

Table of Contents

Page	Lesson Score Assigned I		Assigned Date
1	Title page		
2	Table of contents		
3	Textbook Scavenger Hunt /15		
4	Textbook Scavenger Hunt	/19	
5	Lab book Scavenger Hunt	/25	
6	Lab Safety Rules	/4	
7	Metric System Notes	/4	
8	Metric Ladder System	/12	
9	Science Process Handout	/4	
10	Science Process Handout	/5	
11	The Scientific Method Video Questions	/12	
12	The Scientific Method Video Questions	/8	
13	The Scientific Method Video Hidden Word Puzzle	/16	
14	The Scientific Method Video Hidden Word Puzzle		
15	Experimental Design Practice	/9	
16	Experimental Design Practice	/9	
17	Experimental Design Practice	/13	
18	Matter Notes	/4	
19	Matter Notes	/4	
20	Inquiry 14.2	/8	
21	Inquiry 14.2	/11	
22	Energy Notes		
23	Energy Notes	/4	
24	Density Lab	/11	
25	Density Lab	/8	
26	Density Lab	/3	
27	Nature of Science Vocabulary Review	/38	
28	Nature of Science Vocabulary Review		
29	6-8 inquiry standards		
30	6-8 inquiry standards		
31	6-8 inquiry standards		

Textbook Scavenger Hunt

Use the textbook to answer the following questions. You will need to use the table of contents, glossary, index, etc. (1 pt. Each)

1.	What 1	Unit is Earth's Internal Processes?
	a.	What page does this Unit start on?
	b.	How many chapters are in the Unit?
2.	What	Chapter is on Earth's Energy and Mineral Resources?
	a.	What page in this chapter does section two start on?
	b.	How many vocabulary words are in section 2?
3.	What 1	Page does the Reference Handbook start on?
	a.	What is the equation to convert Celsius to Fahrenheit?
	b.	On what two pages is the periodic table? (Hint: NOT THE BACK
		COVER)
4.	What i	is the definition of Science?
	a.	What chapter, section and page is the definition of science located?
	b.	What page has a picture of Devil's Postpile?
	c.	What state is Devil's Postpile in and how was it made?
5.	What :	5 pages mention the Hubble Space Telescope?
6.	What t	two things did Johannes Kepler discover?

Textbook Scavenger Hunt

/19

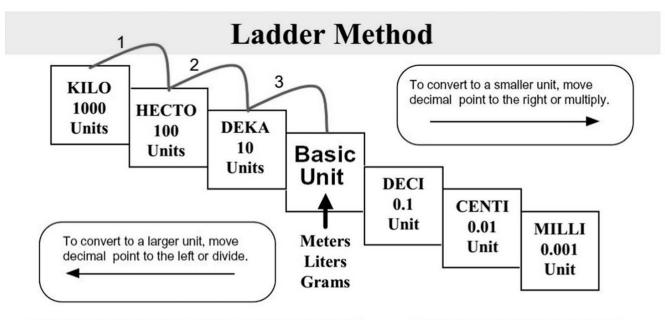
Use the textbook to answer the following questions. You will need to use the table of contents, glossary, index, etc. (1 pt. Each)

a.	What page talks about Johannes Kepler?
7. What	object started the age of technology ?
a.	What were they used for?
8. How i	many Eons are there in the geologic time of the Earth?
a.	How many Eras?
b.	How many periods?
c.	How many Epochs?
d.	What was the big event that happened in the Devonian Period?
9. What	type of filter does sewage get treated with last?
10. Draw	a diagram of the Rock cycle. Make sure to label the diagram (10 pt. Each).

Lab book Scavenger Hunt

/25

Use the two lab books to answer the following questions. You will need to use the table of contents, glossary, index, etc. (1 pt. Each)


Catast	rophic Events Lab book
1.	How many parts are in this book?
	a. What are the names of these parts?
2.	What lesson covers plotting earthquakes?
	a. What page does the lesson begin on?
3.	What does the bolded blue/green color indicate about the various sections of the book?
4.	What page does the Glossary start on?
	a. What does the word "model" mean?
5.	What page does the index start on?
	a. What page, <u>NOT</u> in the glossary, can you find the definition of model?
	b. What three pages talk about density?
6.	Benjamin Franklin made some of the <u>earliest studies</u> of what?
	a. What did he investigate?
	b. What did he find out?
Earth	in Space Lab Book
7.	How many parts are in this book?
	a. What are the names of these parts?
8.	What lesson covers surface features?
	a. What page does the lesson begin on?
9.	What does the bolded blue/green color indicate about the various sections of the book?
10.	What page does the Glossary start on?
	a. What does the word "scale" mean?
11	What page does the index start on?
11,	a. What page, NOT in the glossary, can you find the definition of lunar eclipses?
	b. What three pages talk about Mercury?
12	Nicholas Copernicus, in the early 1500's, modified what model?
12.	a What did he say was the center of the universe?

