
Machine Learning
for Natural Language Processing

Language Modeling
Lecture 5

Benjamin Muller

INRIA Paris - ALMANACH
benjamin.muller@inria.fr

https://benjamin-mlr.github.io/

Course Outline

1 The Why and What of Natural Language Processing
2 Representing text with vectors
3 Task specific Modeling of Text
4 Neural Natural Language Processing
5 Language Modeling
6 Transfer Learning with Neural Modeling for NLP

2 / 71

Lecture Outline

• Language Model
• Conditioned Language Model : focus on Sequence to Sequence

3 / 71

Language Model

4 / 71

Language Modeling

• What is a Language Model ?
• Modeling language with n-grams
• Modeling language with a LSTM
• The Transformer Architecture

5 / 71

Language modeling

6 / 71

What is language modeling?

• Language modeling corresponds to assigning a probability to a
text

• A text is a sequence of tokens, or characters

• Tokens can be words, sub-words,

• For example:

{a cat} = {a, cat},

= {a, , c, a, t},
= {a, , ca, t}.

7 / 71

What is language modeling?

• Language modeling corresponds to assigning a probability to a
text

• A text is a sequence of tokens, or characters

• Tokens can be words, sub-words,

• For example:

{a cat} = {a, cat},
= {a, , c, a, t},

= {a, , ca, t}.

7 / 71

What is language modeling?

• Language modeling corresponds to assigning a probability to a
text

• A text is a sequence of tokens, or characters

• Tokens can be words, sub-words,

• For example:

{a cat} = {a, cat},
= {a, , c, a, t},
= {a, , ca, t}.

7 / 71

What is language modeling?

• Given a sequence {w1, . . . ,wT} of tokens, a language model
estimates its probability:

P(w1, . . . ,wT)

• P depends on a vocabulary, i.e., the set of unique tokens.

• Question: How to estimate P ?

8 / 71

What is language modeling?

• Given a sequence {w1, . . . ,wT} of tokens, a language model
estimates its probability:

P(w1, . . . ,wT)

• P depends on a vocabulary, i.e., the set of unique tokens.

• Question: How to estimate P ?

9 / 71

Language Models

• Causal Language Model
• Mask Language Model

10 / 71

Applications of language modeling

Language models are applied in several fields:
• Speech recognition:

P(”Vanilla, I scream”) < P(”Vanilla ice cream”).

• Machine translation:

P(”Déçu en bien” | ”Pleasantly surprised”) <

P(”Agréablement surpris” | ”Pleasantly surprised”)

• Optical Character Recognition:

P(”m0ve fast”) < P(”move fast”)

11 / 71

Probabilistic Causal language model

• Sequence probability as a product of token probabilities:

P(w1, . . . ,wT) =
T∏

t=1
P(wt | wt−1, . . . ,w1)

• Indeed we have:
P(a, b) = P(a)P(b | a)

• Recursively applied to a sequence:

P(w1,w2,w3) = P(w1)P(w2,w3 | w1)
= P(w1)P(w2 | w1)P(w3 | w2,w1).

• Causal Language models estimate probability of upcoming token
given past:

P(wt | wt−1, . . . ,w1).

12 / 71

Probabilistic Causal language model

• Sequence probability as a product of token probabilities:

P(w1, . . . ,wT) =
T∏

t=1
P(wt | wt−1, . . . ,w1)

• Indeed we have:
P(a, b) = P(a)P(b | a)

• Recursively applied to a sequence:

P(w1,w2,w3) = P(w1)P(w2,w3 | w1)
= P(w1)P(w2 | w1)P(w3 | w2,w1).

• Causal Language models estimate probability of upcoming token
given past:

P(wt | wt−1, . . . ,w1).

12 / 71

Probabilistic Causal language model

• Sequence probability as a product of token probabilities:

P(w1, . . . ,wT) =
T∏

t=1
P(wt | wt−1, . . . ,w1)

• Indeed we have:
P(a, b) = P(a)P(b | a)

• Recursively applied to a sequence:

P(w1,w2,w3) = P(w1)P(w2,w3 | w1)
= P(w1)P(w2 | w1)P(w3 | w2,w1).

• Causal Language models estimate probability of upcoming token
given past:

P(wt | wt−1, . . . ,w1).

