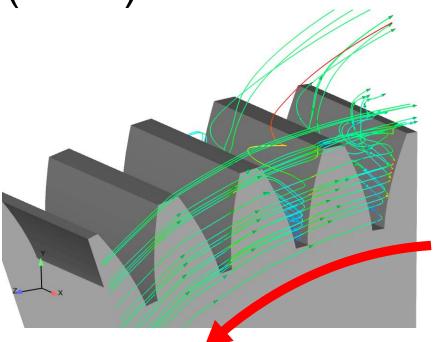
Experimental Investigation of Shrouding on Meshed Spur Gear Windage Power

Loss

Irebert Delgado (NASA) and Michael Hurrell (HX5 Sierra)

AHS International 73rd Annual Forum and Technology Display

Fort Worth, Texas, USA, May 9-11, 2017



Windage power loss (WPL)

- Drag on gear tooth in transmitting load.
- Viscous drag on gear faces
- Air/Oil impingement on tooth surface
- Generally occurs at greater than 10,000 ft./min.
- Gearbox efficiency losses
- Reduced rotorcraft performance (i.e. payload, range)

Ref:

Hill, Matthew J., et al. "CFD analysis of gear windage losses: Validation and parametric aerodynamic studies." Journal of Fluids Engineering 133.3 (2011): 031103.

Selected Spur Gear WPL Work

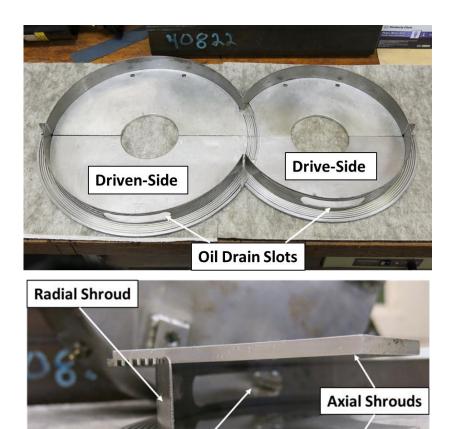
- (1984) Dawson: "Windage Loss in Larger High-Speed Gears"
 - single spur gears, air
 - reduction in WPL with shrouding
 - air flow patterns revealed through smoke experiment
- (1998) Lord: "An Experimental Investigation of Geometric and Oil Flow Effects on Gear Windage and Meshing Losses"
 - single and meshed spur gears, shrouding, air/oil
 - controlled lab experiments
 - decrease in WPL with increasing oil temp., increase in WPL with increasing oil flow
- (2011) Combined Analysis & Experimental Validation
 - single spur gear analyses, single phase, shrouding
 - Hill: "CFD Analysis of Gear Windage Losses...."
 - Handschuh: "Initial Expts. of High-Speed Drive Sys. Windage Losses"

Focus of this work

- Obtain baseline WPL experiments on <u>meshed spur gears</u>
 - Re-validate use of NASA rig
 - Provide a consistent experimental procedure for robust data
- Compare with literature
 - Single vs Meshed
 - Unshrouded vs Shrouded
- Identify WPL trends, if any
- Outline additional research

Gear Information

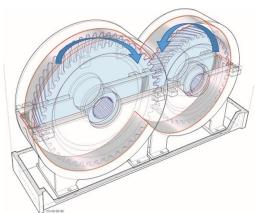
Gear Parameter	Drive-side	Driven-side		
Number of teeth	44	52		
Pitch / module, 1/in. (mm)	4 (6.35)			
Face Width in. (mm)	1.12 (28.4)	1.12 (28.4)		
Pitch Diameter, in. (mm)	11.0 (279.4)	13.0 (330.2)		
Pressure Angle, deg.	25			
Outside Diameter, in. (mm)	11.49 13.49 (291.85) (342.65			
Material	Steel-SAE 5150H			

