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SUMMARY

The flutter characteristics of several wings with an aspect ratio of 4.0,
a taper ratio of 0.2, and a quarter-chord sweepback of 45° have been investigated
analytically for Mach numbers up to 2.0. The calculations were based on the
modified-strip-analysis method, the subsonic-kernel-function method, piston
theory, and quasi-steady second-order theory. Results of the analysis and com-
parisons with experiment indicated that: (1) Flutter speeds were accurately
predicted by the modified strip analysis, although accuracy at the highest Mach
numbers required the use of nonlinear aerodynamic theory (which accounts for
effects of wing thickness) for the calculation of the aerodynamic parameters.
(2) An sbrupt increase of flutter-speed coefficient with increasing Mach number,
observed experimentally in the transonic range, was also indicated by the modified
strip analysis. (3) In the low supersonic range for some densities, a discon-
tinuous variation of flutter frequency with Mach number was indlcated by the
modified strip analysis. An abrupt change of freguency appeared experimentally
in the transonic range. (4) Differences in flutter-speed-coefficient levels
obtained from tests at low supersonic Mach numbers in two wind tunnels were also
predicted by the modified strip analysis and were shown to be caused primarily
by dilfferences in mass ratio. (5) Flutter speeds calculated by the subsonic-
kernel-function method were in good agreement with experiment and with the results
of the modified strip analysis. (6) Flutter speeds obtained from piston theory
and from quasi-steady second-order theory were higher than experimental values
by at least 38 percent.

INTRODUCTION

Subsonic, transonic, and supersonic flutter tests of several highly tapered
swept wings have been conducted in the Langley transonic blowdown tunnel (e.g.,
see refs. 1 to 3) and in the Langley 9- by 18-inch supersonic aeroelasticity
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tunnel (ref. 3 and unpublished data) for Mach numbers up to 2.55. These data
have indicated (1) an abrupt and rather large increase of both flutter-speed
coefficient and flutter-frequency ratio with increasing Mach number in the tran-
sonic range and (2) an apparent discrepancy at low supersonic Mach numbers between
flutter-speed coefficient levels obtained in the two tunnels.

In order to study these flutter characteristics in more detail, comprehen-
sive modal-type flutter analyses have been made for the wings employed in the
transonic blowdown tunnel tests reported in reference 1 and in an unpublished
investigation conducted in the Langley 9- by 18-inch supersonic aeroelasticity
tunnel for Mach numbers up to 2.0. These thin, homogeneous wings had an aspect
ratio of 4.0, a taper ratio of 0.2, a quarter-chord sweepback of 45°, and NACA
65A-series airfoll sections. The geometric, mass, and stiffness properties of
these wings are given in appendix A. The primary objectives of this study were
(1) to determine whether the sudden change of flutter behavior at transonic
speeds could be predicted, (2) to formulate, if possible, an explanation for the
differences between the flutter data obtained in the two tunnels, and (3) to
examine the relative accuracies of several methods of flutter calculation.

The majority of the flutter calculations presented herein were made by the
modified-strip-analysis method of reference 4. A refinement in the evaluation
of the aserodynamic parameters employed in this wethod is introduced in appendix B
in order to represent more accurately the load distribution on highly tapered
wings. In addition, the effects of finite wing thickness in flutter calculations
for the higher supersonic Mach numbers are illustrated. Since the two previously
mentioned test facilities operate at appreciably different density levels, the
importance of this density variation has been examined in the present analysis.
An illustration of some effects of tunnel operating conditions on measured flut-
ter boundaries is included in appendix C.

Some calculations by the modified-strip-analysis method are also presented
for two of the configurstions of reference 2. These wings are the same as those
of reference 1, except that ballast welghts were added along the leading edge in
an attempt to raise the flutter speed.

Finally, for comparison purposes, some flutter calculations have been made
for the wings of reference 1 by the subsonic-kernel-function method (ref. 5)
and for the wing tested in the Langley 9- by 18-inch supersonic aseroelasticity
tunnel by piston theory (e.g., refs. 6 to 8) and by quasi-steady second-order
theory (e.g., refs. 8 and 9) for Mach numbers from 1.7 to 2.0.

SYMBOLS

ac,n nondimensional distance from midchord to local aserodynamic center (for
steady flow) measured perpendicular to elastic axis, positive rear-
ward; fraction of local semichord perpendicular to elastic axis

by semichord of wing measured perpendicular to elastic axis at spanwise
reference station 1 = 0.75
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semichord measured streamwise at wing panel root

local lift-curve slope for a section perpendicular to elastic axis
in steady flow

derivative with respect to angle of attack of local pitching-moment
coefficient measured about leading edge of a section perpendicular
to elastic axis in steady flow

coefficient of structural damping required to maintain harmonic
oscilletion at a particular reduced frequency

modal deflection of wing in ith uncoupled bending mode (normalized
translational displacement of wing measured at elastic axis)

Mach number

total mass of exposed wing panel

lifting pressure

static temperature

flutter speed

calculated reference flutter speed obtained from modified-strip-
analysis method by using aerodynamic parameters for two-dimensional
incompressible flow

volume of air within a conical frustum having streamwise root chord
as lower base dlameter, streamwise tip chord as upper base diameter,

and panel span as height

streamwise distance from wing leading edge, posiitive rearward; frac-
tion of local chord

spanwlise distance from wing panel root, fraction of panel span

normalized local translational displacement of wing in jth coupled
mode

modal deflection of wing in first uncoupled torsion mode (normalized
angular displacement of wing measured about elastic axis)

distance measured from wing panel root along elastic axis, fraction
of elastic-axis length

sweep angle of wing elastic axis

mass ratio for exposed wing panel, T/pv



o) air density

w circular frequency of vibration at flutter

Wk circular frequency of kth coupled vibration mode

Wp, 1 circular frequency of ith uncoupled bending vibration mode

Uy, circular frequency of first uncoupled torsional vibration mode
Subscripts:

2D two dimensional

3D three dimensional

DESCRIPTION OF WINGS

A1l wing panels analyzed 1n this investigation represented wings with a
full-span aspect ratio of 4.0, a full-wing taper ratio -of 0.2, a quarter-chord
sweepback of 459, and NACA 65A-series airfoil sections streamwise. All were of
essentially homogeneous construction except those with added ballast along the
leading edge. (See ref. 2.) The wings differed slightly in panel aspect ratio
and panel taper ratio because of the presence or absence of a simulated fuselage.
Differences also occurred in thickness ratio and in the presence, location, and
amount of leading-edge ballast. Further details of wing geometry are given in
table I, figure 1, and appendix A. Model properties are also discussed in appen-
dix A, and the modal frequencies are summarized in table ITI. For convenience,
the wing designations used in references 1 and 2 are retained herein, and the
half-span wing tested in the Langley 9- by 18-inch supersonic aeroelasticity tun-
nel (results unpublished) is designated model B.

FLUTTER ANALYSIS

In this investigation, all calculated flutter points were determined from
conventional graphs of required structural damping plotted against airspeed
(V-g plots). For an n-mode calculation, n curves are traced out in the V-g plot
by the solutions of the n-by-n flutter determinant with reduced frequency as the
independently varying parameter. Since the pertinent structural damping values
are not known for the models used in this investigation, and since the damping
coefficients for homogeneous wings of the present type are usually very small,
all calculated flutter points are taken to be points for which g = 0,

An index to the types of calculations made, the vibration modes employed,
and the results of the analyses is given in table III.




Modified Strip Analysis

Preliminary flutter calculations made by the modified strip method (appen-
dix B) have indlcated that for the analyses of the present highly tapered wings:
(1) The required steady-flow aerodynamic parameters should be evaluated by direct
integration of lifting pressures along wing sections perpendicular to the elastic
axis. (2) Use in the analyses of three vibration modes should be sufficient.
(3) Separate representative flow densities should be used in the subsonic and
supersonic Mach number ranges. These three requirements have been followed in
all of the final flutter calculations made by the modified strip method.

The final flutter calculations employed values of steady-flow aerodynamic
parameters computed from subsonic (ref. 10) or supersonic (refs. 11 and 12)
linearized lifting-surface theory. In addition to the flutter calculsastions based
on linearized aerodynamic theory, one calculation for model B at M = 2.0
employed an aerodynamic correction for finite wing thickness based on the Busemann
second-order theory. No general theory is known to exist for evaluating the non-
linear aerodynamic effects of finite wing thickness on the supersonic steady-flow
aerodynamic loads on finite-span wings. For use in the present flutter analysis,
therefore, such nonlinear effects were epproximated by employing the two-
dimensional Busemann second-order theory to modify the spanwise distributions of
aerodynamic parameters calculated from three-dimensional linearized theory.
Specifically, the values of section pitching-moment slope cmOL n obtained from

)

three-dimensional linear theory were multiplied by the ratio of Cm, n obtained
2
from the two-dimensional nonlinear theory to °m, n obtained from two-dimensional

s

linear theory; that is,
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The resulting correction to linear theory, which is a function only of Mach num-
ber and of the airfoil cross-sectional area, yields a forward shift of local
aerodynamic center. The Busemann second-order theory, rather than the complete
shock-expansion theory, was employed here because of the complications which are
encountered in applying the shock-expansion theory to airfoils with round leading
edges. Analogous calculations employing both theories for some thin wings with
sharp leading edges have shown that for a given Mach number, the aerodynamic
centers calculated by shock-expansion theory are slightly farther forward than
those glven by Busemann second-order theory.

Distributions of the aerodynamic parameters cla n and ac,n used in

)
flutter calculations for model 1l-left are shown in figure 2 for ten Mach numbers
and for model B in figure 3 for six Mach numbers. Corresponding quantities for
models 4tA-right, ballast I, and ballast II are similar to those shown for
model 1-left. Some small numerical differences occur, however, because of dif-
ferent elastic-axis positions. All the final modified-strip-theory calculations
employed three calculated uncoupled vibration modes (first torsion and first and
second bending) as indicated in table III.

