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Modelling and forecasting the dynamics of multiphysics 
and multiscale systems remains an open scientific prob-
lem. Take for instance the Earth system, a uniquely com-
plex system whose dynamics are intricately governed by 
the interaction of physical, chemical and biological pro-
cesses taking place on spatiotemporal scales that span 17 
orders of magnitude1. In the past 50 years, there has been 
tremendous progress in understanding multiscale physics  
in diverse applications, from geophysics to biophysics, by 
numerically solving partial differential equations (PDEs) 
using finite differences, finite elements, spectral and even 
meshless methods. Despite relentless progress, model-
ling and predicting the evolution of nonlinear multiscale 
systems with inhomogeneous cascades- of- scales by 
using classical analytical or computational tools inevi-
tably faces severe challenges and introduces prohibitive 
cost and multiple sources of uncertainty. Moreover, solv-
ing inverse problems (for inferring material properties  
in functional materials or discovering missing physics in  
reactive transport, for example) is often prohibitively 
expensive and requires complex formulations, new 
algorithms and elaborate computer codes. Most impor-
tantly, solving real- life physical problems with missing, 
gappy or noisy boundary conditions through traditional 
approaches is currently impossible.

This is where and why observational data play a cru-
cial role. With the prospect of more than a trillion sensors 

in the next decade, including airborne, seaborne and 
satellite remote sensing, a wealth of multi- fidelity obser-
vations is ready to be explored through data- driven meth-
ods. However, despite the volume, velocity and variety of 
available (collected or generated) data streams, in many 
real cases it is still not possible to seamlessly incorpo-
rate such multi- fidelity data into existing physical models. 
Mathematical (and practical) data- assimilation efforts 
have been blossoming; yet the wealth and the spatiotem-
poral heterogeneity of available data, along with the lack 
of universally acceptable models, underscores the need 
for a transformative approach. This is where machine 
learning (ML) has come into play. It can explore massive 
design spaces, identify multi- dimensional correlations 
and manage ill- posed problems. It can, for instance, 
help to detect climate extremes or statistically predict 
dynamic variables such as precipitation or vegetation 
productivity2,3. Deep learning approaches, in particular, 
naturally provide tools for automatically extracting fea-
tures from massive amounts of multi- fidelity observa-
tional data that are currently available and characterized 
by unprecedented spatial and temporal coverage4. They 
can also help to link these features with existing approxi-
mate models and exploit them in building new predictive 
tools. Even for biophysical and biomedical modelling, this 
synergistic integration between ML tools and multiscale 
and multiphysics models has been recently advocated5.
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Abstract | Despite great progress in simulating multiphysics problems using the numerical 
discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy 
data into existing algorithms, mesh generation remains complex, and high- dimensional problems 
governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with 
hidden physics is often prohibitively expensive and requires different formulations and elaborate 
computer codes. Machine learning has emerged as a promising alternative, but training deep neural 
networks requires big data, not always available for scientific problems. Instead, such networks can 
be trained from additional information obtained by enforcing the physical laws (for example, at 
random points in the continuous space- time domain). Such physics- informed learning integrates 
(noisy) data and mathematical models, and implements them through neural networks or other 
kernel- based regression networks. Moreover, it may be possible to design specialized network 
architectures that automatically satisfy some of the physical invariants for better accuracy, faster 
training and improved generalization. Here, we review some of the prevailing trends in embedding 
physics into machine learning, present some of the current capabilities and limitations and discuss 
diverse applications of physics- informed learning both for forward and inverse problems, including 
discovering hidden physics and tackling high- dimensional problems.
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A common current theme across scientific domains 
is that the ability to collect and create observational data 
far outpaces the ability to assimilate it sensibly, let alone 
understand it4 (Box 1). Despite their towering empiri-
cal promise and some preliminary success6, most ML 
approaches currently are unable to extract interpreta-
ble information and knowledge from this data deluge. 
Moreover, purely data- driven models may fit obser-
vations very well, but predictions may be physically 
inconsistent or implausible, owing to extrapolation or 
observational biases that may lead to poor generalization 
performance. Therefore, there is a pressing need for inte-
grating fundamental physical laws and domain knowl-
edge by ‘teaching’ ML models about governing physical 
rules, which can, in turn, provide ‘informative priors’ —  
that is, strong theoretical constraints and inductive 
biases on top of the observational ones. To this end, 
physics- informed learning is needed, hereby defined as 
the process by which prior knowledge stemming from 
our observational, empirical, physical or mathematical 
understanding of the world can be leveraged to improve 
the performance of a learning algorithm. A recent exam-
ple reflecting this new learning philosophy is the family 

of ‘physics- informed neural networks’ (PINNs)7. This 
is a class of deep learning algorithms that can seam-
lessly integrate data and abstract mathematical opera-
tors, including PDEs with or without missing physics 
(Boxes 2,3). The leading motivation for developing these 
algorithms is that such prior knowledge or constraints 
can yield more interpretable ML methods that remain 
robust in the presence of imperfect data (such as miss-
ing or noisy values, outliers and so on) and can provide 
accurate and physically consistent predictions, even for 
extrapolatory/generalization tasks.

Despite numerous public databases, the volume of 
useful experimental data for complex physical systems 
is limited. The specific data- driven approach to the 
predictive modelling of such systems depends crucially 
on the amount of data available and on the complexity  
of the system itself, as illustrated in Box 1. The classical 
paradigm is shown on the left side of the figure in Box 1, 
where it is assumed that the only data available are the 
boundary conditions and initial conditions whereas  
the specific governing PDEs and associated parameters 
are precisely known. On the other extreme (on the right 
side of the figure), a lot of data may be available, for 
instance, in the form of time series, but the governing 
physical law (the underlying PDE) may not be known 
at the continuum level7–9. For the majority of real appli-
cations, the most interesting category is sketched in the 
centre of the figure, where it is assumed that the physics 
is partially known (that is, the conservation law, but not 
the constitutive relationship) but several scattered meas-
urements (of a primary or auxiliary state) are available 
that can be used to infer parameters and even missing 
functional terms in the PDE while simultaneously recov-
ering the solution. It is clear that this middle category  
is the most general case, and in fact it is representative 
of the other two categories, if the measurements are too 
few or too many. This ‘mixed’ case may lead to much 
more complex scenarios, where the solution of the PDEs 
is a stochastic process due to stochastic excitation or an 
uncertain material property. Hence, stochastic PDEs 
can be used to represent these stochastic solutions and 
uncertainties. Finally, there are many problems involving 
long- range spatiotemporal interactions, such as turbu-
lence, visco- elasto- plastic materials or other anoma-
lous transport processes, where non- local or fractional 
calculus and fractional PDEs may be the appropriate 
mathematical language to adequately describe such 
pheno mena as they exhibit a rich expressivity not unlike 
that of deep neural networks (DNNs).