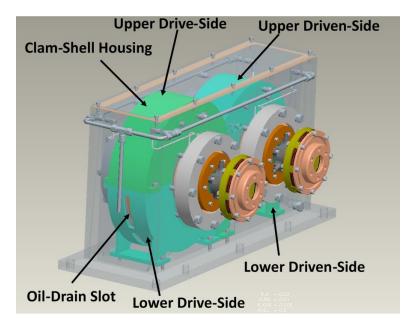


Shroud Information

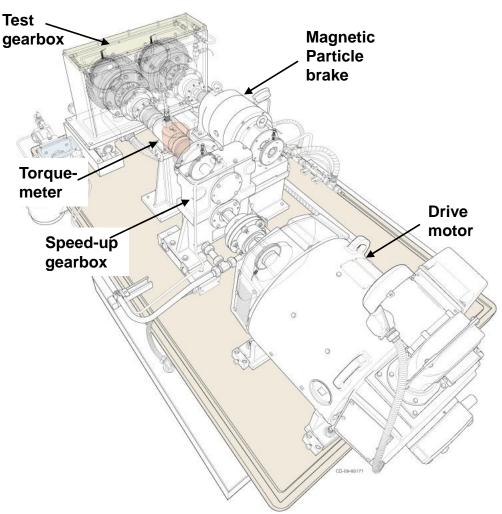
Shroud Config.	Axial Clearance	Radial C	learance
	Per side [inches]	Drive- side [inches]	Driven- side [inches]
(U) Unshrouded w/o clam- shell housing	2.25	2.5	1.0
(CS) Unshrouded w/ clam-shell housing	1.5	0.82	0.82
(C1) shrouded	0.039	0.039	0.039

Oil Drain Slot


Radial Slots



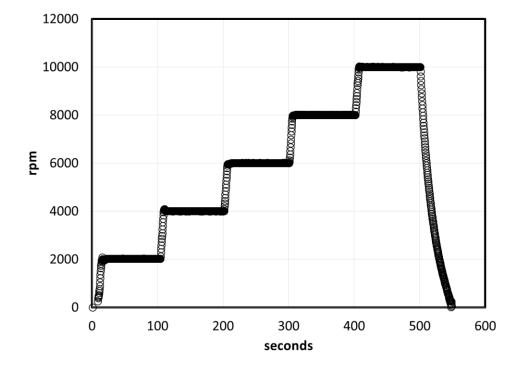
Continued - Shrouding



NASA WPL Test Rig

- dc motor: (112 kW (150 hp))
- speed-up gearbox: 5.17:1 ratio
- Eddy-Current Dyno: 100 N-m at 2865 rpm
- torque-meter: 2,000 in-lbs
- Into-mesh lubrication
- Measurements

shaft speed gear fling-off temperature gear mesh oil flow oil inlet/exit temperature



Typical WPL Test

- 10,000 rpm in 2000 rpm increments every 100 seconds
- Spin-down at 10,000 rpm (i.e. disengage drive motor, clutches, dynamometer)
- Record speed vs time
- Repeat 2x for 3 cycles total.

Windage Power Loss Calculation

- Total Power Loss = Gear Mesh Loss + Driveline Losses + Windage Losses
- $\tau = I \times \propto$

Equivalent inertia for meshed spur gear system

Deceleration (α) calculated from velocity vs. time data

•
$$P(hp) = \frac{T \operatorname{ft} \cdot \operatorname{lbf} \times N \operatorname{rpm}}{5252}$$

- Subtract Gear Mesh Losses (Ref: Anderson, Loewenthal) Minimal
- Subtract Tare (Driveline) Losses

Tare (Driveline) Loss Calculation

 Determine inertia of shaft components minus test gear

Use curved rail methodology (Ref: Genta)

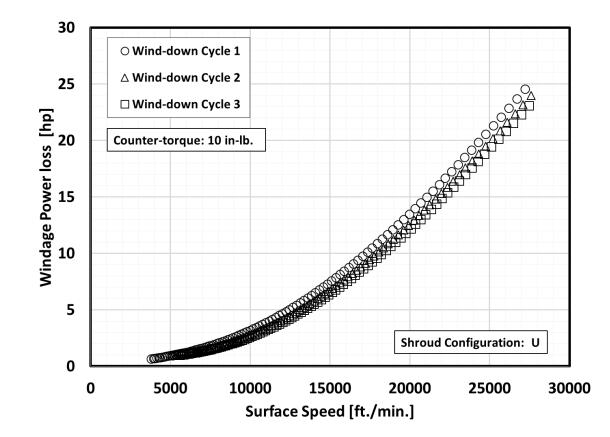
Conduct shaft only wind-down tests

Velocity vs. Time curves

Calculate power loss

$$\tau = I \times \propto$$

$$P(\mathrm{hp}) = rac{T\,\mathrm{ft}\cdot\mathrm{lbf} imes N\,\mathrm{rpm}}{5252}$$



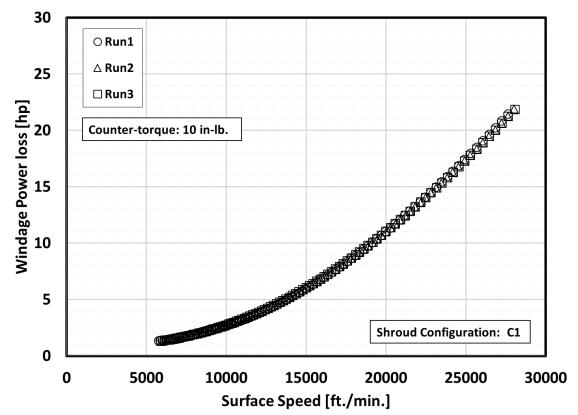
WPL Variation – Cycle 1 to Cycle 3

- Unshrouded (U) configuration
- Slight decrease in WPL with increasing cycles

Gear fling off & oil inlet temps. U vs. CS vs. C1 configs.