12 / 71

Probabilistic Causal language model

• Sequence probability as a product of token probabilities:

P(w1, . . . ,wT) =
T∏

t=1
P(wt | wt−1, . . . ,w1)

• Indeed we have:
P(a, b) = P(a)P(b | a)

• Recursively applied to a sequence:

P(w1,w2,w3) = P(w1)P(w2,w3 | w1)
= P(w1)P(w2 | w1)P(w3 | w2,w1).

• Causal Language models estimate probability of upcoming token
given past:

P(wt | wt−1, . . . ,w1).

12 / 71

Estimating Language Models

• Causal Language Model
• Mask Language Model

13 / 71

Mask Language Model 12

Sentence The cat is drinking milk in the kitchen

input The cat <MASK> drinking <MASK> in the kitchen
targets {“is”, “milk”}

• Randomly replace 15% of words in sentence with a <MASK> token

• Take the masked words as targets for the model to predict

• Extension: use random words from vocabulary instead of <MASK>

1 Devlin et al. (2018)
2also referred as Cloze Task

14 / 71

Mask Language Model 12

Sentence The cat is drinking milk in the kitchen
input The cat <MASK> drinking <MASK> in the kitchen

targets {“is”, “milk”}

• Randomly replace 15% of words in sentence with a <MASK> token

• Take the masked words as targets for the model to predict

• Extension: use random words from vocabulary instead of <MASK>

1 Devlin et al. (2018)
2also referred as Cloze Task

14 / 71

Mask Language Model 12

Sentence The cat is drinking milk in the kitchen
input The cat <MASK> drinking <MASK> in the kitchen
targets {“is”, “milk”}

• Randomly replace 15% of words in sentence with a <MASK> token

• Take the masked words as targets for the model to predict

• Extension: use random words from vocabulary instead of <MASK>

1 Devlin et al. (2018)
2also referred as Cloze Task

14 / 71

Mask Language Model 12

Sentence The cat is drinking milk in the kitchen
input The cat mushroom drinking shoes in the kitchen
targets {“is”, “milk”}

• Randomly replace 15% of words in sentence with a <MASK> token

• Take the masked words as targets for the model to predict

• Extension: use random words from vocabulary instead of <MASK>

1 Devlin et al. (2018)
2also referred as Cloze Task

14 / 71

Mask language model

Masked Language Modeling estimates the probability of sequence tokens
of length T with:

P(wi |w1, ..,wi−1,wi , ..,wT)

15 / 71

Language Models in a nutshell

• a Language Model is a model that predicts a token based on its
surrounding linguistic context

• Tokens can be words, sub-words or characters

• Context can be the left sequence, left and right sequence, the
sentence, a window around the words, the paragraph...

• We saw two way of defining languge models: Causal Language
Model and Mask Language Model

16 / 71

Estimating language models

17 / 71

Estimating language models

• Statistical approach: N-Gram model
• Neural Language Models
• • Recurrent Neural Networks (LSTM)

• The Transformer Architecture

18 / 71

Count based language model

• Example:

P(English | The moment one learns) =
c (The moment one learns English)

c (The moment one learns)

=
35
73

= 0.48

Sentence “The moment one learns English” appears 35 in dataset
Sentence “The moment one learns” appears 75 in dataset

19 / 71

Limitiations of count based language model

• Number of unique sentences increases with dataset size,

• Long sentences are rare: no good statistics for them

→ Too many sentences with not enough statistics
(Sparsity due to combinatorial structure of language)

20 / 71

Count based language model

• Solution truncate past to a fixed size window

• For example:

P(English | The moment one learns) ≈ P(English | one learns)

• Implicit assumption: most important information about a word is in
its recent history

• Beware! In general:

P(w1, . . . ,wT) 6=
T∏

t=1
P(wt | wt−1, . . . ,wt−n+1)

21 / 71

Count based language model

• Truncated count based models = n-gram models

• “n” refers to the size of past
• Examples:

• Unigram:

P(w1, . . . ,wT) =
T∏

t=1
P(wt)

• Bigram:

P(w1, . . . ,wT) =
T∏

t=1
P(wt | wt−1)

22 / 71

Count based language model: unigram

• Probability of a sentence with a unigram model:

PU(w1, . . . ,wT) =
T∏

t=1
P(wt) =

T∏
t=1

c(wt)
N

N = total number of tokens in dataset
c(wt) = number of occurences of wt in dataset

