
Native JSON Datatype Support: Maturing SQL and NoSQL
convergence in Oracle Database

Zhen Hua Liu, Beda Hammerschmidt, Doug McMahon, Hui Chang, Ying Lu, Josh Spiegel,
Alfonso Colunga Sosa, Srikrishnan Suresh, Geeta Arora, Vikas Arora

Oracle Corporation
Redwood Shores, California, USA

 {zhen.liu, beda.hammerschmidt, doug.mcmahon, hui.x.zhang, ying.lu, josh.spiegel,
alfonso.colunga, srikrishnan.s.suresh, geeta.arora, vikas.arora}@oracle.com

ABSTRACT
Both RDBMS and NoSQL database vendors have added varying
degrees of support for storing and processing JSON data. Some
vendors store JSON directly as text while others add new JSON
type systems backed by binary encoding formats. The latter
option is increasingly popular as it enables richer type systems
and efficient query processing. In this paper, we present our new
native JSON datatype and how it is fully integrated with the
Oracle Database ecosystem to transform Oracle Database into a
mature platform for serving both SQL and NoSQL style access
paradigms. We show how our uniquely designed Oracle Binary
JSON format (OSON) is able to speed up both OLAP and OLTP
workloads over JSON documents.

PVLDB Reference Format:
Z. Hua Liu et al.. Native JSON Datatype Support: Maturing SQL
and NoSQL convergence in Oracle Database. PVLDB, 13(12) :
3059-3071, 2020.
DOI: https://doi.org/10.14778/3415478.3415534

1. INTRODUCTION
JSON has a number of benefits that have contributed to its growth
in popularity among database vendors. It offers a schema-flexible
data model where consuming applications can evolve to store new
attributes without having to modify an underlying schema.
Complex objects with nested master-detail relationships can be
stored within a single document, enabling efficient storage and
retrieval without requiring joins. Further, JSON is human
readable, fully self-contained, and easily consumed by popular
programming languages such as JavaScript, Python, and Java. As
a result, JSON is popular for a broad variety of use cases
including data exchange, online transaction processing, online
data analytics.

OLTP for JSON: NoSQL vendors, such as MongoDB [11] and
Couchbase [4] provide JSON document storage coupled with
simple NoSQL style APIs to enable a lightweight, agile
development model that contrasts the classic schema-rigid SQL
approach over relational data. These operational stores provide
create, read, update and delete (CRUD) operations over

collections of schema-flexible document entities. This contrasts
traditional relational databases which support similar operations
but over structured rows in a table. However, over the past
decade, many relational database vendors such as Oracle [29],
Microsoft SQL Server [10], MySQL [12], PostgreSQL [16] have
added support for storing JSON documents to enable schema-
flexible operational storage.

OLAP for JSON: Both SQL and NoSQL databases have added
support for real-time analytics over collections of JSON
documents [4, 16, 15]. In general, analytics require expressive
and performant query capabilities including full-text search and
schema inference. SQL vendors, such as Oracle [28] are able to
automatically derive structured views from JSON collections to
leverage existing SQL analytics over JSON. The SQL/JSON 2016
standard [21] provides comprehensive SQL/JSON path language
for sophisticated queries over JSON documents. NoSQL users
leverage Elastic Search API [8] for full text search over JSON
documents as a basis of analytics. All of which have created
online analytical processing over JSON similar to the classical
OLAP over relational data.

While well suited for data exchange, JSON text is not an ideal
storage format for query processing. Using JSON text storage in a
database requires expensive text processing each time a document
is read by a query or is updated by a DML statement. Binary
encodings of JSON such as BSON [2] are increasingly popular
among database vendors. Both MySQL [12] and PostgreSQL [16]
have their own binary JSON formats and have cited the benefits
of binary JSON for query processing. Oracle’s in-memory JSON
feature that loads and scans Oracle binary JSON (OSON) in-
memory has shown better query performance compared with
JSON text [28]. In addition to better query performance, binary
formats allow the primitive type system to be extended beyond the
set supported by JSON text (strings, numbers, and booleans).

Supporting a binary JSON format only to enable efficient query
processing and richer types is not enough for OLTP use cases. In
such cases, it is critical that applications can also efficiently
create, read, and update documents as well. Efficient updates
over JSON are especially challenging and most vendors resort to
replacing the entire document for each update, even when only a
small portion of the document has actually changed. Compare
this to update operations over relational data where each column
can be modified independently. Ideally, updates to JSON
documents should be equally granular and support partial updates
in a piecewise manner. Updating a single attribute in a large
JSON document should not require rewriting the entire document.

In this paper, we describe the native JSON datatype in Oracle
Database and how it is designed to support the efficient query,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any
use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415534

3059

update, ingestion, and retrieval of documents for both OLTP and
OLAP workloads over JSON. We show how fine-grained updates
are expressed using the new JSON_TRANSFORM() operator and how
the underlying OSON binary format is capable of supporting
these updates without full document replacement. This results
in update performance improvements for medium to large JSON
documents.

We will show how data ingestion and retrieval rates are improved
by keeping OSON as the network exchange format and adding
native OSON support to existing client drivers. These drivers
leverage the inherent read-friendly nature of the format to provide
"in-place", efficient, random access to the document without
requiring conversions to intermediate formats on the server or
client. OSON values are read by client drivers using convenient
object-model interfaces without having to first materialize the
values to in-memory data structures such as hash tables and
arrays. This, coupled with the natural compression of the format,
results in a significant improvement in throughput and latency for
simple reads. We will show how ingestion rates are not hindered
by the added cost of client document encoding but instead tend to
benefit from reduced I/O costs due to compression.

In this paper, we also present the set of design principles and
techniques used to support JSON datatype in the Oracle Database
eco-system. The design is driven by variety of customer use
cases, including pure JSON document storage usecases to
process both OLTP (put/get/query/modify) and OLAP (ad-hoc
query report, full text search) operations, hybrid usecases where
JSON is stored along-side relational to support flexible fields
within a classic relational schema, JSON generation usecases
from relational data via SQL/JSON functions, and JSON
shredding usecases where JSON is shredded into relational tables
or materialized views. Both horizontal scaling via Oracle
sharding and vertical scaling via Oracle ExaData and In-Memory
store have been leveraged to support all these cases efficiently.
The main contributions of this paper are:

1. The OSON binary format to support the efficient query,
update, ingestion, and retrieval of JSON documents. To the
best of our knowledge, OSON is the first binary JSON
format that supports general piecewise updates and efficient
in-place server and client-side navigation without sacrificing
schema-flexibility. The novel design enables queries and
updates to be done in logarithmic rather than linear running
time.

2. The JSON_TRANSFORM() operator provides declarative partial
updates over JSON documents in a way that is amenable to
efficient piece-wise evaluation over OSON.

3. Integration of the JSON datatype with all the salient features
of Oracle Database to achieve high performance for both
OLTP and OLAP workloads. In particular, the in-memory
path-value index format and inverted keyword hash index
format for JSON_EXISTS() and JSON_TEXTCONTAINS()
in memory predicate evaluation for OLAP is novel.

4. An extensive performance study of the benefits of using
OSON storage over JSON text for both server and client.

The rest of the paper is organized as follows. Section 2 gives an
overview of JSON datatype functionality. Section 3 describes its
design. Section 4 is on support of JSON OLTP and OLAP
workloads. Section 5 is on performance experiments. Section 6 is

on related work. Section 7 is on future work. Section 8 is
conclusion with acknowledgments in section 9.

2. JSON DATATYPE FUNCTIONALITY
2.1 SQL/JSON 2016
The SQL/JSON 2016 [21] standard defines a set of SQL/JSON
operators and table functions to query JSON text and generate
JSON text using VARCHAR2/CLOB/BLOB as the underlying
storage. JSON_VALUE() selects a scalar JSON value using a path
expression and produces it as a SQL scalar. JSON_QUERY()
selects a nested JSON object or array using a path expression and
returns it as a JSON text. JSON_TABLE() is a table function
used in the SQL FROM clause to project a set of rows out of a
JSON object based on multiple path expressions that identify rows
and columns. JSON_EXISTS() is used in boolean contexts, such
as the SQL WHERE clause, to test if a JSON document matches
certain criteria expressed using a path expression. These JSON
query operators accept SQL/JSON path expressions that are used
to select values from within a document. The SQL/JSON path
language is similar to XPath and uses path steps to navigate the
document tree of objects, arrays, and scalar values. Each step in
a path may optionally include predicates over the values being
selected. Like XPath, SQL/JSON path leverages a sequence data
model and the intermediate result of any SQL/JSON path
expression is a sequence of JSON values (objects, arrays, scalars).
While the mechanics of SQL/JSON path follows XPath, the
syntax is more similar to JavaScript.

