rotation must be satisfied. This is accomplished by using the magnitude of the location in question in the $x_{\mathrm{w}}-y_{" 1}$ plane (see fig. 9):

$$
\begin{equation*}
r-\left(x_{11}^{2}+y_{n}^{2}\right)^{0.5}=0 \tag{18}
\end{equation*}
$$

or

$$
\begin{equation*}
f_{3}\left(u, \theta, \phi_{l}\right)=0 \tag{19}
\end{equation*}
$$

Now a system of three equations (eqs. (15). (17). and (19)) is solved simultaneously for the three parameters u, θ, and ϕ_{1}. for a given gear design with a set of machine tool settings. These are nonlinear algebraic equations that can be solved numerically with commercially available mathematical subroutines. These equations are then solved simuitaneously for each location of interest along the tooth flank. as shown in figure 10. In the SURFACE program a 10 by 10 grid of points is used on each side of the tooth. From the surface grids. the active profile (working depth) occupied by a single tooth is defined.

Figure 10 .-Calculation points 110 bs 10 grid. i.c.. 100 points cach vide) for concate and consex sider of woth surface

Application of Solution Technique

An application of the techniques previously discussed will now be presented. The component to be modeled was from the NASA Lewis Spiral Bevel Gear Test Facility. A photograph of the spiral bevel gear mesh is shown in figure 11. and the design data for the pinion member are shown in table II.

The gear design data were used along with the methods of reference 9 to determine the machine tool settings for straightsided cutters (see table II). These values were then used as input to SURFACE. This program calculates the coordinates

c-77-117
Figure 11.-NASA spiral betel gear test rig components.
of the concave and convex sides of the gear tooth (fig. 10). orients the surfaces such that the top land is of the proper width, and then generates the required data for the three-

TABLE II-EXAMPLE CASE OF SURFACE COORDINATE GENERATION
(a) Pinion design data

Number of teeth pinion	
Dedendum angle. deg	. 1.0
Addendum angle. deg	3.883
Pitch angle. deg	.18.433
Shaft angle deg	90.0
Mean spiral angle deg	35.0
Fance width. mm (in.)	$25 .+(1.0)$
Mean cone distance. mm (in.)	81.0513 .1911
Inside radius of gear hlank. mm (in.)	$15.310 .6044)$
Top land thickness. mm (in.)	$2032(0) 080)$
Clearance, mm (in.).	$0.762(0) 030)$

(b) Gieneration machine setting

	Concale	Conves
Radius oli cutter. r. man ins.	75.222 (2.9615)	78.132913 .07611
Blade angle. \%' deg	161.358	24.432
Vector sum. l,.,. mm (in.)	1.0363 (0.0408)	-1.4249 (-0.0561)
Machine office. $E_{\text {H., }}$. mm (in.)	$3.980: 15.1567)$	$-4.4856(-0.1766)$
Cradle fo cutter distance. s. mm ion.	$74.839(2.4646)$	71.247 (2.8050)
Cradle angle q q. deg	A4.01	53.82
Ratio of roll. $m^{\text {a }}$	0.308462	0.321767
Initial cutter length. .1. nmi (in.)	239.5 (4.43)	181.117.13)
Initial cutter oricntation. ${ }^{\text {a }}$. dey	120.0	120.11
Initial cradl. oricntation. $O_{\text {c }}$. deg	0.)	(1.)

dimensional modeling program PATRAN (ref. 31). The details of the procedure are described in the following paragraphs.

Surface Coordinate Calculation

Using figures 10 and 12 as references. we will describe the calculation procedure for surface cordinates. First. the concave side of the tooth is completely defined before moving to the convex side. These points are calculated hy starting at the toe end and at the lowest point of active protile. Nine steps of equal distance are used from the beginning of the active protile to the face angle (addendum) of the gear tooth. and then back to the next axial position (see fig. 12). The procedure is repeated until the concave side is completely described. Then the same procedure is followed for the convex side.

In the discussion of surface coordinate determination. the cutting blades were described as straight sided. The point radius r (eq. (1)) is the radius the cutter would have if it were projected down to the $y_{-}-$, plane (figs. 3, 5, and 6). Actually. the blade has a theoretical point width and corner radii that generate the portion of the tooth from the working depth to the root cone (see fig. 13). In the section Ceordinate Transformations, this part of the cutting blade was not modeled. so the current analysis by SURFACE cither assumes a full fillet radius hetween the lowest point of active protile on adjacent teeth or sets the fillet radius equal to the clearance (fig. 14).

