Downloaded from Stanmorephysics.com ## NATIONAL SENIOR CERTIFICATE **GRADE 12** **MATHEMATICS P1** **SEPTEMBER 2020** PREPARATORY EXAMINATIONS **MARKS: 150** TIME: 3 hours N.B. This question paper consists of 9 pages and an information sheet. #### INSTRUCTIONS AND INFORMATION Read the following instructions carefully before answering the questions. - 1. This question paper consists of 13 questions. - 2. Answer **ALL** questions. - 3. Clearly show **ALL** calculations, diagrams, graphs, et cetera that you have used in determining your answers. - 4. Answers only will not necessarily be awarded full marks. - 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise. - 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise. - 7. Diagrams are NOT necessarily drawn to scale. - 8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly. 1.1 Solve for x: 1.1.1 $$x(\pi - x) = 0$$, where x is a rational number. (2) 1.1.2 $$-3x^2 + 8x = -7$$ (rounded off to 2 decimal places) (4) $$1.1.3 \quad \sqrt{11 - x} - x = 1 \tag{5}$$ $$1.1.4 \quad 2.3^{x} = 57 - 3^{x-2} \tag{4}$$ $$1.1.5 \quad 4x^2 - 5x \le 0 \tag{4}$$ 1.2 Determine the values of x and y if (5) $$2x + y = 3$$ and $y^2 = x^2 + y + x$ [24] ### **QUESTION 2** The first three terms of the first differences of a quadratic sequence are 102; 108; 114; ... - 2.1 Determine between which two consecutive terms is the first difference 2022. (3) - 2.2 Determine the n^{th} term of the sequence if it is further given that the third term of the quadratic sequence is equal to 310. [7] - 3.1 The first four terms of an arithmetic sequence are: $\frac{2}{5}$; $\frac{3}{5}$; 0,8; 1;... - 3.1.1 Determine the value of the n^{th} term. (2) - 3.1.2 Calculate the sum of the first 30 terms. (3) - 3.2 Given: 2 + 5 + 8 + ... to n terms = 72710. Calculate the number of terms in the series. (5) [10] #### **QUESTION 4** The sum of the first two terms of a geometric series with positive terms, $r \neq -1$, is four times the sum of the next two terms. The sum to infinity of this series is 3. Show that $$r = \frac{1}{2}$$. (4) ### **QUESTION 5** Given $$g(x) = \frac{1}{2(x+3)} - 1$$ - 5.1 Write down the equations of the vertical and horizontal asymptotes of g. (2) - 5.2 Determine the intercepts of the graph of g with the axes. (3) - 5.3 Draw the graph of g. Show all intercepts with the axes as well as the asymptotes of the graph. (4) In the diagram, the graphs of $f(x) = -x^2 + x + 2$ and $g(x) = \frac{1}{2}x^2 - x$ are drawn below. f and g intersect at C and D. A is the y – intercept of f. P and Q are any points on f and g respectively. PQ is parallel to the y – axis. - 6.1 Write down the co-ordinates of A. (1) - 6.2 Calculate the coordinates of C and D. (5) - 6.3 Determine the values of x for which $f(x) \le g(x)$. (2) - 6.4 Calculate the maximum length of PQ where line PQ is between C and D. (4) - 6.5 Calculate the value of x where the gradient of f is equal to 3. (3) - 6.6 Determine the values of k for which f(x) = k has two positive unequal roots. (4) [19] In the diagram, the graph of $g(x) = log_3 x$ is drawn. - 7.1 Write down the equation of g^{-1} , the inverse of g, in the form y = ... (2) - 7.2 Write down the range of g^{-1} . (1) - 7.3 Calculate the values of x for which $2g(x) \le -6$. (4) ### **QUESTION 8** - 8.1 An investor indicates that he will be able to treble the value of the