2.2 JSON Datatype
In Oracle Database 20c, the "JSON" type can be used to store
JSON data instead of VARCHAR/CLOB/BLOB. The JSON type
data model is closely aligned with JSON text and includes objects,
arrays, strings, numbers, true, false, and null. But like other JSON
formats [2], the data model is also extended with SQL primitive
types for packed decimal, IEEE float/double, dates, timestamps,
time intervals, and raw values. We refer to this logical data model
as the JSON Document Object Model (JDOM). The OSON binary
format for JSON datatype is a serialization of a JDOM.
SQL/JSON 2016 supports type casting item functions, such as
.number(), .string(), .date(), .binary() etc, that can cast string to
non-string built-in datatypes.

The JSON datatype can be used as the type of a table column,
view column, parameter, return value, or a local variable datatype
in SQL and PL/SQL functions. The SQL/JSON operator
JSON_QUERY() by default returns JSON datatype. JSON_TABLE() can
return JSON datatype as projected column datatype. SQL/JSON
generation functions can return JSON datatype. All of these have
overcome the limitation from the JSON text with IS JSON
constraint based pseudotype which in some cases may lose type
information between SQL operations. Implicit conversion
between JSON datatype and JSON text is supported by the SQL
compiler.

Figure 1 shows a set of SQL/JSON queries and DML statements
over a purchaseOrder table whose DDL definition is shown as
D1. The JSON type column jdoc stores a purchase order JSON
document. DML statement I1 shows an example of a JSON
document representing a purchase order being inserted into the
purchaseOrder table. In I1, the compiler will implicitly wrap the
JSON string within a JSON() constructor that encodes JSON text
to OSON binary during insertion.

3060

D1

CREATE TABLE purchaseOrder
 (did NUMBER PRIMARY KEY, jdoc JSON)

I1

INSERT INTO purchaseOrder
VALUES (1, ' {"purchaseOrder": {
 "podate": "2015-06-03",
 "shippingAddress": {"street": "3467 35th Ave",
 "city" : "Berkeley", “state”: “CA”, "zip":
94612},
 "comments" : "Discounted sales Independence Day",
 "sparse_id" :"CDEG35",
 "items": [
 {"name" : "TV", "price": 345.55, "quantity": 2,
 "parts": [
 {"partName": "remoteCon", "partQuantity": 1},
 {"partName": "antenna”, "partQuantity": 2}]},
 {"name": “PC”, “price”: 446.78, "quantity": 10,
 "parts": [
 {"partName": "mouse", "partQuantity": 2},
 {"partName": "keyboard", "partQuantity": 1}]}
]}}');

Q1

SELECT did,
 po.jdoc.purchaseOrder.podate.date(),
 po.jdoc.purchaseOrder.shippingAddress,
 po.jdoc.purchaseOrder.items[*].count(),
 po.jdoc.purchaseOrder.item[1]
FROM purchaseOrder po
WHERE po.jdoc.purchaseOrder.podate.date() =
TO_DATE(‘2015-06-03’,'YYYY-MM-DD') AND
po.jdoc.purchaseOrder.shippingAddress.zip.number()
BETWEEN 94610 AND 94620

Q2

SELECT did,
 JSON_QUERY(jdoc,
 ‘$.purchaseOrder.items?(@.price > 300)’),
 JSON_VALUE(jdoc,
 '$.purchaseOrder?(exists(@..parts?(@.partName ==
 "mouse" && @.partQuantity >=2))).podate’)
FROM purchaseOrder po
WHERE
 JSON_EXISTS(jdoc,
 ‘$.purchaseOrder.sparse_id?(@ == “CDEG35”)’) AND
 JSON_EXISTS(jdoc,
 ‘$.purchaseOrder.items?(@.name == “TV” &&
 @.parts.partQuantity >= 2)’)

Q3

SELECT po.did, jt.*
FROM purchaseOrder po, JSON_TABLE (jdoc
COLUMNS (
 poid NUMBER PATH ‘$.purchaseOrder.id’,
 podate DATE PATH ‘$.purchaseOrder.podate’,
 sp_id PATH ‘$.purchaseOrder.sparse_id’,
 NESTED ‘$.purchaseOrder.items[*]’
 COLUMNS (name, price NUMBER, quantity NUMBER),
 NESTED ‘$.parts[*]’
 COLUMNS (partName, partQuantity NUMBER))) jt

Q4

SELECT jdoc
FROM purchaseOrder
WHERE JSON_EXISTS(jdoc,
 ‘$.purchaseOrder.items?(
 @.price > $price && @.quantity >= $qty &&
 (exists(@.parts?(
 @.partName == $pname &&
 @.partQuantity >= $pquantity))))’
 PASSING TO_NUMBER(:1) AS "price",
 TO_NUMBER(:2) AS “qty”,
 :3 AS “pname”,
 TO_NUMBER(:4) AS “pquantity”)

AND JSON_TEXTCONTAINS(jdoc,

 ‘$.purchaseOrder.comments’,

 ‘{Independence} NEAR {discount}’)

Q5

SELECT JSON {
 ‘name’ : li.itemName,
 ‘sales’ : li.price * li.quantity
}

FROM lineItems_rel li

Q6

SELECT

 JSON {
 'id' : po.Id,
 'poDate' : po.podate,

 'items' : (SELECT JSON_ARRAYAGG(JSON {*})

 FROM lineItems_rel E

 WHERE E.fid_po = po.Id)
 }

FROM PurchaseOrder_rel po

U1

UPDATE purchaseOrder po
SET jdoc = JSON_TRANSFORM(jdoc,
 REPLACE
‘$.purchaseOrder.shippingAddress.city’
 = ‘Oakland’,
 REPLACE ‘$.purchaseOrder.shippingAddress.zip’
 = 94607,
 SET '$.purchaseOrder.contactPhone' =
 JSON('["(415)-667-8960","(510)332-8888"]'),
 REMOVE ‘$.purchaseOrder.sparse_id’,
 APPEND ‘$.purchaseOrder.items’ =
 JSON(‘{“items” :[{“name”:”iphone”,
 “price” : 635.54, “quantity” :2}]}’))
WHERE po.jdoc,purchaseOrder.podate.date() =
 TO_DATE(‘2015-06-03’)

Q7

SELECT did,
 JSON_QUERY(jdoc,
 '$.purchaseOrder.items?(@.price > 300)’),
 JSON_VALUE(jdoc,
 ‘$.purchaseOrder?(@..parts?(@.partName ==
“mouse”
 && @.partQuantity >=2)).podate’)
FROM purchaseOrder po
WHERE EXISTS(
 SELECT 1
 FROM MV_PO
 WHERE MV_PO.FID = po.did AND
 MV_PO.sp_id = 'CDEG35' AND
 MV_PO.name = 'TV' AND
 MV_PO.quantity >= 2)

Figure 1. Example SQL/JSON queries and DMLS statements

3061

2.3 Simplified Syntax for SQL/JSON
Oracle Database provides a simplified syntax for querying JSON
values as an alternative to calling more expressive but verbose
SQL operators such as JSON_QUERY() and JSON_VALUE(). A
simple JSON path navigation without any predicates can be
abbreviated using the dot notation as shown in the select list of
Q1. Tailing step functions such as number(), binary(), date(),
and timestamp() can be used to specify the return type of the
expression. For example, po.jdoc.purchaseOrder.podate.
date(), is internally translated into JSON_VALUE(po.jdoc,
'$.purchaseOrder.podate' RETURNING DATE). The trailing step
function casts the value to the corresponding SQL built-in type (in
this case, DATE). Without a trailing step function, the return type
of the expression is JSON. For example,
po.jdoc.purchaseOrder.shipping, is translated into JSON_QUERY(
po.jdoc, '$.purchaseOrder.shipping' RETURNING JSON).

Other types of trailing step functions are also supported. For
example, po.jdoc.purchaseOrder.items[*].count() in Q1
illustrates a sequence item aggregation function that returns the
total number of items in an array. This avoids using the general
purpose JSON_TABLE() operator for simple aggregations.

Examples Q5 and Q6 show the simplified syntax for
JSON_OBJECT(). This JSON constructor syntax allows users to
create new JSON objects and arrays using a syntax that resembles

the JSON that the expression creates. In Q6, the expression
JSON{*} automatically creates a JSON object representation of the
relational row. There are other syntax simplifications for
accessing JSON as well, all of which map to the core SQL/JSON
operators [20,21].

