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Course Outline

1 The Why and What of Natural Language Processing
2 Representing Text with Vectors
3 Task specific Modeling of Text
4 Neural Natural Language Processing
5 Language Modeling
6 Transfer Learning with Neural Modeling for NLP
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Session 1 recap

1 The 5 levels of analysis

• Phonology
• Morphology
• Syntax
• Semantic
• Extra-Linguistic

2 The 4 challenges of NLP
• Diversity
• Variability
• Ambiguity
• Sparsity

3 / 68



Session 1 recap

1 The 5 levels of analysis
• Phonology
• Morphology
• Syntax
• Semantic
• Extra-Linguistic

2 The 4 challenges of NLP
• Diversity
• Variability
• Ambiguity
• Sparsity

3 / 68



Session 1 recap

1 The 5 levels of analysis
• Phonology
• Morphology
• Syntax
• Semantic
• Extra-Linguistic

2 The 4 challenges of NLP

• Diversity
• Variability
• Ambiguity
• Sparsity

3 / 68



Session 1 recap

1 The 5 levels of analysis
• Phonology
• Morphology
• Syntax
• Semantic
• Extra-Linguistic

2 The 4 challenges of NLP
• Diversity
• Variability
• Ambiguity
• Sparsity

3 / 68



Session Outline

How to represent textual data in a computer? In this session we will
focus mainly on how to represent a word.

• a word as an index

• feature based representation

• distributional representation

• continuous representation

• contextual representation (session 5)
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Glossary

• In NLP, we call the basic string unit we work with a token

• A token can be a character, a sequence of characters, a word, ...

• In this session our basic unit will be a word
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Preliminary Definition

Definition: Words are the smallest linguistic expressions that are
conventionally associated with a non-compositional meaning and can be
articulated in isolation to convey semantic content1

1Stanford Encyclopedia of Philosophy
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Some order of magnitudes

• 171,476 words in English (Oxford Dictionary)
• 123,000 words in French (Trésor de la Langue Française informatisé)
• 1,100,373 words in Korean
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Preliminary Definitions

In this course, we define words as:
• A word is the basic unit of discrete data, defined to be an item

from a vocabulary indexed by 1, ...,V .
• A document is a sequence of N words denoted by

d = (w1,w2, ...,wN), where wn is the n-th word in the sequence.
• A corpus is a collection of M documents denoted by

D = d1, d2, ..., dM
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Other interesting basic units

• A character
• A sequence of characters or n-grams : word-piece, morphemes...
• a sequence of words : a sentence, a collection of sentences...
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Goal

Given a vocabulary w1,..,wV and a corpus D, our goal is to associate
each word with a data structure

What do we want from this data structure ?

• identify a word
• capture the similarities of words (based on morphology, syntax,

semantics,...)
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1-hot encoding

Reminder:
• Word types are elements of a defined vocabulary
• Word tokens are instances of word types in text

Here, we want representations for word types.

11 / 68



1-hot encoding

• Traditional way to represent words as atomic symbols with a
unique integer associated with each word:

{1=movie, 2=hotel, 3=apple, 4=movies, 5=art}

• Equivalent to represent words as 1-hot vectors:

movie = [1, 0, 0, 0, 0]
hotel = [0, 1, 0, 0, 0]
. . .

art = [0, 0, 0, 0, 1]
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1-hot encoding

• Most basic representation of any textual unit in NLP. Always start
with it.
• Implicit assumption: word vectors are an orthonormal basis

• orthogonal (xT y = 0)
• normalized (xT x = 1)

• Problem 1: Not very informative
• Weird to consider “movie” and “movies” as independent entities
• Or to consider all words equidistant:

‖dog− cat‖ = ‖dog− moon‖

• Problem 2: Polysemy
Should the mouse of a computer get the same vector a the mouse
animal?
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Feature based representation

• Solution: represent words with hand crafted features and
relations

• Example of potential features:
• Morphology: prefix, suffix, stem...
• Grammar: part of speech, gender, number,...
• Shape: capitalization, digit, hyphen