Subsonic Kernel Function

The subsonic-kernel-function calculations for models L4A-right and 2A-left
followed the procedure described in reference 5. Nine downwash collocation points
were used in each calculation. These points were taken at 30, 60, and 90 percent
of the panel span and at 25, 50, and T5 percent of the local streamwise chord.
Kernel-function analyses for other wings have indicated that the calculated flut-
ter characteristics generally are not very sensitive to small changes in the
positions of these collocation points.

All kernel-function calculations for model LA-right employed calculated
uncoupled first torsion mode and first and second bending modes. The assoclated
modal frequencies are shown in table IT. All calculations for model 2A-left
used the first three calculated coupled mode shapes and frequencies as shown in
figure 4 and table II. Neither coupled nor uncoupled modes were assumed to be
orthogonal, and the cross-product generalized masses were retained in the flutter
determinant.

Piston Theory and Quasi-Steady Second-Order Theory

The piston-theory and second-order-theory calculations for model B were
similar to the subsonic-kernel-function calculations, except that the generalized
aerodynamic forces were formulated from the lifting-pressure expression given in
equation (16) of reference 8. As indicated in reference 8, the 1lifting pressure
expressions for piston theory and for quasi-steady second-order theory differ
only with respect to two coefficients which depend only on Mach number and the
ratio of specific heats. All of the calculations based on these two theories
include the effect of finite wing thickness.




Both coupled-mode and uncoupled-mode analyses were made for model B. (See
table IIT.) As indicated in appendix A, the three uncoupled modes (first torsion
and first and second bending) were calculated by the method of reference 13,
whereas the first three coupled modes were measured. (See fig. 5.) For both
types of modes, however, the modal frequencies were obtained from measured values.
(See table II.)

Piston theory and quasi-steady second-order theory as expressed in refer-
ence 8 and as applied herein take no account of streamwise wing tips except as a
limit to the region of integration. However, for some of the calculations shown
herein, an approximate tip correction was made on the basis of steady-flow linear
theory. (See ref. 12.) The streamwise tip, of course, influences loading only
within the triangular region bounded by the tip, the tralling edge, and the Mach
line from the leading-edge tip. It may be noted that because the present wings
are swept and highly tapered, this tip triangle covers only a small portion of
the wing panel, and its area decreases as Mach number increases. Furthermore,
the reduced frequency at flutter characteristically decreases as Mach number
increases so that a steady-flow type of tip correction should be more accurate
at the higher Mach numbers. The tip correction as applied herein consists of
multiplying the piston-theory or second-order theory loading at each point within
the tip triangle by the ratio of steady-state load with streamwise tip to steady-
state load without streamwise tip, both being for the undeformed wing. For a
given wing, this ratio, of course, varies with the location of the point within
the tip triangle and with Mach number. Thus for piston theory, for example, the
corrected lifting pressure at a point X,y on the wing is given by

A‘p(x’y’M)piston theory corrected

Ap(;{, &)M)

- - linear theory with tip
= Ap(x,y,M) —
272 /piston theory uncorrected.AP(x,y’M)

linear theory without tip

PRESENTATION OF RESULTS

In order to determine whether the experimentally observed sudden change in
flutter behavior at transonic speeds is also theoretically indicated, flutter
calculations have been made for models l-left and 4A-right by the modified strip
method of reference 1. The resulting flutter-speed coefficients and flutter-
frequency ratios are compared in figures 6 and 7 with experimental flutter data
from reference 1. Figures 8 and 9 show effects of density variation on the cal-
culated flutter speeds and frequencies for models l-left and 4A-right. Some
flutter calculations have been made by the modified strip method for models
ballast I and ballast II to show effects of leading-edge ballast on the flutter
behavior of wings of the present planform. These calculated flutter speeds and
frequencies are compared in figures 10 to 13 with experimental flutter data from
reference 2.



In order to examine theoretically the flutter behavior of wings tested in
different wind tunnels, some calculations by the modified strip method have been
made for model B. The calculated results for model B are compared in figures 14
and 15 with unpublished experimental data and with the measured and calculated
flutter characteristies for model 4A-right.

In order to investigate the accuracies of flutter prediction by methods other
than the modified strip analysis, flutter calculations have been made for
models 4A-right and 2A-left by the subsonic-kernel-function method and for model B
by piston theory and by quasi-steady second-order theory. In figures 16 and 17,
the subsonic-kernel-function calculations for model kA-right (uncoupled modes)
and for model 2A~left (coupled modes) are compared with results of the modified
strip analysis for model LA-right and with experimental flutter data from ref-
erence 1. Finally, figure 18 presents comparisons of piston-theory and quasi-
steady second-order theory flutter calculations and experimental flutter data
for model B.

Table III gives a summary of the types of flutter calculations made and an
index to the results.

DISCUSSION

Modified Strip Analysis

Models 1-left and 4A-right.- Final flutter calculations for models l-left
and 4A-right in figures 6 and T show that at subsonic Mach numbers, both the
flutter-speed coefficients (fig. 6) and the flutter-frequency ratios (fig. 7)
calculated for the two wings are very close together, as had previously been
indicated by the experimental flutter data from reference 1. It mgy be noted
that the flow densities used in the subsonic calculations (p = 0.0025 slug/cu ft
for model 1l-left and p = 0.0022 slug/cu ft for model 4A-right) correspond to
B = 35.9 for model 1-left and f = 33.0 for model 4A-right. This difference
in mass ratio is small, and the curves of figure 8 show that subsonic flutter-
speed coefficients are not very sensitive to changes in mass ratio. However, s
comparison of the two wings on the basis of equal mass ratio would bring the sub-
sonic curves of figures 6 and 7 even closer together. Figures 6 and 7 show very
good agreement between calculated and experimental values of subsonic flutter-
speed coefficient and flutter-frequency ratio.

At supersonic Mach numbers, the curves of flutter-speed coefficlent cal-
culated for models l-left and 4A-right are more separated than at subsonic speeds,
although the flutter-frequency ratios remain essentially coincident. For these
calculations, f = 15.0 for model 1-left and i = 20.8 for model 4A-right. An
examination of figure 8 for these [ values indicates that comparison of the
two wings on the basis of equal mass ratio would agaln yield nearly coincident
curves of flutter-speed coefficient. It should be noted, however, that the
experimental no-flutter points for the 4-percent-thick wings (ref. 1) cover
density values up to p = 0.0080 slug/cu ft. Therefore, if supersonic flutter
points for the k-percent-thick wings had been obtained, the associated densities
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would have been greater than this value. According to figure 8(a), the resulting
flutter-speed coefficients for such high densities should be even larger than the
values shown in figure 6 for model 1l-left. Supersonic flutter data for the 3-
and 4-percent-thick wings thus would not be expected to be essentially coincident
as they were at subsonic Mach numbers. It should be emphasized that these state-
ments are based on consideration of mass-ratio effects only. Since linearized
aerodynamic theory was used in the calculations, no aerodynamic effect of thick-
ness variation is included.

The calculations for model 4A-right at M = V2 indicated two flutter solu-
tions. The flutter-speed coefficients associated with these two solutions are
very close together, and both are in good agreement with experiment. (See
fig. 6.) However, the flutter frequency for one solution is close to the fre-
quency level for subsonic flutter, whereas the frequency for the other solution
is appreciably higher and is close to the supersonic experimental values. (See
fig. 7.) Thus, in this range of speed and density, the wing might flutter at
either of two frequencies and hence in elther of two modes. The occurrence of
the high-frequency flutter for models l-left and 4A-right was found to depend on
both density and Mach number (see figs. 8 and 9), although no attempt has been
made to evaluate precisely its meximum density limit for a given Mach number.
Under some conditions of density and Mach number, the flutter speeds assoclated
with the two solutions became identical (fig. 8), and a discontinuous change of
flutter frequency is thus indicated. In figure 7 an abrupt increase of flutter
frequency in the transonic range is also indicated by the experimental data of
reference 1.

As shown in figures 19 and 20, the appearance of the high-frequency flutter
solution results from an archlike crossing of the g = O axis, whereas the lower
frequency solution results from a monotonic crossing. These figures also show
that even for combinations of Mach number and density which do not yield a high-
frequency flutter point, one of the curves may arch very close to the g =0
axis. Therefore, small changes in wing properties or aerodynamic parameters,
vhich ecause only slight changes in the location of curves in the V-g plot, could
have a pronounced effect on the occurrence of the high-freguency flutter solu-
tion. Furthermore, in cases such as those shown in figures 19(b) and 20(a), even
though the high-frequency flutter is not predicted mathematically, a region of
lightly damped motion would be likely. The arching behavior of one curve in the
V-g plot was observed for all densities at each supersonic Mach number calculated.
The arching curve in each case was the one which at low speeds (high reduced fre-
quencies) was assoclated with the second bending mode, whereas the monotonic
crossing (lower frequency flutter) was associated with the first torsion mode.