Lab Rules	
Clean up	

Length and Distance	
Volume	
Temperature	
Mass	

Metric Ladder Method

/12

How do you use the "ladder" method?

1st – Determine your starting point.

2nd – Count the "jumps" to your ending point.

 3^{rd} – Move the decimal the same number of jumps in the same direction.

How many jumps does it take?

$$4...$$
 = 4000 m

Complete the following metric conversions using the ladder method (1 pt. each)

1) 76 cm =mm	7) 587 kL = dL
2) 9.7 g =kg	8) 76 cm =km
3) 10.8 mm =m	9) 67.98 dg =mg
4) 907 mL =hL	10) 0.723 m =mm
5) 60.09 m =dm	11) 9876 dg =hg
6) 435 mg =dkg	12) 7897 mm =m

Science Process Notes

/4

Question:

 To write a question, you first 	it need to define your variab	les:
I will change(Manip	oulated Variable)	
 I will measure(Resp 	onding Variable)	
I will keep the same	(Controlled Variables)	
Then, you will write a testal	ole question:	
What is the effect of	on.	?
	(Manipulated Variable)	(Responding Variable)
	OR	
o How does	affect	?
(Manipula	ated Variable) (Re	esponding Variable)
Hypothesis:		
• If I	, then I predict	,
(How I change the manipulat	ed variable?) (How t	the responding variable will change?)
because	···	
(Why?)		

Materials:

• List any items that are required to do the experiment and include tools needed to measure the variables.

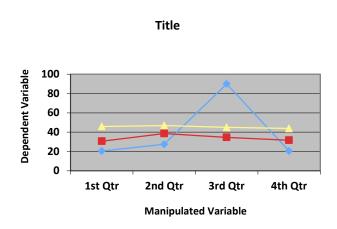
Procedures:

- Use detailed numbered steps
- Describe and label:
 - What you will change (manipulated variable).
 - o What you will keep the same (controlled variables).
 - o What you will observe/measure (responding variable).
- Explain how and where you will record your measurements (and tell what unit of measurement you are using).
- Explain that you will repeat your experiment at least 2 more times.
- Set up a table or graph to record your data.

Science Process Notes

/4

Math for Explanatory


Language

High

Low

Table/Graph Samples:

Manipulated Variable (what I changed)	Responding Variable (what I measured/observed)include units!!!			
	Trial 1	Trial 2	Trial 3	Average

Conclusion:

Conclusive statement:

1. What is the answer to your investigation questions? ______

Supporting Data:

- 1. What is your lowest average? _____
 - a. What variable was this for? _____
- 2. What is your highest average? _____
 - a. What variable was this for? _____

Explanatory language:

- 3. What is the difference between your high and low data? _____
- 4. How does this number prove your answer to the investigation question?

Reflection: (Answer the following)

- Identify one change you could make to your investigation and describe how this change could improve your investigation.
- How can you apply your conclusion from this lab to the real world?

The Scientific Method Video Questions

Complete each sentence by filling in the blank (1 pt. each)

1.	Using the scientific method to solve questions, which affect us all, is called?
2.	Pure science research has no immediate application to our lives; it is done because
	scientists are about the world.
3.	A hypothesis is called an "educate guess" because
4.	A hypothesis is testable; it is proven right or wrong by
5.	Often confused with hypothesis; a theory is produced
	experimentation to explain a body of data.
6.	Experiments contain an variable; the factor being changed.
7.	And avariable; the result which is measured.
8.	The experiment is performed on the experimental group – the results are compared to the
	group which has the same conditions as the experimental
	group except the independent variable (manipulated) variable is not changed.
9.	In designing experiments scientists must try to think of all the factors, which could change
	the outcome of the experiment; these are the variables.
10	. To reduce the risk of chance affecting the outcome of the experiment,
	must be done to average out the errors and increase confidence in the data.
11	. To reduce the Placebo Effect in human studies, researchers may do
	experiments where both experimental and control groups receive the same pill or
	treatment.
12	. Double blind experiments are used to eliminate of the scientists
	themselves as a factor in the experiment.