• Example of potential relations:
• synonyms,
• hypernyms,
• antonyms...
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WordNet2

Definition: a (word) sense is a discrete representation of one aspect of
the meaning of a word

WordNet is a large lexical database of word senses for English and other
languages

2https://wordnet.princeton.edu/
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WordNet

• Word types are grouped into synonym sets: synsets
S09293800 = { Earth, earth, world, globe }

• Polysemous words: assigned to different synsets
S14867162 = { earth, ground }

• Contains glosses for synsets:
the 3rd planet from the sun; the planet we live on

• Noun/verb synsets: organized in hierarchy, capturing IS-A relation
apple IS-A fruit
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WordNet: relations between synsets

• X is a hyponym of Y if X is an instance of Y:
cat is a hyponym of animal

• X is a hypernym of Y if Y is an instance of X:
animal is a hypernym of cat

• X and Y are co-hyponyms if they have the same hypernym:
cat and dog are co-hyponyms

• X is a meronym of Y if X is a part of Y:
wheel is a meronym of car

• X is a holonym of Y if Y is a part of X:
car is a holonym of wheel
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WordNet: word similarity

• Similarity between synsets:

sim(S1, S2) = 1
length(path(S1, S2))

• But! word type 6= synset.

sim(w1, w2) = max
S1,S2
w1∈S1
w2∈S2

sim(S1, S2)

• Limitation: all edges in WordNet are not of the same “length”
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WordNet: word similarity

• Probability P(S) that a word in a corpus is an instance of S

• From information theory: information content of S is − log(P(S))

• Lowest Common Ancestor of S1 and S2: LCA(S1, S2)

• Then, similarity between S1 and S2 (Resnik, 1995):

simResnik(S1, S2) = − log(P(LCA(S1,S2)))

• or (Lin, 1998)

simLin(S1, S2) = 2× log(P(LCA(S1, S2)))
log(P(S1)) + log(P(S2))
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Problems with feature based representation

• Requires (a lot of) human annotations

• Subjectivity of the annotators

• Does not adapt to new words (languages are not stationary!):
Mocktail, Guac, Fave, Biohacking

were added to Merriam-Webster in 2018

• Existing online taxonomy like WordNet are not always very precise:
• “Good” synonyms: skillful, practiced, proficient, adept

→ It does not scale easily to new languages, new concepts, new words...
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Distributional Representation
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Distributional hypothesis

“You shall know a word by the company it keeps” Firth (1957)

• Meaning of a word = set of contexts in which it occurs in texts

22 / 68



Example: What is the meaning of “bardiwac”?

• He handed her a glass of bardiwac.

• Beef dishes are made to complement the bardiwacs.
• Nigel staggered to his feet, face flushed from too much bardiwac.
• Malbec, one of the lesser-known bardiwac grapes, responds well to

Australia’s sunshine.
• I dined off bread and cheese and this excellent bardiwac.
• The drinks were delicious: blood-red bardiwac as well as light, sweet

Rhenish.
→ bardiwac is a heavy red alcoholic beverage made from grapes3

3Evert (2010)
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Distributional word representation in a nutshell

• Define what is the context of a word
• Count how many times each target word occurs in this context
• Build vectors out of (a function of) these context occurrence counts

xw = f (w ,Context(w))

Caveat:
• Similar vectors represent words with similar distributions in contexts
• Distributional hypothesis: bridging assumption from distributional

representation to semantic representation
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What is the “context”?

A

The silhouette of the sun beyond a wide-open bay on the lake;
the sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners4

4Bruni et al. (2012)
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What is the “context”?