Models ballast I and ballast II.- Figures 10 to 13 show that at subsonic
Mach numbers, calculated values of flutter-speed coefficient and flutter-
frequency ratio for the two wings with leading-edge ballast are in good agreement
with the experimental data. At subsonic Mach numbers the experimental points in

\')

b i
as M decreases, whereas the calculated curves show little change with Mach
number. These slope differences appear because the theoretical curves were

these figures, however, appear to indicate that both and — increase



calculated for constant density while the experimental flutter data were obtained
at varying density. Although the value p = 0.0021 Slug/cu ft used in the cal-
culations for models ballast I and ballast IT in the subsonic range is represent-
ative of most of the subsonic-experimental-flutter points, the experimental den-
sity increases rapidly as Mach number decreases. Thus, the densities for the
experimental flutter points at the lowest Mach numbers shown are

p = 0.00390 slug/cu ft for model ballast T and p = 0.00437 slug/cu ft for

model ballast II. Since figures 8 and 9 show that both S A and £~ char-
bswaJ;

acteristically increase with increasing p (see also ref. 14), the use of
increasing density with decreasing subsonic Mach number would be expected to

cause the calculated curves of figures 10 to 13 to rise with decreasing Mach num-
ber. Closer representation of measured densities 1n the flutter calculations is
shown by the diamond symbols in figures 10 to 13 to account for the apparent

slope differences mentioned previously. By comparison, trends of subsonic
flutter-speed coefficient with density for models l-left and LA-right were much
less pronounced than those for models ballast I and ballast IT, so that the influ-
ences of density variation on the subsonic flutter comparisons (figs. 6 and 7T)
were much less evident than those of figures 10 to 13.

At supersonic Mach numbers for model ballast I, there are no experimental
flutter points for comparison with the calculated flutter characteristics. (See
figs. 10 and 11.) However, the calculated flutter speed is somewhat lower than
the highest recorded no-flutter points. For the density used in these calcula-
tions (p = 0.0060 slug/cu ft), only one supersonic flutter boundary existed at
the Mach numbers covered. For model ballast II, however, two boundaries were
found (figs. 12 and 13), and both were substantially higher than the experimental
no-flutter points. The intersection of these two boundaries at about M = 1.2
(fig. 12) corresponds to a condition at which the wing could flutter at either
of two frequencies, and flutter points on opposite sides of this intersection
are indicated to have widely different frequencies.

Model B.~ In figures 14 and 15 both calculated and measured flutter char-
acteristics for model B are compared with the results shown in figures 6 and 7
for model 4A-right. As in the case of model LA-right, the calculated flutter-
speed coefficients for model B at the lower supersonic Mach numbers are in good
agreement with the one experimental point (fig. 14) but the corresponding cal-
culated flutter frequenciles are about 20 percent low. In the calculations for
model B, the following experimental values of density were used:

M p, slug/cu ft vl
1.30 0.00133 36.0
1.64 .00101 474
2.00 .00089 53.8
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For other Mach numbers, density was interpolated linearly between these valiues.
For the densities used in the calculations for model B, no second flutter solu-
tion was indicated.

It is evident from figure 14 that the differences between experimental values
of flutter-speed coefficient for models B and 4tA-right are not caused by dis-
crepancies in the measurements but are actually predicted by the theory. These
differences are gttributed to four factors. TFirst, the major portions of the
differences shown appear to be caused by differences in density. For example,
at M = 1.30 the values i = 36.0 for model B and f = 20.8 for model 4A-right
apply to both theoretical and experimental flutter polints. An examination of the
lower M = 1.30 curve of figure 8(a) (since both model 1l-left and model B are
4 percent thick) shows approximately the magnitude of difference in flutter-speed
coefficient that can be accounted for by this much difference in . Figure 8
also shows that the higher the Mach number, the more rapidly the flutter-speed
coefficient decreases with decreasing density (increasing altitude). Second,

the modael frequencies Wy o and w, for model B are fairly close together,
)

whereas the corresponding values for models l-left and 4A-right are not. (See
table II.) This closeness of modal frequencies would be expected to contribute
somewhat to the lowness of the flutter-speed coefficlents for model B. Third,
because of the presence of the fuselage on models l-left and LA-right, the panel
aspect ratio for these wings is somewhat smaller than that for model B. (See
table I and fig. 1.) This difference would also be expected to raise slightly
the flutter-speed coefficients for models l-left and 4A-right, relative to

model B. Fourth, models B and 4A-right differ in airfoil thickness. (See

table I.) However, comparisons between figures 8(a) and 8(b) for M = 1.30
indicate that thickness alone should have an almost negligible effect on flutter-
speed coefficient. It should be remembered, though, that at low supersonic Mach
numbers all calculations for models 1l-left, LA-right, and B employ linearized
aerodynamic theory. Thus, although the mass and stiffness effects of differing
thickness are included, any aerodynamic effects are not.

Figures 14 and 15 show that at the higher supersonic Mach numbers grossly
erroneous estimates of flutter speed and frequency can resuit from usc cf aero-
dynamic parameters obtained from linearized theory. In these figures, the cal-
culated curves for model B indicate that caution should be observed if linearized
aerodynamic theory is used in the modified strip method when the leading edge is
supersonic and the local aerodynamic centers are in the vicinity of the local
centers of gravity. The abruptness of the rise in the calculated flutter-speed
and flutter-frequency curves beginning near M = 1.66 1is associated with this
close approach of local aerodynamic centers to the elastic axis and local centers
of gravity. As Mach number increases slightly above M = 1.66, the aerodynamic
centers calculated from linearized supersonic-flow theory actually move rearward
of the elastic axis and centers of gravity over an outboard portion of the wing.
Under such conditions a small change in aerodynamic-center location can have a
large effect on the section pitching moment about the elastic axis and can even
change its sign. In contrast, similar calculations for two homogeneous unta-
pered wings with 150 and 30° of sweepback and with aspect ratios of 5.34% and 4.16,
respectively, have shown only a gradual rise of flutter speed with increasing
supersonic Mach number. For those wings, however, the elastic axes and local
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centers of gravity were at midchord so that the local aerodynamic centers could
never be rearward of these locations. Under these conditions, no change of sign
in the section pitching moment occurred.

It is well known that linearized gerodynamic theory characteristically
predicts aerodynamic-center positions that are too far rearward and that this
condition, in turn, may yield excessively high calculated flutter speeds. (See
ref. 15, for example.) One approach to this problem is to use aerodynamic param-
eters based on nonlinear serodynamic theories, for example, shock-expansion theory
or the Busemann second-order theory. Results of such a calculation employing the
Busemann second-order theory for model B at M = 2.00 are shown in figures 14
and 15. A comparison of the associated linear-theory and second-order-corrected
aerodynamic parameters is shown in figure 3(f). The flutter-speed coefficient
calculated from the corrected aerodynamic parameters is in excellent agreement
with the experimental value at M = 2.00, although the calculated flutter fre-
quency is somewhat low. References 14 and 15 show that as the Mach number
increases and the local aserodynamic centers move closer to the local centers of
gravity, the calculated flutter speed and frequency become increasingly sensitive
to small changes in the aerodynamic-center positions. Under these circumstances,
accurate flutter prediction requires aerodynamic-center values more accurate than
those yielded by linear aerodynamic theory. The present application of the
Busemann-second-order~theory correction to the linear-theory aerodynamic-center
positions for M = 2.00 (fig. 3(f)) moved the aerodynamic centers from behind
to ahead of the centers of gravity and hence caused & large reduction in the
calculated flutter speed.

Flutter-boundary surface.- In view of the fact that flutter characteristics
for a given wing are functions primarily of the two independent variables, mass
ratio and Mach number, it should be helpful and instructive to view the flutter
boundary as a surface rather than more conventionally as a line. This surface

v _ (or
bswuVﬁ

flutter-frequency ratio é%) plotted as a function of the variables Mach num~

for a given wing may be traced out by the flutter-speed coefficient

ber M and mess ratio {i. (See fig. 21.) Cross sections of such surfaces for
constant values of M are shown in figures 8 and 9 of this report and figures 59
to 80 of reference 1l4. Sections for constant values of [ are shown, for
example, by the calculated curves of figures 6 and 7 of this report and figures 81
to 104 of reference 14. Some effects of variations in mass ratio and the concept
of a flutter-speed surface are discussed in reference 16 in connection with two-
dimensional flutter problems. The importance of mass ratio in the dynamic scaling
of flutter models has long been recognized.

In a three-dimensional presentation of this sort a flutter boundary for a
given lifting surface measured in a given facility would generally appear as &
single curve or narrow band lying on the flutter-speed surface.l (See, e.g.,
the data of ref. 1.) Tests of the same wing in a different facility may trace

11 tunnel tempersture were independently controllable over a wide range, a
broader area of the flutter-speed surface could be covered experimentally.
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out a different curve on the flutter-speed surface. Such differences may occur,
for example, because of temperature differences between the two tunnels, or
because of differences between the properties of the two test media. Thus, pro-

jection of dats from two facilities onto the v M plane may yield flutter
bé&;VE,

points which do not form a continuous curve. (See, e.g., fig. 14.) Similarly,
flutter conditions associgted with flight in the atmosphere would also appear on
the flutter-speed surface as a single curve which may or may not be closely
approximated by tests in a given facility. The implications of the foregoing
discussion with regard to the effects on flutter data of wind-tunnel operating
conditions and wing size are examined in further detail in appendix C.

Subsonic Kernel Function

Flutter speeds and frequencies calculated by the subsonic-kernel-function
method (ref. 5) for models 4A-right and 2A-left are compared in figures 16 and 17
with experimental data and with the modified-strip-analysis calculations previ-
ously discussed. Although kernel-function flutter calculations were made only
for the two 3-percent-thick wings, measured flutter points for both 3- and
h-percent-thick wings are included in figures 16 and 17 for continuity because
both experiments and modified-strip-method calculations (fig. 6) indicate insig-
nificant effects of thickness in the subsonic range.

Model L4A-right.- Calculations for model LA-right employed calculated
uncoupled first and second bending modes and first torsion mode as used in the
modified strip analysis. Figure 16 shows the calculated flutter-speed coeffi-
cients to be in good agreement with experimental values up to about M = 0.85.
Above that Mach number, there are no subsonic experimental dats for the 3-percent-
thick wings, but the calculations are about 25 percent higher than data for the
4Y-percent-thick wings at M = 0.95.