• Unigram only uses word frequency

• Example of text generation with this model:
the or is ball then car

23 / 71

Count based language model: bigram

• Probability of a sentence with a bigram model:

PU(w1, . . . ,wT) =
T∏

t=1
P(wt | wt−1) =

T∏
t=1

c(wt−1wt)
c(wt−1)

c(wt−1wt) = number of occurences of sequence wt−1wt

• Predict a word just with the previous word

24 / 71

Count based language model: bigram

• Example of text generation with bigram model:

new car parking lot of the

• “car” is generated from “new”, “parking” from “car”...
• But “new” has no influence on “parking”

25 / 71

Count based language model

• Simple to extend to longer dependencies: trigrams, 4-grams...

• n-grams can be “good enough” in some cases

• But n-grams cannot capture long term dependencies required to
truely model language

26 / 71

Estimating n-gram probabilites: an example

• bigram:
P(wt | wt−1) = c(wt−1wt)

c(wt−1)

• Dataset:
<s>we sat in the house

<s>we sat here we two and we said
<s>how we wish we had something to do

• Extract some probabilities:

P(sat | we) = 0.33, P(wish | we) = 0.17, P(in | sat) = 0.5

• <s>= token for beginning of sentence; P(<s>) = 1.
• Compute sentence probability with them

27 / 71

Estimating n-gram probabilites: an example

• Extract count from Berkeley Restaurant dataset (9222 sentences)
• Unigram counts:

i want to eat chinese food lunch spend

2533 927 2417 746 158 1093 341 278

• Bigram counts:
i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

28 / 71

Estimating n-gram probabilites: an example

• The bigram probabilities are obtained by dividing the bigram counts
with the unigram counts:

P(w2 | w1) = c(w1w2)
c(w1)

• Resulting bigram probabilities:

i want to eat chinese food lunch spend

i 0.022 0.33 0 0.036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

29 / 71

Estimating n-gram probabilites: an example

• Example:
P(<s> i want chinese food)?

<s>= token for beginning of sentence; P(<s>) = 1.

• Result:

P(<s> i want chinese food)=P(<s>)P(i|<s>)P(want|i)P(chinese|want)P(food|chinese)

=1× .25× 0.33× 0.0065× 0.52
=0.00027885

30 / 71

Estimating n-gram probabilites: an example

i want to eat chinese food lunch spend

i 0.022 0.33 0 0.036 0 0 0 0.00079
. . .
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

• Example:
P(<s> i bring my lunch to work)?

• Result:

P(<s> i bring my lunch to work) = P(<s>) . . .P(to|lunch) . . .
= 1× · · · × 0× . . .
= 0

• Does not generalize well!

31 / 71

Good-Turing estimation

• Idea reallocate probability mass of n-grams that occur exactly c + 1
times to n-grams that occur exactly c times

• reallocate mass of n-grams appearing once to unseen n-grams
→ alternative to Add-1

• the adjusted count:
c∗ = (c + 1)Nc+1

Nc

where Nc is the number of n-grams that appears exactly c times

• n-gram probability depends on c∗ instead of c

• Problem What if Nc+1 = 0 (but Nc > 0)?

32 / 71

Good-Turing estimation

• Idea reallocate probability mass of n-grams that occur exactly c + 1
times to n-grams that occur exactly c times

• reallocate mass of n-grams appearing once to unseen n-grams
→ alternative to Add-1

• the adjusted count:
c∗ = (c + 1)Nc+1

Nc

where Nc is the number of n-grams that appears exactly c times

• n-gram probability depends on c∗ instead of c

• Problem What if Nc+1 = 0 (but Nc > 0)?

32 / 71

Good-Turing estimation

• Idea reallocate probability mass of n-grams that occur exactly c + 1
times to n-grams that occur exactly c times

• reallocate mass of n-grams appearing once to unseen n-grams
→ alternative to Add-1

• the adjusted count:
c∗ = (c + 1)Nc+1

Nc

where Nc is the number of n-grams that appears exactly c times

• n-gram probability depends on c∗ instead of c

• Problem What if Nc+1 = 0 (but Nc > 0)?