2.4 Updating with JSON_TRANSFORM
JSON_TRANSFORM() is a new SQL operator to declaratively apply a
sequence of modification operations to JSON values selected by
the SQL/JSON path language. Figure 2 shows the grammar for
the JSON_TRANSFORM() operator. The INSERT operation inserts a
new value into a JSON object or array. REPLACE operation replaces
an existing value with a new value. The APPEND operation appends
a new value into an array. The SET operation either replaces an
existing value by a new value or adds a new value if the original
one does not exist. REMOVE operation removes values. U1 in Figure
1 is an example of a SQL UPDATE statement that uses
JSON_TRANSFORM to modify a JSON column value. Logically, the
update is a full replacement of the existing value with the
modified value. However internally, the update is applied
piecewise without materializing the new and old value at once
(see section 3.4). JSON_TRANSFORM can also be used in the select
list of a query to perform a transformation on a JSON value
without changing the persistent storage. For example,
JSON_TRANSFORM could be used to redact a social security number
using a REMOVE operation before sending the document to the
client. The KEEP operation is the inverse of REMOVE: only values
identified by path expressions are kept and all others are removed.

2.5 Client JSON Datatype Access
Both JDBC (Java Database Connectivity) and OCI (Oracle Call
Interface) have been enhanced with OSON support. Using these
libraries, applications can read, create, and modify JSON type
values, convert values between JSON text and OSON, and store
and retrieve values in the database. These libraries provide simple
object model access APIs to randomly navigate and access values
within a document. For example, the package oracle.sql.json
in JDBC implements JSR374/JSON-P interfaces (javax.json.*)
over OSON and is compatible with JSR367/JSON-B so that user
domain objects can be mapped directly to and from JSON type
values without incurring JSON text parsing or serialization costs.

PreparedStatement select = con.prepareStatement
 ("SELECT jcol FROM purchaseOrder WHERE did =1");
ResultSet rs = select.executeQuery();
rs.next();
JsonObject doc =
 rs.getObject(1, javax.json.JsonObject.class);
System.out.println(doc.getString("sparse_id"));
rs.close();

Figure 3. JSON datatype in JDBC

Figure 3 is an excerpt from of a Java program that uses JDBC to
retrieve a purchase order document from the server. In this case,
the OSON bytes for the purchase order are transferred directly to
the application and exposed to the developer using the standard
javax.json.JsonObject interface. The value for sparse_id is
read from the object in-place without processing or converting the
rest of the document. This is discussed more in sections 3 and 4.

'JSON_TRANSFORM' '('
 input_expr ',' operation (',' operation)*
 JSON_TRANSFORM_returning_clause?
 JSON_passing_clause?
')'

operation := (removeOp | insertOp| replaceOp |
 appendOp | setOp | renameOp | keepOp)

removeOp := 'REMOVE' pathExp
 (('IGNORE' | 'ERROR') 'ON' 'MISSING')?

insertOp := 'INSERT' pathExp '=' rhsExpr
 (('REPLACE' | 'IGNORE' | 'ERROR') 'ON' 'EXISTING')?
 (('NULL' | 'IGNORE' | 'ERROR' | 'REMOVE') 'ON'
 'NULL')?

replaceOp := 'REPLACE' pathExp '=' rhsExpr
 (('CREATE' | 'IGNORE' | 'ERROR') 'ON' 'MISSING')?
 (('NULL' | 'IGNORE' | 'ERROR' | 'REMOVE') 'ON'
 'NULL')?

appendOp := 'APPEND' pathExp '=' rhsExpr
 (('CREATE' | 'IGNORE' | 'ERROR') 'ON' 'MISSING')?
 (('NULL' | 'IGNORE' | 'ERROR') 'ON' 'NULL')?

setOp := 'SET' pathExp '=' rhsExpr
 (('IGNORE' | 'ERROR' | 'REPLACE') 'ON' 'EXISTING')?
 (('CREATE' |'IGNORE' | 'ERROR') 'ON' 'MISSING')?
 (('NULL' | 'IGNORE' | 'ERROR') 'ON' 'NULL')?

renameOp := 'RENAME' pathExpr 'WITH' stringLiteral
 (('IGNORE' | 'ERROR') 'ON' 'MISSING')?

keepOp := 'KEEP' (pathExpr (('IGNORE' | 'ERROR')
 'ON' 'MISSING')?)
 (',' pathExpr (('IGNORE' | 'ERROR')
 'ON' 'MISSING')?)*

rhsExpr := sqlExpr ('FORMAT JSON')?

Figure 2. JSON_TRANFORM grammar

3062

2.6 Simple Oracle Document Access (SODA)
SODA [19] is Oracle’s simple document access API for
developers to use Oracle Database as a pure JSON document
store. This API provides NoSQL-style access (CRUD) based on
the document's ID, presenting a key/value model similar to other
common document stores. With SODA, data is logically
managed by an application using collections of simple documents
rather than tables containing rows. However, SODA collections
are still backed by internally managed relational tables having ID,
JSON, and other metadata columns. With this model, applications
can be written without using SQL but SQL/JSON can still be
leveraged over collection data for analytics and reporting if ever
needed. More complex queries over JSON documents are
specified as QBEs (Query By Example). QBE's are JSON
documents themselves which are internally transformed to
equivalent SQL/JSON queries over the underlying JSON datatype
column of the table. SODA is available in all popular client
programming languages: Java, Node.js, Python, C, PL/SQL.

3. JSON DATATYPE DESIGN
3.1 JSON Datatype Derivation from BLOB
The JSON datatype is internally designed as a derivation of the
BLOB datatype for storing OSON bytes. This simple approach
enables Oracle to provide complete implementation support for
the JSON datatype in every part of Oracle's ecosystems within a
yearly based release. However, this is all transparent to developers
because the general LOB APIs, to read and write LOBs using
offsets, cannot be used on JSON type. One main advantage of
being a SQL datatype is that SQL static typing can enforce
desired type semantics over JSON. And in contrast, with JSON
text storage developers use the more complicated LOB API
explicitly to access and modify JSON.
Classic BLOB was initially designed to store large binary objects
and provide random access over any file or media (e.g. a music
file). However, JSON documents for operational data are
typically smaller (kilobytes to megabytes). To achieve optimal
performance, we inline OSON values up to the database block
size to avoid out of row BLOB access as much as possible. This
allows SQL/JSON evaluation to directly access OSON bytes as if
it were normal relational RAW column inside a row. When an
OSON value is larger than the block size, it is stored outside of
the row using multiple data blocks managed by the Oracle
securefile i-node infrastructure [13]. Data blocks for OSON
BLOB storage are lazily read and cached in the buffer cache
based on tree navigation patterns instead of linearly reading
everything. For large OSON, we only need to read OSON data
blocks that are relevant to answer the path query.

For a BLOB storing OSON bytes for the JSON datatype, we
applied value based LOB semantics on both the server and client.
A large client side prefetch buffer is auto-configured for OSON
BLOB. The lifecycle for OSON BLOB is restricted to cursor fetch
duration in order to prevent resource leakage.

3.2 OSON Binary Format Design
The following section describes the OSON binary format and its
characteristics. Space precludes giving a full formal definition of
OSON but Figure 4 gives a pseudo-grammar that identifies the
salient aspects of its structure. This section gives an overview of
the structure and highlights its benefits.

3.2.1 OSON Structure
An OSON image consists of a header, a dictionary, and a value
segment. The header gives a fixed signature specific to OSON
and records various aspects about the image that are needed by a
reader, such as the size of byte offsets used within the document.
The dictionary contains the set of distinct field names used within
all objects in the document. Specifically, it first stores a sorted
array of hash codes for each distinct key (sortedFieldHashes).
This array is followed by a second array of equal length
(fieldNameOffsets) that stores the corresponding offset of the
key string. These offsets reference a third array (fieldNames) that
contain the actual field strings. The unique field ID of a given key
is its ordinal position within fieldNameOffsets .
The tree value segment follows the dictionary and encodes the
objects, arrays, and primitive values used within the document.
Objects are encoded by a set of size-prefixed parallel arrays that
encode the entries in the object. The first array (sortedFidArray)
gives the sorted field IDs of the field names in the object. The
second array (offsetArray) gives the corresponding offsets to
values in the value segment. Arrays are encoded by a single size-
prefixed offset array containing the offsets of the values in the
array. The upper part of Figure 5 shows an example of the OSON
layout without any partial updates. After a partial OSON update,
extended tree segment is appended as show in the bottom half of
Figure 5. The update replaces the string ‘CDEG4’ with
‘CDEG52’. Note if ‘CDEG4’ is replaced by ‘CDEG8’, then a

oson_document := header dictionary tree_seg
 (extended_tree_seg)
dictionary := sortedFieldHashes fieldNameOffsets
 fieldNames
tree_seg := value+
extended_tree_seg := tree-seg
value := object | array | scalar | forward_offset
object := OBJECT_CODE (fields | delegate_offset)
 offsetArray
fields := size sortedFidArray
array := ARR_CODE size offsetArray
scalar := scalarCode sqlScalar

Figure 4. OSON Binary Format (pseudo grammar)

Figure 5. OSON example

3063

direct replacement is done without appending in the extended tree
segment.