investment at the end of 6 years. The interest rate is fixed and compounded monthly. Calculate the annual interest rate that the investor has on offer. (4) - 8.2 Samuel decided to buy a car costing R192 000. He takes out a loan for 5 years at an interest rate charged at 12 % p.a. compounded monthly. Payments are made at the end of each month. - 8.2.1 Calculate the monthly repayments over a period of 5 years. (4) - 8.2.2 After Samuel had made 45 payments, he decides to settle the balance on the loan. Calculate the lump sum that he will need to pay off the loan after he has made the 45th payment. [12] 9.1 Determine $$f'(x)$$ from first principles given $f(x) = x^2 - bx$, where b is a constant. (5) 9.2 Determine: 9.2.1 $$\frac{d}{dx} \left[\frac{x^4}{4} - 3.\sqrt[3]{x} + 7 \right]$$ (3) 9.2.2 $$\frac{dy}{dx}$$ if $y = (x^{\frac{1}{3}} - 2x^{\frac{2}{3}})^2$ (4) [12] ### **QUESTION 10** The graph of f', the derivative of f, is drawn below. $f(x) = ax^3 + bx^2 + cx + d$; $a \ne 0$. f' intersects the x – axis at – 5 and 1 and the y – axis at – 15. 10.1.1 $$x$$ – values of the turning points of f . (2) 10.1.2 $$x$$ – value(s) where the gradient of f is equal to –15. (2) Show that the equation of $$f'$$ is given by $y = 3x^2 + 12x - 15$. (3) 10.3 If $$f(-3) = 0$$, calculate the value of d . (4) Determine the coordinates of the turning points of the graph of f and state whether they are maximum or minimum turning points. (4) 10.5 $$y = tx + 4$$ is a tangent to f. Calculate the value of t. (5) [20] The rectangular milk carton has a square base which holds 1 litre of milk. It has a specially designed fold-in top. The area of the cardboard used for the top is three times the area of the base. 11.1 Show that the Total Surface Area of the carton is given by $A(x) = 4x^2 + \frac{4000}{x}$ (3) Determine the dimensions of the carton so that minimum amount of cardboard (6) is used. [9] #### **QUESTION 12** A printing company uses 3 machines, A,B and C, to produce banners. - Machine A produces 20 % of the total production. - Machine B produces 30 % of the total production. - Machine C produces 50 % of the total production. - 2 % of Machine A copies are not perfect. - 3 % of Machine B copies are not perfect. - 8 % of Machine C copies are not perfect. Let P = perfect and NP = not perfect. 12.1 Represent the information by means of a tree diagram. (4) 12.2 A banner is selected at random from the total production. Calculate the probability: 12.2.1 that the banner selected at random was produced by Machine B and is not perfect. (1) 12.2.2 that the banner selected at random is not perfect. (3) [8] In a survey conducted by 220 grade 12 learners in a school, the following data were collected. | | Like ice-cream (L) | Do not like ice-cream(D) | Total | |-----------|--------------------|--------------------------|-------| | Boys (B) | 65 | 30 | | | Girls (G) | 70 | 55 | | | Total | | | | - 13.1 Determine the percentage of boys that like ice-cream. (2) - 13.2 Calculate the probability that a randomly selected boy likes ice-cream. (2) - 13.3 Are the events of being a boy and liking ice-cream independent or not? Show working. (3) [7] Total: 150 ### **INFORMATION SHEET: MATHEMATICS** $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$A = P(1+ni)$$ $A = P(1-ni)$ $A = P(1-i)^n$ $$A = P(1-ni)$$ $$A = P(1-i)^n$$ $$A = P(1+i)^n$$ $$T_n = a + (n-1)d$$ $$T_n = a + (n-1)d$$ $S_n = \frac{n}{2}(2a + (n-1)d)$ $$T_n = ar^{n-1}$$ $$S_n = \frac{a(r^n - 1)}{r - 1}$$ $$r \neq 1$$ $$S_n = \frac{a(r^n - 1)}{r - 1}$$; $r \neq 1$ $S_\infty = \frac{a}{1 - r}$; $-1 < r < 1$ $$F = \frac{x[(1+i)^n - 1]}{i}$$ $$P = \frac{x[1 - (1+i)^{-n}]}{i}$$ $$P = \frac{x[1 - (1+i)^{-n}]}{i}$$ $$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$ $$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \text{M}\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$ $$M\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$$ $$y = mx + c$$ $$y - y_1 = m(x - x_1)$$ $$y - y_1 = m(x - x_1)$$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$ $$m = \tan \theta$$ $$(x-a)^2 + (y-b)^2 = r^2$$ In $$\triangle ABC$$: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ $area \triangle ABC = \frac{1}{2}ab \cdot \sin C$ $$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$ $$area \Delta ABC = \frac{1}{2}ab.\sin C$$ $$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$ $$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$ $$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$ $$\cos(\alpha + \beta) = \cos \alpha . \cos \beta - \sin \alpha . \sin \beta$$ $\cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$ $$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$ $$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$ $$\bar{x} = \frac{\sum f.x}{n}$$ $$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$ $$P(A) = \frac{n(A)}{n(S)}$$ $$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$ $$\hat{y} = a + bx$$ $$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$ ### **DIRECTORATE:** Private Bag X01, EAST END, 4018 **Provincial Examination Administration** Malgate Building, 72 Stalwart Simelane Street, Durban, 4000 Tel: 031 332 1896 **CLIVE KHUMALO** TO: THE CHIEF INVIGILATOR OF ALL SCHOOLS OFFERING: **MATHEMATICS P1** NATIONAL SENIOR CERTIFICATE: PREPARATORY EXAMINATION: SEPTEMBER 2020: GRADE 12 ### **ERRATA** Please take note of the following change: | PAGE | NUMBER | ERROR | CORRECTION | |------|--------|--|--| | 5 | 6.4 | Calculate the maximum length of PQ. | Calculate the maximum length of PQ where line PQ lies between C and D. | | 6 | 8.1 | Calculate the annual the investor has to offer. | Calculate the annual the investor has on offer. | kindly ensure that candidates are informed of the Errata. MR R.C. PENNISTON **ACTING CHIEF DIRECTOR:** PROVINCIAL EXAMINATIONS, QUALITY ASSURANCE **AND ASSESSMENT SERVICES** 14-09-2020 GROWING KWAZULU-NATAL TOGETHER # Downloaded from Stanmorephysics.com # **MATHEMATICS P1** **SEPTEMBER 2020** PREPARATORY EXAMINATION MARKING GUIDELINE # NATIONAL SENIOR CERTIFICATE **GRADE 12** **MARKS: 150** TIME: 3 hours This marking guideline consists of 13 pages. ### **OUESTION 1** | QUES | TION 1 | | | |-------|--|---|-----| | 1.1.1 | x = 0 | A✓✓ 0 | (2) | | 1.1.2 | $-3x^2 + 8x + 7 = 0$ | A√standard form | | | | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ | | | | | $x = \frac{-(8) \pm \sqrt{(8)^2 - 4(-3)(7)}}{2(-3)}$ $x = -0.69 \qquad or \qquad 3.36$ | CA✓substitution in correct formula CA✓CA✓answers (penalize 1 mark if rounding off is incorrect-once here for entire paper) | (4) | | 1.1.3 | $\sqrt{11-x}-x=1$ | moneto enco nero 151 enino papar) | | | 1.1.5 | $\sqrt{11 - x} = x + 1$ $(\sqrt{11 - x})^2 = (x + 1)^2$ $11 - x = x^2 + 2x + 1$ | A✓ Isolating surd A✓ squaring both sides | (5) | | | $x^{2} + 3x - 10 = 0$ $(x + 5)(x - 2) = 0$ $x = -5 \text{ or } x = 2$ $x = -5 \text{ n/a}$ | CA✓standard form CA✓factors CA✓answers and rejecting | | | 1.1.4 | $2.3^{x} = 57 - 3^{x-2}$ $2.3^{x} + 3^{x-2} = 57$ | | | | | | A√Removing common factor | | | | $3^{x}(2+3^{-2}) = 57$ $3^{x}\left(2\frac{1}{9}\right) = 57$ | CA✓Simplifying bracket | | | | $3^x = 27 = 3^3$ | $CA \checkmark 3^x = 27$ | | | | x = 3 | CA✓answer | (4) | | 1.1.5 | $4x^2 - 5x \le 0$ $x(4x - 5) \le 0$ | AA✓✓ factors | | | | 1.25 | | (4) | | | $0 \le x \le \frac{5}{4}$ | CA✓ end points A✓ interval | | | | | | (4) | # Mathema Downloaded from Stanmarephysics.com NSC Marking Guideline September 2020 Preparatory Examination | 1.2 | $2x + y = 3 \qquad \to (1)$ | | | |-----|--|---------------------------------------|------| | | $y^2 = x^2 + y + x \qquad \to (2)$ | | | | | From (1): | | | | | $y = 3 - 2x \qquad \to (3)$ | A \checkmark making y/x the subject | | | | Substituting (3) into (2): | | | | | $(3-2x)^2 = x^2 + (3-2x) + x$ | CA✓substitution | | | | $9 - 12x + 4x^2 = x^2 + 3 - 2x + x$ | | | | | $3x^2 - 11x + 6 = 0$ | | | | | (3x - 2)(x - 3) = 0 | CA√standard form | | | | 2 2 2 2 2 | | | | | $x = \frac{1}{3}$ or $x = 3$ | CA✓ <i>x</i> – values | | | | $x = \frac{2}{3} \qquad or \qquad x = 3$ $y = \frac{5}{3} \qquad or \qquad y = -3$ | CA (| (5) | | | $\int_{0}^{\infty} y - \frac{1}{3}$ | CA✓ y values | | | | | | | | | | | [24] | | 2.1 | $T_k = 6k + 96 = 2022$ | A \checkmark equating k^{th} term to 2022 | | |-----|--|---|-----| | | k = 321 | CA ✓ k value | (2) | | | Between the 321 st and 322 nd terms | CA✓answer | (3) | | 2.2 | T1 T2 T3 T4 | | | | | 1D 102 108 114 | | | | | 2D 6 6 | | | | | 2a = 6 $a = 33a + b = 102$ $b = 939a + 3b + c = 310$ $c = 4T_n = 3n^2 + 93n + 4$ | $A \checkmark a$ value $CA \checkmark b$ value $CA \checkmark c$ value $CA \checkmark answer$ | (4) | | | OR | OR | | | | 2a = 6 $a = 33a + b = 102$ $b = 93T_2 = 310 - 108 = 202$ | $A \checkmark a$ value $CA \checkmark b$ value | | | | $T_1 = 202 - 102 = 100$
a + b + c = 100 $c = 4T_n = 3n^2 + 93n + 4$ | CA ✓ c value
CA ✓ answer | (4) | # Mathema Depynloaded from Stanmarephysics.com September 2020 Preparatory Examination NSC Marking Guideline OR OR 2a = 6a = 3 $\mathbf{A} \checkmark a$ – value 3a + b = 102 $A \checkmark b$ – value b = 93 $T_2 = 310 - 108 = 202$ $T_1 = 202 - 102 = 100$ CA√formula $T_n = T_1 + (n-1)d_1 + \frac{(n-1)(n-2)}{2}d_2$ $T_n = 100 + (n-1)(102) + \frac{(n-1)(n-2)}{2}(6)$ $T_n = 100 + 102n - 102 + 3n^2 - 9n + 6$ (4) $T_n = 3n^2 + 93n + 4$ CA√answer OR OR 2a = 6a = 3 $A \checkmark a$ – value 3a + b = 102b = 93 $A \checkmark b$ – value $T_2 = 310 - 108 = 202$ $T_1 = 202 - 102 = 100$ $T_n = \frac{n-1}{2} [2a + (n-2)d] + T_1$ CA√formula $T_n = \frac{n-1}{2} [2(102) + (n-2)(6)] + 100$ $T_n = \frac{n-1}{2}[204 + 6n - 12] + 100$ $T_n = \frac{n-1}{2}[6n+192] + 100$ $T_n = (n-1)[3n+96] + 100$ CA ✓ answer $T_n = 3n^2 + 93n + 4$ (4) [7] | 3.1.1 | $T_n = \frac{1}{5}n + \frac{1}{5}$ | A✓ common difference | | |-------|---|--|------| | | 5 5 | CA✓answer | (2) | | | | | | | 3.1.2 | $S_n = \frac{n}{2} [2a + (n-1)d]$ | $CA \checkmark a = \frac{2}{5} \text{ and } d = \frac{1}{5}$ | | | | $S_{30} = \frac{30}{2} \left[2 \left(\frac{2}{5} \right) + (30 - 1) \left(\frac{1}{5} \right) \right]$ | CA✓ substitution into formula | | | | = 