6-8 INQB - Different kinds of *questions* suggest different kinds of scientific *investigations* about the world.

6-8 INQA - Scientific inquiry involves asking and answering questions and comparing the answer with what

6-8 INQC - Collecting, analyzing, and displaying data are essential aspects of all *investigations*

scientists already know.

The Scientific Method Video Questions

Complete each sentence by filling in the blank (1 pt. each)

13.Scient	tists usually use	% as the level of confidence to show that the
indep	endent (manipulated) varia	ble caused the effect seen in an experiment.
14. An av	verage of yea	ers and 39 million dollars are need to do he research to get
a new	drug approved for human	use in the United States.
15. The	U.S	administration reviews all research and
appro	oves or rejects all drugs for h	uman use.
16.Defin	e (1 pt. each):	
a.	Hypothesis:	
b.	Experimental Group:	
C.	Placebo:	
d.	Variable:	
e.	Analysis:	

6-8 INQD - For an *experiment* to be valid, all (*controlled*) *variables* must be kept the same whenever possible, except for the *manipulated* (*independent*) *variable* being tested and the *responding* (*dependent*) *variable* being measured and recorded. If a *variable* cannot be *controlled*, it must be reported and accounted for.

6-8 INQE — **Model**— *Models* are used to represent objects, events, *systems*, and processes. *Models* can be used to test *hypotheses* and better understand *phenomena*, but they have limitations.

6-8 INQF - It is important to distinguish between the results of a particular *investigation* and general conclusions drawn from these.

6-8 INQG - Scientific reports should enable another investigator to repeat the study to check the results .

The Scientific Method Video Hidden Word Puzzle

Use the clues on the next page to fill in the words and you will discover the hidden words in the brackets [__]. (1 pt. each)

1.	[]Blind
2.	
3.	
4.	[] Science
5.	
6	
7.	[] Science
8.	
9.	[] Group
10.	[] Group
11.	
12.	
13	
14.	
15.	[] Blind
16.	[]

The Scientific Method Video Hidden Word Puzzle

- 1. Experiment in which researchers know which group is being tested.
- 2. Well known effect on people in an experimental group they do what is "expected."
- 3. Gathering data during an experiment.
- 4. Science to satisfy curiosity.
- 5. Answer reached at the end of an experiment
- 6. Multiple tests of the same experiment
- 7. Science to answer a well-known problem
- 8. A real difference in the experimental group
- 9. Individuals being tested
- 10. Serves as a standard of comparison
- 11. Activities to test hypothesis
- 12. Variable that is being measured
- 13. Variable being changed
- 14. Possible answer to a question
- 15. Experiment in which neither the researcher nor the subjects know who is being tested
- 16. Evidence gathered during an experiment.

Word Bank

Double	Single	Dependent	Experiment
Experimental	Repeated Trials	Observations	Conclusion
Pure	Hypothesis	Placebo	Data
Independent	Applied	Control	Significant

- **6-8 INQA** Scientific *inquiry* involves asking and answering *questions* and comparing the answer with what scientists already know.
- **6-8 INQB** Different kinds of *questions* suggest different kinds of scientific *investigations* about the world.
- 6-8 INQC Collecting, analyzing, and displaying data are essential aspects of all investigations
- **6-8 INQD** For an *experiment* to be valid, all (*controlled*) *variables* must be kept the same whenever possible, except for the *manipulated* (*independent*) *variable* being tested and the *responding* (*dependent*) *variable* being measured and recorded. If a *variable* cannot be *controlled*, it must be reported and accounted for.
- **6-8 INQE Model Models** are used to represent objects, events, *systems*, and processes. **Models** can be used to test *hypotheses* and better understand *phenomena*, but they have limitations.
- **6-8 INQF** It is important to distinguish between the results of a particular *investigation* and general conclusions drawn from these.
- 6-8 INQG Scientific reports should enable another investigator to repeat the study to check the results .

Experimental Design Practice

/9

Read the following description of the this experiments and identify the elements of the experiment. (5 pts.)