Over the past two decades, efforts to account for 
uncertainty quantification in computer simulations 
have led to highly parameterized formulations that may 
include hundreds of uncertain parameters for complex 
problems, often rendering such computations infeasible 
in practice. Typically, computer codes at the national labs 
and even open- source programs such as OpenFOAM10 or 
LAMMPS11 have more than 100,000 lines of code, making 
it almost impossible to maintain and update them from 
one generation to the next. We believe that it is possible 
to overcome these fundamental and practical problems 
using physics- informed learning, seamlessly integrat-
ing data and mathematical models, and implementing 

Key points

•	Physics-	informed	machine	learning	integrates	seamlessly	data	and	mathematical	
physics	models,	even	in	partially	understood,	uncertain	and	high-	dimensional	
contexts.

•	Kernel-	based	or	neural	network-	based	regression	methods	offer	effective,	simple		
and	meshless	implementations.

•	Physics-	informed	neural	networks	are	effective	and	efficient	for	ill-	posed	and	inverse	
problems,	and	combined	with	domain	decomposition	are	scalable	to	large	problems.

•	Operator	regression,	search	for	new	intrinsic	variables	and	representations,	and	
equivariant	neural	network	architectures	with	built-	in	physical	constraints	are	
promising	areas	of	future	research.

•	There	is	a	need	for	developing	new	frameworks	and	standardized	benchmarks		
as	well	as	new	mathematics	for	scalable,	robust	and	rigorous	next-	generation	
physics-	informed	learning	machines.

Multi- fidelity data
Data of variable accuracy.

Box 1 | Data and physics scenarios

The	figure	below	schematically	illustrates	three	possible	categories	of	physical	problems	
and	associated	available	data.	In	the	small	data	regime,	it	is	assumed	that	one	knows	all	
the	physics,	and	data	are	provided	for	the	initial	and	boundary	conditions	as	well	as	the	
coefficients	of	a	partial	differential	equation.	The	ubiquitous	regime	in	applications	is		
the	middle	one,	where	one	knows	some	data	and	some	physics,	possibly	missing	some	
parameter	values	or	even	an	entire	term	in	the	partial	differential	equation,	for	example,	
reactions	in	an	advection–diffusion–reaction	system.	Finally,	there	is	the	regime	with		
big	data,	where	one	may	not	know	any	of	the	physics,	and	where	a	data-	driven	approach	
may	be	most	effective,	for	example,	using	operator	regression	methods	to	discover		
new	physics.	Physics-	informed	machine	learning	can	seamlessly	integrate	data	and	the	
governing	physical	laws,	including	models	with	partially	missing	physics,	in	a	unified	way.	
This	can	be	expressed	compactly	using	automatic	differentiation	and	neural	networks7	
that	are	designed	to	produce	predictions	that	respect	the	underlying	physical	principles.

Small data Some data Big data

No physicsSome physicsLots of physics

Data

Physics
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them using PINNs or other nonlinear regression- based 
physics- informed networks (PINs) (Box 2).

In this Review, we first describe how to embed 
physics in ML and how different physics can provide 
guidance to developing new neural network (NN) archi-
tectures. We then present some of the new capabilities of 
physics- informed learning machines and highlight rel-
evant applications. This is a very fast moving field, so at 
the end we provide an outlook, including some thoughts 
on current limitations. A taxonomy of several existing 
physics- based methods integrated with ML can also be 
found in ref.12.

How to embed physics in ML
No predictive models can be constructed without 
assumptions, and, as a consequence, no generalization 
performance can be expected by ML models without 

appropriate biases. Specific to physics- informed learn-
ing, there are currently three pathways that can be fol-
lowed separately or in tandem to accelerate training and 
enhance generalization of ML models by embedding 
physics in them (Box 2).

Observational biases
Observational data are perhaps the foundation of the  
recent success of ML. They are also conceptually  
the simplest mode of introducing biases in ML. Given 
sufficient data to cover the input domain of a learning 
task, ML methods have demonstrated remarkable power 
in achieving accurate interpolation between the dots, 
even for high- dimensional tasks. For physical systems 
in particular, thanks to the rapid development of sensor 
networks, it is now possible to exploit a wealth of vari-
able fidelity observations and monitor the evolution of 
complex phenomena across several spatial and tempo-
ral scales. These observational data ought to reflect the 
underlying physical principles that dictate their genera-
tion, and, in principle, can be used as a weak mechanism 
for embedding these principles into an ML model during 
its training phase. Examples include NNs proposed in 
refs13–16. However, especially for over- parameterized 
deep learning models, a large volume of data is typically 
necessary to reinforce these biases and generate predic-
tions that respect certain symmetries and conservation 
laws. In this case, an immediate difficulty relates to the 
cost of data acquisition, which for many applications 
in the physical and engineering sciences could be pro-
hibitively large, as observational data may be generated 
via expensive experiments or large- scale computational 
models.

Inductive biases
Another school of thought pertains to efforts focused on 
designing specialized NN architectures that implicitly 
embed any prior knowledge and inductive biases asso-
ciated with a given predictive task. Without a doubt, 
the most celebrated example in this category are con-
volutional NNs17, which have revolutionized the field 
of computer vision by craftily respecting invariance 
along the groups of symmetries and distributed pattern 
representations found in natural images18. Additional 
representative examples include graph neural networks 
(GNNs)19, equivariant networks20, kernel methods such 
as Gaussian processes21–26, and more general PINs27, 
with kernels that are directly induced by the physical 
principles that govern a given task. Convolutional net-
works can be generalized to respect more symmetry 
groups, including rotations, reflections and more gen-
eral gauge symmetry transformations19,20. This enables 
the development of a very general class of NN archi-
tectures on manifolds that depend only on the intrinsic 
geometry, leading to very effective models for computer 
vision tasks involving medical images28, climate pattern 
segmentation20 and others. Translation- invariant rep-
resentations can also be constructed via wavelet- based 
scattering transforms, which are stable to deformations 
and preserve high- frequency information29. Another 
example includes covariant NNs30, tailored to conform 
with the rotation and translation invariances present  

Box 2 | Principles of physics- informed learning

Making	a	learning	algorithm	physics-	informed	amounts	to	introducing	appropriate	
observational,	inductive	or	learning	biases	that	can	steer	the	learning	process	towards	
identifying	physically	consistent	solutions	(see	the	figure).