99 | CA√answer | (3) | | 3.2 | $S_n = \frac{n}{2} [2a + (n-1)d]$ | $A \checkmark a$ – value and d – value | | | | $72710 = \frac{n}{2}[2(2) + (n-1)(3)]$ | | | | | 72710 = n/2 [3n + 1)] | CA ✓ simplifying bracket | | | | $3n^{2} + n - 145420 = 0$ $n = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ | CA ✓ standard form | | | | $n = \frac{2a}{n}$ $n = \frac{-1 \pm \sqrt{(1)^2 - 4(3)(-145420)}}{2(3)}$ | CA ✓ substitution into formula | | | | n = 220 or -220.33 n/a | CA ✓answer and rejecting | (5) | | | | | | | | | | [10] | | 4.1 | a ; ar ; ar^2 ; ar^3 ; | | | |-----|--|---------------------------------|-----| | | $a + ar = 4(ar^2 + ar^3)$ | $A\checkmark a + ar$ | | | | | $A \checkmark 4(ar^2 + ar^3)$ | | | | $a(1+r) = 4ar^2(1+r)$ | A√ factorising | | | | $a = 4ar^2 \qquad r \neq -1$ | A✓simplifying | | | | $\begin{bmatrix} 2 & 1 \\ 1 & 3 & 3 \end{bmatrix}$ | | (4) | | | $r^{2} = \frac{1}{4} ; a > 0$ $r = \frac{1}{2} ; a > 0$ | | | | | $\left \begin{array}{ccc} r - \frac{1}{2} & \vdots & a > 0 \end{array} \right $ | | | | | | | | | 4.2 | $S_{\infty} = \frac{a}{1 - r} = 3$ | A√equating sum to infinity to 3 | | | | $S_{\infty} = \frac{a}{1 - \frac{1}{2}} = 3$ | | | | | $\int_{0}^{\infty} 1 - \frac{1}{2}$ | | | | | | | (2) | | | $a = \frac{3}{2}$ | CA✓answer | (2) | | | | | [6] | | 5.1 | x = -3 and $y = -1$ | | $A\checkmark x = -3$ | | (2) | |-----|--|------------|-----------------------------|---------------------------------------|-----| | 3.1 | x = 3 and y = 1 | | | | (2) | | | | | $A \checkmark y = -1$ | | | | 5.2 | $y - \text{intercept}: \left(0; -\frac{5}{6}\right)$ | | $A\checkmark y$ – intercept | t | | | | $y = \text{intercept} : \left(0, -\frac{1}{6}\right)$ | | | | | | | $x - \text{intercept: } \frac{1}{2(x+3)} - 1 = 0$ | | | | | | | 2x + 6 = 1 | | $A\checkmark 2x + 6 = 1$ | $or A \checkmark x + 3 = \frac{1}{2}$ | | | | $x = -2\frac{1}{2}$ | | | | (2) | | | $\left(\begin{array}{ccc} 1 & 2 \\ 2 & 2 \end{array}\right)$ | | $CA \checkmark x - interce$ | | (3) | | | $\left(-2\frac{1}{2};0\right)$ | | (co-ordinate for | m not needed) | | | 5.3 | | † y | | $CA \checkmark x$ -intercepts | | | | | | | CA ✓ y - intercept | | | | | | | CA √ both | | | | | | | asymptotes | | | | | | | | | | | \8 | | | A✓shape | (4) | | | | | | | | | | | | x | | | | | -3 -25 | 0 | ` | | | | | | -5/6 | | | | | | • | -1 | | | | | | • | [9] | | 6.1 | A(0; 2) | A✓answer (Must be in coordinate form) | (1) | |-----|--|--|------| | 6.2 | $-x^{2} + x + 2 = \frac{1}{2}x^{2} - x$ $0 = \frac{3}{2}x^{2} - 2x - 2$ $0 = 3x^{2} - 4x - 4$ | A√equating CA✓standard form | | | | (3x + 2)(x - 2) = 0
$x = -\frac{2}{3}$ or $x = 2$ | $CA \checkmark x$ – values | | | | $y = \frac{8}{9} \qquad or \qquad y = 0$ $C\left(-\frac{2}{3}; \frac{8}{9}\right) \qquad \& D(2; 0)$ | CA ✓ y – values CA ✓ Writing in coordinate form | (5) | | 6.3 | $x \le -\frac{2}{3} \text{ or } x \ge 2$ | $CA \checkmark x \le -\frac{2}{3}$ $CA \checkmark x \ge 2$ | (2) | | 6.4 | Length of PQ = $-x^2 + x + 2 - \left(\frac{1}{2}x^2 - x\right)$
L = $-\frac{3}{2}x^2 + 2x + 2$ | A✓ subtraction of both graphs CA✓ equating in standard form | | | | $x = -\frac{b}{2a} = -\frac{2}{2\left(\frac{-3}{2}\right)} = \frac{2}{3}$ OR $L' = -3x + 2 = 0 \implies x = \frac{2}{3}$ | CA✓Axis of symmetry value or CA✓Axis of symmetry value | | | | Maximum value of PQ