Sam's algae farm

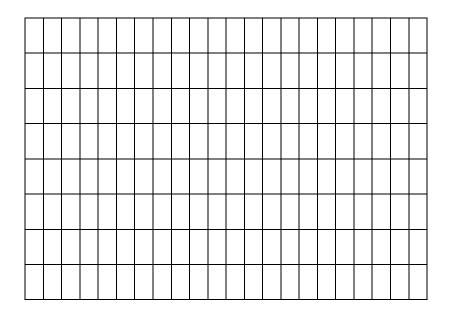
Sam wished to investigate how fertilizer run-offaffects the growth of algae in freshwater lakes and streams. He set his experiment up in this was. He placed 900 mL of water into each of 5-1000 mL glass beakers. To each beaker he added 5 mL of water from an aquarium which contained a large concentration of algae. The beakers were placed under a grow light which was timed to provide 12 hourse of light each day. Liquid fertilizer was added to the beakers in the following amounts: beaker 1-1000 mL fertilizer, beaker 1-1

1.	Manipulated variable (independent)							
2.	Responding variable (dependent)							
3.	Controlled variable (constant)							
4.	Controlled va	ariable (constant)						
5.	Controlled va	ariable (constant)						
Correc	tly complete	the following data tal	ble to go along with t	he above experimen	t (4 pts.)			

6-8 INQC - Collecting, analyzing, and displaying data are essential aspects of all *investigations* **6-8 INQD** - For an *experiment* to be valid, all (*controlled*) *variables* must be kept the same whenever possible, except for the *manipulated* (*independent*) *variable* being tested and the *responding* (*dependent*) *variable* being measured and recorded. If a *variable* cannot be *controlled*, it must be reported and accounted for.

Experimental Design Practice

/9


Read the following description of the this experiments and identify the elements of the experiment. (5 pts.)

Brittany's new wheels

Brittany wanted to find out which wheels were best for her skateboard. She purchased 4 sets of new wheels of different brands. She and a friend set up a slalom course on her driveway. Brittany rode through the course 5 times on each set of wheels. Her friend timed her with a stop watch and recorded the times. They then averaged the times for each wheel.

1.	Manipulated variable (independent)
2.	Responding variable (dependent)
3.	Controlled variable (constant)
4.	Controlled variable (constant)
5.	Controlled variable (constant)

Correctly complete the following graph to go along with the above experiment (4 pts.)

6-8 INQC - Collecting, analyzing, and displaying data are essential aspects of all *investigations* **6-8 INQD** - For an *experiment* to be valid, all (*controlled*) *variables* must be kept the same whenever possible, except for the *manipulated* (*independent*) *variable* being tested and the *responding* (*dependent*) *variable* being measured and recorded. If a *variable* cannot be *controlled*, it must be reported and accounted for.

Experimental Design Practice

/13

Read the following description of the this experiments and identify the elements of the experiment. (5 pts.)

Musical tests

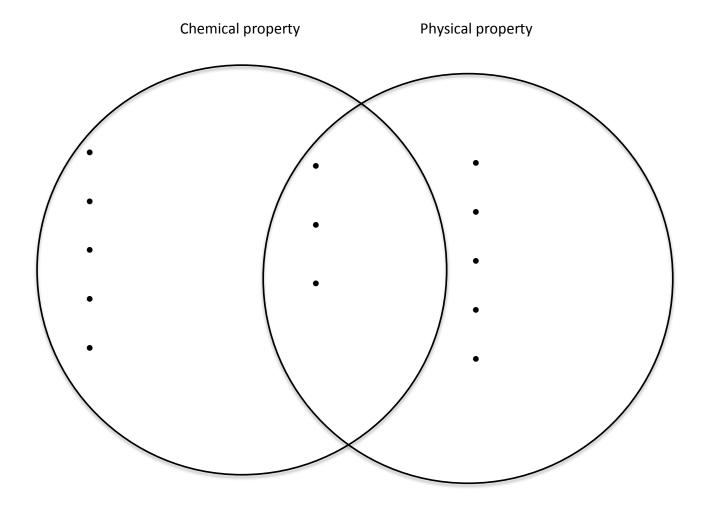
John's parents would not let him study while listening to CD's in his room. They told him that he could not concentrate with the background noise. He decided to test this idea with an experiment on his class. Each Friday his english class took a vocabulary quiz on 25 new words learned that week. John got his teacher's permission to try his experiment. On the forst Friday of his test he played a rock song in the classroom while the class took the test and the following week the class took the test with the normal quiet atmosphere of a classroom. John calcualted the average score on the two vocabulary test.