•	Observational	biases	can	be	introduced	directly	through	data	that	embody	the	
underlying	physics	or	carefully	crafted	data	augmentation	procedures.	Training	a	
machine	learning	(ML)	system	on	such	data	allows	it	to	learn	functions,	vector	fields		
and	operators	that	reflect	the	physical	structure	of	the	data.

•	Inductive	biases	correspond	to	prior	assumptions	that	can	be	incorporated	by	tailored	
interventions	to	an	ML	model	architecture,	such	that	the	predictions	sought	are	
guaranteed	to	implicitly	satisfy	a	set	of	given	physical	laws,	typically	expressed	in		
the	form	of	certain	mathematical	constraints.	One	would	argue	that	this	is	the	most	
principled	way	of	making	a	learning	algorithm	physics-	informed,	as	it	allows	for	the	
underlying	physical	constraints	to	be	strictly	satisfied.	However,	such	approaches	can	
be	limited	to	accounting	for	relatively	simple	symmetry	groups	(such	as	translations,	
permutations,	reflections,	rotations	and	so	on)	that	are	known	a priori,	and	may	often	
lead	to	complex	implementations	that	are	difficult	to	scale.

•	Learning	biases	can	be	introduced	by	appropriate	choice	of	loss	functions,	constraints	
and	inference	algorithms	that	can	modulate	the	training	phase	of	an	ML	model	to	
explicitly	favour	convergence	towards	solutions	that	adhere	to	the	underlying	physics.	
By	using	and	tuning	such	soft	penalty	constraints,	the	underlying	physical	laws	can	only	
be	approximately	satisfied;	however,	this	provides	a	very	flexible	platform	for	introducing	
a	broad	class	of	physics-	based	biases	that	can	be	expressed	in	the	form	of	integral,	
differential	or	even	fractional	equations.
These	different	modes	of	biasing	a	learning	algorithm	towards	physically	consistent	

solutions	are	not	mutually	exclusive	and	can	be	effectively	combined	to	yield	a	very	
broad	class	of	hybrid	approaches	for	building	physics-	informed	learning	machines.

Observational bias Inductive bias Learning bias

Symmetry Conservation laws Dynamics

Physics-informed machine learning
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in many- body systems (fig. 1a). A similar example is 
the equivariant transformer networks31, a family of  
differentiable mappings that improve the robustness 
of models for predefined continuous transformation 

groups. Despite their remarkable effectiveness, such 
approaches are currently limited to tasks that are char-
acterized by relatively simple and well- defined physics or 
symmetry groups, and often require craftsmanship and 
elaborate implementations. Moreover, their extension 
to more complex tasks is challenging, as the underlying 
invariances or conservation laws that characterize many 
physical systems are often poorly understood or hard to 
implicitly encode in a neural architecture.

Generalized convolutions are not the only build-
ing blocks for designing architectures with strong 
implicit biases. For example, anti- symmetry under the 
exchange of input variables can be obtained in NNs by 
using the determinant of a matrix- valued function32. 
Reference33 proposed to combine a physics- based model 
of bond- order potential with an NN and divide structural 
parameters into local and global parts to predict inter-
atomic potential energy surface in large- scale atomistic 
modelling. In another work34, an invariant tensor basis 
was used to embedded Galilean invariance into the net-
work architecture, which significantly improved the NN 
prediction accuracy in turbulence modelling. For the 
problem of identifying Hamiltonian systems, networks 
are designed to preserve the symplectic structure of the 
underlying Hamiltonian system35 For example, ref.36 
modified an auto- encoder to represent a Koopman oper-
ator for identifying coordinate transformations that recast 
nonlinear dynamics into approximately linear ones.

Specifically for solving differential equations using 
NNs, architectures can be modified to satisfy exactly 
the required initial conditions37, Dirichlet boundary 
conditions37,38, Neumann boundary conditions39,40, 
Robin boundary conditions41, periodic boundary 
conditions42,43 and interface conditions41. In addition, if  
some features of the PDE solutions are known a priori, it is  
also possible to encode them in network architectures, 
for example, multiscale features44,45, even/odd symme-
tries and energy conservation46, high frequencies47 and 
so on.

For a specific example, we refer to the recent work 
in ref.48, which proposed new connections between 
NN architectures and viscosity solutions to certain 
Hamilton–Jacobi PDEs (HJ- PDEs). The two- layer archi-
tecture depicted in fig. 1b defines R R→f : × [0, + ∞)n   
as follows
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which is reminiscent of the celebrated Lax–oleinik formula. 
Here, x and t are the spatial and temporal variables, L is 
a convex and Lipschitz activation function, R∈ai  and 
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n are the NN parameters, and m is the number  

of neurons. It is shown in ref.48 that f is the viscosity  
solution to the following HJ- PDE
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where both the Hamiltonian H and the initial data J are 
explicitly obtained by the parameters and the activation 

Lax–Oleinik formula
A representation formula  
for the solution of the 
Hamilton–Jacobi equation.

Box 3 | Physics- informed neural networks

Physics-	informed	neural	networks	(PINNs)7	seamlessly	integrate	the	information	from	
both	the	measurements	and	partial	differential	equations	(PDEs)	by	embedding	the	PDEs	
into	the	loss	function	of	a	neural	network	using	automatic	differentiation.	The	PDEs	could	
be	integer-	order	PDEs7,	integro-	differential	equations154,	fractional	PDEs103	or	stochastic	
PDEs42,102.
Here,	we	present	the	PINN	algorithm	for	solving	forward	problems	using	the	example		

of	the	viscous	Burgers’	equation
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Here	{(xi,	ti)}	and	{(xj,	tj)}	are	two	sets	of	points	sampled	at	the	initial/boundary	locations	
and	in	the	entire	domain,	respectively,	and	ui	are	values	of	u	at	(xi,	ti);	wdata	and	wPDE	are	the	
weights	used	to	balance	the	interplay	between	the	two	loss	terms.	These	weights	can		
be	user-	defined	or	tuned	automatically,	and	play	an	important	role	in	improving	the	
trainability	of	PINNs76,173.
The	network	is	trained	by	minimizing	the	loss	via	gradient-	based	optimizers,	such	as	

Adam196	and	L-	BFGS206,	until	the	loss	is	smaller	than	a	threshold	ε.	The	PINN	algorithm		
is	shown	below,	and	more	details	about	PINNs	and	a	recommended	Python	library	
DeepXDE	can	be	found	in	ref.154.