Configuration → U	CS	C1	C1	C1
Run 1	Run 1	Run 1	Run 2	Run 3

Wind-down Cycle	instantaneous gear fling-off temperature [°F]					
1	165	171	192	191	194	
2	184	187	208	206	210	
3	196	199	218	219	222	


	oil inlet temperature [°F]				
start of wind- down cycle 1	86	95			
end of wind- down cycle 3	101	104	108	106	109

WPL Variation – Run 1 to Run 3

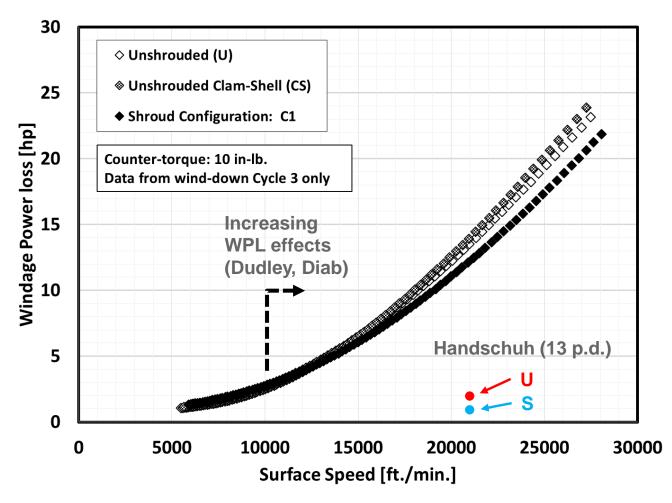
- Test data on 3 consecutive days
- Little variation in WPL for 3rd cycle

Gear fling off & oil inlet temps. U vs. CS vs. C1 configs.

Configuration → U	CS	C1	C1	C1
Run 1	Run 1	Run 1	Run 2	Run 3

Wind-down Cycle	instantaneous gear fling-off temperature [°F]					
1	165	171	192	191	194	
2	184	187	208	206	210	
3	196	199	218	219	222	

	oil inlet temperature [°F]					
start of wind- down cycle 1	86 86 92 91 9					
end of wind- down cycle 3	101	104	108	106	109	


Gear mesh oil flows U vs. CS vs. C1 configs.

Configuration \rightarrow	U CS C1					
Run →	Run 1	Run 1	Run 1	Run 2	Run 3	
	[GPM]					
Cycle 1	0.65	0.68	х	х	0.74	
Cycle 2	0.69	0.78	х	х	0.81	
Cycle 3	0.75	0.94	0.89	0.87	0.91	

WPL - U vs. CS vs. C1 configs.

- 15,000 ft/min
 - No shroud benefit below
 - CS oil drain slots negatively affect WPL above
- Ref. Hill: slotting
- C1 vs U
 - 10% reduction in WPL @ 25,000 ft/min
 - Increasing shroud benefit above 15,000 ft/min
- Handschuh 13 p.d.
 - 7x difference (U)
 - 12X diff. (S)

WPL: Oil Flow vs Oil Temperature

- Sensitivity of oil flow rate and oil temp. w.r.t. WPL?
- Reported: Increased oil flow rate *increases* WPL (Ref. Lord)
- Reported: Increased oil temp. decreases oil viscosity, *decreasing* WPL (Ref. Lord)
- Need to separate effects in a future study

Summary Points

- Demonstrated experimental repeatability.
- Observed: Increased shrouding effectiveness above 15,000 ft./min.
 - Windage power loss more pronounced above 10,000 ft./min.
- Observed: C1 shrouding results in 10% drop in windage power loss at 25,000 ft./min. compared to U configuration
 - C1 drain holes offset WPL reduction at 25,000 ft./min.
 - In general: oil drain holes may offset gains in shrouding.
- 7x increase in WPL
 - Comparison to Literature: unshrouded single vs. unshrouded meshed
- 12x increase in WPL
 - Comparison to Literature: shrouded single vs shrouded meshed

Follow-up Studies

- Sensitivity of windage power loss on oil temperature and oil flow
- Axial vs. Radial shroud effectiveness
- Oil drain slot size, #, location vs. shrouding effectiveness
- Shroud effectiveness at higher surface speeds.
- Sources for more than doubling of windage power loss comparing single versus meshed spur gear in both unshrouded and shrouded configurations.

Acknowledgements

- NASA Revolutionary Vertical Lift Technology Project
- Robert F. Handschuh
- Sig Lauge

HX5 Sierra, Technical Test Support