#### National airspace model: Optimization of flight frequencies after airport losses

#### Brian Levine • June 22, 2010 DOE CSGF Conference



#### **Background & Motivation**

• U.S. Aviation

- Multi-billion dollar industry; Critical to economy



# **Background & Motivation**

- Consider a natural disaster or terrorist attack that shuts down an airport for an extended period of time
  - Reduced network capacity
  - Changes in passenger demand
- Goal: Comprehensive national airspace model

   Individual airlines
  - Federal government (FAA)

Background & Motivation Comprehensive National Airspace Model

Continental Airlines

Multiple Airlines

**Airport Capacity** 

#### Multiple Aircraft



# Model Formulation Background

- Airline Scheduling
  - Single airlines, no capacity at airports (Jaillet, et.al. 1996)
  - Short term disruptions (Thengvall, et.al. 2001)
  - Discrete/unlimited capacities on flights (Aykin, 1994)
  - Small number of flight legs (Erdmann, et. al. 2002)

Nobody has solved a flight frequency problem for the entire national airspace system considering multiple carriers and capacity constraints at airports

- Facility Location
  - Heuristic methods yield good quality solutions (Daskin)
  - Need effective interchange heuristics (Aykin, 1995)

# Model Formulation Description

- **Given**: Set of cities, aircraft types, carriers, and origin-destination passenger demand
- Find: Flight frequencies and passenger routing that minimizes total operating cost and satisfies as many passengers as possible



#### Model Formulation Hub-and-Spoke Networks



# Model Formulation Description

- Objective
  - Minimize total cost and fly as many passengers as is feasibly possible
- Constraints
  - Obey capacity on flight legs
  - Make sure passenger demand is satisfied
  - Have enough aircraft available to fly flights
  - Obey airport capacity (takeoffs/landings)
- Solution Method
  - Solve as a facility location problem

#### Heuristic Algorithm Flow Chart: Greedy Add



# Heuristic Algorithm Description: Greedy Add

• Find Facilities



 Pair of flights across all carriers which most reduces estimated cost, subject to capacity constraints



# Heuristic Algorithm Final Steps

• Swap Aircraft

- Use more economical aircraft

- Add / Drop Single Flight
  - Add: Satisfy direct service passengers
  - Drop: Added capacity may be unnecessary
- Exchange / Interchange
  - Move flights around
  - Focus on parts of network at capacity

#### Application: 10 Node Network Map of Cities



#### Application: 10 Node Network Data



- Two aircraft types
  - Narrow Body & Regional Jet
  - Each has different capacities and costs

# Application: 10 Node Network Results

• Optimal IP Solution = \$183,094 (total cost)

| Solution Step            | Cost               | Gap    |
|--------------------------|--------------------|--------|
| Initial Solution         | \$487,341          | 166.2% |
| Add Heuristic            | \$205 <i>,</i> 612 | 12.3%  |
| Swap Aircraft            | \$204,551          | 11.7%  |
| Add Single Aircraft      | \$194,814          | 6.4%   |
| Subtract Single Aircraft | \$193,793          | 5.8%   |
| Exchange Heuristic       | N/A                | N/A    |

## Application: 10 Node Network Results

- Structure of solution
  - Heuristic: Fewer flights that cost more
  - IP Actual: More passengers transferring

|                     | Heuristic | IP Actual |
|---------------------|-----------|-----------|
| Transfers           | 758       | 1045      |
| Unserved Passengers | 49        | 40        |
| Number of Flights   | 59 legs   | 61 legs   |
| Cost of Flights     | 186,443   | 177,094   |

# **Conclusions & Future Research**

- Come up with efficient exchange heuristic
- Use heuristic algorithm on larger network
- Begin from known (current) flight schedule



# Acknowledgements

- Linda Nozick, Oliver Gao, Shane Henderson, Cornell University
- Dean Jones and the Operations Research & Computational Analysis (ORCA) group, Sandia National Laboratories
- The Krell Institute







#### Questions?

