Machine Learning for Natural Language Processing

Language Modeling

Lecture 5

Benjamin Muller

INRIA Paris - ALMANACH benjamin.muller@inria.fr

- 1 The Why and What of Natural Language Processing
- 2 Representing text with vectors
- 3 Task specific Modeling of Text
- 4 Neural Natural Language Processing
- **6** Language Modeling
- 6 Transfer Learning with Neural Modeling for NLP

Lecture Outline

- Language Model
- Conditioned Language Model : focus on Sequence to Sequence

Language Model

Language Modeling

- What is a Language Model ?
- Modeling language with n-grams
- Modeling language with a LSTM
- The Transformer Architecture

Language modeling

- Language modeling corresponds to assigning a probability to a text
- A text is a sequence of tokens, or characters
- Tokens can be words, sub-words,
- For example:

$$\{a\ cat\} \ = \ \{a,cat\},$$

- Language modeling corresponds to assigning a probability to a text
- A text is a sequence of tokens, or characters
- Tokens can be words, sub-words,
- For example:

$$\{ a \ cat \} = \{ a, cat \}, \\ = \{ a, \ , c, a, t \},$$

- Language modeling corresponds to assigning a probability to a text
- A text is a sequence of tokens, or characters
- Tokens can be words, sub-words,
- For example:

$$\{a cat\} = \{a, cat\}, \\ = \{a, , c, a, t\}, \\ = \{a, , ca, t\}.$$

• Given a sequence $\{w_1, \ldots, w_T\}$ of tokens, a language model estimates its probability:

$$P(w_1,\ldots,w_T)$$

- *P* depends on a **vocabulary**, i.e., the set of unique tokens.
- Question: How to estimate *P* ?

• Given a sequence $\{w_1, \ldots, w_T\}$ of tokens, a language model estimates its probability:

$$P(w_1,\ldots,w_T)$$

- *P* depends on a **vocabulary**, i.e., the set of unique tokens.
- Question: How to estimate *P* ?

Language Models

- Causal Language Model
- Mask Language Model

Applications of language modeling

Language models are applied in several fields:

• Speech recognition:

P("Vanilla, I scream") < P("Vanilla ice cream").

• Machine translation:

P("Déçu en bien" | "Pleasantly surprised") < <math>P("Agréablement surpris" | "Pleasantly surprised")

• Optical Character Recognition:

P("m0ve fast") < *P*("move fast")

• Sequence probability as a product of token probabilities:

$$P(w_1,\ldots,w_T) = \prod_{t=1}^T P(w_t \mid w_{t-1},\ldots,w_1)$$

• Sequence probability as a product of token probabilities:

$$P(w_1,\ldots,w_T) = \prod_{t=1}^T P(w_t \mid w_{t-1},\ldots,w_1)$$

Indeed we have:

$$P(a,b) = P(a)P(b \mid a)$$

• Sequence probability as a product of token probabilities:

$$P(w_1,\ldots,w_T) = \prod_{t=1}^T P(w_t \mid w_{t-1},\ldots,w_1)$$

Indeed we have:

$$P(a,b) = P(a)P(b \mid a)$$

Recursively applied to a sequence:

$$P(w_1, w_2, w_3) = P(w_1)P(w_2, w_3 \mid w_1)$$

= $P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_2, w_1)$

• Sequence probability as a product of token probabilities:

$$P(w_1,\ldots,w_T) = \prod_{t=1}^T P(w_t \mid w_{t-1},\ldots,w_1)$$

Indeed we have:

$$P(a,b) = P(a)P(b \mid a)$$

• Recursively applied to a sequence:

$$P(w_1, w_2, w_3) = P(w_1)P(w_2, w_3 \mid w_1)$$

= $P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_2, w_1)$

Causal Language models estimate probability of upcoming token given past:

$$P(w_t \mid w_{t-1},\ldots,w_1).$$

Estimating Language Models

- Causal Language Model
- Mask Language Model

Mask Language Model $^{\rm 12}$

Sentence The cat is drinking milk in the kitchen

¹ Devlin et al. (2018) ²also referred as Cloze Task

Sentence The cat is drinking milk in the kitchen input The cat <MASK> drinking <MASK> in the kitchen