A window of surrounding words after preprocessing

The silhouette of the sun beyond a wide-open bay on the lake;
the sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners4
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Distributional word representation in a nutshell

• Define what is the context of a word
• Count how many times each target word occurs in a certain context
• Build vectors out of (a function of) these context occurrence counts

Caveat:
similar vectors represent words with similar distributions in contexts
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Collecting context counts for target word dog

The dog barked in the park.
The owner of the dog put him
on the leash since he barked.

barked ++
park +

owner +
leash +

co-occurence # dog
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The co-occurrence matrix

leash walk run owner pet barked

dog 3 5 2 5 3 2
cat 0 3 3 2 3 0
lion 0 3 2 0 1 0
light 0 0 0 0 0 0
bark 1 0 0 2 1 0
car 0 0 1 3 0 0

28 / 68



Distributional word representation in a nutshell

• Define what is the context of a word
• Count how many times each target word occurs in a certain context
• Build vectors out of (a function of) these context occurrence counts

Caveat:
similar vectors represent words with similar distributions in contexts
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Word vectors from context occurence counts

• Goal: Build word vectors from occurence count with their context

• We focus on context as a fixed size window around the word

• Distance between vectors should reflect “similarity” between words
(cosine distance, l2...)
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Word vectors from context occurence counts

leash walk run owner pet barked the

dog 3 5 2 5 3 2 8
lion 0 3 2 0 1 0 6
light 0 0 0 0 0 0 5
bark 1 0 0 2 1 0 0
car 0 0 1 3 0 0 3

• Naive approach: takes the row of the co-occurence matrix O
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Word vectors from context occurence counts

Problems with using the co-occurence matrix O directly:

• Co-occurence matrix norm is proportional to corpus size

• Entries associated with frequent words dominate the matrix

• Sensitive to small changes in counts of rare words
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Pointwise Mutual Information Matrix

• An alternative context weighting is the Mutual Information (MI):

MI(i , j) = log p(i , j)− log p(i)− log p(j)

• In our case p(i , j) = Oi ,j/n and p(i) =
∑

j Oij/n

• The resulting matrix is called the Pointwise Mutual Information
(PMI) matrix.
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Pointwise Mutual Information Matrix

• Co-occurence matrix norm is proportional to corpus size

→ divide entries by it:
Pij = 1

nOij

• Entries associated with frequent words dominate the matrix
→ Normalized vector by word counts:

Qij = Pij
PjPi

where Pi =
∑

j
Pij =

∑
j

Pji

• Sensitive to small changes in counts of rare words
→ take the log to smooth high frequencies:

Rij = log Qij

Rij is the PMI matrix
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Limitations of PMI

• MI is sometimes criticized (Manning and Schütze, 1999) because it
only takes relative frequency into account, and thus overestimates
the weight of rare events/dimensions:

w2 w2 fq(w1,w2) fq(w2) MI

dog domesticated 29 918 0.03159
dog sgjkj 1 1 1

• Word pairs with p(a, b) < p(a)p(b) lead to instability in MI
Example
• with context size = 3: p(”a”, ”the”) << p(”a”)p(”the”)
• p(”a”) = 0.1, p(”the”) = 0.2
• p(”a”, ”the”) = 10−5 → MI(”a”, ”the”) = −7.6
• p(”a”, ”the”) = 10−9 → MI(”a”, ”the”) = −16.8

• Small error in estimation of rare events are blown out by log (impacts
the similarities between words)
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Dimensionality reduction

• The word vectors are the rows of the PMI matrix

• The size of word vector is the size of the vocabulary

• Problems:
• Requires lot of memory: needs to store in sparse matrix all non-zero

co-occurence.
• large dimensional vectors are hard to handle (e.g. in a text classifier)
• cannot compare word vectors estimated on 2 different corpora unless

they have exactly the same vocabulary!

• Solution: build vectors with fixed predefined size from the PMI
matrix
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Dimensionality reduction
• PMI does not differentiate between words and context: symmetric

matrix

• However PMI matrix O is not positive definite

• We build a similarity matrix between words as: S = OOT

• S is a symmetric positive definite matrix that measure similarity
between words based on PMI

• Goal Find a n × d dimensional matrix Xd such that:
Xd = argminY‖S− YYT‖22

• Xd ’s row are word vectors that explain most of the variance of S,
and thus M

• Solution: truncated Singular Value Decomposition (SVD) 37 / 68



Truncated Singular Value Decomposition (SVD)

• The SVD of a matrix A is:

A = UΣVT

where Σ is a diagonal matrix with the singular values, and U and V
are orthonormal basis.