Close agreement throughout the Mach number range is indicated between the
kernei-function {iutter speeds and the values obtained from the modified strip
analysis. The largest difference between them is about 5 percent at M = O.
Similar comparisons for a wing with an aspect ratio of 4.0, a sweepback of 45°,
and & teper ratio of 0.6 have shown kernel-function flutter speed at M =0 to
be sbout 10 percent higher than the value obtained by the modified strip analysis.

Model 2A-left.- Calculastions for model 2A-left employed the first three
coupled modes calculated by a matrix-iteration method as indicated in appendix A.
The resulting flutter-speed coefficients shown in figure 16 are in good sgreement
with experimental values for Mach numbers up to 0.96. The kernel-function flutter
speeds for model 2A-left, however, are somewhat lower than values for model
4A-right (uncoupled modes) throughout the Mach number range with the greatest
difference occurring at the higher Mach numbers. Figure 17 shows little differ-
ence between the kernel-function flutter-frequency ratios for models 2A-left and
LA-right, except at the highest Mach numbers.
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Piston Theory and Quasi-Steady Second-Order Theory

All the flutter speeds calculated for model B by piston theory and by quasi-

steady second-order theory [air forces essentially proportional to % and to

-——ﬁL——v respectivelf> are higher than the experimental values. (See fig. 18(a).)
M2 - 1

However, both the speeds and the frequencies (fig. 18) obtained by use of
uncoupled modes are considerably closer to experimental values than are those
obtained with coupled modes. These results are in contrast with the subsonic-
kernel-function calculations for models LtA-right and 2A-left (figs. 16 and 17)

in which relatively little difference appeared between coupled-mode and uncoupled-
mode flutter speeds and frequencies. Figure 18(a) shows that flutter speeds
obtained from quasi-steady second-order theory are lower and closer to experi-
mental values than are those obtained from piston theory, although there is little
difference between the corresponding flutter frequencies. (See fig. 18(b).)

Also, use of the steady-state tip correction described previously yields lower
flutter speeds and improves the comparison with experiment.

Best results with regard to both flutter speeds and frequencies were
obtained from the uncoupled-mode second-order-theory analysis employing the
steady-state tip correction. However, at a Mach number of 2.0, the resulting
flutter speed is still about 38 percent higher than experiment. At least part
of this deviation is attributed to the relatively low Mach number combined with
the moderately high sweepback of the leading edge. At M = 2.0, the Mach number
component normal to the leading edge is only 1.30. At higher Mach numbers; both
piston theory and quasi-steady second-order theory would be expected to yield
more accurate results. The round leading edge of thls wing gives rise to a
region of subsonic flow which probably also contributes to the discrepancy in
the calculated flutter speeds. Such regions of embedded subsonic flow are not
accurately represented by piston theory and second-order theory as employed
herein.

For each of the piston-theory and second-order-theory calculations shown in
figure 18, only single flutter solutions occurred so that the question of double
flutter boundaries did not arise. However, a second-order-theory calculation
at M = 2.0 employing uncoupled modes and the steady-state tip correction but
neglecting finite wing thickness yielded no flutter solution. This result again
points out the importance of including wing thickness in flutter analyses at the
higher supersonic Mach numbers. The effects of finite wing thickness were pre-
viously indicated in connection with the modified-strip-theory calculations of
figures 14 and 15.

CONCLUSIONS

The flutter characteristics of a highly tapered swept-wing planform have
been investigated analytically by several methods. The results have been com-
pared with experimental flutter data for Mach numbers up to 2.0. The following
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conclusions are indicated with regard to the flutter frequency and the flutter-
speed coefficient, which is the flutter speed divided by the streamwise root
semichord, by the frequency of the first uncoupled torsion mode, and by the
square root of the mass ratio:

1. Flutter speeds calculated by the modified-strip-analysis method of NACA
BRM 157110 are in good agreement with experimental values at subsonic and low
supersonic Mach numbers. An abrupt increase in flutter-speed coefficient with
increasing Mach number, observed experimentally in the transonic range, is also
indicated by the calculations.

2. In the supersonic range, some of the modified-strip-theory calculations
yield two flutter speeds which are very close together. Under some conditions
of density and Mach number, these two solutions indicate a discontinuous change
of flutter frequency. An abrupt increase of flutter frequency in the transonic
range has previously been observed experimentally.

3. Differences in flutter-speed-coefficient levels obtained from tests at
low supersonic Mach numbers in two wind tunnels are also predicted by the modi-
fied strip theory. These differences are attributable primarily to differences
in mass ratio for the two sets of tests.

4. At the higher Mach numbers (supersonic leading edge), use in the modified
strip analysis of aerodynamic parameters obtained from linearized aserodynamic
theory yields excessively high flutter speeds. However, use of aerodynamic
parameters based on the Busemann second-order theory, which includes effects of
finite wing thickness, gives an accurate prediction of flutter speed.

5. Flutter-speed coefficients calculated by the subsonic-kernel-function
method are in good agreement with experimental values and with calculations made
by the modified-strip-analysis method. Little difference appears between coupled-
mode and uncoupled-mode flutter speeds except at the highest subsonic Mach
numbers.

6. Flutter calculations were made for the higher supersonic Mach numbers by
piston theory and by quasi-steady second-order theory, both with and without tip
corrections and with coupled and uncoupled vibration modes. The results for the
second-order theory with uncoupled modes and with an aerodynamic correction for
the finite wing tip are closest to experimental flutter speeds and frequencies.
These calculated flutter speeds, however, are about 38 percent higher than the
experimental values.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., December 3, 1962.
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APPENDIX A
DETAILS OF WING DESCRIPTION

General

As mentioned previously, all wing panels analyzed in this investigation
represented wings with a full-span aspect ratio of 4.0, a full-wing taper ratio
of 0.2, a quarter-chord sweepback of 459, and NACA 65A-series airfoil sections
streamwise. All were of essentially homogeneocus construction except those with
added ballast along the leading edge. (See ref. 2.)

Wings tested in Langley transonic blowdown tunnel.- All of the wings tested
in the Langley transonic blowdown tunnel (refs. 1 and 2) were full span and were
cantilever mounted in the midwing position on a stationary cylindrical sting
fuselage with diameter equal to 21.9-percent span. Models 1-left, L4A-right, and
2A-1eft of reference 1 were employed, as were models ballast I and ballast II of
reference 2. All of these wings had NACA 65A003 airfoil sections streamwise,
except model l-left which had NACA 65A004 airfoil sections, also streamwise. The
wing designated ballast I had an added mass equal to 6.25 percent of the basic
wing mass distributed along the leading edge between y = 0.75 and ¥y = 1.00.
The wing designated ballast II had an added mass equal to 6.50 percent of the
basic wing mass distributed along the leading edge between y = 0.50 and

¥ =0.75.

Wing tested in lLangley supersonic .aercelasticity tunnel.- The wing tested
in the Langley 9- by 18-inch supersonic aercelasticity tunnel (results unpub-
lished) was a semispan model which was cantilever mounted on the tunnel wall with
no simulated fuselage. This wing had NACA 65A004 airfoil section streamwise and
is designated model B.

Model Properties

Mode shapes and frequencies.- Uncoupled bending and torsional mode shapes
for models l-left, LA-right, B, ballast I, and ballast II were calculated by the
method of reference 13. The resulting first three bending mode shapes and first
torsion mode shape for model l-left are given in figure 22. Mode shapes for
models LA-right and B are generally similar to those for model l-left and are
not shown. The first two bending mode shapes and the first torsion mode shape
for ballast I and ballast II are given in figures 23 and 24, respectively.

Modal frequencies used for the uncoupled modes were obtained from measured
coupled mode frequencies. Following the procedure of reference 1, measured fre-
quencies for coupled bending modes were used directly as uncoupled bending mode
frequencies. Measured coupled torsion mode frequencies were "uncoupled" by
means of the relation used in reference 1. It may be seen from node-line posi-
tions given in references 1 and 2 that the natural modes for these models are
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not highly coupled, although some camber appears in the higher modes. Fre-
quencies for both coupled and uncoupled modes are listed in table II.

Some of the flutter calculations of this investigation employed coupled
vibration modes. The required first three coupled mode shapes and frequencies
for model 2A-left were calculated by a matrix-iteration method which employed
measured structural-influence coefficients and mass distribution. The resulting
mode shapes are shown in figure 4, and the corresponding frequencies are compared
with measured values in table II. The calculated frequencies for the first three
modes are seen to differ from measured values by no more than 6 percent. Table II
also shows that although models 2A-left and 4A-right were intended to be identi-
cal, model 2A-left appears to have been slightly weaker than model 4A-right.

For model B, coupled mode shapes and frequencies were measured. The meas-
ured shapes for model B shown in figure 5 are generally similar to the calculated
mode shapes for model 2A-left (fig. 4) except that considerably more camber
appears in the higher modes for model 2A-left than for model B. This situation
would be expected since model 2A-left is thinner than model B. It should &also
be noted that the coupled mode shapes for model B (fig. 5) have been normelized
with respect to maximum modal deflection, whereas the mode shapes for model
2A-left (fig. 4) have been normalized with respect to deflection at the tip
quarter chord.