32 / 71

Good-Turing estimation

• Idea reallocate probability mass of n-grams that occur exactly c + 1
times to n-grams that occur exactly c times

• reallocate mass of n-grams appearing once to unseen n-grams
→ alternative to Add-1

• the adjusted count:
c∗ = (c + 1)Nc+1

Nc

where Nc is the number of n-grams that appears exactly c times

• n-gram probability depends on c∗ instead of c

• Problem What if Nc+1 = 0 (but Nc > 0)?

32 / 71

Backoff and Interpolation

• If no good statistics on long context: use shorter context

• Backoff: use trigram if enough data, else backoff to bigram.

• Interpolation: mix statistics of trigram, bigram and unigram.

33 / 71

Pros and Cons of N-Gram Language Models

Pros
• Fast at training and inference
• Can reach good accuracy if lots of data

Cons
• Impossible to model very long dependencies

(simplistic assumptions done)
• Generalization limited
• Not Deep Learning compatible

34 / 71

Estimating language models

• Statistical approach: N-Gram model
• Neural Language Models
• • Recurrent Neural Networks (LSTM)

• The Transformer Architecture

35 / 71

Neural Language Models

How to frame language modeling in a deep learning compatible way ?
What neural architecture/objective ?
• Neural Language Model objective and Training
• Architectures

• Recurrent Network
• Transformer

36 / 71

Neural Language Model

Figure: Neural Language modeling schema view 3

3http://torch.ch/blog/2016/07/25/nce.html
37 / 71

Neural Language Model training and inference
Let (x1, .., xT)i sequence of tokens (1-hot encoded), E embedding layer,
NNθ a sequential model (e.g. LSTM) {f,W} dense layer
We present forward/backward step to predict token x t+1 with x1, .., x t

et = Ex t ∀t <= T Embedding layer
ht = NNθ(e1, ..et−1, et) sequential layers with weights θ

st = f (Wht) Dense Layer

Train time

p̂t = softmaxV (ot) = (eotv∑
k eotk

)v∈1.V

loss = CE (p̂t , pt) = log(p̂t x t+1)

Compute ∇loss backprop
(update E, θ,W)

Inference/Prediction Time

xt+1 = argmaxv∈1,..,V (stv)

38 / 71

Neural Language Model training and inference
Let (x1, .., xT)i sequence of tokens (1-hot encoded), E embedding layer,
NNθ a sequential model (e.g. LSTM) {f,W} dense layer
We present forward/backward step to predict token x t+1 with x1, .., x t

et = Ex t ∀t <= T Embedding layer
ht = NNθ(e1, ..et−1, et) sequential layers with weights θ

st = f (Wht) Dense Layer

Train time

p̂t = softmaxV (ot) = (eotv∑
k eotk

)v∈1.V

loss = CE (p̂t , pt) = log(p̂t x t+1)

Compute ∇loss backprop
(update E, θ,W)

Inference/Prediction Time

xt+1 = argmaxv∈1,..,V (stv)

38 / 71

Neural Language Model training and inference
Let (x1, .., xT)i sequence of tokens (1-hot encoded), E embedding layer,
NNθ a sequential model (e.g. LSTM) {f,W} dense layer
We present forward/backward step to predict token x t+1 with x1, .., x t

et = Ex t ∀t <= T Embedding layer
ht = NNθ(e1, ..et−1, et) sequential layers with weights θ

st = f (Wht) Dense Layer

Train time

p̂t = softmaxV (ot) = (eotv∑
k eotk

)v∈1.V

loss = CE (p̂t , pt) = log(p̂t x t+1)

Compute ∇loss backprop
(update E, θ,W)

Inference/Prediction Time

xt+1 = argmaxv∈1,..,V (stv)

38 / 71

Neural Language Model training and inference
Let (x1, .., xT)i sequence of tokens (1-hot encoded), E embedding layer,
NNθ a sequential model (e.g. LSTM) {f,W} dense layer
We present forward/backward step to predict token x t+1 with x1, .., x t

et = Ex t ∀t <= T Embedding layer
ht = NNθ(e1, ..et−1, et) sequential layers with weights θ

st = f (Wht) Dense Layer

Train time

p̂t = softmaxV (ot) = (eotv∑
k eotk

)v∈1.V

loss = CE (p̂t , pt) = log(p̂t x t+1)

Compute ∇loss backprop
(update E, θ,W)

Inference/Prediction Time

xt+1 = argmaxv∈1,..,V (stv)