	Manipulated variable (independent)
2.	Responding variable (dependent)
3.	Controlled variable (constant)
4.	Controlled variable (constant)
5.	Controlled variable (constant)
Corre	ctly complete the following inquiry components to go along with the above experiment (4 pts.each)
	Investigation questions
6.	
6.	Investigation questions
6.	Investigation questions Hypothesis

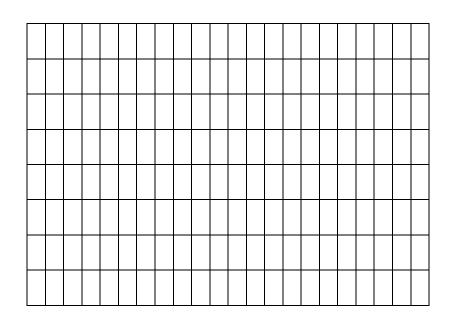
6-8 INQA - Scientific *inquiry* involves asking and answering *questions* and comparing the answer with what scientists already know.

6-8 INQB - Different kinds of *questions* suggest different kinds of scientific *investigations* about the world **6-8 INQD** - For an *experiment* to be valid, all (*controlled*) *variables* must be kept the same whenever possible, except for the *manipulated* (*independent*) *variable* being tested and the *responding* (*dependent*) *variable* being measured and recorded. If a *variable* cannot be *controlled*, it must be reported and accounted for.

Matter Notes


/4

Matter	
Atoms	
Mass	
States of	
matter	
Volume	
Density	
Physical	
property	
Chemical	
property	


Matter Notes

/4

Physical change	
Chemical change	

Complete the following data table and graph as you conducted inquiry 14.2 (4 pts. Each)

Inquiry 14.2

/11

Complete the following questions after conducting inquiry 14.2.


Reflection	Questions:
A.	What is the weight of five washers? (1pt)
В.	When you increased the mass of the cylinder, what happened to its weight? (1pt)
C.	How are mass and weight related? (2pt)
D.	From your reading, you know that a force is a push or pull on or by an object. What is the name of the force that makes the cylinder have weight? (1pt)
E.	In what direction does this force pull on the cylinder? (1pt)
F.	If weight is the measure of the force of gravity pulling on an object, which planet has a greater force of gravity pulling on objects; In what direction does this force pull on the cylinder? (2pt) 1
G.	What force holds us to Earth's surface? (1pt)
Н.	What two factors affect the gravity at a planet's surface? (2pt) 1 2

Energy Notes

ENERGY!

Mechanical Energy: is the energy an object has because of its motion or position.

The Two Kind of Mechanical Energy

Energy stored in matter.

Thermal Energy is the vibration and movement of the atoms and molecules *within* substances. As an object is heated up, its atoms and molecules move and collide faster (when thermal energy is transferred it becomes heat energy).

Gravitational Energy is energy stored in an object's height. The higher and heavier the object, the more gravitational energy is stored.

Electrical Energy is energy that is produced by electric charges. It's what is stored in a battery, and can be used to power a cell phone or start a car.

Elastic Energy: energy stored when a body is deformed. Compressed springs and stretched rubber bands are examples of stored mechanical energy or elastic energy.

Chemical Energy is energy stored in the bonds of atoms and molecules. It can also be called food energy because it is the energy stored in the food we eat. A chemical change occurs when we eat the food. Our bodies convert the energy in food into kinetic energy to do work.

Nuclear Energy is energy stored in the nucleus of an atom.

Kinetic Energy

Energy of motion.

Heat Energy: When an object's thermal energy is transferred by:

- Conduction: the transfer of thermal energy from a warmer substance to a cooler substance through direct contact.
- Radiation: transfer of thermal energy in the form of electromagnetic waves or rays. Energy is released by one body, transmitter through the space between, and absorbed by another body.
- Convection: the transfer of thermal energy in a fluid (liquid or gas), in which warmer fluid rises and cooler fluid sinks in a convection current.

Sound is the movement of energy through substances in waves. Sound is produced when a force causes an object or substance to vibrate — the energy is transferred through the substance in a wave.

Radiant or Light Energy: is energy carried by light and other kinds of electromagnetic waves. It includes visible light, sunlight, light beams, solar energy, x-rays, gamma rays and radio waves.