• Randomly replace 15% of words in sentence with a <MASK> token

¹ Devlin et al. (2018) ²also referred as Cloze Task

 Sentence The cat is drinking milk in the kitchen

 input
 The cat <MASK> drinking <MASK> in the kitchen

 targets
 {"is", "milk"}

- Randomly replace 15% of words in sentence with a <MASK> token
- Take the masked words as targets for the model to predict

¹ Devlin et al. (2018)

²also referred as Cloze Task

Sentence The cat is drinking milk in the kitchen input The cat mushroom drinking shoes in the kitchen targets {"is", "milk"}

- Randomly replace 15% of words in sentence with a <MASK> token
- Take the masked words as targets for the model to predict
- Extension: use random words from vocabulary instead of <MASK>

¹ Devlin et al. (2018)

²also referred as Cloze Task

Masked Language Modeling estimates the probability of sequence tokens of length T with:

$$P(w_i|w_1,..,w_{i-1},w_i,..,w_T)$$

Language Models in a nutshell

- a Language Model is a model that predicts a token based on its surrounding linguistic context
- Tokens can be words, sub-words or characters
- Context can be the *left sequence*, *left and right sequence*, the sentence, a window around the words, the paragraph...
- We saw two way of defining languge models: Causal Language Model and Mask Language Model

Estimating language models

Estimating language models

- Statistical approach: N-Gram model
- Neural Language Models
- Recurrent Neural Networks (LSTM)
 - The Transformer Architecture

Count based language model

• Example:

 $P(\text{English} | \text{The moment one learns}) = \frac{c (\text{The moment one learns English})}{c (\text{The moment one learns})}$ $= \frac{35}{73} = 0.48$

Sentence "The moment one learns English" appears 35 in dataset Sentence "The moment one learns" appears 75 in dataset

Limitiations of count based language model

- Number of unique sentences increases with dataset size,
- Long sentences are rare: no good statistics for them
- → Too many sentences with not enough statistics (Sparsity due to combinatorial structure of language)

Count based language model

- Solution truncate past to a fixed size window
- For example:

 $P(\text{English} \mid \text{The moment one learns}) \approx P(\text{English} \mid \text{one learns})$

- Implicit assumption: most important information about a word is in its recent history
- Beware! In general:

$$P(w_1,\ldots,w_T)\neq\prod_{t=1}^T P(w_t \mid w_{t-1},\ldots,w_{t-n+1})$$

Count based language model

- Truncated count based models = *n*-gram models
- "n" refers to the size of past
- Examples:
 - Unigram:

$$P(w_1,\ldots,w_T)=\prod_{t=1}^T P(w_t)$$

• Bigram:

$$P(w_1,\ldots,w_T) = \prod_{t=1}^T P(w_t \mid w_{t-1})$$

Count based language model: unigram

• Probability of a sentence with a unigram model:

$$P_U(w_1,\ldots,w_T) = \prod_{t=1}^T P(w_t) = \prod_{t=1}^T \frac{c(w_t)}{N}$$

N = total number of tokens in dataset $c(w_t) =$ number of occurences of w_t in dataset

- Unigram only uses word frequency
- Example of text generation with this model: the or is ball then car

Count based language model: bigram

• Probability of a sentence with a bigram model:

$$P_U(w_1,...,w_T) = \prod_{t=1}^T P(w_t \mid w_{t-1}) = \prod_{t=1}^T \frac{c(w_{t-1}w_t)}{c(w_{t-1})}$$

