National airspace model: Optimization of flight frequencies after airport losses

Brian Levine • June 22, 2010

DOE CSGF Conference

Background \& Motivation

- U.S. Aviation
- Multi-billion dollar industry; Critical to economy

Over 600 million domestic passengers transported per year

Increase an average of 2% per year

Background \& Motivation

- Consider a natural disaster or terrorist attack that shuts down an airport for an extended period of time
- Reduced network capacity
- Changes in passenger demand
- Goal: Comprehensive national airspace model
- Individual airlines
- Federal government (FAA)

Background \& Motivation

Comprehensive National Airspace Model

Continental Airlines

Multiple Airlines

UNITED

Airport Capacity

Multiple Aircraft

Model Formulation

Background

- Airline Scheduling
- Single airlines, no capacity at airports (Jaillet, et.al. 1996)
- Short term disruptions (Thengvall, et.al. 2001)
- Discrete/unlimited capacities on flights (Aykin, 1994)
- Small number of flight legs (Erdmann, et. al. 2002)

Nobody has solved a flight frequency problem for the entire national airspace system considering multiple carriers and capacity constraints at airports

- Facility Location
- Heuristic methods yield good quality solutions (Daskin)
- Need effective interchange heuristics (Aykin, 1995)

Model Formulation Description

- Given: Set of cities, aircraft types, carriers, and origin-destination passenger demand
- Find: Flight frequencies and passenger routing that minimizes total operating cost and satisfies as many passengers as possible

Model Formulation Hub-and-Spoke Networks

Model Formulation Description

- Objective
- Minimize total cost and fly as many passengers as is feasibly possible
- Constraints
- Obey capacity on flight legs
- Make sure passenger demand is satisfied
- Have enough aircraft available to fly flights
- Obey airport capacity (takeoffs/landings)
- Solution Method
- Solve as a facility location problem

Heuristic Algorithm
 Flow Chart: Greedy Add

For general facility location:

Initialize: Open facilities

Find: "Facility" site that reduces total cost the most

Heuristic Algorithm Description: Greedy Add

- Find Facilities

Flight 1
Flight 2

- Pair of flights across all carriers which most reduces estimated cost, subject to capacity constraints

Heuristic Algorithm Flow Chart: Greedy Add

Heuristic Algorithm Final Steps

- Swap Aircraft
- Use more economical aircraft
- Add / Drop Single Flight
- Add: Satisfy direct service passengers
- Drop: Added capacity may be unnecessary
- Exchange / Interchange
- Move flights around
- Focus on parts of network at capacity

Application: 10 Node Network Map of Cities

Application: 10 Node Network

Data

[^0]- Two aircraft types
- Narrow Body \& Regional Jet
- Each has different capacities and costs

Application: 10 Node Network Results

- Optimal IP Solution = \$183,094 (total cost)

Solution Step	Cost	Gap
Initial Solution	$\$ 487,341$	166.2%
Add Heuristic	$\$ 205,612$	12.3%
Swap Aircraft	$\$ 204,551$	11.7%
Add Single Aircraft	$\$ 194,814$	6.4%
Subtract Single Aircraft	$\$ 193,793$	5.8%
Exchange Heuristic	N/A	N/A

Application: 10 Node Network Results

- Structure of solution
- Heuristic: Fewer flights that cost more
- IP Actual: More passengers transferring

	Heuristic	IP Actual
Transfers	758	1045
Unserved Passengers	49	40
Number of Flights	59 legs	61 legs
Cost of Flights	186,443	177,094

Conclusions \& Future Research

- Come up with efficient exchange heuristic
- Use heuristic algorithm on larger network
- Begin from known (current) flight schedule

Acknowledgements

- Linda Nozick, Oliver Gao, Shane Henderson, Cornell University
- Dean Jones and the Operations Research \& Computational Analysis (ORCA) group, Sandia National Laboratories
- The Krell Institute

Sandia
National
Laboratories

Questions?

[^0]: Origin-Destination