3.2.2 Self-contained and platform independent
Similar to JSON text and BSON, OSON does not depend on any
external schema information and supports unencumbered schema
evolution. This is a critical property to support distributed
computing over the data without synchronizing on central schema
access. Many database features, like partitioning, replication,
sharding, import/export, and transportable tablespace require data
to be self-contained and accessible on any platform without data
conversion.

3.2.3 Compact
Unlike JSON text and BSON, OSON maintains a local dictionary
in the header that encodes each distinct field name. For JSON
documents having many repeating field names due to arrays of
identical JSON object structures or recursive JSON object
structures, OSON is often much smaller than the equivalent UTF-
8 encoded JSON text or BSON since the repeated field names are
replaced by small field IDs. Furthermore, multiple objects
containing the same field names will only have their field ID array
stored once. Objects can reference the offset of the other object
that shares the same structure (delagate_object) instead of
repeating the same field ID array. For example, in the
purchaseOrder JSON document shown in Figure 1, there is an
‘item’ array, each of which has an identical object structure of
‘name’, ‘price’, ‘quantity’, ‘parts’ fields. Each ‘part’ array has
identical object structures of ‘partName’, ‘partQuantity’ fields.
These repeating field IDs are stored just once and reused by
multiple objects. The field ID size is fixed within an OSON
document as either 1 or 2 or 4 bytes depending on how many
distinct field names there are in the document. Commonly,
documents have less than 256 distinct keys and a 1-byte field ID
is thus sufficient. Similarly, the size of value offsets used to
reference values will be either 2 or 4 bytes depending on whether
the total size of the OSON exceeds 64K. Both the field ID and
offset sizes in effect are encoded in the OSON header.

3.2.4 Efficient in-place navigation
Tree navigation is performed in-place over the OSON bytes
without first loading the data into other in-memory structures. A
value offset is used as direct pointer to the OSON bytes that
encode that value. Searching for a key name within an object,
or an array indexed element uses jump navigation to efficiently
skip past irrelevant portions of the document. Specifically,
when searching for a given key within an object, a binary search
over sortedFidArray is performed to identify the offset in the
corresponding offsetArray. This offset can be used to jump
directly to the corresponding value. Likewise, elements within an
array can be efficiently located at any position using the
offsetArray. Both the server and client drivers make use of in-
place jump navigation to support efficient data access without
converting the OSON image to other data structures.

3.2.5 Efficient piece-wise updates
OSON supports partial updates so that changes can be made
without replacing the entire document, as would be required for
JSON text or BSON. Partial BSON update is limited to the case
that the new content length exactly matches the old content length
because BSON uses fixed offsets throughout the document which
need to be recalculated after a size changing update. Partial update
for OSON can handle complex update operations. When the old

content length is bigger than or equal to the new content length, it
does an in-place update. When in-place update is not feasible, the
old value is tombstoned with the forwarding address
(forward_offset) of the new content that is appended at the end
of the original OSON bytes. Subsequent change of the same node
but with larger content creates a new forwarding address that is
still stored in the original tombstone location to avoid forwarding
address chaining. See bottom part of Figure 5. When accumulated
appended pieces exceed a certain threshold relative to the original
document size, the encoding is re-compacted and the resulting
OSON bytes fully replace the old document. Partial update
leverages the fact that OSON uses tree offset based jump
navigation. To avoid a rebuild of the dictionary due to the
insertion of new distinct field names, OSON supports partial
dictionary rebuilding by tracking dictionary codes that have been
actually changed due to insertion of new distinct field names and
then only patching those changed dictionary codes in the end.
Compared with the OSON format described in paper [28], this
OSON format is enhanced to support piece-wise update of OSON
using concept of forward offsets (forward_offset) and reduces
OSON size for common JSON documents by allowing object
encodings to share field structures (delegate_offset).

3.2.6 SQL scalar binary compatibility
All JSON scalar values use the same encoding as existing SQL
built-in datatypes. For example, JSON packed decimal is encoded
using the same binary format as that of the NUMBER built-in
type in Oracle SQL. This allows for efficient conversions and low
impedance mismatch when working with JSON inside the
database. JSON scalar content is mapped to relational columns
and back without loss of fidelity.

3.3 Fast SQL/JSON Path Evaluation
Q1, Q2, and Q4 in Figure 1 show SQL/JSON path language
expressions used in JSON_VALUE(), JSON_QUERY(), and
JSON_EXIST(). Notice that in addition to simple child steps,
Oracle also supports a recursive descendant path step. See
"..parts" in Q2 of Table 1 which selects all entries for key
"parts" within each descendant object of the current value. Q3
uses JSON_TABLE() to project a master detail hierarchy within a
document as a set of flat table rows. The path expressions used
within these SQL/JSON operators are evaluated efficiently over
the input OSON column value using in-place jump navigation.
When compiling a path expression, a hash function is applied to
the field names in the path to generate a corresponding hash code
for each field name. These hash codes are stored in the compiled
execution plan for the path expression. The OSON field name
dictionary (sortedFieldHashes) is organized based on the sorted
hash id. At run time, the hash ID from the path is first located
within the OSON field name dictionary using a binary search to
obtain the corresponding field ID within the document. If the
field is not found in the dictionary, it means the field does not
occur anywhere in the document. This is particularly helpful for
the heterogeneous JSON collection where there are many possible
sparse optional fields. Searching for non-existence of fields within
JSON text or BSON requires a scan of the entire document to the
end whereas OSON only requires a binary search within the
OSON field name dictionary. When the object field ID is found in
the dictionary, it is then located in the field ID array of the current
object, again using binary search, to get the corresponding child
offset.

3064

Oracle's built-in SQL datatype format is designed to support type
agnostic byte comparable for range comparison. This property is
exploited for range comparisons in SQL/JSON path expressions
because OSON scalar binary is the same as that of SQL built-in
SQL datatype. Also, when the SQL return type used within
JSON_VALUE() matches a JSON scalar, its bytes are copied out
directly from OSON bytes without any datatype conversion.

3.4 Fast JSON_TRANSFORM() Evaluation
Consider execution of the update statement U1 in Figure 1.
Logically, the JSON_TRANSFORM() expression on the right-hand
side of the SET clause is evaluated over the input JSON value,
applying a sequence of modification operations to yield a new
temporary document that replaces the JSON column value.
However, replacing the entire document in this manner is
inefficient as it requires the database to generate a redo log entry
proportional to the size of the document. Oracle Database
optimizes U1 execution by applying piece-wise updates on the
OSON storage without generating a temporary new OSON
document to fully replace the previous stored OSON document.
With this optimization, transaction redo log size is usually
proportional to the size of the change rather than the full
document size. At runtime, JSON_TRANSFORM() evaluates the
update over the OSON bytes using only 3 low-level update
operations: length preserved byte replacement, append bytes at the
end and truncate bytes at the end. Typical OSON update
operations only result in few database BLOB storage block
changes instead of every BLOB storage block being modified.
Therefore, update performance using JSON_TRANSFORM() is
improved significantly. When there are many partial updates that
have accumulated on an OSON document, re-compacting the
OSON document to reclaim the space due to deletion occurs
automatically. The partial BLOB update API is similar to the
POSIX/UNIX file system API [13]. We note this partial OSON
update technique is applicable to OSON stored in file systems as
well.

4. JSON WORKLOADS
The traditional model of using separate databases for different
types of workloads is more and more breaking in favor of so-
called translytic databases that support both transactional and
analytic workloads at once. We have designed JSON type and the
SQL/JSON facilities to support both types of workloads over
JSON data.