 $c(w_{t-1}w_t) =$ number of occurences of sequence $w_{t-1}w_t$

Predict a word just with the previous word

Count based language model: bigram

• Example of text generation with bigram model:

new car parking lot of the

- "car" is generated from "new", "parking" from "car"...
- But "new" has no influence on "parking"

- Simple to extend to longer dependencies: trigrams, 4-grams...
- *n*-grams can be "good enough" in some cases
- But *n*-grams cannot capture long term dependencies required to truely model language

Estimating *n*-gram probabilites: an example

bigram:

$$P(w_t \mid w_{t-1}) = \frac{c(w_{t-1}w_t)}{c(w_{t-1})}$$

Dataset:

<s>we sat in the house <s>we sat here we two and we said <s>how we wish we had something to do

• Extract some probabilities:

 $P(sat \mid we) = 0.33, P(wish \mid we) = 0.17, P(in \mid sat) = 0.5$

- <s>= token for beginning of sentence; P(<s>) = 1.
- Compute sentence probability with them

Estimating *n*-gram probabilites: an example

- Extract count from Berkeley Restaurant dataset (9222 sentences)
- Unigram counts:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Bigram counts:

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Estimating *n*-gram probabilites: an example

• The bigram probabilities are obtained by dividing the bigram counts with the unigram counts:

$$P(w_2 \mid w_1) = \frac{c(w_1w_2)}{c(w_1)}$$

• Resulting bigram probabilities:

	i	want	to	eat	chinese	food	lunch	spend
i	0.022	0.33	0	0.036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Estimating *n*-gram probabilites: an example

• Example:

 $P(\langle s \rangle i \text{ want chinese food})?$

 $\langle s \rangle =$ token for beginning of sentence; $P(\langle s \rangle) = 1$.

• Result:

$$\begin{split} P(<\!\!\mathrm{s}\!\!>\mathrm{i} \text{ want chinese food}) = & P(<\!\!\mathrm{s}\!\!>) P(\mathrm{i}|<\!\!\mathrm{s}\!\!>) P(\mathrm{want}|\mathrm{i}) P(\mathrm{chinese}|\mathrm{want}) P(\mathrm{food}|\mathrm{chinese}) \\ = & 1 \times .25 \times 0.33 \times 0.0065 \times 0.52 \\ = & 0.00027885 \end{split}$$

Estimating *n*-gram probabilites: an example

	i	want	to	eat	chinese	food	lunch	spend
i	0.022	0.33	0	0.036	0	0	0	0.00079
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

• Example:

 $P(\langle s \rangle i bring my lunch to work)?$

Result:

 $P(\langle s \rangle \text{ i bring my lunch to work}) = P(\langle s \rangle) \dots P(to|lunch) \dots$ = $1 \times \dots \times 0 \times \dots$ = $\mathbf{0}$

Does not generalize well!

- Idea reallocate probability mass of *n*-grams that occur exactly *c* + 1 times to *n*-grams that occur exactly *c* times
- reallocate mass of *n*-grams appearing once to unseen *n*-grams
- ightarrow alternative to Add-1

- Idea reallocate probability mass of *n*-grams that occur exactly *c* + 1 times to *n*-grams that occur exactly *c* times
- reallocate mass of *n*-grams appearing once to unseen *n*-grams

(

- ightarrow alternative to Add-1
 - the adjusted count:

$$c^* = (c+1) rac{N_{c+1}}{N_c}$$

where N_c is the number of *n*-grams that appears exactly *c* times

- Idea reallocate probability mass of *n*-grams that occur exactly *c* + 1 times to *n*-grams that occur exactly *c* times
- reallocate mass of *n*-grams appearing once to unseen *n*-grams
- ightarrow alternative to Add-1
 - the adjusted count:

$$c^* = (c+1)\frac{N_{c+1}}{N_c}$$

where N_c is the number of *n*-grams that appears exactly *c* times

• *n*-gram probability depends on *c*^{*} instead of *c*

- Idea reallocate probability mass of *n*-grams that occur exactly *c* + 1 times to *n*-grams that occur exactly *c* times
- reallocate mass of *n*-grams appearing once to unseen *n*-grams
- ightarrow alternative to Add-1
 - the adjusted count:

$$c^* = (c+1)\frac{N_{c+1}}{N_c}$$

where N_c is the number of *n*-grams that appears exactly *c* times

- *n*-gram probability depends on *c*^{*} instead of *c*
- **Problem** What if *N*_{*c*+1} = 0 (but *N*_{*c*} > 0)?