Algorithm 1: The PiNN algorithm.
Construct	a	neural	network	(NN)	u(x,	t;	θ)	with	θ	the	set	of	trainable	weights	w	and	biases	b,	
and	σ	denotes	a	nonlinear	activation	function.	Specify	the	measurement	data	{xi,	ti,	ui}		
for	u	and	the	residual	points	{xj,	tj}	for	the	PDE.	Specify	the	loss	L	in	Eq.	(3)	by	summing		
the	weighted	losses	of	the	data	and	PDE.	Train	the	NN	to	find	the	best	parameters	θ*		
by	minimizing	the	loss	L.

Done Y

N
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functions of the networks. The Hamiltonian H must 
be convex, but the initial data J are not. Note that the 
results of ref.48 do not rely on universal approxima-
tion theorems established for NNs. Rather, the NNs in 
ref.48 show that the physics contained in certain classes 
of HJ- PDEs can be naturally encoded by specific NN 
architectures without any numerical approximation in 
high dimensions.

Learning bias
Yet another school of thought approaches the problem 
of endowing an NN with prior knowledge from a dif-
ferent angle. Instead of designing a specialized archi-
tecture that implicitly enforces this knowledge, current 
efforts aim to impose such constraints in a soft man-
ner by appropriately penalizing the loss function of 
conventional NN approximations. This approach can 
be viewed as a specific use- case of multi- task learning, 

in which a learning algorithm is simultaneously con-
strained to fit the observed data, and to yield predic-
tions that approximately satisfy a given set of physical 
constraints (for example, conservation of mass, momen-
tum, monotonicity and so on). Representative exam-
ples include the deep galerkin method49 and PINNs and 
their variants7,37,50–52. The framework of PINNs is fur-
ther explained in Box 3, as it accurately reflects the key 
advantages and limitations of enforcing physics via soft 
penalty constraints.

The flexibility of soft penalty constraints allows 
one to incorporate more general instantiations of 
domain- specific knowledge into ML models. For exam-
ple, ref.53 presented a statistically constrained genera-
tive adversarial network (GAN) by enforcing constraints 
of covariance from the training data, which results in 
an improved ML- based emulator to capture the sta-
tistics of the training data generated by solving fully 
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Fig. 1 | Physics-inspired neural network architectures. a | Predicting molecular properties with covariant compositional 
networks204. The architecture is based on graph neural networks19 and is constructed by decomposing into a hierarchy  
of sub- graphs (middle) and forming a neural network in which each ‘neuron’ corresponds to one of the sub- graphs and 
receives inputs from other neurons that correspond to smaller sub- graphs (right). The middle panel shows how this can 
equivalently be thought of as an algorithm in which each vertex receives and aggregates messages from its neighbours. 
Also depicted on the left are the molecular graphs for C18H9N3OSSe and C22H15NSeSi from the Harvard Clean Energy 
Project (HCEP) data set205 with their corresponding adjacency matrices. b | A neural network with the Lax–Oleinik 
formula represented in the architecture. f is the solution of the Hamilton–Jacobi partial differential equations, x and t are 
the spatial and temporal variables, L is a convex and Lipschitz activation function, ∈Rai  and ∈Rui

n are the neural network 
parameters, and m is the number of neurons. Panel a is adapted with permission from ref.204, AIP Publishing. Panel b image 
courtesy of J. Darbon and T. Meng, Brown University.
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resolved PDEs. Other examples include models tailored 
to learn contact- induced discontinuities in robotics54, 
physics- informed auto- encoders55, which use an addi-
tional soft constraint to preserve the Lyapunov stability, 
and InvNet56, which is capable of encoding invariances 
by soft constraints in the loss function. Further exten-
sions include convolutional and recurrent architectures, 
and probabilistic formulations51,52,57. For example, ref.52 
includes a Bayesian framework that allows for uncer-
tainty quantification of the predicted quantities of 
interest in complex PDE dynamical systems.

Note that solutions obtained via optimization with 
such soft penalty constraints and regularization can 
be viewed as equivalent to the maximum a- posteriori 
estimate of a Bayesian formulation stemming from 
physics- based likelihood assumptions. Alternatively, 
a fully Bayesian treatment using Markov chain Monte 
Carlo methods or variational inference approximations 
can be used to quantify the uncertainty arising from 
noisy and gappy data, as discussed below.

Hybrid approaches
The aforementioned principles of physics- informed 
ML have their own advantages and limitations. Hence, 
it would be ideal to use these different principles 
together, and indeed different hybrid approaches have 
been proposed. For example, non- dimensionalization 
can recover characteristic properties of a system, and 
thus it is beneficial to introduce physics bias via appro-
priate non- dimensional parameters, such as Reynolds, 
Froude or Mach numbers. Several methods have been 
proposed to learn operators that describe physical 
phenomena13,15,58,59. For example, DeepONets13 have 
been demonstrated as a powerful tool to learn nonlin-
ear operators in a supervised data- driven manner. What 
is more exciting is that by combining DeepONets with 
physics encoded by PINNs, it is possible to accomplish 
real- time accurate predictions with extrapolation in 
multiphysics applications such as electro- convection60 
and hypersonics61. However, when a low- fidelity model 
is available, a multi- fidelity strategy62 can be developed 
to facilitate the learning of a complex system. For exam-
ple, ref.63 combines observational and learning biases 
through the use of large- eddy simulation data and con-
strained NN training methods to construct closures for 
lower- fidelity Reynolds- averaged Navier–Stokes models 
of turbulent fluid flow.

Additional representative use- cases include the 
multi- fidelity NN used in ref.64 to extract material 
properties from instrumented indentation data, the 
PINs in ref.65 used to discover constitutive laws of 
non- Newtonian fluids from rheological data, and the 
coarse- graining strategies proposed in ref.66. Even if it 
is not possible to encode the low- fidelity model into the 
learning directly, the low- fidelity model can be used 
through data augmentation — that is, generating a large 
amount of low- fidelity data via inexpensive low- fidelity 
models, which could be simplified mathematical mod-
els or existing computer codes, such as ref.64. Other 
representative examples include FermiNets32 and 
graph neural operator methods58. It is also possible to 
enforce the physics to an NN by embedding a network 

into a traditional numerical method (such as finite ele-
ment). This approach was applied to solve problems in 
many different fields, including nonlinear dynamical 
systems67, computational mechanics to model constitu-
tive relations68,69, subsurface mechanics70–72, stochastic 
inversion73 and more74,75.