$= -\frac{3}{2} \left(\frac{2}{3}\right)^{2} + 2\left(\frac{2}{3}\right) + 2$ $= \frac{8}{3} = 2\frac{2}{3} = 2,67 \text{ units}$ | CA✓AO value | (4) | | 6.5 | $f(x) = -x^{2} + x + 2$ $f'(x) = -2x + 1 = 3$ $x = -1$ | AA✓✓ derivative and equating to 3 A✓ answer | (3) | | 6.6 | Axis of symmetry: $x = \frac{1}{2}$ Maximum value: $y = -\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 2 = 2\frac{1}{4}$ $2 < k < 2\frac{1}{4}$ | A✓ Axis of symmetry value CA✓ maximum value of f CA✓end points A✓interval | (4) | | | | | [19] | | 7.1 | Inverse: $x = \log_3 y$ | $A \checkmark x = \log_3 y$ $A \checkmark y = 3^x$ | (2) | |-----|---|--|-----| | | $y = 3^x$ | $A \checkmark y = 3^x$ | | | | | Answer only full marks | | | 7.2 | $y > 0$ or $y \in (0; \infty)$ | A√answer | (1) | | 7.3 | $2log_3 x = -6$ | A√dividing by 2 | | | | $\log_3 x = -3$ | A√writing in exponential form | | | | $x = 3^{-3} = \frac{1}{27}$ | CA√end points | | | | $2log_3 x = -6$ $log_3 x = -3$ $x = 3^{-3} = \frac{1}{27}$ $0 < x \le \frac{1}{27}$ | A✓ interval Can be solved by log inequalities. | (4) | | | | | [7] | | 8.1 | $A = P(1+i)^n$ $3P = P\left(1 + \frac{i}{12}\right)^{72}$ | A√for using 3P and P | | |-------|--|--|-----| | | $i = 12\left(\frac{7}{\sqrt{3}} - 1\right)$ | $A \checkmark n = 72$ | | | | $i = 12(\sqrt{3} - 1)$
i = 0,1845 | $CA\checkmark$ making i the subject | (4) | | | Annual interest rate is 18,45 % p.a. | CA✓ answer | | | 8.2.1 | $P = \frac{x[1 - (1+i)^{-n}]}{i}$ | $A\checkmark$ value of n
$A\checkmark$ value of i | | | | $192\ 000 = \frac{x \left[1 - \left(1 + \frac{0.12}{12} \right)^{-60} \right]}{\frac{0.12}{12}}$ | CA✓substitution into correct formula | | | | x = R4270,93 | CA✓answer | (4) | | 8.2.2 | $P = \frac{x[1 - (1+i)^{-n}]}{i}$ | A√Present value formula | | | | $= \frac{4270,93\left[1 - \left(1 + \frac{0.12}{12}\right)^{-15}\right]}{0.12}$ | A \checkmark value of n
CA \checkmark substitution into correct | | | | = R59216,72421 | formula
CA√answer | | # Mathematic Opynloaded from Stanmorephysics.com September 2020 Preparatory Examination NSC Marking Guideline | OR | C Marking Guideline OR | (4) | |--|--|------| | $A = P(1+i)^{n}$ $A = 192\ 000 \left(1 + \frac{0.12}{12}\right)^{45}$ $= R300\ 443,6635$ $F = \frac{x[(1+i)^{n} - 1]}{i}$ | A✓Substitution into Compound Interest Formula CA✓substitution into Future Value Formula | | | $F = \frac{4270,934 \left[\left(1 + \frac{0.12}{12} \right)^{45} - 1 \right]}{\frac{0.12}{12}}$ =R241 226,9424 Balance on Loan = R300 443,6635 -R241 226,9424 = R59216,7211 | $CA \checkmark A - F$ $CA \checkmark answer$ | (4) | | | | [15] | # QUESTION 9(penalize 1 mark once for incorrect notation in this question) 9.1 f(x+h) - f(x) $\Delta \checkmark \text{formula}$ | 9.1 | $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - b(x+h) - (x^2 - bx)}{h}$ | A√formula | | |-----|---|---------------------------------|-----| | | $f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - b(x+h) - (x^2 - bx)}{h}$ | A✓substitution | | | | $f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - bx - bh - x^2 + bx}{h}$ | CA✓ simplification of numerator | | | | $2xh + h^2 - bh$ | | (5) | | | $f'(x) = \lim_{h \to 0} \frac{2xh + h^2 - bh}{h}$ $f'(x) = \lim_{h \to 0} \frac{h(2x + h - b)}{h}$ $f'(x) = 2x - b$ | CA√factorization | | | | $f'(x) = \lim_{h \to 0} \frac{h}{h}$ | CA√answer | | | | f'(x) = 2x - b | CA answer | | | | OR | OR | | | | $f(x+h) = (x+h)^2 - b(x+h)$ | $A\checkmark$ value of $f(x+h)$ | | | | $f(x+h) = x^{2} + 2xh + h^{2} - bx - bh$