- If no good statistics on long context: use shorter context
- **Backoff**: use trigram if enough data, else backoff to bigram.
- Interpolation: mix statistics of trigram, bigram and unigram.

Pros and Cons of N-Gram Language Models

Pros

- Fast at training and inference
- Can reach good accuracy if lots of data

Cons

- Impossible to model very long dependencies (simplistic assumptions done)
- Generalization limited
- Not Deep Learning compatible

Estimating language models

- Statistical approach: N-Gram model
- Neural Language Models
- • Recurrent Neural Networks (LSTM)
 - The Transformer Architecture

How to frame language modeling in a deep learning compatible way ? What neural architecture/objective ?

- Neural Language Model objective and Training
- Architectures
 - Recurrent Network
 - Transformer

Neural Language Model

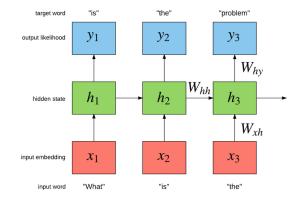


Figure: Neural Language modeling schema view ³

³http://torch.ch/blog/2016/07/25/nce.html

Let $(x^1, ..., x^T)_i$ sequence of tokens (1-hot encoded), E embedding layer, NN_{θ} a sequential model (e.g. LSTM) {f,W} dense layer We present forward/backward step to predict token x^{t+1} with $x^1, ..., x^t$

> $e_t = Ex^t \ \forall t \le T$ Embedding layer $h_t = NN_{\theta}(e_1, ..e_{t-1}, e_t)$ sequential layers with weights θ $s_t = f(Wh_t)$ Dense Layer

Let $(x^1, ..., x^T)_i$ sequence of tokens (1-hot encoded), E embedding layer, NN_{θ} a sequential model (e.g. LSTM) {f,W} dense layer We present forward/backward step to predict token x^{t+1} with $x^1, ..., x^t$

> $e_t = Ex^t \ \forall t \leq T$ Embedding layer $h_t = NN_{\theta}(e_1, ..e_{t-1}, e_t)$ sequential layers with weights θ $s_t = f(Wh_t)$ Dense Layer

Train time

Let $(x^1, ..., x^T)_i$ sequence of tokens (1-hot encoded), E embedding layer, NN_{θ} a sequential model (e.g. LSTM) {f,W} dense layer We present forward/backward step to predict token x^{t+1} with $x^1, ..., x^t$

> $e_t = Ex^t \ \forall t \le T$ Embedding layer $h_t = NN_{\theta}(e_1, ..e_{t-1}, e_t)$ sequential layers with weights θ $s_t = f(Wh_t)$ Dense Layer

Train time

$$\hat{p}_t = softmax_V(o_t) = (\frac{e^{o_{tv}}}{\sum_k e^{o_{tk}}})_{v \in 1.V}$$

Let $(x^1, ..., x^T)_i$ sequence of tokens (1-hot encoded), E embedding layer, NN_{θ} a sequential model (e.g. LSTM) {f,W} dense layer We present forward/backward step to predict token x^{t+1} with $x^1, ..., x^t$

> $e_t = Ex^t \ \forall t \le T$ Embedding layer $h_t = NN_{\theta}(e_1, ..e_{t-1}, e_t)$ sequential layers with weights θ $s_t = f(Wh_t)$ Dense Layer