Connections to kernel methods
Many of the presented NN- based techniques have a close 
asymptotic connection to kernel methods, which can be 
exploited to produce new insight and understanding.  
For example, as demonstrated in refs76,77, the train-
ing dynamics of PINNs can be understood as a kernel 
regression method as the width of the network goes to 
infinity. More generally, NN methods can be rigorously 
interpreted as kernel methods in which the underlying 
warping kernel is also learned from data78,79. Warping 
kernels are a special kind of kernels that were initially 
introduced to model non- stationary spatial structures 
in geostatistics80 and have been also used to interpret 
residual NN models27,80. Furthermore, PINNs can be 
viewed as solving PDEs in a reproducing kernel Hilbert 
space spanned by a feature map (parametrized by the 
initial layers of the network), where the latter is also 
learned from data. Further connections can be made 
by studying the intimate connection between statisti-
cal inference techniques and numerical approximation. 
Existing works have explored these connections in the 
context of solving PDEs and inverse problems81, opti-
mal recovery82 and Bayesian numerical analysis83–88. 
Connections between kernel methods and NNs can 
be established even for large and complicated architec-
tures, such as attention- based transformers89, whereas 
operator- valued kernel methods90 could offer a viable 
path of analysing and interpreting deep learning tools 
for learning nonlinear operators. In summary, analysing 
NN models through the lens of kernel methods could 
have considerable benefits, as kernel methods are often 
interpretable and have strong theoretical foundations, 
which can subsequently help us to understand when and 
why deep learning methods may fail or succeed.

Connections to classical numerical methods
Classical numerical algorithms, such as Runge–Kutta 
methods and finite- element methods, have been the 
main workhorses for studying and simulating physical 
systems in silico. Interestingly, many modern deep learn-
ing models can be viewed and analysed by observing 
an obvious correspondence and specific connections 
to many of these classical algorithms. In particular, 
several architectures that have had tremendous success 
in practice are analogous to established strategies in 
numerical analysis. Convolutional NNs, for example, 
are analogous to finite different stencils in translation-
ally equivariant PDE discretizations91,92 and share the 
same structures as the multigrid method93; residual 
NNs (ResNets, networks with skip connections)94 are 
analogous to the basic forward Euler discretization of 
autonomous ordinary differential equations95–98; inspec-
tion of simple Runge–Kutta schemes (such as an RK4) 
immediately brings forth the analogy with recurrent NN 
architectures (and even with Krylov- type matrix- free 

Lyapunov stability
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robustness of dynamic 
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perturbations, in the 
neighbourhood of an 
equilibrium.
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sets with regions of missing 
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linear algebra methods such as the generalized mini-
mal residual method)95,99. Moreover, the representation 
of DNNs with the reLU activation function is equivalent 
to the continuous piecewise linear functions from the 
linear finite- element method100. Such analogies can 
provide insights and guidance for cross- fertilization, 
and pave the way for new ‘mathematics- informed’ 
meta- learning architectures. For example, ref.7 pro-
posed a discrete- time NN method for solving PDEs that 
is inspired by an implicit Runge–Kutta integrator: using 
up to 500 latent stages, this NN method can allow very 
large time- steps and lead to solutions of high accuracy.

Merits of physics- informed learning
There are already many publications on physics-  
informed ML across different disciplines for specific 
applications. For example, different extensions of PINNs 
cover conservation laws101 as well as stochastic and frac-
tional PDEs for random phenomena and for anomalous 
transport102,103. Combining domain decomposition with 
PINNs provides more flexibility in multiscale problems, 
while the formulations are relatively simple to imple-
ment in parallel since each subdomain may be repre-
sented by a different NN, assigned to a different GPU 
with very small communication cost101,104,105. Collectively, 
the results from these works demonstrate that PINNs 
are particularly effective in solving ill- posed and inverse 
problems, whereas for forward, well- posed problems 
that do not require any data assimilation the existing 
numerical grid- based solvers currently outperform 
PINNs. In the following, we discuss in more detail for 
which scenarios the use of PINNs may be advantageous 
and highlight these advantages in some prototypical 
applications.

Incomplete models and imperfect data
As shown in Box 1, physics- informed learning can eas-
ily combine both information from physics and scat-
tered noisy data, even when both are imperfect. Recent 
research106 demonstrated that it is possible to find mean-
ingful solutions even when, because of smoothness or 
regularity inherent in the PINN formulation, the prob-
lem is not perfectly well posed. Examples include for-
ward and inverse problems, where no initial or boundary 
conditions are specified or where some of the parameters 
in the PDEs are unknown — scenarios in which clas-
sical numerical methods may fail. When dealing with 
imperfect models and data, it is beneficial to integrate 
the Bayesian approach with physics- informed learning 
for uncertainty quantification, such as Bayesian PINNs 
(B- PINNs)107. Moreover, compared with the tradi-
tional numerical methods, physics- informed learning 
is mesh- free, without computationally expensive mesh 
generation, and thus can easily handle irregular and 
moving- domain problems108. Lastly, the code is also 
easier to implement by using existing open- source deep 
learning frameworks such as TensorFlow and PyTorch.

Strong generalization in small data regime
Deep learning usually requires a large amount of data 
for training, and in many physical problems it is difficult 
to obtain the necessary data at high accuracy. In these 

situations, physics- informed learning has the advantage 
of strong generalization in the small data regime. By 
enforcing or embedding physics, deep learning mod-
els are effectively constrained on a lower- dimensional 
manifold, and thus can be trained with a small amount 
of data. To enforce the physics, one can embed the 
physical principles into the network architecture, use  
physics as soft penalty constraints or use data aug-
mentation as discussed previously. In addition, 
physics- informed learning is capable of extrapolation, 
not only interpolation: that is, it can perform spatial 
extrapolation in boundary- value problems107.

Understanding deep learning
In addition to enhancing the trainability and generali-
zation of ML models, physical principles are also being 
used to provide theoretical insight and elucidate the 
inner mechanisms behind the surprising effectiveness 
of deep learning. For example, in refs109–112, the authors 
use the jamming transition of granular media to under-
stand the double- descent phenomenon of deep learning 
in the over- parameterized regime. Shallow NNs can 
also be viewed as interacting particle systems and hence 
can be analysed in the probability measure space with 
mean- field theory, instead of the high- dimensional 
parameter space113.