Energy Notes

- 1	

Energy	
Heat	
Radiation	
Conduction	
Convection	

Density Lab- Cube Identification

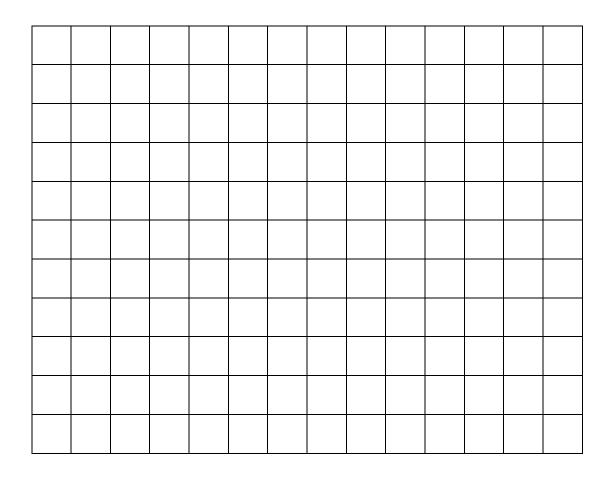
/11

Complete the data tables as you go through the Density Lab – cube identification. (4 points each)

Variables	Cube number					
	#1	#2	#3	#4	#5	#6
Volume						
Mass						
Density						
Identity						
			Cube 1	number		
	#7	#8	Cube 1	number #10	#11	#12
Variables	#7	#8			#11	#12
Variables	#7	#8			#11	#12
Variables Volume	#7	#8			#11	#12

Complete these	questions as ye	ou go through	the Density	y Lab – cube	identification.

A.	Which cube has the most amount of matter? Explain your answer. (1 pt.)
В.	Which cube has the least amount of matter? Explain your answer. (1 pt.)
C.	If 1 cm ³ is equal to one ml, calculate the density of a 500mL bottle of water that masses 20g. (1 pt.)


Density Lab- Irregular objects

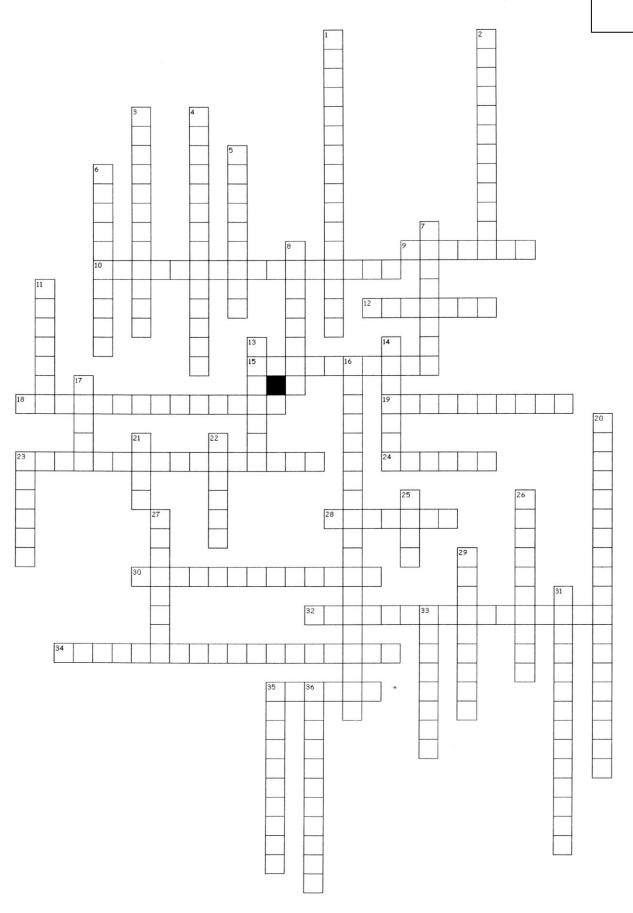
/8

Complete the data table as you go through the Density Lab. (4 points each)

Variables	Object					
	Blue Marble	Small Metal Sphere	Medium Metal Sphere	Dice	Washer	Penny
Volume						
Mass						
Density						

Complete the graph as you go through the Density Lab – irregular objects. (4 points each)

Density Lab- Irregular objects


/3

Complete these questions as you go through the Density Lab – Irregular Objects.

A.	Which irregular object has the most amount of matter? Explain your answer. (1 pt.)
В.	Which irregular object has the least amount of matter? Explain your answer. (1 pt.)
C.	Explain how to find the volume of an irregular object. (1 pt.)