Train time

$$\hat{p}_t = softmax_V(o_t) = (rac{e^{o_{tv}}}{\sum_k e^{o_{tk}}})_{v \in 1.V}$$

$$loss = CE(\hat{p_t}, p_t) = log(\hat{p_{t \times t+1}})$$

Let $(x^1, ..., x^T)_i$ sequence of tokens (1-hot encoded), E embedding layer, NN_{θ} a sequential model (e.g. LSTM) {f,W} dense layer We present forward/backward step to predict token x^{t+1} with $x^1, ..., x^t$

> $e_t = Ex^t \ \forall t \le T$ Embedding layer $h_t = NN_{\theta}(e_1, ..e_{t-1}, e_t)$ sequential layers with weights θ $s_t = f(Wh_t)$ Dense Layer

Train time

$$\hat{p}_t = softmax_V(o_t) = (\frac{e^{o_{tv}}}{\sum_k e^{o_{tk}}})_{v \in 1.V}$$

$$\textit{loss} = \textit{CE}(\hat{p_t}, p_t) = \textit{log}(\hat{p_{t \times t+1}})$$

Compute $\nabla loss$ backprop (update E, θ , W)

Let $(x^1, ..., x^T)_i$ sequence of tokens (1-hot encoded), E embedding layer, NN_{θ} a sequential model (e.g. LSTM) {f,W} dense layer We present forward/backward step to predict token x^{t+1} with $x^1, ..., x^t$

> $e_t = Ex^t \ \forall t \leq T$ Embedding layer $h_t = NN_{\theta}(e_1, ..e_{t-1}, e_t)$ sequential layers with weights θ $s_t = f(Wh_t)$ Dense Layer

Train time

Inference/Prediction Time

$$\hat{p}_t = \textit{softmax}_V(o_t) = (rac{e^{o_{tv}}}{\sum_k e^{o_{tk}}})_{v \in 1.V}$$

 $x_{t+1} = argmax_{v \in 1,..,V}(s_{tv})$

$$loss = CE(\hat{p_t}, p_t) = log(\hat{p_t}_{X^{t+1}})$$

Compute $\nabla loss$ backprop (update E, θ , W)

Neural Language Model with LSTM cell

In this case, NN_{θ} is defined as (seen in lecture 4): (θ is equal to $W_{P \in C, f, i, o}$)

Based on $e_1, ..., e_t$ we compute iteratively $h_1, ..., h_t$

$$\widetilde{\mathcal{C}}^t = {\it tanh}({\it W_{C}}[e_t,h_{t-1}]+b_c)$$
 candidate cell

$$\begin{split} f^t &= \sigma(W_f[x_t, h_{t-1}] + b_f) & \text{forget gate} \\ i^t &= \sigma(W_i[x_t, h_{t-1}] + b_i) & \text{input gate} \\ o^t &= \sigma(W_o[x_t, h_{t-1}] + b_o) & \text{ouput gate} \end{split}$$

$$C^{t} = i^{t} \star \widetilde{C}^{t} + f^{t} \star C^{t-1}$$
 new cell state
 $h_{t} = o^{t} \star tanh(C_{t})$ new hidden vector

⁴★ *elementwiseproduct*

• Language Models are evaluated with perplexity

$$perplexity = 2^{-p_i \log(\hat{p}_i)}$$

• It is a measure of "surprise" of the model

Comparing various language Models

Model	Perplexity		
Kneser-Ney 5-gram	141		
Neural <i>n</i> -gram	140		
RNN	125		
LSTM	115		

- Penn Treebank dataset
- LSTM outperforms RNN

Limits of LSTM-based architectures

- LSTM models are widely used in NLP for their ability to model sequential data
- In theory, they are able to model sequences of infinite length (Siegelmann and Sontag, 1992)
- In practice, until recently LSTM based models were State-of-the-Art (SOTA) for language modeling (Rae et al., 2018)
- In practice, the recurrent nature of LSTM limits the possibility to scale the training process to more data (we cannot parallelize LSTM easily!)
- → Transformer were recently shown to work better for a great variety of tasks including Language Model (Radford et al., 2019)