• The truncated SVD is:

Ad = Ud ΣdVT
d

Σd is the diagonal matrix formed with the d largest singular value.
Ud is the matrix formed by the d columns of U corresponding to the
d largest singular value.
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Dimensionality reduction

• Since S is definite positive, ∀i , λi (S) ≥ 0

• Apply SVD to S, the matrix of word vectors is:

Xd = Ud (Σd )1/2

• Each row of Xd is a word vector
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Different examples of distributional word representation

We have seen one instance of word vector, but we can vary many
parameters:

Linguistic parameters
Pre-processing and linguistic annotation - raw text, stemming,
POS tagging and lemmatisation, (dependency) parsing, semantically
relevant patterns
Context Definition - document, sentence, window, dependency
relations, etc.

Mathematical parameters
Matrix column and row entries - words, document id
Context weighting (w) - log-frequency, association scores, entropy,
etc.
Measuring similarity (s) - cosine similarity, Euclidean, Manhattan,
Minkowski (p-norm)
Dimensionality reduction (r) - feature selection, SVD projection
(PCA), random indexing
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Distributional word representation: in a nutshell

• Define what is the context of a word

• count how many times each target word occurs in this context
→ co-occurence matrix O

• build vectors out of (a function of) these context occurrence counts
→ Similarity matrix S = φ(M) (e.g., PMI)

• Reduce dimensionality with SVD
→ matrix of word representation: X = argminY∈Rn×d‖S− YYT‖22
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Limitations of this approach

• Building the co-occurence matrix: O(V 2) in memory (e.g. on
Common Crawl: V = 2M)

• Complexity of truncated SVD: O(d2V )

• Inefficient to build a large matrix and reduce it later: Can we do
both simultaneously?
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Continuous Word Representations
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Learning distributed word representation

• Directly learning low dimensional vectors

• Moving from count based statistics to machine learning

• Key idea 1 (Collobert and Weston, 2008)
Learning distributed word vectors as a discriminative problem

• Key idea 2 (Mikolov et al., 2013)
Efficient online training to scale to large dataset

• State-of-the-art model: word2vec by Mikolov et al. (2013)
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Word2vec: the skipgram model

• word2vec: context is a fixed size window around the word

• Skipgram predicts context words from the focus word

sun still glitters although evening has arrived in Kuhmo.
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Word2vec: word vectors as a discriminative problem

• Given a dataset of N tokens and a vocabulary of V words

• Each word i in the vocabulary is associated with a word vector
w ∈ Rd and a context vector c ∈ Rd , with d << V

• Denote by W the matrix with the i-th row equal to wi (same for C)
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Skip-gram objective intuition (1)

→ Estimate probability of getting a context (output) word knowing
a focus (input) word
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Skip-gram intuition (2)

Figure: Intuition on skip-gram objective 5

→ Probability of focus-context observed should be high

5word2vec explained
48 / 68
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Skipgram model

• Max-likelihood estimator
C,W = arg maxc∈C ,w∈W p(c|w)

• Intuition on Skip-gram

p(c|w) = ecT w∑
w∈W ecT w

• Giving log likelihood estimator

c.w + log
∑

w∈W e−cT w

• Problem : large vocabulary makes this estimation computationally
heavy (memory, time)
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Word2vec: efficient distributed training

• Computing softmax over the whole vocabulary is slow O(V )
→ Replace it by negative sampling

• Negative sampling (Skipgram)
Sample K << V words vk that does not appear in the context of w
and replace softmax by sum of 1-versus-all losses:

log σ(w, c) + 1
K

∑
k∈Nn

log σ(−wn, vk)

where σ(x, y) = 1
1+exp(−xT y) is the sigmoid

• Important to sample negatives based on word frequency to match
dataset distribution:

pnegative(w) ∝ freq0.75(w)
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Optimization of word2vec