38 / 71

Neural Language Model training and inference
Let (x1, .., xT)i sequence of tokens (1-hot encoded), E embedding layer,
NNθ a sequential model (e.g. LSTM) {f,W} dense layer
We present forward/backward step to predict token x t+1 with x1, .., x t

et = Ex t ∀t <= T Embedding layer
ht = NNθ(e1, ..et−1, et) sequential layers with weights θ

st = f (Wht) Dense Layer

Train time

p̂t = softmaxV (ot) = (eotv∑
k eotk

)v∈1.V

loss = CE (p̂t , pt) = log(p̂t x t+1)

Compute ∇loss backprop
(update E, θ,W)

Inference/Prediction Time

xt+1 = argmaxv∈1,..,V (stv)

38 / 71

Neural Language Model training and inference
Let (x1, .., xT)i sequence of tokens (1-hot encoded), E embedding layer,
NNθ a sequential model (e.g. LSTM) {f,W} dense layer
We present forward/backward step to predict token x t+1 with x1, .., x t

et = Ex t ∀t <= T Embedding layer
ht = NNθ(e1, ..et−1, et) sequential layers with weights θ

st = f (Wht) Dense Layer

Train time

p̂t = softmaxV (ot) = (eotv∑
k eotk

)v∈1.V

loss = CE (p̂t , pt) = log(p̂t x t+1)

Compute ∇loss backprop
(update E, θ,W)

Inference/Prediction Time

xt+1 = argmaxv∈1,..,V (stv)

38 / 71

Neural Language Model with LSTM cell
In this case, NNθ is defined as (seen in lecture 4):
(θ is equal to Wp∈C ,f ,i ,o)

Based on e1, .., et we compute iteratively h1, .., ht

C̃ t = tanh(WC [et , ht−1] + bc) candidate cell

f t = σ(Wf [xt , ht−1] + bf) forget gate
i t = σ(Wi [xt , ht−1] + bi) input gate

ot = σ(Wo[xt , ht−1] + bo) ouput gate

C t = i t ? C̃ t + f t ? C t−1 new cell state
ht = ot ? tanh(Ct) new hidden vector

4
4? elementwiseproduct

39 / 71

Evaluating Language Models

• Language Models are evaluated with perplexity

perplexity = 2−pi log(p̂i)

• It is a measure of ”surprise” of the model

40 / 71

Comparing various language Models

Model Perplexity

Kneser-Ney 5-gram 141
Neural n-gram 140
RNN 125
LSTM 115

• Penn Treebank dataset
• LSTM outperforms RNN

41 / 71

Limits of LSTM-based architectures

• LSTM models are widely used in NLP for their ability to model
sequential data
• In theory, they are able to model sequences of infinite length

(Siegelmann and Sontag, 1992)
• In practice, until recently LSTM based models were State-of-the-Art

(SOTA) for language modeling (Rae et al., 2018)

• In practice, the recurrent nature of LSTM limits the possibility to
scale the training process to more data (we cannot parallelize LSTM
easily!)
• → Transformer were recently shown to work better for a great

variety of tasks including Language Model (Radford et al., 2019)

42 / 71

The Transformer Architecture5

5Vaswani et al. (2017)
43 / 71

Combining vectors with attention

• Use (self) attention mechanism
• Given a set of vectors w1, ..., wT ∈ Rd representing words

ht =
T∑

i=1
aitVwi

where
∑T

i=1 ait = 1.
• We could use ait = 1

T and get bag of words
• We can also learn ait based on the input and output as we did for

the standard attention mechanism

44 / 71

Combining vectors with attention

• Introducing matrix W ∈ Rd×T where columns correspond to wi ,

ht = VWat

• And finally
H = VWA

45 / 71

Combining vectors with attention

• How to compute the matrix A?

A = softmax(W>K>QW)

where the softmax is applied column-wise.