Another work114 rigorously constructed an exact 
mapping from the variational renormalization group 
to deep learning architectures based on restricted  
Boltzmann machines. Inspired by the successful density 
matrix renormalization group algorithm developed 
in physics, ref.115 proposed a framework for apply-
ing quantum- inspired tensor networks to multi- class 
supervised learning tasks, which introduces consider-
able savings in computational cost. Reference116 studied 
the landscape of deep networks from a statistical physics 
viewpoint, establishing an intuitive connection between 
NNs and the spin- glass models. In parallel, information 
propagation in wide DNNs has been studied based on 
dynamical systems theory117,118, providing an analysis of 
how network initialization determines the propagation 
of an input signal through the network, hence identify-
ing a set of hyper- parameters and activation functions 
known as the ‘edge of chaos’ that ensure information 
propagation in deep networks.

Tackling high dimensionality
Deep learning has been very successful in solving 
high- dimensional problems, such as image classifi-
cation with fine resolution, language modelling, and 
high- dimensional PDEs. One reason for this suc-
cess is that DNNs can break the curse of dimension-
ality under the condition that the target function is a 
hierarchical composition of local functions119,120. For 
example, in ref.121 the authors reformulated general 
high- dimensional parabolic PDEs using backward sto-
chastic differential equations, approximating the gradi-
ent of the solution with DNNs, and then designing the  
loss based on the discretized stochastic integral and  
the given terminal condition. In practice, this approach 
was used to solve high- dimensional Black–Scholes, 
Hamilton–Jacobi–Bellman and Allen–Cahn equations. 
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GANs122 have also proven to be fairly successful in gen-
erating samples from high- dimensional distributions 
in tasks such as image or text generation123–125. As for 
their application to physical problems, in ref.102 the 
authors used GANs to quantify parametric uncertainty 
in high- dimensional stochastic differential equations, 
and in ref.126 GANs were used to learn parameters in 
high- dimensional stochastic dynamics. These exam-
ples show the capability of GANs in modelling 
high- dimensional probability distributions in physical 
problems. Finally, in refs127,128 it was demonstrated that 
even for operator regression and applications to PDEs, 
deep operator networks (DeepONets) can tackle the 
curse of dimensionality associated with the input space.

Uncertainty quantification
Forecasting reliably the evolution of multiscale and 
multiphysics systems requires uncertainty quantifica-
tion. This important issue has received a lot of attention 
in the past 20 years, augmenting traditional computa-
tional methods with stochastic formulations to tackle 
uncertainty due to the boundary conditions or material 
properties129–131. For physics- informed learning models, 
there are at least three sources of uncertainty: uncer-
tainty due to the physics, uncertainty due to the data, 
and uncertainty due to the learning models.

The first source of uncertainty refers to stochastic 
physical systems, which are usually described by sto-
chastic PDEs (SPDEs) or stochastic ordinary differential 
equations (SODEs). The parametric uncertainty arising 
from the randomness of parameters lies in this cate-
gory. In ref.132 the authors demonstrate the use of NNs 
as a projection function of the input that can recover a 
low- dimensional nonlinear manifold, and present results 
for a problem on uncertainty propagation in an SPDE 
with uncertain diffusion coefficient. In the same spirit, 
in ref.133 the authors use a physics- informed loss func-
tion — that is, the expectation of the energy functional of 
the PDE over the stochastic variables — to train an NN 
parameterizing the solution of an elliptic SPDE. In ref.51, 
a conditional convolutional generative model is used to 
predict the density of a solution, with a physics- informed 
probabilistic loss function so that no labels are required 
in the training data. Notably, as a model designed to 
learn distributions, GANs offer a powerful approach 
to solving stochastic PDEs in high dimensions. The 
physics- informed GANs in refs102,134 represent the first 
such attempts. Leveraging data collected from simultane-
ous reads at a limited number of sensors for the multiple 
stochastic processes, physics- informed GANs are able to  
solve a wide range of problems ranging from forward 
to inverse problems using the same framework. Also, 
the results so far show the capability of GANs, if pro-
perly formulated, to tackle the curse of dimensionality  
for problems with high stochastic dimensionality.

The second source of uncertainty, in general, refers 
to aleatoric uncertainty arising from the noise in data and 
epistemic uncertainty arising from the gaps in data. Such 
uncertainty can be well tackled in the Bayesian frame-
work. If the physics- informed learning model is based 
on Gaussian process regression, then it is straightfor-
ward to quantify uncertainty and exploit it for active 

learning and resolution refinement studies in PDEs23,135, 
or even design better experiments136. Another approach 
was proposed in ref.107 using B- PINNs. The authors of 
ref.107 showed that B- PINNs can provide reasonable 
uncertainty bounds, which are of the same order as the 
error and increase as the size of noise in data increases, 
but how to set the prior for B- PINNs in a systematic way 
is still an open question.

The third source of uncertainty refers to the lim-
itation of the learning models — for example, the 
approximation, training and generalization errors of 
NNs — and is usually hard to rigorously quantify. In 
ref.137, a convolutional encoder–decoder NN is used 
to map the source term and the domain geometry of a 
PDE to the solution as well as the uncertainty, trained 
by a probabilistic supervised learning procedure with 
training data coming from finite- element methods. 
Notably, a first attempt to quantify the combined uncer-
tainty from learning was given in ref.138, using the 
dropout method of ref.139 and, due to physical random-
ness, using arbitrary polynomial chaos. An extension to 
time- dependent systems and long- time integration was 
reported in ref.42: it tackled the parametric uncertainty 
using dynamic and bi- orthogonal modal decomposition 
of the stochastic PDE, which are effective methods for 
long- term integration of stochastic systems.

Applications highlights
In this section, we discuss some of the capabilities of 
physics- informed learning through diverse applica-
tions. Our emphasis is on inverse and ill- posed prob-
lems, which are either difficult or impossible to solve 
with conventional approaches. We also present several 
ongoing efforts on developing open- source software for 
scientific ML.