Gradient descent

Wt+1 ←Wt − αt
1
N

N∑
n=1
∇W`(wn, cn)

→ Requires a pass over dataset for one gradient: O(N)

Stochastic gradient descent with predefined sequential scheduler
- loop over the N tokens in dataset, take gradient step at each token
- Repeat process for E epoch. Total number of iteration T = NE
- t-th update:

Wt+1 ←Wt − αt∇W`(wn, cn)

with n = t/N

51 / 68



About word2vec

• Distributional continuous representation of words were until recently
the most popular and rich representation of words/tokens in NLP

• Still widely used

• Possesses many variants (wang2vec, context2vec, . . . ) and
alternatives (GloVe, FastText, etc.)

• Recently extended by contextual representation... (session 5)

52 / 68

https://nlp-ensae.github.io/files/NLP-ENSAE-lecture-5.pdf


Evaluation
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Evaluating word embedding

NB : Evaluating word embedding is hard (as any unsupervised algorithm)

• Qualitative evaluation
• Nearest-Neighbors
• Visualization (PCA, t-SNE6)

• Quantitative evaluation
• Word similarities compared with human
• Impact on downstream task

6https://distill.pub/2016/misread-tsne/
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Similarity of dense vectors

Two standard similarity metrics:

sim(w1,w2) = cos(xw1 , xw2) =
xT

w1xw2

||xw1 ||||xw2 ||

sim(w1,w2) = L2(xw1 , xw2) = ||xw1 − xw2 ||
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Nearest neighbors (qualitative)

• Trained on 1B tokens from Wikipedia, dimension 300

moon score

mars 0.615
moons 0.611
lunar 0.602
sun 0.602
venus 0.583

talking score

discussing 0.663
telling 0.657
joking 0.632
thinking 0.627
talked 0.624

blue score

red 0.704
yellow 0.677
purple 0.676
green 0.655
pink 0.612
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Visualization (qualitative)

Credit: Mikolov et al. (2013)
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Word similarities as intrinsic evaluation of word
representations

• Pairs of words rated for similarity or relatedness by humans
• Examples from the WordSim353 dataset:

word 1 word 2 score relation

tiger tiger 10.0 identical
dollar buck 9.22 synonymy
dollar profit 7.38 topic
smart stupid 5.81 antonymy

• Compare model scores with human scores:
• Pearson correlation coefficient
• Spearman rank correlation coefficient
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Downstream Tasks Impact

• Two word embedding A and B

• Train a model on a task that requires some word-level representation
and relevant to a NLP problem of your interest

• Train model using word embedding A and evaluate it quantitatively.
Train it using word embedding B and evaluate it quantitatively

• Conclude on what is the best embedding for this task
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Applications of word embeddings

• Word sense induction

• Semantic analysis (semantic shift in time, across communities...)

• Downstream Tasks (session 3 and 4)
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Challenges

• Out-of-Vocabulary (OOV)

• How to extend an embedding space ?

• Polysemy

• Biases
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Extensions

• Other similar approaches : CBOW, Glove, Fastext

• Other level of analysis : sub-word level, strings, ...

• Multilingual word embeddings

• Contextual representations of words
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Contextual Word Embeddings
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Contextual Word Embeddings

• 1 static vector for 1 word is sub-optimal for representating polysemy
and handling ambiguity in text

• Can we get a word vector that depends on its context ?
ELMo, BERT (Session 5)
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Representing sentences and documents

Remarks
• There is no universal way of representing a sentence or a document

with a vector
• The method you use should be based on your final use

Based on word vectors representing sentence/document with vector can
be done in a straightforward way with
Given sequence of word represented by x1, .., xn

[x1,.., xn] → f (x1, .., xn)
For instance:

[x1,.., xn] → 1
n

∑
i xi

NB : many other techniques exists (Doc2vec, skip-thought, BERT, tf-idf,
LDA,...)
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Session Summary

Word level representation
• 1-hot vector

• Feature based

• Distributional representation with Skip-Gram model

• Evaluation of word vectors

• Extensions
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