Mass and stiffness properties.- Model properties other than the mode shapes
and frequencies just discussed were obtained from table I of reference 1 for
models l-left and 4A-right and from table II of reference 2 for ballast I and
ballast IT. For model B, the required distributions along the wing of elastic-
axis position, local center of gravity, and local radius of gyration were not
available. These quantities were therefore obtained from corresponding distribu-
tions for model 1l-left by extrapolating the values inboard from the wing root to
the model center line. These extrapolations were required because model 1l-left
had a fuselage, whereas model B d4id not. The two models should otherwise have
been directly comparable. The extrapolations are considered to introduce insig-
nificant errors into the flutter results because amplitudes of motion near the
root of a cantilever wing are small so that values of quantities in that reglion
are not heavily weighted in the flutter solution. Distributions of elastic-axis
position, local center of gravity, and local radius of gyration were not needed
for model 2A-left because only coupled mode flutter calculations were made for
that wing.
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APPENDIX B
PRELIMINARY FLUTTER ANALYSIS BY THE MODIFIED STRIP METHOD

Calculations

Preliminary flutter calculations for model 1l-left were made by the modified
strip method as described in reference 4; that is, the required distributions
of steady-flow aerodynamic parameters were calculated for subsonic speeds by the
lifting-line method of reference 17 and for supersonic speeds by the linearized
lifting-surface method of reference 11 (when the leading edge was subsonic) or
reference 12 (when the leading edge was supersonic). The aerodynamic parameters
required for wing sections normal to the elastic axis were obtained from values
for streamwise sections by application of simple sweep theory. Although this
procedure proved satisfactory for the untapered and moderately tapered wings of
reference 4, it was considered to be questionable for the highly tapered plan-
form of the present report. Accordingly, for the final flutter calculations
discussed in the body of this report, the aerodynamic parameters required were
obtained by direct integration of lifting pressures along wing sections perpen-
dicular to the elastic axis. In connection with this modification, figure 2

shows that for supersonic speeds, values of ) obtained by use of simple
a,n

sweep theory are in very good asgreement with values obtalned by direct integra-
tion. However, simple sweep theory yields aerodynamic-center positions 8c,n

that are too far forward at supersonic speeds. Also, to provide more accurate
determination of the section lift-curve slopes and especially the local aero-
dynamic centers, the aserodynamic parameters used in the final calculations for
subsonic speeds were computed from subsonic lifting-surface theory, essentially
that of reference 10. For subsonic Mach numbers, values of cla n (fig. 2)

2

obtained from the lifting-~-line theory of reference 17 are in satisfactory agree-
ment with those obtained from lifting-surface theory, but the corresponding values
of ac,pn show appreciable differences near the wing tip. These differences how-

ever, would not be expected to cause large differences in the resulting subsonic
flutter characteristics. As shown in reference 1k, subsonic flutter characteris-
tics are generally not very sensitive to changes in local aerodynamic-center posi-
tion. As a result of the preceding comparisons, the aerodynamic parameters used
in all subsequent calculations were obtained from lifting-surface theory by direct
integration of 1lifting pressure. As illustrated in reference 15, transonic flut-
ter characteristics may be calculated by the modified strip method if the aero-
dynamic parameters are obtained from measured transonic pressure distributions.
However, such data were not available for the wing of this investigation, so that
continuous distributions of flutter characteristics through the transonic range
could not be calculated.

Most of the modified-strip-theory calculations in this report employed the
calculated uncoupled first torsion mode and first and second bending modes. How-
ever, a few of the preliminary calculations included the third bending mode for
comparison. Also, for comparison, some of the preliminary calculations used the
first torsion mode and the first and second bending modes of a uniform cantilever
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beam. As indicated previously, the uncoupled modal frequencies employed were
obtained from measured frequencies and are listed in table II.

Results

The results of the preliminary flutter calculations are shown in figures 25
to 27. The flutter speeds are compared in figure 25 in the form of the flutter-

speed coefficient —V__ and in figure 26 in the form of flutter-speed ratio
L
v

T In the latter comparison, the normalizing reference flutter speed VR for
R

each theoretical or experimental point was calculated by the modified strip
method with the density associated with the numerator V and with aerodynamic

parameters for two-dimensional incompressible flow ( =21 and a =-l>.

“lo,n c,n 2
The mode shapes and frequencies used in the Vg calculations were the same as

for the numerator V. Values of VR for the experimental points were calculated
by use of calculated first torsion and first and second bending modes.

Both the flutter-speed-coefficient and flutter-speed-ratio forms of data
presentation are employed because each has specific advantages which should not
be obscured by the fact that the resulting curves are generally similar in shape.
For example, the flutter-speed coefficient is, for a given wing, proportional to
the square root of the flutter dynamic pressure. This form of presentation is
therefore useful for illustrating changes in the dynamic pressure caused, for
instance, by changes in flow density. The flutter-speed ratio, on the other
hand, is useful in examining results especially for the modified strip analysis,
because this ratio tends to isolate aerodynamic effects. That is, the normal-
izing reference flutter speed Vg 1is calculated from the same input quantities

as the numerator V, except that two-dimensional incompressible-flow aerodynamic
parameters are used for VR. Thus, the flutter-speed ratio conveniently reflects
the effects of finite planform and nonzero Mach number. As a matter of further

interest, the flutter speeds presented in figures 6, 8, and 16 are also shown in

figures 28 to %0 in the form of -'-.

VR

The preliminary flutter calculations shown in figures 25 to 27 were made
for model 1-left only. This h-percent-thick wing was initially chosen for this
analysis because it was thought that camber deflections would be less evident in
the vibration modes for a L-percent-thick wing than in the modes for a 3-percent-
thick wing. (Compare figs. 4 and 5.) The use of uncoupled beam-type modes
(required for the modified strip analysis as presently formulated) should there-
fore be more appropriate for the thicker wing. The density p = 0.0060 slug/cu ft
used in all of the calculations shown in figures 25 to 27 was chosen as repre-
sentative of the values for the highest Mach numbers at which experimental flut-
ter points were obtained for model l-left.
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The four-mode calculations in figures 25 and 27 show that even for the
highly tapered planform of this investigation, the use of simple sweep theory
for the evaluation of aerodynamic parameters yields reasonably accurate flutter
results in the subsonic range. At supersonic Mach numbers, however, the more
accurate evaluation of aerodynamic parameters by direct integration of 1lifting
pressure (fig. 2) gives appreciably better results than simple sweep theory.

Figures 25 and 27 also indicate that inclusion of the fourth mode (third
bending) in the flutter analysis does not significantly affect the results. Even
use of uniform-beam modes does not appreciably alter flutter speeds at subsonic
Mach numbers. Figure 25 does indicate, though, that use of accurate modes becomes
more important at supersonic speeds. In accordance with these results, the fourth
mode was not included in any subsequent calculations.

The flutter-speed values shown in figure 25 are replotted in figure 26 as
flutter-speed ratio e%. The relative levels of the calculated curves and the

experimental points in figure 26 appear to be different from those of figure 25.
Moreover, the relative levels of the calculated curves themselves are different,
most notably at subsonic speeds. These differences arise for two reasons. First,
the values of VR for the various calculated curves are different because of the

different types and numbers of modes employed. Second, the effect of density is
taken into account differently in the two presentations. In the flutter-speed

coefficient — the flutter speed is divided by a parameter which is

'b§Q1J;
inversely proportional to the square root of density, whereas the value of Vg
is related to density in a more complicated way. (See ref. 14.) Although all
of the calculated curves of figures 25 and 26 are associated with the same density
(p = 0.0060 slug/cu ft or f = 14.96), the experimental points and their nor-
malizing Vg values were obtained at varying density. Hence, the density dif-

ferences between theoretical and experimental points are accounted for differently
in the two figures.

The fact that the calculated subsonic flutter speeds and frequencies in
figures 25 to 27 are higher than the experimental points 1s attributed, at least
in part, to the fact that the density used in the preliminary calculations
(p = 0.0060 slug/cu ft) was appreciably higher than the values associated with
the experimental subsonic flutter points. Reference 14 showed that both flutter-

speed ratio e%‘ and flutter-frequency ratio é& increase as density increases.

Therefore, in order to represent experimental conditions more accurately, all
final subsonic flutter calculations employ a representative density for the
experimental subsonic flutter points, and all final supersonic flutter calcula-
tions use a representative density for the experimental supersonic points.

The comparisons of figures 25 and 26, together with the foregoing discussion,

emphasize the need for caution in choosing a form for presenting flutter data
and in choosing the density (or mass ratio) for use in theoretical analyses. It
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may not be sufficient simply to attempt to correlate results at different den-
sities on the basis of some combination parameter, such as the flutter-speed

coefficient —V—.
bs“h\ﬁ
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APPENDIX C
EFFECTS ON FLUTTER DATA OF WIND-TUNNEL OPERATING CONDITIONS AND WING SIZE

Comparison of Flutter Conditions for a Given Wing
in the Atmosphere and in a Wind Tunnel

As mentioned earlier in this report, the track traced across the flutter-
speed surface for a given wing (fig. 21, for example) by flutter speeds measured
in a particular wind tunnel may be different from that traced out in another
tunnel or in the atmosphere. Such differences may result, for example, from
differences in static-temperature level, particularly in blowdown wind tunnels.
As an illustration, consider the Langley transonic blowdown tunnel, in which the
data of references 1 and 2 were obtained. Mach number and alr density may be
varied independently in this tunnel, but during a run, the static temperature
in the test section may drop from ambient atmospheric temperature to 410° R or
lower.