4.1 OLTP Performance
JSON OLTP workloads require high performance document
retrieval (i.e. get() operations). A primary key index on a
document identifier is required to efficiently retrieve a JSON
document by id lookup. For example, the DDL statement D1 in
Table 1 shows the primary key specification for column did of the
purchaseOrder table. A functional index is needed to facilitate
common secondary access paths. Efficient execution of Q1 in
Table 1 needs two functional indexes on paths
po.jdoc.purchaseOrder.podate.date(), po.jdoc.
purchaseOrder.shippingAddress.zip.number(). B+ tree based
functional indexes offer the best tradeoff to speed up document
retrieval based on range or equality predicates while being both
statement and transactionally consistent with respective to
underlying DML. DML statements, such as inserts, must compute
the functional index expression to maintain the B+ tree for each

operation. Since OSON uses jump navigation to evaluate
SQL/JSON path expressions, it provides the best performance to
compute the JSON_VALUE() expression during functional index
maintenance.

OSON also reduces transfer costs and enables efficient client-
access to documents. The OSON bytes for the document
retrieved are transferred directly to the client application, avoiding
any transformation or serialization costs on the server. The
OSON bytes are also typically smaller than the corresponding
JSON text or BSON value which reduces both IO and network
transfer overhead. Like the server, the client application can read
the OSON bytes using jump offset navigation, avoiding any
transformation costs on the client as well. In contrast, for JSON
text or BSON, the application must load the data into alternative
data structures such as hash tables to enable efficient random
access to the document. Some database vendors use binary JSON
as a storage format but then serialize the value to JSON text
before sending it to a client. These conversions can consume
significant resources on the database server, especially in OLTP
type use cases where many clients are using the database at once.

OLTP workloads also require high performance ingestion (i.e.
put() operations). Using OSON reduces I/O and network transfer
costs during an insert since the OSON value is typically smaller
than the corresponding JSON text. Client-side encoding of OSON
also reduces server side CPU usage during an insert since the
server can directly store the bytes received from the client with
OSON bytes verification.

As discussed in section 3.4, document updates are also important
to OLTP workloads. OSON has efficient partial OSON update
capability that typically result in transaction redo-log size
proportional to small changes of OSON instead of the full OSON
document replacement. Execution of U1 in Table 1 uses a
functional index to locate the document and then performs partial
update.

4.2 OLAP Performance
4.2.1 Incrementally Refreshable Materialized Views
Materialized views (MVs) have traditionally been used for
materializing aggregations persistently. Depending on the
complexity of SQL expressions used in MVs, Oracle allows
developers to control whether MVs are refreshed incrementally or
fully, and the frequency of refresh at the statement level, at the
transaction level or at scheduled intervals. MVs are typically used
to speed up OLAP queries. In this paper, we have applied
JSON_TABLE() MV to speed up SQL/JSON OLAP queries.
JSON_TABLE() queries, such as the one shown in Q3, can be used
to define MV for analytics. The view can be set to refresh at the
statement or transaction commit level. This is feasible because the
underlying JSON_TABLE() MV table stores the primary key of the
JSON datatype column in the original table as a foreign key. In
this example, when new JSON document is inserted in the
purchaseOrder table, Oracle MV maintenance runs JSON_TABLE()
over the new JSON document to return a set of relational rows
tagged with the primary key of the new document and then inserts
them into the MV table. JSON_TABLE() evaluation over OSON is
more efficient than JSON text for the reasons discussed in section
3. When JSON documents are deleted from the purchaseOrder
table, Oracle MV maintenance deletes those rows in MV table
whose foreign key value matching the primary keys of the deleted

3065

rows. Update of JSON datatype column in purchaseOrder table is
triggered as deletion followed by insertion operations in the MV
maintenance layer. The JSON_TABLE() MV maintenance can be
triggered at individual DML statement completion time. This
statement level consistency is semantically equivalent to that of
index maintenance during which a session can see its own change
immediately without committing the transaction. The MV table
update is rolled back if the transaction containing these DML
statements is rolled back.
Due to the MV statement level consistency semantics,
JSON_TABLE() based MVs can be used to transparently rewrite not
only queries that use JSON_TABLE() in the FROM clause but also
queries that use JSON_EXISTS() as predicate in WHERE clause. For
example, assume that MV_PO is a MV defined over the
JSON_TABLE() query given in Q3. The query given in Q2 can be
internally rewritten to the query given in Q7. Q7 uses MV_PO to
help evaluate the query over the purchaseOrder table. The
JSON_EXIST() expressions in the original Q2 are transformed in
Q7 into a semi-join using an EXISTS subquery. MV_PO.FID is the
internal foreign key of the MV table that joins to the primary key
did in the purchaseOrder table. Semi-joins like this one are
amenable query optimizations for efficient execution plans. For
example, when MV_PO has secondary indexes on sp_id, name and
quantity columns or if the table is placed in the Oracle in-memory
columnar store, significant performance improvement is
achievable.

4.2.2 Parallel Query
SQL/JSON OLAP queries can be executed in parallel with
multiple slaves executing SQL/JSON operators used in the select,
where, group by and order by clauses. JSON_TABLE() is executed
in the same slave process which reads the JSON column.
SQL/JSON operators in the select list are pushed down to each
slave process so that they are executed in parallel. Slave processes
add intermediate results as temporary OSON BLOBs in the
parallel table queue. The query coordinator processes the queue
and ships the final results to DB client.

4.2.3 In-memory Indexes
Although JSON search index is powerful, it is based on disk
structures that inevitably impact DML performance. Oracle DB
in-memory store[22], however, is able to maintain an alternative
format of data for fast query without paying the disk I/O cost to
persist them while still providing transactional consistency.
The Oracle In-Memory store has an in-memory expression feature
(IME) [1] that enables storing virtual column expressions in
memory. JSON_VALUE() is used to shred the JSON into multiple
columns and load them into an in memory columnar format that
is amendable to SIMD scans [28]. JSON datatype is further
integrated with IME as a memory pool to maintain a compact
JSON search index based memory representation so that
JSON_EXISTS() and JSON_TEXTCONTAINS() predicates can be
evaluated in-memory. This is achieved by using both a path-
value index format to support JSON_EXISTS() and a inverted
keyword hash index format to support JSON_TEXTCONTAINS().
The Oracle in-memory store assigns each row an ordinal number
within a memory unit, and we use that ordinal number as the
document id (docid) for keyword inverted-list and path-value
indexing. The hash index maps keywords into posting lists having
that keyword using a serialized in-memory hash table. The posting
list is a bitmap for docid with the doc offset. Path-Value in-

memory maps a 16 byte hash id for each unique path to a sorted
distinct leaf scalar values, each of which maps to a bitmap for the
docid having that scalar value.
If the in-memory index fails to load in an IME unit due to lack of
memory or if it cannot keep up with heavy DML rates, execution
automatically falls back to use OSON bytes for evaluation. Unlike
disk-based indexes, the in-memory index maintenance does not
slow down the main DML execution path because its population
is trigged periodically and is done in the background.

4.2.4 Predicate Scans in Exadata Storage Cells
Oracle Exadata [14] is an engineered system for Oracle Database.
A key aspect of the Exadata architecture is to separate compute
and storage and push predicate evaluation down to storage server.
SQL predicates evaluated during a table scan are pushed down
and evaluated in the storage layer by parallel kernel threads. The
storage layer returns matching rows. This improves the
performance of scans by orders of magnitudes by reducing the
amount of data sent back to compute nodes. JSON support takes
full advantage of this by supporting SQL/JSON functional
evaluations in the storage cells, so that SQL/JSON predicates,
such as JSON_EXISTS() and JSON_VALUE() in WHERE clauses are
pushed down to storage cell server for evaluation when any
indexing mechanism in the compute node are not available or
determined to be non-beneficial by optimizer.

4.3 Sharding & Full Text Search
This section covers sharding and full-text search which are
common features of NoSQL databases and useful for improving
both operational and analytical workloads.

4.3.1 Full-text Search
Oracle Database supports the operator JSON_TEXTCONTAINS(),
usable in WHERE clause to facilitate JSON path context aware full
text search. For example, Q4 in Figure 1 uses
JSON_TEXTCONTAINS() to perform the full text search
‘{Independence} NEAR {discount}’ under a SQL/JSON path
$.purchaseOrder.comments. OLAP queries over JSON data
typically have ad-hoc path value range searches that are not
possible to create many functional indexes or statement
refreshable MVs to capture all possible paths in a JSON datatype
column. Therefore, Oracle JSON Search Index is designed to
index everything in a JSON datatype column, both full text and
leaf scalar values. The SQL compiler detects all SQL/JSON
operators: JSON_TEXTCONTAINS(), JSON_EXISTS(), JSON_VALUE()
in WHERE clause over the same JSON datatype column and then
combines them into one tree pattern search operator to be
evaluated by the JSON search index.