Concave and Convex Orientation

Since both sides of the gear-tooth surface are not analy. .d simultaneously. for proper alignment of the surfaces, their orientation relative to each other must be established by determining the amount of rotation in the fixed coordinate

Whem S_{n}. This is done by cheching the troth thichness at the face angle on the toe end of the gear tooth. Atso. in the cance of a gear. remember that a given cutting operation using cutter as shown in fig. 3 actually cut adjacent teeth on the consex and concave sides simultaneously. The distance between these two locations must correspond to the top land width. The convex surface is then rotated according to the angle determined by the points at the face angle at the toe position. This is shown in figure 15. Note that this same procedure could have been done by considering the woth mean circular thickness instead of the tooth thichness at the face angle as was done in this report.)

Figure 13 Detanded bew of whathe veded euther permem?

Fgure 14 . - Two !pev of fillet and root radius regions used ty SURFACE program: ρ, constant tillet and root radius: ρ_{f}. tillet radius equal to the clearance, N. number of teeth: r_{1}. inside radius of gear blank.

Figure 15.-Orientalion of concale and consex sides of gear-hooth surlace to attain proper wop level width by rotation of comes side of tooh: P_{1}. concave side location of face angle point at toe end of footh; P_{2} and P_{2}. initial and linal consex side focations, respectisels, of face angle point at toe end of tooth: ξ. angle through which P_{2} is rotated: and $w_{:}$and w_{1}, desired and initial top level thicknesses. respectively.

Generation of Three-Dimensional Model Data

Once the surface coordinates are described and properly oriented, then the data necessary for PATRAN have been produced. Currently. the model in SURFACE can have two different fillet and root radii contigurations. The fillet radius can be constant at the cross section between adjacent teeth or he equal to the clearance with a flat between the fillet radii of the adjacent teeth at the root angle. Also a constant inside radius of the gear blank is used in this modeling method. These asumptions are depicted in figure 14.

At this point, we have produced a one-tooth model for use in PATRAN. Now, the analyst must determine how complex the moded need be for a given application. If a complete gear is required. simply rotate the one-tooth model in PATRAN.
Once the required number of teeth have been described, then the finite element mesh density and the boundary condition mformation are generated within the PATRAN environment. PATRAN produces the bulk data deck for MSC/NASTRAN and many other computer codes. The example given in this report uned MSC NASTRAN for the static analysis.

Example Model and Results

From the one-tooth model described earlier the analysis techniques can be demonstrated. The model shown in tigure 16 is that for a constant fillet and root radius (a!, called full fillet) model. The fillet and root radius on the convex side has been added along with the tooth section (without the tooth) to make the model symmetric about the tooth centerline. Figure 16 shows a hidden line plot of the finite element mesh with eight-noded isoparametric three-dimensional solid continuum elements. This model has 765 elements and 1120 nodes. The boundary conditions are shown in tigure 17. A 1724-MP, (250 ksi) constant pressure foad was applied normal to the tooth surface of nine elements. and the two edge surfaces of the gear rim had all degrees of freedom constrained.

The results were calculated by MSC/NASTRAN and were subsequently displayed by PATRAN. Figure 18 shows the principle stresses, and figure 19 shows the total displacements for the boundary conditions shown in figure 17.

Figure 18.-. Major principal veres lor boundar! conditions apecificd in tigure 17.

F!gure 19. Tital diaplacement tor the beundary condewon ypecified in tyeure 17 .

Summary of Results

A method has been presented that uses differential geometry wehniques to calculate the surface coordinates of face-milled piral bevel gear teeth. The coordinates must be solved for numericaliy by a smultaneous bolution of nonlinear algebraic cquations. These equations relate the kinemation of manufacture to the gear design parameters. Coordinates for a grid of points are determined for both the concave and convex siden of the gear tooth. These coordinates are then combined to form the enclosed surface of one gear tooth. A computer program, SCRFACE: was developed to solve for the gear-tooth surface coordinates and provide input to a three-dimensional geometric modeling program (i.e. PATRAN). This enables an analysis by the finite element method. An example of the technique was presented.

Lewis Rencarch Center
National Aeronautios and Space Administration
Cleveland. Ohio. December 19. 1990

References

 Adanced Power Trambmbin Techmongy NASA (P-2330.

\& Huntom. R.a and Con, J. A Bas lor the Analvan ol Surtace Gemetry

 pr. 3173.4
4 Chang. S.H.: Huston. R.I. . and Cin. J.I.: Computer Aded Devignof

 Pf. 5×5 591
 Comugate (icar Tooth Surfices. I. Mech. Iram. Automat. Den.. wal 109. nu. ? June 19K7. pp. 16. 170
6. Thai. Y. C. : and Chin. P.C.: Surtace (Genmery of Straght and Spiral Buel (jears. J Mech Trams dutomat. De:.. wol low. mot. Des. 1987. pp $4+3 .+44$
 Paper Kt DITT 177. Oct 19xt
 Ciam With Conjugate Tooth Surtace and Footh Combit Analow

 at Sparal Bocel Gear With Prodengacd Parabolic Funtoom at

 Helmal and Spiral Bewel Gears SAF: Paper XXIz94. Sept luxk

 (ikanon Work, Rocheoter. NY. Aug 19?0
 Bend (ican NASA CR fosl. los?

 and Gearing Conterace Sth. Sol. I. ASME, 14x9. pp. 375. 382
15. Drago. R.a and Marganhatam. R : Amalswol the Rewnant Revpome of Hellopter Gear With the 3-D Finite Element Method. Presented

10 Chaw. H.C.: Baver. M. and Chens. H.S. A Computer Solamon hor the Dy namic lasd. Luhrant Jom Thachnows, and Surtice lemprature in Spiral Bedel Gears Adanced Power Trammionon Tedholeges.
 pp. 3+5-364.