Nature of Science Vocabulary Review

/38

Across

- 9. The standard for comparison in an experiment.
- 10. A property that describes a change that occurs when one substance reacts with another.
- 12. A particle without an electric charge that is located in the nucleus of an atom.
- 15. The transfer of energy that occurs when molecules bump into one another (i.e. Direct contact).
- 18. Solid, liquid, gas, & plasma.
- 19. The use of scientific discoveries for practical purpose, making people's lives better.
- 23. A property that you can observe without changing the substance into a new substance.
- 24. The study of moral values about what is good or bad.
- 28. A property of matter found by dividing the mass by its volume.
- 30. Rule that describes the behavior of something in nature; usually describes what will happen in a situation but not why it happens.
- 32. Problem-solving procedures that can include identifying the problem or question, gathering information, developing a hypothesis, testing the hypothesis, analyzing the results, and drawing conclusions.
- 34. The factor being measured in an experiment.
- 35. Anything that has mass (made up of atoms) and takes up space; its properties are determined by the structure of its atoms and how they are joined.

Down

- 1. Evidence supported explanation that is supported by results from repeated experimentation or testing.
- 2. The number of protons in an atom.
- 3. The study of Earth and space, including rocks, fossils, climate, volcanoes, land use, ocean water, earthquakes, and objects in space.
- 4. A change that occurs when one or more physical properties of a substance are changed.
- 5. Different factors that can be changed in an experiment.
- 6. The transfer of energy that occurs by flow of material.
- 7. Components of a homogeneous mixture evenly mixed throughout.
- 8. When atoms of more than one element combine for example, water or table salt.
- 11. Substance that contains only one type of atom for example oxygen, aluminum, or iron.
- 13. The process of looking at and studying things in the world in order to gain knowledge.
- 14. Composed of two or more substances that are not chemically combined for example, salt mixed with liquid water or rock containing a variety of minerals.
- 16. The factors/variables that do not change in an experiment.
- 17. Tiny building blocks of matter; made up of protons, neutrons, and electrons.
- 20. The factor that changes in an experiment.
- 21. The amount of matter in an object.
- 22. The amount of space an object takes up.
- 23. Positively charged particle that is located in the nucleus of an atom.
- 25. Personal opinion.
- 26. An educated guess.
- 27. Negatively charged particle that moves around the nucleus of an atom and forms an electron cloud.
- 29. The transfer of energy that occurs in the form of rays or waves.
- 31. A change that occurs when one or more substances are changed into new substances with different properties.
- 33. Atoms of the same element that have different numbers of neutrons for example, Carbon-12 or Carbon-14.
- 35. The number of protons plus the number of neutrons in an atom.
- 36. The amount of heat/thermal energy in a substance.

VOLUME –
TEMPERATURE
MASS
HYPOTHESIS –
SCIENTIFIC METHOD –
SCIENCE
EARTHSCIENCE
VARIABLES –
MANIPULATEDVARIABLE
RESPONDINGVARIABLE –
CONTROLLEDVARIABLES –
CONTROL –
TECHNOLOGY
SCIENTIFIC THEORY-
SCIENTIFIC LAW
ETHICS –
BIAS –
MATTER
ATOMS –
PROTON –

NEUTRON	
ELECTRON -	
DENSITY –	
ELEMENT -	
MASS NUMBER –	
ISOTOPES –	
SOLUTION –	
CONDUCTION –	
RADIATION –	

6-8 Inquiry Standards

Goal: Variables of an Experiment (6-8 INQD)

Score	Description
4	Student will demonstrate proficiency (LV. 3) and in addition, student demonstrates higher
Distinguished	level thinking which could include the concept of controlling variables during an
	experiment. What is the importance of reporting any variables that are NOT controlled?
	Why is there only 1 manipulated variable? Manipulated and responding variables describe
	actionable things.
3	Student can correctly identify <u>all three</u> types of variables in an experiment (i.e.
Proficient	manipulated, responding and controlled variables)
2	Student can correctly identify 2 of the 3 variables: controlled, manipulated or responding
Basic	variables in an experiment.
1	Student cannot identify 2 of the 3 variables: the controlled, manipulated or responding
Unsatisfactory	variable in an experiment.