• Why softmax? to get positive entries, and columns summing to 1.
• Why W>K>QW? Bilinear form over the input

46 / 71

Combining vectors with attention

• Putting everything together:

H = VWsoftmax(W>K>QW)

where H,W ∈ Rd×T and V,K,Q ∈ Rd×d

• V,K,Q are parameters to be learned.
• This operation is called self-attention

• It can be generalized to multiple heads:
• Split input vectors into n subvectors of dimension d/n,
• Apply self attention (with different V,K,Q) over these smaller vectors
• Concatenate the results to get back d dimensional vectors

47 / 71

Combining vectors with attention

• Putting everything together:

H = VWsoftmax(W>K>QW)

where H,W ∈ Rd×T and V,K,Q ∈ Rd×d

• V,K,Q are parameters to be learned.
• This operation is called self-attention

• It can be generalized to multiple heads:
• Split input vectors into n subvectors of dimension d/n,
• Apply self attention (with different V,K,Q) over these smaller vectors
• Concatenate the results to get back d dimensional vectors

47 / 71

Combining vectors with attention

from Vaswani and Huang:
http://web.stanford.edu/class/cs224n/slides/

48 / 71

http://web.stanford.edu/class/cs224n/slides/

Transformer network

Transformer block:
• Multi-head attention layer with skip

connection and normalization
• Followed by feed forward with skip connection

and normalization

Skip connection+normalization:
• Given a network block nn and input x
• The output y is computed as

y = norm(x + nn(x))

where norm normalize the input

Vaswani et al.
(2017)

49 / 71

Transformer network

Feed forward block
• Two layer network, with ReLU activation

y = W2ReLU(W1x)

• Usually, W1 ∈ R4d×d and W2 ∈ Rd×4d

• i.e. hidden layer of dimension 4d .
Vaswani et al.

(2017)

50 / 71

Position embeddings

• Limitation: self attention does not take position into account!
• Indeed, shuffling the input gives the same results

• Solution: add position encodings.
• Replace the matrix W by W + E, where E ∈ Rd×T

• E can be learned, or defined using sin and cos:

e2i ,j = sin
(j

100002i/d

)
e2i+1,j = cos

(j
100002i/d

)

51 / 71

Transformer network

Transformer network:
• Word embeddings + Position embeddings
• Then N transformer blocks (e.g. N = 12)
• Softmax classifier (e.g. for language modeling)

Vaswani et al.
(2017)

52 / 71

Masking for Transformer Language Models

• In transformer, ht depends on all inputs
• Could not be used as such for causal language modeling
• Solution: use mask in attention, to only use past

• Reminder:

H = VW . softmax(W>K>QW)
= VWA

Hence, ait is weight of input i in representation of position t
• We want representation at time t to only depends on i ≤ t
• We could enforce ait = 0 for i ≥ t

53 / 71

Masked softmax

• We introduce the masked softmax operator
• Given an input x and a binary mask m,

[masked softmax(x,m)]i = mi exp(xi)∑d
i=1 mi exp(xi)

• Still sums to one, mi = 0 implies [masked softmax(x,m)]i = 0

• Sometimes implemented as:

softmax(x + log(m))

• Beware: do not learn the mask (e.g. PyTorch: register buffer)

54 / 71

Training of a Transformer

• In practice, transformers are very unstable during training
• If the learning rate is too large, it diverges
• However if the learning rate is too small, it does not learn well

55 / 71

Transformer network for Language Modeling: Results

Model bpc

LSTM 1.25
Transformer 1.07

• Text8
• Character level language modeling
• bpc = bit per character.

56 / 71

Why are language model useful?

• Standard Language Models are not that useful as such
• For specific-tasks we will see that they can be useful in Lecture 6
• For controlled generation (Machine Translation, Speech to Text,

Question Answering...) we need more.

• How to build a ”controllable” text generation system using a
language model ?

57 / 71

Lecture Outline

• Language Model
• Conditioned Language Model : focus on Sequence to Sequence

58 / 71

Conditioned Language Models

• Problematically, controllable text generation can be seen as
estimating:

P(wt |w1, ..,wt−1,C) where C is a conditioning variable

59 / 71

Sequence to Sequence Architecture

60 / 71

Direct modeling of translation

We have:
a sentence S = (x1, . . . , xm) in a Source language (e.g. French)
its translation T = (y1, . . . , yn) in a Target language (e.g. English)

We directly work on the probability of a translation given a source
sentence by expressing translation as conditional language modeling:

P(T | S) =
n∏

t=1
P(yt | yt−1, . . . , y1, S)

Goal Learn a translation model where T is the most probable sentence
given S:

T = argmax
T ′ in Target language

P(T ′ | S)

Challenge How to encode the source sentence S ?