IX. Onwakd. F.B.: Gear Tooth Stren Measuremems on the LH onld Helicopter Trammonon NASA TP 2698. 190°
19. Piffigati. (it: and Drago. R.J. Some Progen in the tantate
 Rimmed Ceats. AGM1 Paper 239.2I, Amernan (icar Mandaturen Arbectation. OCt 1480
20. Wikne. L.: Amaly Pallern Shape and Position Gear Tedmoloes . wol 2. na 1. Jan Peh

21. Drato. R.J.: and Uppaluri. BR.: Later Rommati Trambinmon Techoblogs Development Program. Vil I. Fechomal Report (D210-11972-1-VOI 1. Bencing Vertol Cin: VASA contrat NAS3-221431 NASA CR-168116. 14×3
22. Banter. M.L. Jr.: Efled of Misalignmem on Touth Acton of Buch and Hypord Gears ASML Paper ol M1) 20. Mar 1461.
23. Spear. (i.M.: and Baxter. M.L.: Admathent Chataterintan of Spral Bewel and Hypodd Gears ASME Paper fo MECH 17. Od lohen
2-4. Frint. H.: Abmated Invpedon and Precomon Grinding of Spmal Berd Gears NASA CR-40x3. AVSCON TR NT-C 1. 19x?
 NASA TM-IO2395. AVSCOM TR K9.C OII, 1989.
 Helcopter Main Rotor Tramminom. NASA TP 2705. AVSOOMTR K6.C゙ + +2. 1987.
2?. Gahuata. A.: Cardou, A.: and Dhath. G: Batuation of Strons and Detlectom at Spar and Hellat (ears hy the Bumadary Fiement Methend. ASME Paper $x t$-DET-109. Oct 19xt
2x. Baret. C. . et al. Stron Path Alang the Fateradth in Spur Ciar, Fillet

 173179.
29. Sun. H. et al.: Comparinot of Boundary Element and fombe Element Method, in Spur Gear Rout Strsw Analsin. Procedine: ol the foxy International Power Tramminam and Garing Comerence, Sh. Vibl. 1. ASME, 1989. pp 16. 3 Ith

 x9 ב9Ix. Juls l9x9

Report Documentation Page		
1. Report No. NASA TP-3096 AVSCOM TR-91-C-020	2. Government Accession No.	3. Recipient's Catalog No .
4. Title and Subtitle A Method for Determining Spiral-Bevel Gear Tooth Geometry for Finite Element Analysis		5. Report Date August 1991 6. Performing Organization Code
7. Author(s) Robert F. Handschuh and Faydor L. Litvin		8. Performing Organization Report No. E-5837
9. Performing Organization Name and Address NASA Lewis Research Center Cleveland. Ohio 44135-3191 and Propulsion Directorate U.S. Army Aviation Systems Command Cleveland. Ohio 44135-3191		10. Work Unit No. $\begin{aligned} & 505-63-51 \\ & 1 \mathrm{~L} 162211 \mathrm{~A} 47 \mathrm{~A} \end{aligned}$
		11. Contract or Grant No.
12. Sponsoring Agency Name and Address National Acronautics and Space Administration Washington, D.C. 20546-0001 and U.S. Army Aviation Systems Command St. Louis. Mo. 63120-1798		Technical Paper 14. Sponsoring Agency Code
15. Supplementary Notes Robert F. Handschuh. Propulsion Directorate, U.S. Army Aviation Systems Command: Faydor L. Litvin. University of Illinois at Chicago, Chicago. Illinois.		
16. Abstract An analytical method has been developed to determine gear-tooth surface coordinates of face-milled spiral bevel gears. The method uses the basic gear design parameters in conjunction with the kinematical aspects of spiral bevel gear manufacturing machinery. A computer program entitled "SURFACE" was developed to calculate the surface coordinates and provide three-dimensional model data that can be used for finite element analysis. Development of the modeling method and an example case are presented in this report. This method of analysis could also be applied in gear inspection and near-net-shape gear forging die design.		
17. Key Words (Suggested by Author(s)) Spiral bevel gears Surface coordinates Gear geometry Finite element analysis	18. Distribution Statement Unclassified - Unlimited Subject Category 37	
19. Security Classil (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of pages 22. Price 20 A03