Goal: Writing an Investigation Question (6-8 INQA)

Godii Willing	dir investigation question (o o nitqA)
Score	Description
4	Student will demonstrate proficiency (LV. 3) and in addition, student demonstrates higher
Distinguished	level thinking which includes identifying each variable (i.e. with labels or highlighting of
	manipulated and responding variables).
3	Student can design a relevant investigation question that can be tested, including what will
Proficient	be changed and what will be measured.
2	Student can design a relevant investigation question, but fails to describe either what is
Basic	changed or what is measured in the investigation.
1	Student designs an irrelevant investigation question (i.e. fails to describe both what is
Unsatisfactory	changed and what is measured in the investigation).

Goal: Writing a Hypothesis (6-8 INQB)

Score	Description
4	Student will demonstrate proficiency (LV. 3) and in addition, student demonstrates higher
Distinguished	level thinking which could include a prediction reason connecting the hypothesis with
	examples from outside the classroom.
3	Student can write a hypothesis that contains the IF (manipulated variable), THEN
Proficient	(responding variable: must specify type of change), BECAUSE (prediction reason)
	format. Prediction reason is unique from the manipulated or responding variables.
2	Student can correctly write one or two parts of a hypothesis (i.e. the IF, THEN, or
Basic	BECAUSE).
1	Student cannot write any parts of a hypothesis.
Unsatisfactory	

6-8 Inquiry Standards

Goal: Writing Procedures (6-8 INQB)

Score	Description
4	Student will demonstrate proficiency (LV. 3) and in addition, student demonstrates higher
Distinguished	level thinking which includes identifying the variables (i.e. labeling or highlighting).
3	Student can design a procedure that is appropriate for the question being asked which
Proficient	includes using detailed numbered steps, describing the variables, explaining how and where
	the responding variable will be measured and recorded, and mentions repeated trials.
2	Student can design a procedure that is appropriate for the question being asked which
Basic	includes describing the variables, explaining how and where the responding variable will be
	measured and recorded, but fails to include one of the following: uses detailed numbered steps or mentions repeated trials.
1	Student designs a procedure that is not appropriate for the question being asked (i.e. fails to
Unsatisfactory	include an explanation of where the responding variable will be measured and recorded,
	numbered steps, or steps are in illogical order).

Goal: Data Table (6-8 INQC)

Score	Description
4 Distinguished	Student will demonstrate proficiency (LV. 3) and in addition, student demonstrates higher level thinking which includes creating an orderly table including identifying the manipulative and responding variables (i.e. labeling or highlighting variables).
3 Proficient	Student can create a usable table that includes labeled headings with units based on their procedures (manipulated variable) and enough space to clearly record all collected data (responding variable) including averages.
2 Basic	Student can create a table that includes headings based on their procedures (manipulated variable) and enough space to clearly record data (responding variable). Fails to include units and/or data averages.
1 Unsatisfactory	Student creates a table showing they do not know how to organize information into a data table based on their procedures. Fails to report all data.

Goal: Graphing Data (6-8 INQC)

doui: <u>draphing bata</u> (0-8 invoc)			
Score	Description		
4	Student will demonstrate proficiency (LV. 3) and in addition, student demonstrates higher		
Distinguished	level thinking which could include making in-depth inferences and applications with the		
	concept graphing data by recognizing patterns and correlations.		
3	Student can correctly graph their data points including <u>all</u> components of a graph: Title, X		
Proficient	Axis, Y Axis, All data, Scale, interval, line of best fit (when applicable).		
2	Student can correctly graph their data points including 3 of the 5 components of a graph:		
Basic	Title, X Axis, Y Axis, All data, Scale, interval, line of best fit (when applicable).		
1	Student incorrectly graph their data points and/or use 2 or less components of a graph.		
Unsatisfactory			

6-8 Inquiry Standards

Goal: Writing a Conclusion (6-8 INQF)

Score	Description
4	Student will demonstrate proficiency (LV. 3) and in addition, student demonstrates higher
Distinguished	level thinking which includes a prediction for untested values of the manipulated variable.
3	Student can correctly answer the investigative question with a conclusive statement, and
Proficient	support the statement with both high and low data averages with mention of respective
	variables. Student uses explanatory language (i.e. interprets data by finding the difference
	between high and low values) to answer the investigative question.
2	Student correctly answers the investigative question with a conclusive statement, and
Basic	supports the statement with incomplete data (i.e. no mention of respective variables, does
	not provide data averages).
1	Student correctly answers the investigative question using no supportive data.
Unsatisfactory	