The Transformer Architecture⁵

⁵Vaswani et al. (2017)

- Use (self) attention mechanism
- Given a set of vectors $\mathbf{w}_1, ..., \mathbf{w}_{\mathcal{T}} \in \mathbb{R}^d$ representing words

$$\mathbf{h}_t = \sum_{i=1}^T a_{it} \mathbf{V} \mathbf{w}_i$$

where $\sum_{i=1}^{T} a_{it} = 1$.

- We could use $a_{it} = \frac{1}{T}$ and get bag of words
- We can also learn *a_{it}* based on the input and output as we did for the standard attention mechanism

• Introducing matrix $\mathbf{W} \in \mathbb{R}^{d \times T}$ where columns correspond to \mathbf{w}_i ,

 $\mathbf{h}_t = \mathbf{VW}\mathbf{a}_t$

• And finally

 $\mathbf{H} = \mathbf{VWA}$

• How to compute the matrix **A**?

 $\mathbf{A} = \operatorname{softmax}(\mathbf{W}^{\top}\mathbf{K}^{\top}\mathbf{Q}\mathbf{W})$

where the softmax is applied column-wise.

- Why softmax? to get positive entries, and columns summing to 1.
- Why W^TK^TQW? Bilinear form over the input

• Putting everything together:

 $\mathbf{H} = \mathbf{VW}$ softmax($\mathbf{W}^{\top}\mathbf{K}^{\top}\mathbf{QW}$)

where $\textbf{H}, \textbf{W} \in \mathbb{R}^{d \times T}$ and $\textbf{V}, \textbf{K}, \textbf{Q} \in \mathbb{R}^{d \times d}$

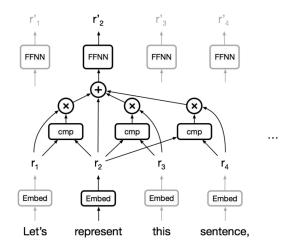
- V, K, Q are parameters to be learned.
- This operation is called self-attention

• Putting everything together:

 $\mathbf{H} = \mathbf{VW}$ softmax($\mathbf{W}^{\top}\mathbf{K}^{\top}\mathbf{QW}$)

where $\mathbf{H}, \mathbf{W} \in \mathbb{R}^{d imes T}$ and $\mathbf{V}, \mathbf{K}, \mathbf{Q} \in \mathbb{R}^{d imes d}$

- V, K, Q are parameters to be learned.
- This operation is called self-attention
- It can be generalized to multiple heads:
 - Split input vectors into n subvectors of dimension d/n,
 - Apply self attention (with different V, K, Q) over these smaller vectors
 - Concatenate the results to get back d dimensional vectors



from Vaswani and Huang: http://web.stanford.edu/class/cs224n/slides/

Transformer network

Transformer block:

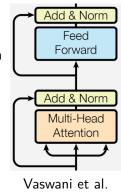
- Multi-head attention layer with skip connection and normalization
- Followed by feed forward with skip connection and normalization

Skip connection+normalization:

- Given a network block **nn** and input **x**
- The output **y** is computed as

y = norm(x + nn(x))

where norm normalize the input



(2017)

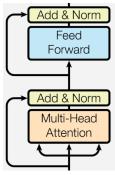
Transformer network

Feed forward block

• Two layer network, with ReLU activation

 $\textbf{y} = \textbf{W}_2 \texttt{ReLU}(\textbf{W}_1 \textbf{x})$

- Usually, $\mathbf{W}_1 \in \mathbb{R}^{4d imes d}$ and $\mathbf{W}_2 \in \mathbb{R}^{d imes 4d}$
- i.e. hidden layer of dimension 4*d*.