For this example consider the flutter conditions for model L4A-right at a
Mach number of 1.30 in standard atmosphere and in the Langley transonic blowdown
tunnel. Figure 31 shows a cross section of the calculated flutter-speed surface
for this wing at M = 1.30. Flutter for model 4A-right at this Mach number in
standard atmosphere would correspond to point F, in figure 31, for which
Bg = 27.87. If the values [, = 27.87 and My = 1.30 are duplicated in the
Langley transonic blowdown tunnel at a temperature Ty = 448.1° R, which is
significantly less than Ty = 530.2° R, than the speed of sound and hence the

free-stream velocity will be less than the corresponding values for flutter in
standard atmosphere. The point attained in the tunnel then will be point t in
figure 31, for which the velocity is

T

and the wing will not flutter. If then the Mach number Mg is maintained and

the tunnel air density is increased, a path such as the dashed curve shown in
figure 31 from points t to Fy will be followed until the wing flutters in the

tunnel at point Fy. If the temperature Ty is constant during this operation,l
the free-stream velocity Vi will remain constant. The flutter-speed coefficient
associated with point Fy, however, will be greater than that for point Fg. Of
course, the closer Ty is to Ty, the closer point t will be to point Fy, and

hence the closer point Fy will be to point Fg with regard to both flutter-speed
coefficient and mass ratio. Thus, if the tunnel temperature Tt were raised,

lDuring the operation of the Langley transonic blowdown tunnel, the test-
section temperature changes continuously. However, for simplicity in the present
discussion, the temporal aspects of the tunnel operation are ignored.
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or if the temperature Ty associated with the flutter point Fg were lower, the
points Fg and Fy would be closer together. However, if the desired mass ratio

were increased above ﬁa (increasing altitude), the flutter-speed coefficient

obtained in the tunnel, point Fi, would become increasingly unconservative with
respect to point Fy, particularly at the higher Mach numbers.

In the preceding discussion the influence of viscosity has not been men-
tioned. Certainly changes in the wing boundary layer with changing Reynolds
number could affect the onset of flutter. Possibly more important, though, is
the level of turbulence in the tunnel. Turbulence would be expected to act as
a driving force for the wing and hence lower the observed flutter boundary.

In the present illustration the dynamic pressure associated with point Fy¢

is about 14 percent greater than that for point Fg. This difference could be

even larger, of course, if the comparison were made for a density corresponding
to an altitude greater than sea level (ﬁa >'ﬁsea level)‘ For instance, some

airplanes currently operate at mass ratios near 50.

It should be remembered that this example refers to flutter conditions in
the atmosphere and in a wind tunnel for a given wing. In general, it does not
apply to model-prototype comparisons in which flutter conditions for the proto-
type in the atmosphere are derived from wind-tunnel tests of a model scaled to
represent the prototype near a p,M point at which flutter was obtained in the
tunnel. The discussion would apply, however, for scaled flutter models which
are tested at off-design mass ratios.

Effects of Wing Size?

Flutter analyses (e.g., this report and ref. 14) indicate that the flutter
speed and frequency of a given wing are primarily functions of the air density
(or mass ratio) and the Mach number. If values are specified for the independent
variables f and M, other pertinent quantities are automatically determined,
as is illustrated in the following table:

Independent Principal dependent Related dependent
variable variable variable
Mach number Flutter speed Speed of sound
Mass ratio Flutt freque Temperature
a utter lrequency Reduced frequency

2This discussion is not intended to be a treatise on model scaling, because
only a limited class of wings is discussed. The implications of dissimilar
models, weakened models, or models with internal structure different from proto-
type are not considered. A more general discussion of model scaling may be
found, for example, in reference 18.
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More specifically, for a given wing,

—'——V =f (E'JM) (Cl)
b§ﬁ1ﬁi !
and
(1% = fg(ﬁ,M) (C2)

For wings of differing size that are geometrically similar and constructed
of the same material (or of different materials for which the Young's modulus,
the shear modulus, and the materlal density are proportional), the natural fre-
quencies will be inversely proportional to the length scale. Also, equations (Cl)
and (C2) are independent of the length scale, so that the surfaces of flutter-
speed coefficient and flutter-frequency ratio represented by these equations
will be the same for all the wings of this type. Thus, for this particular class
of wings the flutter speed as well as the flutter-speed coefficient will be
independent of size. Further, inasmuch as equations (Cl) and (C2) are independ-
ent of length scale, the reduced frequency is also independent of size. Finally,
if the geometrically similar wings of different sizes are constructed of materials
of the same density, then the flutter dynamic pressure will also be independent
of length scale.
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Figure 2.- Distributions of steady-flow aerodynamic parameters calculated for model 1-left from
linearized aerodynamic theories at several Mach numbers.
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®le,n

Lifting-surface theory

-7

,n

1\
1

¢1e,n

-l

(e) M = 0.80.

v T T T v
Lifting-surface theory

-.8

8¢c,n

€1a,n

-3 ok 5 K .7 .8 .9 1.0

(£) M =0.85.

Figure 2.- Continued.

33



3l

Cla,n

Cla,n

L S e s -9
- lifting-surface theory
8 -8
L1 €la,n \/
/
. i A o
// /
]
|1 //'/ﬂc,n "
6 — -l
- | e
1 \
g \ -5
L \\ -k
: I
2 -2
1 -1
0
e a1 .2 3 L .5 .6 .7 .8 1.0
n
(g) M =0.90.
n T T T T T T T
——— e Direct integration
______ Simple sweep theory
1 /. \\ 2.0
0| / .
Vi
Y, \ -5
/ \
\
ré \
-.8
8 7/ €ie,n
”
s’
7 -7
2 \
Z
’ ad \ ”
¢ =i l -5
/'// -
L [N U
117 I= / -l
— i t‘(:,n"<
3 — — =3
1 N
/ L] )
2 -
7 L1
/ ]
D2
LA -
o
0 a .2 o2 ok 5 6 .7 .8 1.0
n

() M= 2/6.

Figure 2.- Continued.




la,n

10

=1.0
Direct integration
AN
9 \ -9
8 -8
7 -7
C1a,n
6 \ -6
/ \ 8c,n
S -5
/
//
1 / -4
3 -3
//‘/——‘ | :
2 // fe,n
/ -2
|1
14 -1
¢ X 2 3 L K 3 7 K EJ 1.0 ©
n
(1) M = 1.30.
W= T 1T 7 T 77T 1.0
— Direct integration
- T = — - - Simple sweep theory p
9 / /'\ -9
: AL
y
-7
i A €la,n \
/ \
-6
A
% \
bt ar n
P
; 7 \\
‘/ +—1=
| —¥ L -+ -F-- \
u e T -
LT L A4-T - / \ .
P B A ] 8c¢,n --« /
1 -3
T4 M1
2 d 1| -2 |
! // |
/ \
1 -1 |
0 |
0 o1 2 3 4 S & a7 .8 9 1.0 i

Figure 2.- Concluded.

35



12
A
11 //\ -1l.1
] /T
-
9
d \
| v M.
7 L
€la,n
7 // “07
i =6
6 e M
Cla,n //i”///
S /”A’/// -5
|1
]
h // “-h
"
-""'—/ =3
3 ///// ac,n
1
» ,// -.2
’,/’
1 // "01
[o]
o 1 .2 .3 A .5 .6 7 .8 .9 1.0
n

(a) M= 2/\/3.

fc,n

Figure 3.- Distributions of steady-flow aerodynamic parameters calculated by direct integration for
model B at several Mach numbers. All values were obtained from linearized lifting-surface theory

unless otherwise specified.

36




®la,n

11

10

ac’

(b) M = 1.3%0.

Figure 3.- Continued.

ac,n

37



38

Slg,n

11

3.1
10 A =1.0
\
9 -9
B H.
7 = d L -7
\ ac
6 i
// -
; ui -
jmms i
ac _/
3 o -3
LT
\ = -
1 -1
° 1 3 b g % 7 10 °
A
(¢) M= \2.
0 -9
8 /‘\ -8
7 I
6 IEH/ \ -6
s \ -5
h = ul
1 \
5 — 1 \\ -3
. | — e \ 2
. \ .
LA .
/
Y 3 " K3 6 7 10’
n
(d) M =1.64.

Figure 3.~ Continued.




|t
|t

/
= =
L1
_‘3
-2
L1 \\
L1 ~J
ol 2 3 ol .5 % 7
T

(e) M=1.75.

T T T T T T T
Linearized theory

————— Second-order theory

-7

-
|t
L1
—1 =3
l —T]
A“ =<
o2
ac,n —<
b1
P et \\ 1
4]
o1 oA .5 1.0
n

(£) M = 2.00.

Figure 3.- Concluded.




Lo

1.2
et 1
- —
o =
1.0
.8
3
1
AT
-6 —
B
L
_.’——"’-4
& 6 —
i
ey
2 T X
< = —
—— .2
1 Lt I S S o, oy
) 1 2 3 X 5 K3 K N K 1.0
z
(a) First mode.
1.8
/
6 L]
1. -
To| A4
L =
1.2
1.0
.8
%2
% /
N
.8
2 = ]
L1 o
° ‘74% .2
[ =1
\\J/
-2 74 - n
-
/// 6 e S ——
-k 4 | A
/
/! I
s 5 2 .3 i .5 3 .7 8 .9 1.0

(b) Second mode.

Figure 4.- First three coupled vibration modes calculated for model 2A-left.




1.2

1.0

3

=1.0

=1.2

'1ch

=1.6

‘\ﬁ\\\\\\
/ ~N
\\\
N
\\/ \\
N
N - o
/ NN N
N\ \>\ N
N N o \
-/ \\ \\ \\ .2 \\
/ AUNEAVERNEN
/ \\ \\ ol \\
NN N N
NN N
NNEN
NN
AN
AN
N\
\\\
N
NN
A
(o] .1 2 L o5 6 o7 R:) 9 1.0

(c) Third mode.

Figure 4.- Concluded.

41



£
1.0
.8
.6 .8
2]
ol
6
.2 X
2
o} o1 .2 .3 SR .5 b 7 .8 .9
X
(a) First mode.
1.0
L1
b2
8 ol L1
* /
-
4-//
1]
5
A
2
2 = L
) .\_\
[ B .8
-\1
o | T———]
0
! | o2 \--\
T e —
R s ]
-2 —
.6 ]
\§\\
-k
-6
o 1 .2 .3 4 .5 .6 7 .8 .9

(b) Second moge.

Figure 5.~ First three coupled vibration modes measured on model B.




1.0

N 1A
YA S48
e Zav
/L VA
A LA /
/A /
/P4 [
4 /
)4 /
)71 4 |4
g4 /
A /
A \ \ \\
e/ 2| o] | 3/
A7 /
/ /|
f [ | ]/
\\\ / \\
Y / W |
A | LA L] ]

(¢) Third mode.