There are two components in the JSON search index. One
component indexes keyword tokens of both scalar strings and
hierarchical tree structures. It uses an inverted index layout to map
each keyword token to its document ids and its containing
hierarchical path as intervals. The other component indexes leaf
number and timestamp values and its leading JSON path. It has
B+ tree index to index a combination of 16 bytes hash of each
unique JSON paths and its distinct leaf scalar node value for path-
value range search. The posting list is compact because the
posting list uses ordinal numbers as document ids and does delta
compression of them. Furthermore, ordinal number based
document ids also facilitate fast bitmap joins and pre-sorted merge

3066

joins when combining posting list results from multiple full text
and path value ranges.

The posting lists are not DML friendly structures. To keep up with
high volume of DML rates, the index can be configured as synch
on transaction commit or synch at certain intervals. It internally
uses a log structured merge mechanism to initially keep less
compacted posting lists tailored for fast DMLs and then gradually
merge and compact multiple posting lists for the same key
together into read friendly structures using parallel group by /
aggregation query execution as the underlying map-reduce
framework. As for functional indexes, OSON storage helps with
indexing time as it can be more efficiently read in-place.

4.3.2 Sharding
NoSQL databases typically use sharding to scale horizontally in a
distributed environment. Data is partitioned out to multiple
machines based on a shard key which may be document id or
document creation dates etc. Oracle Database also supports
sharding stored JSON data, and each shard can have a locally
defined JSON search index. NoSQL style OLTP and OLAP
operations, with sharded key specifications, are routed to the
corresponding shard server. NoSQL style cross-shard OLAP
queries are distributed to each shard server to be executed in
parallel. SQL/JSON operators, including JSON_TABLE(), are
pushed down to each shard server.

5. PERFORMANCE EXPERIMENTS
We compare the performance of JSON text storage in BLOB with
an ‘IS JSON’ check constraint to that of JSON type backed by
OSON storage. Specifically, we show that document retrieval,
ingestion, queries, and updates all benefit from using OSON. For
JSON text storage, the document is stripped of insignificant
whitespace and encoded as UTF-8 to be as small as possible. The
database character set is ALU32UTF8. All experiments ran on a
compute node in Oracle's US East (Ashburn) data center [17].
The compute node used was a VM.Standard2.24 [25] type virtual
machine with the following characteristics: 24 OCPU/2.0 GHz
Intel® Xeon® Platinum 8167M, 320 GB of memory, and 1TB
encrypted block volume, ext4 [3]. In Section 5.2, we use two of
these compute nodes - one for the database and one for the Java
application. Otherwise, the experiments are run on a single node.
Figures presented in this section show ratios rather than absolute
numbers. The purpose of these experiments is not to demonstrate
the absolute performance numbers, but rather comparing the ratio

among different approaches to show what relative improvement
can be achieved. Also, since we use a variety of document sizes,
using ratios helps show all the data in a single figure/scale.
Measurements are done after a warm-up period so that the
working set of data is fully loaded in-memory to eliminate
measuring physical I/O overhead.

5.1 Encoding Size
We compare the encoding size of JSON text, BSON, and OSON.
Encoding size is an important metric as it determines how much
data is read and written to disk by the database as well as how
much data is sent over the network to the client. We use a set of
11 JSON documents where 4 were taken from public sources and
the rest were given to us by customers. Our goal here is to use
only real-world, non-synthetic data that covers a variety of
document sizes. Since we cannot disclose the specific customers
and public sources used, we instead give each document a generic
identifier (D1 - D11).

Table 1 summarizes the encoding sizes of the 11 documents we
selected. The first column gives the identifier of the document
while the next three columns give the size of the JSON text,
BSON, and OSON values. The Dict. column gives the percentage
of space taken by the OSON dictionary. The vsUTF8 and
vsBSON columns give the size of JSON text and BSON relative
to OSON. The last five columns give the total number of objects,
keys, arrays, numbers, and strings in each document. The #Keys
column gives two values - the total number of keys in the
document followed by the total number of distinct keys.

In all cases except for D2, the size of the OSON encoding is
smaller than the UTF-8, whitespace stripped JSON text. D2 is a
small, flat document with no repeating keys, short key names, and
small numeric values. In this case, the op codes and jump offsets
in OSON made it 10% bigger than the corresponding JSON text.
In all other cases, the OSON encoding is smaller than the
corresponding JSON text, especially for documents having arrays
of object structures or recursive structures that have many
repeating keys. For example, the OSON encoding of D6 and D7
is half the size of the corresponding JSON text. D11 achieved the
largest relative compression at one third the size of the JSON text.
D11 is a large document with 1.8 million keys but only 73 distinct
values. Thus, encoding these keys as numbers results in a large
reduction in size. Similarly, the OSON encoding is typically
significantly smaller than the corresponding BSON encoding for
medium to large size documents because BSON does not encode
key names as identifiers. For D9, the customer document

Table 1. Document sizes

ID UTF8 (b) BSON (b) OSON (b) Dict
.

vsUTF8 vsBSON #Object #Keys #Array #String #Number

D1 613 764 524 5% 0.9x 0.7x 20 33/5 1 31 0
D2 1,782 1,813 1,950 30% 1.1x 1.1x 4 56/55 0 31 21
D3 2,608 3,094 2,160 16% 0.8x 0.7x 26 100/32 14 124 1
D4 2,943 3,293 2,476 6% 0.8x 0.8x 46 100/19 14 87 0
D5 8,842 8,440 5,591 19% 0.6x 0.7x 38 307/74 29 107 56
D6 40,285 37,526 20,486 18% 0.5x 0.5x 81 1,435/246 9 572 476
D7 76,861 75,195 38,383 11% 0.5x 0.5x 490 3,300/282 23 1,263 1,129
D8 141,051 133,307 103,897 0% 0.7x 0.8x 1,688 6,620/40 52 652 6,860
D9 682,228 No Data 483,053 0% 0.7x No Data 9,727 36,778/42 42 666 40,375
D10 3,374,379 3,303,387 2,167,101 0% 0.6x 0.7x 14,712 112,356/90 12,738 43,927 27,618
D11 41,548,995 37,352,414 13,801,333 0% 0.3x 0.4x 100,141 1,839,847/73 1 100,143 901,263

3067

contained large numeric values that caused the 3rd party BSON
encoder we used to produce an error and we report "No Data".

Just as JSON text and BSON, OSON is designed for OLTP use
cases with OSON as an operating CRUD entity. Therefore, each
OSON document is self-contained and it does not try to do
common schema elements compression across document
boundary as what relational storage would do by extracting and
storing the common schema in central data dictionary. However,
each OSON document contains common intra-document fields in
the dictionary. Table 1 shows the percentage of the dictionary size
relative to the whole OSON document in the Dict. column of
Table 1. For small OSON documents, the OSON dictionary size
represents average of 16% of the document. For medium to large
OSON document, the OSON dictionary size is negligible. This
means even if we do schema inference to extract and store
common dictionary over a collection of OSON documents in a
central dictionary, its results in 15% of saving in exchange for
schema-evolution and migration issues. This is why the design of
OSON using intra-document dictionary achieves the balance of
schema flexibility and storage space compaction for OLTP JSON
use case.

On the other hand, for OLAP JSON use cases, Oracle [28] is able
to do common schema inference over JSON document collection
to derive JSON Data Guide to shred JSON collection as relational
storage with columnar in-memory format whose size is similar
closer to that of Dremel [18] and STREED [27] style of columnar
encoding. While these are efficient columnar encodings for OLAP
queries through leaf scalar value dictionary encoding and SIMD
scans [1,22], they lack of efficient random update capability at
document level in comparison with OSON for efficient OLTP
JSON use case in the same way as that of row store and columnar
store of relational model for OLTP and OLAP use cases
respectively.

5.2 Ingestion and Retrieval
5.2.1 Ingestion
In this experiment, we measure the insert throughput of a client
Java application running on a compute node in the same data
center as the database node. The application contains 24 threads
and each thread starts with a pre-parsed, in-memory object model
representation of the given document. Each thread repeatedly
inserts the document into the database using a SQL insert
statement. In the case of JSON text, the document object is
converted to UTF-8 JSON text to be inserted into a BLOB
column. In the case of OSON, the document object is converted to
OSON binary at the client side and inserted into a JSON type
column with server side OSON byte verification (section 4.1).
After a warm-up period of 6 seconds, the average inserts per
second is recorded over a 1-minute window.