Vaswani et al. (2017)

Position embeddings

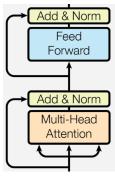
- Limitation: self attention does not take position into account!
- Indeed, shuffling the input gives the same results
- **Solution:** add position encodings.
- Replace the matrix **W** by $\mathbf{W} + \mathbf{E}$, where $\mathbf{E} \in \mathbb{R}^{d \times T}$
- E can be learned, or defined using sin and cos:

$$e_{2i,j} = \sin\left(\frac{j}{10000^{2i/d}}\right)$$
$$e_{2i+1,j} = \cos\left(\frac{j}{10000^{2i/d}}\right)$$

Transformer network

Transformer network:

- Word embeddings + Position embeddings
- Then N transformer blocks (e.g. N = 12)
- Softmax classifier (e.g. for language modeling)



Vaswani et al. (2017)

Masking for Transformer Language Models

- In transformer, \mathbf{h}_t depends on all inputs
- Could not be used as such for causal language modeling
- Solution: use mask in attention, to only use past
- Reminder:

$$\begin{split} \mathbf{H} &= \mathbf{V}\mathbf{W} \text{ . softmax}(\mathbf{W}^{\top}\mathbf{K}^{\top}\mathbf{Q}\mathbf{W}) \\ &= \mathbf{V}\mathbf{W}\mathbf{A} \end{split}$$

Hence, \mathbf{a}_{it} is weight of input *i* in representation of position *t*

- We want representation at time t to only depends on $i \leq t$
- We could enforce $\mathbf{a}_{it} = 0$ for $i \ge t$

Masked softmax

- We introduce the masked softmax operator
- Given an input **x** and a binary mask **m**,

$$[\mathsf{masked_softmax}(\mathbf{x}, \mathbf{m})]_i = \frac{m_i \exp(x_i)}{\sum_{i=1}^d m_i \exp(x_i)}$$

- Still sums to one, m_i = 0 implies [masked_softmax(x, m)]_i = 0
- Sometimes implemented as:

$$\operatorname{softmax}(\mathbf{x} + \log(\mathbf{m}))$$

• Beware: do not learn the mask (e.g. PyTorch: register_buffer)

- In practice, transformers are very unstable during training
- If the learning rate is too large, it diverges
- However if the learning rate is too small, it does not learn well

Transformer network for Language Modeling: Results

Model	bpc
LSTM	1.25
Transformer	1.07

Text8

- Character level language modeling
- bpc = bit per character.

- Standard Language Models are not that useful as such
- For specific-tasks we will see that they can be useful in Lecture 6
- For controlled generation (Machine Translation, Speech to Text, Question Answering...) we need more.
- How to build a "controllable" text generation system using a language model ?

Lecture Outline

- Language Model
- Conditioned Language Model : focus on Sequence to Sequence

• Problematically, controllable text generation can be seen as estimating:

 $P(w_t|w_1,..,w_{t-1},C)$ where C is a conditioning variable

Sequence to Sequence Architecture

Direct modeling of translation

We have:

a sentence $S = (x_1, ..., x_m)$ in a Source language (e.g. French) its translation $T = (y_1, ..., y_n)$ in a Target language (e.g. English)

We directly work on the probability of a translation given a source sentence by expressing translation as conditional language modeling:

$$P(T \mid S) = \prod_{t=1}^{n} P(y_t \mid y_{t-1}, \dots, y_1, S)$$

Goal Learn a translation model where T is the most probable sentence given S:

$$T = \underset{T' \text{ in Target language}}{\operatorname{argmax}} P(T' \mid S)$$

Challenge How to encode the source sentence S?