Figure 5.~ Concluded.

k3



st

*3UITI-YH TOPOW pu® 3J9T~T [OPOW JOJ JOQUMU UYOBK YITM QUOTOTIIS00 paads-IajnTy JO UOTIBTIBA

*sapom paTdnooun psqBTNOTED Salyl YaTa poylrsu dII3s pafjTpom £q SPBU SJ9M SUOTIBTNOTED TTY

1g4TNsax TRUTA -°9 AN3TI

"
1 £°T 't 1°1 o't 6° g* L* 9° s* 1 € rAd T 0
T
ﬁr@@u e
uﬁ% ==L 8 @i Lt L [ _[_ L | L Lt _t_|_]
i3]
[~ €°
O
. ® "
e
fa .
\OMv\L g
@\\ < 5
A7\
o 2099073 O ] bl i}
- A
1 (3toTU3 quedaed #) 3JeT-~T Tevow o013 Buipuodseadod STUTM o .
(AoFyg gueoaed ¢) JuBTa-yh Tepow o3 Bujpuodsesaod sBuUTM o 9
( T *JoI) sjuswigadxa Jo930Td
otuosaadng 0900° L
dtuosqng §200° 4JPT-17 — - -~
(I933n7J Lousnbaay-ysty)
o fuosgadng S€00° wydga-yn - -- ————
otuosasadng S£00°
dTuUOSqQNg 2200°0 W3t -y g°
o3ued peeds  3J mo/Bns ¢ £q1susq ToPON
SUOTFBTNOTED J4939NTd p

Ly




*gapow paTdnodoun peqBTNOTEY 921Ul YITA Doysrew dTI3s DPITITPow Aq SPBU 9J9M SUOTFBTNO

2

Jo

-8 TTV °JUTTI-VH ToPOW PuB 3J8T-T TOPOW JOJ Jaqunu ydey ysta Lousnbar] Is44nTJ JO UOTFBIIBA :SITNSAX TBUT -°) 9InSTd
R
At i €1 2 T T'1 ot 6° g8° L 9* s* n* € e’ 1°
N mwun
(w]
@&
%
n
R
- JE
[}
8 o ©
(MoTY3 jueoaed 1) 3J0T~1 Tepow o3 Juypuodseszoo SBUTMH a
(oTuU3 juedsaed ¢) yuBja-yh Tepow o3 Bujpuodsesgoo sBUTA @]

otuosaadng

oTuosqng
(x@33nTy Lousnbaay-ydty)

oTUO sxadng
o Tuosadng
oTUOSqNS

oduea peadg

( T °Jox) squswraadxe Ie33nTd

0900°

5200° 33T -1

s€00° Y3TI -V

S£00°

2200°0 Y3t -vn
1J no/3nys ‘L3 TsUSQ] T3POR

SUOT}BTNOTED J899NTd

21

mt

9°1

8°T

o
als

45



"IUBTI-VH TOPOR ()

» Lrepunoq I1944nTJ ALousnbaaI-y3Ty
quasaxdal SoAIND payseq ‘IYBTI-VH [OPOW puv 3FOT-T TSPow I0J A3TSUSY YITA JUSTOTIIS02 paads-19330TI JO UOTJBTIBA -°'Q SINITJ

¢=0T X 9

1
ST 0z sz 0 & of
T 1 1 1 T T
1J no/sdurs ‘d
H L € 4 0 ot
T
S8L°0
fe*
g1 \ 0
i
ge*
ze*
o
, \ Me
=
oy
0€°1T 3%
| A
\ 0€°T e
2
e, 7
\ m\
an*
I
7/
7 2a”
/
/ 95
o
n9°

*3J5T~T TSPOW (®)

p
ot st 0z~ sz 0t st o
T T T T T 1 T
43 no/sdurs d
0T X 6 L 9 ] n £ ° or*
oz*
sLeo
.\\ 5 2
e —tr—r \\
1\1"‘\\
gzt
2€
AN
g€
L~ on .
L1 ot 1f0%q
_ A
" w\ o€t e
v 4
L4z
L~ \\
y2 A g
/
AL k\
y
L N .
= 7 £
i
\\
—+ 95
/
\\ ya
\\ .
v 09
9°

L6




* Lrepunoq I3 nTJ LousnbalJ-ysTy Y3zTa
PIYBTO0SSE 8IB SOAIND DPaysed ‘IUSTI-YH TOPOW PuB 4J9T-T Topow J0F A3Tsusp YITM Aduenboij 1833nTJ JO UOTIFBTIBA -6 2and1d

b7

“UITI-¥H TOPOW (q) . *9J9T-T TOPOH (®)
Ul 1
0z ~ sz O SEON o1 ST 0z sz 0 SEof
T — T 11 T T T , T T
3J no/s3nys ‘d 3J no/sdnis “d
€ 2z 0 =0T X 6 9 s n € 2
-
2
e
7
[o] 1 0
= . g
— 1 . T
L1 - — T
4 hicd e /2
2/ ™ \om;
o€t — 2
Ne s —— z
L
3
o ~ 4= _Joet
_d4 J--" ]
-1 Jog'1 1~ - "
+ = T X
6
|
1

2z

0°T

3§



*sopow poTdnooun pslBTNOTED 331Uy} Y3TA poyjeu dTaqs paTJTpou

£q apew aJam SUOTFBTNOTEY TTIV

I 1SBTTBQ TOPOW JOJ JSqUNU YOBW UITA JUSTOTII000 paads-I933nTs JO UOTIBTIBA -°QT SInFTd

"
ST 't €1 2t 1 o°t & g8° L 9° s° e € 2* T
\J
— O
e}
O
l o
g
\\ G9*0 = KN 6200° <o
V— stuosaedug 0900°
+—1T |® oTuosang Hmoo.ov
o8usa peadg 1J no/3ungs ‘L3ysusQ
SUO T3 BINOTEY I833NTH
I0330TJ ON ®
I9330Tq O
(2 *Js1) w3ep TejuswtIedxy

T

2°

44

...—o

m.

g°

il WUSnn




*gapowr paTdnooun pajeTNOTED 28Iyl YITM poyzaw ITIgs
POTITPOW £q SPEEN SI9A SUOTFIBINOTEO TTY *I 9SBTTRQ TOPOW JOJ Jaqumu yoe UY3Ta Aousnbalg I213nTJ JO UOTBTIBA =TT 9INBTI

R
ST 1° T £°1 2°T T 0°T 6* g ° L* 9* s n° € g° I
® G
»)
0%
G9°0 = K 6¢00°* o
ofuos Jadng 0900°* M
oTuOSqNg 12000

sBusu posadg 1J no/3nys ‘£91susq

SUCTIBINOTBO JI699NTH

(¢ *Jox) e3wp J83nTJ TeBjUGWIad¥d O

2°

Jo

9°

mo

0°T

21

"t

k9



£q opewW sI5M SUOTIBTNOTEY TTIV

st

-gapour paTdnodun PejBTMOTEY 331y3 Y3ts poyzeu d1igs PITITPOW

-IT 1S®TTBq TOPOW JI0J JaqUNU UOBN UITA JUSTOTIIS0D DI

N
3 L . . - - o
1 €1 2°1 Tt 0°T é° 8° L* 9 S i € 2 T 0
e
o
564
0o
=
0On "
A}
m-
9¢
~ .
N
~d
AN
\ 69°0 = K Letoo o
f (1e3301g
LousnbeaJ-udty) §°
oTuosdedng 00L00* ——— -
oJuosaedng 00lL00°
Jjuosqug 0T200°*0
0°T
o8uga peedg 3 no/3ntrs ‘L3ysusq
\ su0 148 TNoT8O JI0330Td
/ 203407 ON M L
\ J993 0T a
(2 *Jox) ®w2a8p TequowTIedxy

ds-19390TI JO UOTIBTIBA -°2T aIn3Td




patJIpom £Q OpBW SI9M SUOTFBTNOTEd TIV

*gapou paTdnooun pa3BTNOTEBY 234U} YFTM pouzam drIags
*IT 45BTTRq Topow JOJF Jaqumu WoBsW UITs Louantaajy I9394nTI JO UOTFIBTIBA =*¢T 2anIT1Jd

m.H J..H MOH N L) H .H..H OOH Q. D‘ N . m. m . :. ﬂ L N. H.
o ° =5
m mﬁw u o
)
G9°0 = K Letoo® <o
| (2023013
LouenboaF-udty)
e ofuosaedng 00L00* W —————
v.\/ aTuosa edug oolLoo*
ofucsqng 0T200°0 ————
~
~ ! o8usa poeedg 3J no/3nis ‘£q71susq
h N SUOT3BTNOTBO I333nTd
h (2 *Jsa) ®38D I033NTJ TeiuamiIedxy 0O

°

9°

8'3

g°

0°1

et

T

51



-sapow pordnooun pPs3BINOTEY I8IY} S9SN SUOTIBINOTEY TTY °STSUUNG PUTA OM3 UT DI3§3% STIPOU
103 sanysa Tejuamliadxe yypm stisAyeus diiis peTiTpow £q PIgBTNOTEY SJUSTOTII900 poads-Ia3yniy Jo uosTredwo) - 4T aIn3Td