Some examples
Flow over an espresso cup. In the first example, we dis-
cuss how to extract quantitative information on the 3D 
velocity and pressure fields above an espresso coffee 
cup140. The input data is based on a video of tempera-
ture gradient (fig. 2). This is an example of the ‘hidden 
fluid mechanics’ introduced in ref.106. It is an ill- posed 
inverse problem as no boundary conditions or any other 
information are provided. Specifically, 3D visualizations 
obtained using tomographic background- oriented 
Schlieren (Tomo- BOS) imaging that measures density 
or temperature are used as input to a PINN, which seam-
lessly integrates the visualization data and the flow and 
passive scalar governing equations, to infer the latent 
quantities. Here, the physical assumption is that of the 
Boussinesq approximation, which is valid if the density 
variation is relatively small.

The PINN uses the space and time coordinates as 
inputs and infers the velocity and pressure fields; it 
is trained by minimizing a loss function including a 
data mismatch of temperature and the residuals of the 
conservation laws (mass, momentum and energy). 
Independent experimental results from particle image 
velocimetry have verified that the Tomo- BOS/PINN 
approach is able to provide continuous, high- resolution 
and accurate 3D flow fields.

Aleatoric uncertainty
Uncertainty due to the inherent 
randomness of data.

Epistemic uncertainty
Uncertainty due to limited data 
and knowledge.

Arbitrary polynomial chaos
A type of generalized 
polynomial chaos with 
measures defined by data.

Boussinesq approximation
An approximation used in 
gravity- driven flows, which 
ignores density differences 
except in the gravity term.
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Physics- informed deep learning for 4D- flow MRI. Next, 
we discuss the use of PINNs in biophysics using real 
magnetic resonance imaging (MRI) data. Because it is 
non- invasive and proves a range of structural and phys-
iological contrasts, MRI has become an indispensable 
tool for quantitative in- vivo assessment of blood flow 
and vascular function in clinical scenarios involving 
patients with cardiac and vascular disease. However, MRI 
measurements are often limited by the very coarse reso-
lution and may be heavily corrupted by noise, leading  
to tedious and empirical workflows for reconstructing 
vascular topologies and associated flow conditions. 
Recent developments on physics- informed deep learn-
ing can greatly enhance the resolution and information 
content of current MRI technologies, with a focus on 
4D- flow MRI. Specifically, it is possible to construct 
DNNs that are constrained by the Navier–Stokes equa-
tions in order to effectively de- noise MRI data and yield 
physically consistent reconstructions of the underlying 
velocity and pressure fields that ensure conservation 
of mass and momentum at an arbitrarily high spatial 
and temporal resolution. Moreover, the filtered veloc-
ity fields can be used to identify regions of no- slip 

flow, from which one can reconstruct the location and 
motion of the arterial wall and infer important quanti-
ties of interest such as wall shear stresses, kinetic energy 
and dissipation (fig. 3). Taken together, these methods 
can considerably advance the capabilities of MRI tech-
nologies in research and clinical scenarios. However, 
there are potential pitfalls related to the robustness of 
PINNs, especially in the presence of high signal- to- noise 
ratio in the MRI measurements and complex patterns 
in the underlying flow (for example, due to boundary 
layers, high- vorticity regions, transient turbulent bursts 
through a stenosis, tortuous branched vessels and so on). 
That said, under physiological conditions, blood flow is 
laminar, a regime under which current PINN models 
usually remain effective.

Uncovering edge plasma dynamics via deep learning 
from partial observations. Predicting turbulent trans-
port on the edge of magnetic confinement fusion devices 
is a longstanding goal spanning several decades, cur-
rently presenting significant uncertainties in the par-
ticle and energy confinement of fusion power plants.  
In ref.141 it was demonstrated that PINNs can accurately 
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Fig. 2 | inferring the 3D flow over an espresso cup based using the Tomo-BOs imaging system and physics-informed 
neural networks (PiNNs). a | Six cameras are aligned around an espresso cup, recording the distortion of the dot- patterns 
in the panels placed in the background, where the distortion is caused by the density variation of the airflow above the 
espresso cup. The image data are acquired and processed with LaVision’s Tomographic BOS software (DaVis 10.1.1).  
b | 3D temperature field derived from the refractive index field and reconstructed based on the 2D images from all six 
cameras. c | Physics- informed neural network (PINN) inference of the 3D velocity field (left) and pressure field (right) from 
the temperature data. The Tomo- BOS experiment was performed by F. Fuest, Y. J. Jeon and C. Gray from LaVision. The PINN 
inference and visualization were performed by S. Cai and C. Li at Brown University. Image courtesy of S. Cai and C.  
Li, Brown University.
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learn turbulent field dynamics consistent with the two- 
fluid theory from just partial observations of a synthetic 
plasma, for plasma diagnosis and model validation in 
challenging thermonuclear environments. figUre 4 dis-
plays the turbulent radial electric field learned by PINNs 
from partial observations of a 3D synthetic plasma’s 
electron density and temperature141.

Studying transitions between metastable states of a dis-
tribution. Next, we discuss how physics- informed learn-
ing can be creatively used to tackle high- dimensional 
problems. In ref.142, the authors proposed to use physics- 
informed learning to study transitions between two 
metastable states of a high- dimensional probability 
distribution. In particular, an NN was used to represent 
the committor function, trained with a physics- informed 
loss function defined as the variational formula for the 
committor function combined with a soft penalty on  
the boundary conditions. Moreover, adaptive impor-
tance sampling was used to sample rare events that 
dominate the loss function, which reduces the asymp-
totic variance of the solution and improves gener-
alization. Results for a probability distribution in a 
144- dimensional Allen–Cahn type system are illustrated 
in fig. 5. Although these computational results suggest 
that this approach is effective for high- dimensional 
problems, the application of the method to more com-
plicated systems and the selection of the NN architecture 
in adapting it to a given system remain challenging.

Thermodynamically consistent PINNs. The physics 
regularization generally pursued in PINNs admits an 
interpretation as a least- squares residual of point eval-
uations using an NN basis. For hyperbolic problems 
involving shocks, where point evaluation of the solu-
tion is ill- defined, it is natural to consider alternative 
physics stabilization requiring reduced regularity. The 
control volume PINN (cvPINN) pursued by ref.143 
generalizes traditional finite- volume schemes to deep 
learning settings. In addition to offering increased 

accuracy due to reduced regularity requirements, con-
nections to traditional finite- volume schemes allow nat-
ural adaptation of total variation diminishing limiters 
and recovery of entropy solutions. This framework has 
allowed the estimation of black- box equations of state 
for shock hydrodynamics models appropriate for mate-
rials such as metals. For scenarios such as phase tran-
sitions at extreme pressures and temperatures, DNNs 
provide an ideal means of addressing unknown model 
form, whereas the finite- volume structure provided 
by cvPINNs allows enforcement of thermodynamic 
consistency.