Sequence to Sequence: Machine Translation

We want to condition a language model of the target language (e.g English) on a source sentence

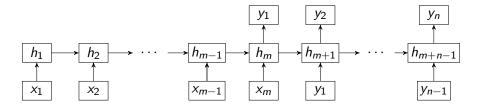
- 1 Encode source sentences
- Q Generate the target sentence based on the encoded source and a language target language model

Sequence to Sequence: Machine Translation

We want to condition a language model of the target language (e.g English) on a source sentence

- 1 Encode source sentences
- ② Generate the target sentence based on the encoded source and a language target language model
- We have seen that Neural Networks are good Language Models (i.e. can generate proper sentences)
- We have seen that Neural Networks are good at modeling sequence.
 - \rightarrow We are going to combine two network
 - An encoder for encoding source sentences
 - A decoder for conditioned language modeling
- \rightarrow This new architecture is referred to as an encoder-decoder or sequence to sequence model

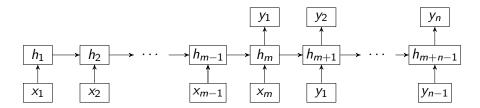
Simple approach: sequence-to-sequence (seq2seq)



Equivalent to:

- 1. Build a representation of the source sentence by taking last hidden layer h_T of LSTM applied to the source sentence
- 2. Use this representation as initialization of the hidden variables of LSTM applied to the target sentence

Simple approach: sequence-to-sequence (seq2seq)



- Pro:
 - Very simple to implement:
 - input: Concatenation of source and target sentence.
 - ouptut: target sentence
- Cons:
 - Needs large hidden layer to store everything about source sentence
 - Does not work on very long sentences
 - Same conditioning for the whole target sentence

Seq2seq

Architecture

- Encoder and Decoder can be any NN architecture seen so far
- In practice, LSTMs and Transformer are the most efficient (in most cases)

Decoding

• At inference, we can improve performance by using *beam-search* instead of *greedy* decoding

Training Seq2Seq

- As any Neural Networks, we train a seq2seq architecture with backpropagation
- Using pairs of source-target aligned sentences we train the model to generate the target language based on source language

Source: This week we'll continue to try to close a deal to purchase a dairy farm.

Target: Cette semaine, nous allons continuer d'essayer de signer un contrat d'achat d'une exploitation laitière.

Attention Mechanism for sequence to sequence

• To overcome the main encoding issue, the sequential attention on the source sentence improve importantly the performance

Evaluation

- How good is a given machine translation system?
- Hard problem, since many different translations acceptable
- Evaluation metrics:
- subjective judgments by human evaluators
- automatic evaluation metrics
- task-based evaluation (how much post-editing effort? does information come across?)
- NB: Evaluating sequence generation model is never easy (subjectivity!) $_{6}$

⁶from Philipp Koehn: http://mt-class.org/jhu/

Measure *n*-gram overlap between machine translation output and reference translation

Compute precision for *n*-grams of size 1 to 4

Add brevity penalty to avoid too short translations

$$\mathsf{BLEU} = \min\left(1, \frac{\textit{output_length}}{\textit{reference_length}}\right) \left(\prod_{i=1}^{4} \frac{C_i}{N_i}\right)^{\frac{1}{4}}$$

where C_i is the number of correct *n*-gram of size *i* and N_i is the total number of *n*-grams in the output of the system

Computed over full corpora, not just a sentence from Philipp Koehn: http://mt-class.org/jhu/

Other Sequence to Sequence Tasks

- (Abstractive) Summarization Input: Document
 - Output: Summary
- Text Simplification Input: Complex sentence Output: Simplified sentence
- Multi-Modal tasks
 - Speech To Text
 - Caption Generation (Image to Text)

References I

- Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
- Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are unsupervised multitask learners. *OpenAI Blog*, 1(8):9.
- Rae, J. W., Dyer, C., Dayan, P., and Lillicrap, T. P. (2018). Fast parametric learning with activation memorization. *arXiv preprint arXiv:1803.10049*.
- Siegelmann, H. T. and Sontag, E. D. (1992). On the computational power of neural nets. In *Proceedings of the fifth annual workshop on Computational learning theory*, pages 440–449.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems, pages 5998–6008.