$f(x+h) - f(x) = 2xh + h^{2} - bh$ | CA✓ simplification | | | | $f(x+h) - f(x) = 2xh + h$ $f(x+h) - f(x) = 2xh + h^2 - bh$ | | | | | $\frac{f(x+h) - f(x)}{h} = \frac{2xh + h^2 - bh}{h}$ $\frac{f(x+h) - f(x)}{h} = \frac{h(2x+h-b)}{h}$ | CA√factorization | | # Mathema Representation Stanmon Stanmon Stanmon Stanmon September 2020 Preparatory Examination NSC Marking Guideline | | | ang duluenne | | |-------|--|--|----------------------| | | $f'(x) = \lim_{h \to 0} (2x + h - b)$
f'(x) = 2x - b | A√formula
CA√answer | (5) | | 9.2.1 | $\frac{d}{dx} \left[\frac{x^4}{4} - 3\sqrt[3]{x} + 7 \right]$ $\frac{d}{dx} \left[\frac{x^4}{4} - 3x^{\frac{1}{3}} + 7 \right]$ $= x^3 - x^{-\frac{2}{3}}$ | A✓rewriting in exponential form CA✓CA✓derivatives | (3) | | 9.2.2 | $y = (x^{\frac{1}{3}} - 2x^{\frac{2}{3}})^{2}$ $y = x^{\frac{2}{3}} - 4x + 4x^{\frac{4}{3}}$ $\frac{dy}{dx} = \frac{2}{3}x^{-\frac{1}{3}} - 4 + \frac{16}{3}x^{\frac{1}{3}}$ | A✓ simplification
CA✓CA✓ CA✓ each term | (4)
[12] | | 10.1 | | | | |------|---|---|-----| | | 10.1.1 $x = -5$ or $x = 1$ | A✓A✓ | (2) | | | $10.1.2 \mid x = -4 \text{ or } x = 0$ | A✓A✓ | (2) | | 10.2 | $y = a(x+5)(x-1)$ $-15 = a(0+5)(0-1)$ $-15 = -5a$ $3 = a$ $y = 3(x+5)(x-1) = 3x^{2} + 12x - 15$ | A \checkmark substitution of intercepts
A \checkmark a - value
A \checkmark substitution of a - value and
intercepts into equation | (3) | | | OR
$y = a(x+p)^{2} + q$ $y = a(x+2)^{2} + q$ $(0; -15) : -15 = a(0+2)^{2} + q$ $-15 = 4a + q (1)$ $(1; 0) : 0 = a(1+2)^{2} + q$ $0 = 9a + q (2)$ $(2) - (1) : 15 = 5a a = 3$ $0 = 27 + q q = -27$ $y = 3(x+2)^{2} - 27$ $y = 3(x^{2} + 4x + 4) - 27$ $y = 3x^{2} + 12x - 15$ | OR A \checkmark equation (1) and (2) A \checkmark a – value A \checkmark q – value | (3) | | 10.3 | $f(x) = ax^3 + bx^2 + cx + d$ $f'(x) = 3ax^2 + 2bx + c$ $f'(x) = 3x^2 + 12x - 15$ Equating coefficients of equal polynomials $3a = 3 \text{ and } 2b = 12 \text{ and } c = -15$ $a = 1 \text{ and } b = 6 \text{ and } c = -15$ $f(x) = x^3 + 6x^2 - 15x + d$ | A \checkmark derivative A \checkmark values of a,b and c | (4) | # Mathemalico Miloaded from Stanmarephysics.com September 2020 Preparatory Examination NSC Marking Guideline | | | ing Guideline | 1 | |------|--|---|------| | | $f(-3) = (-3)^3 + 6(-3)^2 - 15(-3) + d$ | A \checkmark substitution of $x = -3$ | | | | f(-3) = -27 + 54 + 45 + d | | | | | 0 = 72 + d | | | | | -72 = d | $A \checkmark d$ – value | | | | | | | | | OR | | | | | $f(x) = x^3 + 6x^2 - 15x + d$ | A✓ anti derivative | | | | $f(-3) = (-3)^3 + 6(-3)^2 - 15(-3) + d$ | A✓substitution | (4) | | | f(-3) = -27 + 54 + 45 + d | A√simplification | , , | | | 0 = 72 + d | 1 | | | | $\begin{vmatrix} -72 & 4 & 4 \\ -72 & d & 4 \end{vmatrix}$ | $A \checkmark d$ – value | | | | $72 - \alpha$ | | | | | | | | | 10.4 | x = -5: | | | | | $y = (-5)^3 + 6(-5)^2 - 15(-5) - 72 = 28$ | CA ✓ y – value | | | | (-5; 28) maximum point | CA√maximum point | | | | x = 1: | | | | | $y = (1)^3 + 12(1)^2 - 15(1) - 72 = -74$ | CA ✓ y – value | | | | (1; -74) minimum point | CA√ minimum point | (4) | | 10.5 | $3x^2 + 12x - 15 = t$ | A√equating derivative to gradient | | | | $3x^2 + 12x - 15 - t = 0$ | of tangent | | | | $\Delta = b^2 - 4ac = 0$ | A√standard form | | | | $\Delta = (12)^2 - 4(3)(-15 - t) = 0$ | $A \checkmark discriminant = 0$ | | | | 144 + 180 + 12t = 0 | A√substitution | | | | 12t = -324 | | | | | t = -27 | $A \checkmark t$ – value | (5) | | | | | [20] | | | ı | I. | | | 11.1 | $Area = x^2 + 3x^2 + 4xh$ | A ✓Total Surface Area | (3) | |------|--|------------------------------------|-----| | | $Area = 4x^2 + 4xh$ | | | | | $V = x^2 h = 1000$ | . 