61 / 71

Sequence to Sequence: Machine Translation

We want to condition a language model of the target language (e.g
English) on a source sentence

1 Encode source sentences
2 Generate the target sentence based on the encoded source and a

language target language model

• We have seen that Neural Networks are good Language Models
(i.e. can generate proper sentences)
• We have seen that Neural Networks are good at modeling sequence.
→ We are going to combine two network
• An encoder for encoding source sentences
• A decoder for conditioned language modeling

→ This new architecture is referred to as an encoder-decoder
or sequence to sequence model

62 / 71

Sequence to Sequence: Machine Translation

We want to condition a language model of the target language (e.g
English) on a source sentence

1 Encode source sentences
2 Generate the target sentence based on the encoded source and a

language target language model
• We have seen that Neural Networks are good Language Models

(i.e. can generate proper sentences)
• We have seen that Neural Networks are good at modeling sequence.
→ We are going to combine two network
• An encoder for encoding source sentences
• A decoder for conditioned language modeling

→ This new architecture is referred to as an encoder-decoder
or sequence to sequence model

62 / 71

Simple approach: sequence-to-sequence (seq2seq)

x1 x2 xm−1 xm y1 yn−1

h1 h2 · · · hm−1 hm hm+1 · · · hm+n−1

y1 y2 yn

Equivalent to:
1. Build a representation of the source sentence by taking last hidden

layer hT of LSTM applied to the source sentence
2. Use this representation as initialization of the hidden variables of

LSTM applied to the target sentence

63 / 71

Simple approach: sequence-to-sequence (seq2seq)

x1 x2 xm−1 xm y1 yn−1

h1 h2 · · · hm−1 hm hm+1 · · · hm+n−1

y1 y2 yn

• Pro:
• Very simple to implement:
- input: Concatenation of source and target sentence.
- ouptut: target sentence

• Cons:
• Needs large hidden layer to store everything about source sentence
• Does not work on very long sentences
• Same conditioning for the whole target sentence

64 / 71

Seq2seq

Architecture
• Encoder and Decoder can be any NN architecture seen so far
• In practice, LSTMs and Transformer are the most efficient (in most

cases)
Decoding
• At inference, we can improve performance by using beam-search

instead of greedy decoding

65 / 71

Training Seq2Seq

• As any Neural Networks, we train a seq2seq architecture with
backpropagation
• Using pairs of source-target aligned sentences we train the model to

generate the target language based on source language
Source: This week we’ll continue to try to close a deal to purchase a
dairy farm.
Target: Cette semaine, nous allons continuer d’essayer de signer un
contrat d’achat d’une exploitation laitière.

66 / 71

Attention Mechanism for sequence to sequence

• To overcome the main encoding issue, the sequential attention on
the source sentence improve importantly the performance

67 / 71

Evaluation

• How good is a given machine translation system?

• Hard problem, since many different translations acceptable

• Evaluation metrics:
- subjective judgments by human evaluators
- automatic evaluation metrics
- task-based evaluation (how much post-editing effort? does

information come across?)
NB: Evaluating sequence generation model is never easy (subjectivity!)
6

6from Philipp Koehn: http://mt-class.org/jhu/
68 / 71

http://mt-class.org/jhu/

BLEU

Measure n-gram overlap between machine translation output and
reference translation

Compute precision for n-grams of size 1 to 4

Add brevity penalty to avoid too short translations

BLEU = min
(

1, output length
reference length

)(4∏
i=1

Ci
Ni

) 1
4

where Ci is the number of correct n-gram of size i and Ni is the total
number of n-grams in the output of the system

Computed over full corpora, not just a sentence from Philipp
Koehn: http://mt-class.org/jhu/

69 / 71

http://mt-class.org/jhu/

Other Sequence to Sequence Tasks

• (Abstractive) Summarization
Input: Document
Output: Summary

• Text Simplification
Input: Complex sentence
Output: Simplified sentence

• Multi-Modal tasks
• Speech To Text
• Caption Generation (Image to Text)

70 / 71

References I

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert:
Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I.
(2019). Language models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Rae, J. W., Dyer, C., Dayan, P., and Lillicrap, T. P. (2018). Fast
parametric learning with activation memorization. arXiv preprint
arXiv:1803.10049.

Siegelmann, H. T. and Sontag, E. D. (1992). On the computational
power of neural nets. In Proceedings of the fifth annual workshop on
Computational learning theory, pages 440–449.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need.
In Advances in neural information processing systems, pages
5998–6008.

71 / 71

	References