Figure 6. Relative insert throughput, text vs OSON

Figure 6 shows the insert throughput of JSON text compared to
OSON binary storage. The figure gives the ratio rather than

absolute values since the insert rates for the smaller documents are
much greater than that of the larger documents. For D1 through
D4 the average writes per second is essentially the same showing
that the cost of encoding OSON at client side is not a significant
factor. Furthermore, for the remaining cases, the rate of insertion
is significantly higher for OSON due to OSON storage of having
a smaller size, reducing disk I/O and data transfer costs. For
D11, the OSON is about a third of the size of the JSON text and
we consequently get about three times the insert throughput.

5.2.2 Retrieval
In this experiment, we measure the read throughput of a client
Java application running on a compute node in the same data
center as the database node. The application contains 24 threads
and each thread repeatedly retrieves the same document from the
database and obtains a DOM API for the value. In the case of
JSON text, we use a popular, 3rd party, JSON parser that we
found to be the most performant of several other Java JSON
parsers we tested. We use this parser to fully parse the JSON text
and create an in-memory DOM for the value. In the case of
OSON, we use DOM API implemented on top of our in-place
client side OSON decoder.

Figure 7. Relative full read throughput, text vs OSON

Figure 7 shows the relative read throughput when the client
application fully iterates all of the values in the DOM. All JSON
strings are accessed as Java strings and all numbers are converted
into Java's BigDecimal. In this experiment, full document access
performance with OSON is typically equivalent to or better than
JSON text. For D11, the OSON is about a third of the size of the
JSON text (saving on transfer costs) and reading the OSON is
more efficient than JSON text parsing.

Figure 8 shows the relative read throughput when only a single
client path is accessed on the client instead of iterating every
value. For each document, we selected a path to some arbitrary
value within the document (the path chosen is not shown). The
specific path used is not important as both the JSON parsed object
model using hash tables and the jump offsets within the OSON
image will provide fast access to any point in the document.
However, the advantage of OSON is that any point in the
document can be read without pre-processing the rest of the
document. In the case of JSON text, the entire document must be
parsed before the path can be evaluated. This advantage is also
useful to applications that need low latency access to the first
value read within a document. For example, a page load on a
social media feed can display the first 10 items without having to
first process all 100 returned by the server. And, this can be
achieved without any of the limitations or usability issues
typically imposed by a streaming text parser. These benefits are
most exaggerated for D11 where the relative increase is 7.7x as
the client can skip reading portions of this large document.

1.0x 1.0x 1.1x 1.0x 1.2x 1.5x 1.7x 1.4x 1.5x 1.6x

3.3x

0.0x
1.0x
2.0x
3.0x
4.0x

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

1.0x 1.0x 1.1x 1.1x 1.1x
2.0x 1.8x 1.5x 1.2x

2.1x

5.1x

0.0x

2.0x

4.0x

6.0x

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

3068

Figure 8. Relative path read throughput, text vs OSON

5.3 Query Performance
In this section we compare query performance over JSON text and
JSON type using 10 queries from the EYCSB [7] benchmark. In
this experiment, there is no index created so that all queries use a
table scan and evaluate the SQL/JSON operators over each
document. The table used contains 2 million EYCSB JSON
documents where the average size of a document is 2K. The total
storage size of the table is 4.4 GB for JSON text and 4.2GB for
OSON. The equivalent relational row storage by extracting all
common meta-data and store them in central dictionary for
EYCSB is 3.7 GB. Although OSON has 12% storage size
overhead compared with pure relational row storage, in exchange
for that, OSON storage has no schema evolution issue.

Figure 9. Relative response time, text vs OSON (no index)

Figure 9 shows a 6x-8x improvement in response time using
OSON storage. SQL/JSON path expressions can be efficiently
evaluated over OSON values in-place using the technique
described in section 3.3.
As explained in section 4.2.3, JSON datatype is integrated with
Oracle in-memory store by populating in-memory path/value
indexes over OSON bytes. Figure 10 shows an average of 200x
response time improvement for the 10 EYCSB queries using IMC.
Q6, Q7, and Q8 show a small improvement compared with the
other queries because they return more rows that require post
filters after in-memory index probes.

5.4 Update Performance
In this section we compare update performance of JSON type
using JSON_TRANSFORM() for two customer datasets (D7 and D11
in Table 1). For JSON text storage, partial update is not feasible
and, consequently, the corresponding transaction redo log size is
proportional to the full document size. For OSON storage,
transaction redo size is proportional to the actual delta update size,
not the full document size. Consequently, partial update from
OSON is significantly faster with significantly smaller redo size.

Figure 10. EYCSB response time, IMC index speedup

Figure 11. Update response time, full replacement

versus piecewise update

Figure 12. Update redo log size, full replacement

versus piecewise update (log scale)

We used 4 statements (U1-U4) that use JSON_TRANSFORM() to
update over 20,000 documents generated from D7. The total
storage size is 1.5 GB for JSON text and 0.77GB for OSON. The
equivalent relational row storage by extracting all common meta-
data and store them in central dictionary is 0.73 GB. So for large
OSON document, its equivalent relational row storage has
negligible storage size advantage.
For updating D7, Figure 11 shows 7x – 17x update response time
improvement. Figure 12 shows 10x-31x transaction log redo size
reduction. We used another 4 statements (U5-U8) that use
JSON_TRANSFORM() over 40 documents generated from D11. The
total storage size is 1.6 GB for JSON text and 0.55GB for OSON.
For updating DOC11, Figure 11 shows 112x – 125x update
performance improvement. Figure 12 shows 105x-8809x
transaction log redo size reduction.

6. RELATED WORK
Oracle [29], Microsoft SQL Server [10], MySQL [12],
PosgreSQL [16], TeraData [23] support JSON text storage.
MongoDB [11], TeraData [23], DB2 [6] support BSON storage.
MySQL[12] and PosgreSQL[16] support their own binary storage.
MySQL[12] and TeraData [23] support a JSON datatype. MySQL
JSON datatype uses its own JSON binary format. TeraData
supports JSON datatype with variety of storage formats: text,
BSON [2], UBJSON [24]. Oracle supports fast in-memory OSON
with JSON text storage on disk [28].
Similar to that of OSON [14], binary JSON formats from MySQL,
PostgreSQL, Sinew[5], STREED [27] have all shared the
common design strategy of supporting jump navigation based on
indexed field key names in the binary format to speed up query.
Therefore, all of these binary formats support faster query
performance than JSON text storage. However, none of the query
friendly binary formats addresses the issue of supporting partial
update in the binary format. Our earlier work that used the OSON
format loaded in-memory [28] does not address partial updates.
The OSON format used for JSON datatype support in this paper
does support partial update at binary format level. Mison [26]
proposes SIMD based fast JSON parser for JSON query.
However, it does not address partial update either. JSON text and
streaming encoding based binary format, such as BSON [2] and

1.0x 1.0x 1.0x 1.0x 1.1x
2.3x 2.5x 2.5x 2.0x 1.7x

7.7x

0.0x
2.0x
4.0x
6.0x
8.0x

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

6.2x 6.4x 6.1x 6.9x 6.5x
7.9x 8.2x 8.3x 7.9x 7.2x

0.0x

3.0x

6.0x

9.0x

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

265x

170x

269x 271x

186x

7x 28x 60x

208x
260x

0x

100x

200x

300x

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

17x 10x 8x 7x

112x 125x 122x 115x

0x
40x
80x
120x

U1
(D7)

U2
(D7)

U3
(D7)

U4
(D7)

U5
(D11)

U6
(D11)

U7
(D11)

U8
(D11)

31x 31x 10x 14x

8809x 8857x 2813x

105x

1x
10x
100x
1000x
10000x

U1
(D7)

U2
(D7)

U3
(D7)

U4
(D7)

U5
(D11)

U6
(D11)

U7
(D11)

U8
(D11)