1000 | | | | $h = \frac{1000}{x^2}$ | $A\checkmark h = \frac{1000}{x^2}$ | | | | $A = 4x^2 + 4x\left(\frac{1000}{x^2}\right)$ | $A\checkmark$ Substitution for h | | | | $A = 4x^2 + \frac{4000}{x}$ | | | | | | | | | | | | | | | | | | # Mathema Rephysics.com September 2020 Preparatory Examination NSC Marking Guideline | | NSC Marking Guid | ieiine | | |------|---|---|-----| | 11.2 | $A = 4x^{2} + 4000x^{-1}$ $A' = 8x - 4000x^{-2} = 0$ $8x = \frac{4000}{x^{2}}$ | CA✓derivative
CA✓derivative and equal to 0 | | | | x^{2} $x^{3} = 500$ $x = \sqrt[3]{500} = 7.94 cm$ | $CA \checkmark x^3 = 500$ $CA \checkmark x - \text{value}$ | | | | $h = \frac{1000}{(7,94)^2} = 15,86 \text{ cm}$ | CA \checkmark substitution of x CA \checkmark h – value | | | | Alternatively if learners used: $A = 4x^2 + 400x^{-1}$
$A' = 8x - 400x^{-2} = 0$
$8x = \frac{400}{x^2}$
$x^3 = 50$
$x = \sqrt[3]{50} = 3,68 \text{ cm}$
$h = \frac{1000}{(3,68)^2} = 73,84 \text{ cm}$ | CA derivative CA derivative and equal to 0 $CA \checkmark x^3 = 50$ $CA \checkmark x - \text{value}$ $CA \checkmark \text{substitution of } x$ $CA \checkmark h - \text{value}$ | (6) | | | | | [9] | # Mathematic Opynloaded from Stanmogephysics.com NSC Marking Guideline September 2020 Preparatory Examination | | | | | | OUTCOMES | PROBABILITIES | |----------|-----|------|-----------|------------|----------|---------------------------------| | | | | 0.98 | → P | AP | 49/250 = 0.196 | | | | | | | | | | | | _ A | \langle | | | | | <u> </u> | | | 0.02 | →NP | ANP | 1/250 = 0.004 | | | 0.2 | | | | | | | | | | 0.97 | P | BP | 291/1000 = 0.291 | | | 1 | | | | | | | _ | 0.3 | B | < | | | | | | | | 0.03 | → NP | BNP | 9/1000 = 0.009 | | | | | | | | | | | 0.5 | | 0.92 | P | CP | 23/50 = 0.46 | | | | | | | | | | | | _ C. | | | | | | | | | | | | | | <u> </u> | | | 0.08 | → NP | CNP | 1/25 = 0.04 | | · | | | | | | | | A ✓ | | | A 🗸 | | A ✓ | $\mathbf{A} \checkmark \tag{4}$ | | 12.2.1 | $\frac{9}{1000} = 0,009$ | A✓Answer | (1) | |--------|----------------------------------|------------------|-----| | 12.2.2 | P(NP) = P(ANP) + P(BNP) + P(CNP) | A✓ formula | (3) | | | =0,004+0,009+0,04 | CA√ substitution | | | | $=0.053=\frac{53}{1000}=5.3\%$ | CA✓answer | | | | | | [8] | | | Like ice-cream (L) | Do not like ice-cream(D) | Total | |-----------|--------------------|--------------------------|-------| | Boys (B) | 65 | 30 | 95 | | Girls (G) | 70 | 55 | 125 | | Total | 135 | 85 | 220 | | 13.1 | 68,42 % | AA✓✓answer | (2) | |------|--|---|-----| | 13.2 | $P(BL) = \frac{65}{220} = \frac{13}{44} = 0,2955$ | A A $\checkmark \checkmark \frac{65}{220}$ or $\frac{13}{44}$ or 0,2955 | (2) | | 13.3 | $P(B) = \frac{95}{220} = \frac{19}{44} = 0,4318$ | $CA\sqrt{\frac{95}{220}} \ or \ \frac{19}{44} \ or \ 0,4318$ | | | | $P(B) \times P(L) = \frac{95}{220} \times \frac{135}{220}$ | CA✓ probability of product | | | | $=\frac{513}{1936}=0,2650$ | | | | | $P(B) \times P(L) \neq P(BL)$ | CA√conclusion | (3) | | | Events are not independent. | | | | | | | [7] | **Total: 150**