X
o*e 6°1 8T Lt 91 a't Liad (984 21 1 0°1 8° 8 I 9* s* ki € z* 1 o]
T
- i}
e8ps =] oo °
Suipe st uing
ojuog —T]
ce
g
LI
© =3 O
- a .
n
s
-t oy
7 A "
Vi . s°
-
-
/ -
7 &
a993nTJ Of
/ 990TT Of n g
\ (e38p poystIqndun woxy sBula Royy3-juedded-f) g Tepom o3 Bujpuodsesaod sBulp &
(T *Joa wmouay sBupa ¥ojua-juecded-1) 3JeI-T Tepow o3 Buypuodsezaoo sBuim a
(1 *Jex woay sBura ¥oTy3-juedded-¢) 3uBja-vh 1epowm o3 Bujpuodseadgoo sButs e}
I
\ squsmtsadxe JegquTd
ﬁ~ Arosyy e0BJ.mME-BUTHJIT ‘TIPI0-puUOIag 002 =N £8000° 4 v
\ eonTes TejusuLIadxe yjia .
7 L2o0eyy eoeJans-3ullJIT POFTIeAUTT atuoszadng SpPTOUTOD 03 SBTJIEA q _—— 0°T
\ (J93In1y Louenbeag-y3ty)
AJ0ayy 20BJIME-3Ui}JIT PRZTJIEdUT] oTuosJIadng SE0C* WAL~V ——-—— -
4 Liroeyy 8oeJans-3uTyJTT PeziJeeuT] 2 TuosJadng S€00°
£xocoyy edeJans-uT3JTI POZTLESUT] dTUOSQNS 2200°0 wdra-vn T
\ —WOJJ POUTEIQO SIUBTOTJJ209 OTWeulpoJoy o8ues peadg 13 no/s8nys ‘“Ayysueq TOPOK
SUOTFRTNOTED I T
21

52




i . 2959%
*gapouw paTdnooun payBINOTBY 93JYl 9SN SUOTIBINOTBO TTY °STOUUNY PUTMA OM3 UT P .
sTopow JI0J sanTBA TequamTIadxe YqTA sTsATeus dTIqs PoTITPow Aq PeyBINOTBO saTouanbaxl 1933nTy Jo uosTxredmo) GT 2angTd

53

b
*o;
Oh
O

o't

q
o (o}
(®w3rp peusyiqndun moay sBuis ROTUI-juedaed-N) g Topom o3 Burpuodeessod EIUTAM <&
(T *Jox wouJ sPuia Yojysz-jueozed-f) 3JeT-1 Tepom 03 BuTpucdEeasod sBuia o
(T *Jox woay sBuim Aojyr-juesaed-¢) uBya-vh Tepom o3 Purpuodseasoo sBuiy fe)
musayradys JeqqnTd
4200y3 80m3Ms-FUTIITT “epIo-puodeg 00'z = X 69000°* 4
sonTea TwjuswyJodxs yJTa
£ioeyy eowyms-BuTiJTT peziIesuUT] otuoBa: dng 8PTOUTOD 04 SaTJIEp q
(I993n1y Lousnbeaz-us1y)
Axo9y3 eoeyams-BuyyyIr PezTIvauUT] ouosaadng S€00° WITx—-WN
Azo9yy @ovymS-3UTIITT pezIIRRUPT dTWwsIndng S€00°
Ameyy eowyme-Jury Iy PoZLIROUT] dUCHqNG 2200°0  WBTI-vy
-~ WOJJ PSUTEIQO FJUSBTITIFH0D o TweUAPOIsy 83uwea paedg 13 no/s3uys ‘43 75U8q TopoR

SUOTIETNOTEO Jo34nTd

21

9°1T

§°1

0°2




"33 no/8nTs ¢C00°0 = ¢
J0F €33 ™O/8nTs 220070 = d SUOTIBINOTBO OTUOSQNS JIOJ “SIPOW PoFBINOTED 92IY3 SN SUOTIBTNOTED TTY
otuosqns y3ta sysAreue diaqs pejJipow Jo uosTxsdmo)

‘suoTqeTNoTEO dTuosaadns

‘UOTROUNJ TOUJISY

~I9qUMU YOBW YITA JUSTOTIIS00 paads-1934nTJ JO UOTIRIIBA =-'QT 9aInJ1d

R
M-H JoH moH 2'1 1°1T o't 6" mo L° 0. n_- 4. M. 2 T 0
T
-l N-
Eﬂ% \dthbhO 2] T - d-d-Ad-d-4d=-—a—4o—3
m .
0Q, Iz
0
n il o "
L4l
8 o] P
\“\\ 3 o, S
-~ oo
A
9
Le
g°
Ie390TF ON a
(#9TU3 3uedxed ) 2J6T-T Tevow o1 Bujpuodsexqoo sTuim a
(3oTug queoaed ¢) 3J0T-yz Pus JYITa-yi syepow og Bujpuodseddos s3uim o)
(T °Jox) sjusutaadxs Je43nTd 6
UoTIOUNJ TouJay patdnoy 1JoT-V2 0°T
uotyoung raudsy patdnosup ST~y — —— = ——
(a833nry Kousnboaay-udty)
uotaetdaqut qo0aTp ‘Arosyq 9oeFans-JurqJTT ‘sTsLTue dIIIS PO TITPON patdnoosup ..Emﬁ.nlg —_————
uoT}BIZIJUT 303JTP ‘AIooyy 9deJams-BurqJIT ‘stsdreue dTa3s paTJTPOR patdnoou  yITI—Vh o1

Axoayy oTweulpoasy

SO9pON  TopoR

SUOTIENITED J8994NTd

2’1

54




*33 n2/9nTs $C00°0 = d
-xadns 103 £33 nO/BnTs 2200°0 = J ‘SUOTYETNOTED DTUOSQNS JIOJ *SOPOW PIBTNOTBO 33U} 2SN SUOTHBTNOTED TTV
Touxsy doTuosqns Y3TA sishreuw dlIqs pefJIpom Jo uosfredmo)

‘SUOTIBTNOTEBO OTUOS

‘uotjouny

sIaqumu YoBKW Y3TA Adouamnbaly Is543nTJ JO UOTIBTIBA ~°*LT oInITd

A1oayq omweulpoasy

Sopof T9PoR

SUOT3eTNOTED JBINTL

R
1 £°T 1 't 0°'1 6° 8" L* 9° s° n [ 2* 1 [o}
2
i
— e
nﬁuﬁ o Il”.llquITI
O % —_—tm e o, do
8o e
O

& 9

o .

o) Am 8

[ ol _d
(s] ¢ o
0°T
T
(AOTY3 quedaed #) 3Jer-1 Tepow oq Bujpuodsetaoo sBuip [m] 1
(A°TU3 jusdged ¢) 3Jel-yz puw 3uBTa-yh syepou o1 Bujpuodsexaos sSuim [o)
(T *Jox) squemtaadxe Ja3qnTd
uoT3oUNg TavJIay patdno) 1ol —ve 91
uoT3ouUng [auJIay poTdnoduy  ITI -V —— — —— —
(293917 Louenbaaz-ysty)
uoTjeIdequT 308ITp ‘AIosyy eoeJans-SuTiJTT ‘stsAreue diais PSTJIPOR peTdnooup  JUBTI—-YN - --——=--—

UOT3eJ33qUT 309JIp ‘Atooyy aoeJams-SurqJIT ‘stsdreve dia}s PaTITROK paTdnoouy  ITI—-VN 9°1

0°2

alad

55



-sonTea Tejuswiiadxs sgemixoxdde og xepxo
Ul Q'z =W 98 33 wo/InTs 006g000°0 =9 03 L'T=W 38 no/9NTS 96g6000°0 = d WOIF IaqUMU YoBH YITM ATIBIUTT
SaTIBA K3TSusg ‘DPO3EOTPUT SB Sopow PoTdnod PaInssBall 93IY3 10 SIPOW poTdnooun pejeINOTEY 99IY3} 98N SUOTIBTNOTED TTV

- £108Y7 J5pI0-pUcdas Apeais-isenb moly pus LI0sy3 uojstd woIg PSUTEIAO SB € TIPOW 10 S0T99TI9308I8YD J234NTd - QT 9InITI

+goTyea Aousnbaxg-Ia3anTd (A) +gquUaToTIJ900 paads-xazanTd (B)
R x
e 02 6°1 8T Lt 9°1 123 1 et (A" 12 0°e 61 g1 Lt 9°T a1 't ¢t et
0
ON petdnos uoqsId —_—————— 0
sox pordnog uo3sid —_——— e —
oN peTdno) JOPIO PUODBG —— =
Sox petdno) JOpJO PUODSE === T—— — — —
oN pelunooun u0481d —_—————— e —— T* L
Eof psTdnooup uo3sig _ - -
oN paerdnooupn J9pLO PUODOES — — — — = - — — =
sex perdunooun JI5PI0 PUODR
uoTyosaI00 dil SOPOK Axoeyl 2* e*
uoT38INOTEY Je3INTH
quewjaedxs Jes3intd O [ <
(0] D
D .
:. :
g — G
‘l\nl\\,\\\x
Do i a4 1 lu\a PmEq
9° ey —+—t—T—=F 9* 1
S ] p—— - _
L* L
8° g°
-
6° —1= 6°
i8] = . ] .
= o°1 == 0°1
—
-~ Il‘ I‘ S
~J Tt e 1
—
e 1 2T

56



0.l

High-frequency flutter
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(b) p = 0.0060 slug/cu ft.

Figure 19.- Effect of flow density on high-frequency flutter boundary for model l-left at M = VE.
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Figure 20.- Effect of Mach number on high-frequency flutter boundary for model l-left at p = 0.0038 slug/cu ft.
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Figure 23.- Calculated uncoupled vibration modes for model ballast I.
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Figure 24.- Calculated uncoupled vibration modes for model ballast IT.
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v
.60 Condition Point vy p, slugfeu £t T, deg R V, ft/sec bﬁm_
Flutter in standard Fg  27.87 0.002610 530.2 1,468 0442l
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Figure 31.- Comparison of flutter boundary for model L4A-right at M = 1.30 with standard atmosphere
and with conditions for Langley transonic blowdown tunnel.
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