3069

UBJSON [24], are very limited to support partial update
efficiently without replacing the full document. Compared with
JSON_TRANSFORM() that combines multiple modification
commands in one operator, MySQL[12] and PostreSQL[16]
JSON update operator can only do a single update command at a
time.
Sinew[5] and STREED [27] binary format separate dictionary
meta-data out of binary formats to be stored in central location,
this approach causes each binary instance to be non-self-
contained and hard to distribute without shipping central
dictionary. Our design of OSON is self-contained without relying
on a central location schema. Consequently, it is able to fully
support database features such as partitioning, replication,
sharding, import/export, and transportable tablespaces since it
does not require any central schema synchronization.
Dremel [18] and STREED [27] columnar layout are examples of
JSON columnar encoding formats. However, both assume that all
JSON documents in a collection have the same schema. This is
required to correctly re-assemble the original JSON document
through columnar decomposition of the data. However, for a
generic JSON datatype, we need to handle both homogeneous and
heterogeneous JSON collections. We store the OLTP friendly
OSON format on disk and, to achieve columnar scan
performance, we leverage Oracle in-memory store [22] and IME
expressions [1] to load columnar projections of JSON into
memory for columnar based SIMD scan. Furthermore, we use
path-value index and inverted keyword hash index format to
facilitate JSON_EXISTS() and JSON_TEXTCONTAINS() in
memory predicate evaluation and join.
SQL++ [9] (Couchbase) and the similar PartiQL (Amazon) [15]
represent approaches that take a "JSON first" approach to
extending a simpler SQL-92 language with a singular JSON-like
data model and dynamic typing. Notably, these languages do not
use explicit SQL/JSON operators or a secondary JSON path
language to access JSON values. The Oracle simplified syntax
for SQL/JSON (section 2.3) represents a somewhat similar
approach but is defined on top of SQL-2016's SQL/JSON
operators. SQL-2016 has been and will continue to be extended
to support many more data models other than JSON. Oracle's
approach integrates well with the latest version of the SQL
standard and supports storing and querying many different data
models side-by-side (relational, object relational, XML, JSON,
spatial, graph, and so on). At the same time, it does not sacrifice
the performance or expressiveness of queries over JSON data.
XML and JSON are both popular ways to represent semi-
structured data. XML is the more mature of these representations
and has a larger body of academic and industry-led research on
efficient processing using binary encodings. However, the JSON
data model serves the same purpose and is semantically much
simpler. XML is complicated by its document-oriented heritage,
with concepts such as document node order, interleaved node
types, mixed content, lack of in-line scalar data types, and no
explicit array construct. In contrast, JSON doesn't specify a
document node order, has explicit numeric and boolean types, and
an explicit array type to connote ordering when it's required. The
XML DOM interface requires implementations to provide costly
semantics such as navigation to an explicit parent node and sibling
traversals. XML has constructs such as attributes and namespaces
that complicate processing without adding much expressive power
for data representation. Our work on the OSON format has been
able to exploit the simpler and cleaner JSON data model to allow

JSON DOMs to be persisted with minimal storage space, fast
queries, and efficient updates that cannot be achieved with
comparable binary XML DOM representations.

7. FUTURE WORK
Multi-value functional indexes over JSON documents will be
supported since there can be multiple values in a JSON array
within a JSON document. Multi-value functional indexes are used
for JSON array range predicates in JSON_EXISTS() to determine a
known set of scalar values that map to a given document. We will
work with the SQL/JSON standards committee to add the JSON
datatype, JSON_TRANSFORM(), and the simplified syntax and
publish benchmark for hybrid JSON usecases.

8. CONCLUSIONS
The native JSON datatype, in combination with the SQL/JSON
standard, establishes a strong semantic foundation to support
JSON in a relational database. Using OSON as the encoding
format enables efficient query, update, ingestion, and retrieval of
JSON documents. Features such as SODA, full-text search
indexes, and sharding have filled the main functional gaps with
NoSQL databases. Further, we support high performance OLAP
workloads over JSON by deeply integrating JSON type with
Oracle in-memory, parallel query, materialized views, and storage
cell smart scans. Combined, these features make a robust
platform for processing JSON data. End-to-end OSON support
accomplishes the goals of object databases - to be able to persist
application level objects in a schema-flexible way without
shredding them across multiple tables and rows.

9. ACKNOWLEDGEMENTS
The authors would like to thank Andrew Mendelsohn for his
commitment of JSON datatype support, Tirthankar Lahiri, Juan
Loaiza for support of JSON functionality as crucial feature in
RDBMS, Cetin Ozbutun for his direction of in memory JSON
support. Fred Zemke, Jan Michels for SQL/JSON standard.
Martijn Cohen, Niraj Srivastava, Manoj Sahoo, Srinivas
Kareenhalli for JSON/OSON performance evaluation. Sriram
Krishnamurthy and his team: Rodrigo Fuentes, Jose Valera, Jose
Alvizo, Sunitha Subramanyam, Sundeep Abraham, Hui Zhang for
their help for implementation. Shasank Chavan, Aurosish Mishra,
Saurabh Naresh Netravalkar for in-memory support. Kam Shergill
for mem-optimized write support. Maxim Orgiyan and Tim Yu
for SODA support. Venkat Venkatraman team for quality
assurance. Andrew Witkowski, Tsae-Feng Yu for parallel query
and Materialized view support. Rajendra Pingte, Saurabh Verma,
Martha Woo Woo and their client teams to support JSON datatype
access on all Oracle client tiers. Ron Decker for PL/SQL support.
Wei Hu, Mark Dilman for sharding support. Yuhong Gu, Thuvan
Hoang for replication support. Rich Phillips for DB import/export
tool support.

10. REFERENCES
[1] A. Mishra, et al. Accelerating Analytics with Dynamic In-

Memory Expressions. PVLDB 9(13), 1437-1448, 2016
[2] BSON: http://bsonspec.org/
[3] Block Volume:

https://docs.cloud.oracle.com/iaas/Content/Block/Concepts/o
verview.htm

3070

[4] Couchbase JSON Support:
https://developer.couchbase.com/documentation/server/3.x/d
eveloper/dev-guide-3.0/using-json-docs.html

[5] D. Tahara, et al: Sinew: a SQL system for multi-structured
data. SIGMOD Conference 2014: 815-826

[6] DB2 JSON support:
https://www.ibm.com/support/knowledgecenter/en/SSEPEK
_11.0.0/json/src/tpc/db2z_jsonfunctions.html

[7] EYCSB: https://blog.couchbase.com/ycsb-json-
benchmarking-json-databases-by-extending-ycsb/

[8] Elastic Search API:
https://www.elastic.co/guide/en/elasticsearch/reference/1.4/in
dex.html

[9] Kian et al: “The SQL++ Query Language: Configurable,
Unifying and Semi-structured”.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.690
.8323

[10] Microsoft SQL Server JSON support:
https://docs.microsoft.com/en-us/sql/relational-
databases/json/json-data-sql-server?view=sql-server-2017

[11] MongoDB BSON and JSON :
https://www.mongodb.com/json-and-bson

[12] MySQL JSON DataType:
https://dev.mysql.com/worklog/task/?id=8132

[13] N. Mukherjee, et al. Oracle SecureFiles System. PVLDB
1(2), 1301-1312, 2008

[14] Oracle Exadata Machine & Storage Server:
http://www.oracle.com/us/products/database/exadata-tech-
overview-wp-1867437.pdf

[15] PartiQL: https://partiql.org/
[16] PostgreSQL with JSON and JSONB support:

https://www.postgresql.org/docs/9.4/datatype-json.html

[17] Regions and Availbility Domains
https://docs.cloud.oracle.com/iaas/Content/General/Concepts
/regions.htm

[18] S. Melnik, et al: Dremel: Interactive Analysis of Web-Scale
Datasets. VLDB 3(1), 330-339, 2010

[19] SODA: Simple Oracle Document Access API:
https://docs.oracle.com/en/database/oracle/simple-oracle-
document-access/index.html

[20] SQL NESTED Clause:
https://docs.oracle.com/en/database/oracle/oracle-
database/19/adjsn/function-JSON_TABLE.html

[21] SQL/JSON 2016 Standard: ISO/IEC TR 19075-6:2017,
Information technology Part 6: SQL support for JavaScript
Object Notation (JSON),
http://standards.iso.org/ittf/PubliclyAvailableStandards/

[22] T.Lahiri, et al.: Oracle Database In-Memory: A dual format
in-memory database. ICDE 2015: 1253-1258

[23] Teredata JSON Datatype:
https://docs.teradata.com/reader/C8cVEJ54PO4~YXWXeX
GvsA/4IAzgRsj_8aRj5pCQoEqzA

[24] UBJSON: http://ubjson.org/
[25] Virtual Machines:

https://www.oracle.com/cloud/compute/virtual-
machines.html

[26] Y. Li, et al: Mison. A Fast JSON Parser for Data Analytics.
PVLDB 10(10): 1118-1129, 2017

[27] Z. Wang, et al: STEED: An Analytical Database System for
TrEE-structured Data. PVLDB 10(12): 1897-1900, 2017

[28] Z.H. Liu, et al. Closing the functional and Performance Gap
between SQL and NoSQL. SIGMOD Conference 2016, 227-
238

[29] Z.H. Liu, et al. JSON data management: supporting schema-
less development in RDBMS. SIGMOD Conference 2014,
1247-1258 2014

3071