Application to quantum chemistry. In some other appli-
cations, researchers have also used the physics to design 
specific new architectures together with the principles 
of physics- informed learning. For example, in ref.32, 
a fermionic NN (FermiNet) was proposed for the ab 
initio calculation of the solution of the many- electron 
Schrödinger equation. FermiNet is a hybrid approach for 
embedding physics. First, to parameterize the wavefunc-
tion, the NN has a specialized architecture that obeys 
Fermi–Dirac statistics: that is, it is anti- symmetric under 
the exchange of input electron states and the boundary 
conditions (decay at infinity). Second, the training 
of FermiNet is also physics- informed: that is, the loss 
function is set as the variational form of the energy 
expectation value, with the gradient estimated by the 
Monte Carlo method. Although the application of NNs 
leads to eliminating the basis- set extrapolation, which 
is a common source of error in computational quantum 
chemistry, the performance of NNs, in general, depends 
on many factors, including the architectures and opti-
mization algorithms, which require further systematic 
investigation.

Application to material sciences. In applications to mate-
rials, from the characterization of the material proper-
ties to the non- destructive evaluation of their strength, 
physics- informed learning can play an important role 

a b c d

Fig. 3 | Physics-informed filtering of in-vivo 4D-flow magnetic 
resonance imaging data of blood flow in a porcine descending aorta. 
Physics- informed neural network (PINN) models can be used to de- noise 
and reconstruct clinical magnetic resonance imaging (MRI) data of blood 
velocity, while constraining this reconstruction to respect the underlying 
physical laws of momentum and mass conservation, as described by the 
incompressible Navier–Stokes equations. Moreover, a trained PINN model 
has the potential to aid the automatic segmentation of the arterial wall 

geometry and to infer important biomarkers such as blood pressure and 
wall shear stresses. a | Snapshot of in- vivo 4D- flow MRI measurements.  
b–d | A PINN reconstruction of the velocity field (panel b), pressure  
(panel c), arterial wall surface geometry and wall shear stresses (panel d). 
The 4D- flow MRI data were acquired by E. Hwuang and W. Witschey at the 
University of Pennsylvania. The PINN inference and visualization were 
performed by S. Wang, G. Kissas and P. Perdikaris at the University  
of Pennsylvania.
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transitions between metastable 
states in stochastic systems.
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as the underlying problems are typically ill- posed and 
of inverse type. In ref.144, the authors introduced an 
optimized PINN trained to identify and precisely char-
acterize a surface breaking crack in a metal plate. The 
PINN was supervised with realistic ultrasonic surface 
acoustic wave data acquired at a frequency of 5 MHz 
and physically informed by the acoustic wave equation, 
with the unknown wave speed function represented as 
an NN. A key element in training was the use of adaptive 
activation functions, which introduced new trainable 
hyper- parameters and substantially accelerated conver-
gence even in the presence of significant noise in the 
data. An alternative approach to introducing physics into 
ML is through a multi- fidelity framework as in ref.64 for 
extracting mechanical properties of 3D- printed materi-
als via instrumented indentation. By solving the inverse 
problem of depth- sensing indentation, the authors could 
determine the elastoplastic properties of 3D- printed tita-
nium and nickel alloys. In this framework, a composite 
NN consisting of two ResNets was used. One is a low- 
fidelity ResNet that uses synthetic data (a lot of finite- 
element simulations) and the other is a high- fidelity 
ResNet that uses as input the sparse experimental data 
and the output of the low- fidelity data. The objective was 
to discover the nonlinear correlation function between 
the low- and high- fidelity data, and subsequently  
predict the modulus of elasticity and yield stress at high 
fidelity. The results reported in ref.64 show impressive 
performance of the multi- fidelity framework, reducing 
the inference error for the yield stress from over 100% 
with existing techniques to lower than 5% with the 
multi- fidelity framework.

Application to molecular simulations. In ref.145, an NN 
architecture was proposed to represent the potential 
energy surfaces for molecular dynamics simulations, 
where the translational, rotational and permutational 

symmetry of the molecular system is preserved with 
proper pre- processing. Such an NN representation could 
be further improved in deep potential molecular dynam-
ics (DeePMD)146. With traditional artificially designed 
potential energy functions replaced by the NN trained 
with data from ab initio simulations, DeePMD achieves 
an ab initio level of accuracy at a cost that scales linearly 
with the system size. In ref.147, the limit of molecular 
dynamics simulations was pushed with ab initio accu-
racy to simulating more than 1- ns- long trajectories of 
over 100 million atoms per day, using a highly opti-
mized code for DeePMD on the Summit supercomputer. 
Before this work, molecular dynamics simulations with 
ab initio accuracy were performed in systems with up to 
1 million atoms147,148.

Application to geophysics. Physics- informed learning 
has also been applied to various geophysical inverse 
problems. The work in ref.71 estimates subsurface 
properties, such as rock permeability and porosity, 
from seismic data by coupling NNs with full- waveform 
inversion, subsurface flow processes and rock physics 
models. Furthermore, in ref.149, it was demonstrated 
that by combining DNNs and numerical PDE solvers 
as we discussed in the section on hybrid approaches, 
physics- informed learning is capable of solving a wide 
class of seismic inversion problems, such as velocity esti-
mation, fault rupture imaging, earthquake location and 
source–time function retrieval.

Software
To implement PINNs efficiently, it is advantageous to 
build new algorithms based on the current ML libraries, 
such as TensorFlow150, PyTorch151, Keras152 and JAX153. 
Several software libraries specifically designed for  
physics-informed ML have been developed and are con-
tributing to the rapid development of the field (TABLe 1).  
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Fig. 4 | Uncovering edge plasma dynamics. One of the most intensely 
studied aspects of magnetic confinement fusion is edge plasma behaviour, 
which is critical to reactor performance and operation. The drift- reduced 
Braginskii two- fluid theory has for decades been widely used to model edge 
plasmas, with varying success. Using a 3D magnetized two- fluid model, 
physics- informed neural networks (PINNs) can be used to accurately 
reconstruct141 the unknown turbulent electric field (middle panel) and 
underlying electric potential (right panel), directly from partial observations 

of the plasma’s electron density and temperature from a single test 
discharge (left panel). The top row shows the reference target solution, 
while the bottom row depicts the PINN model’s prediction. These 2D 
synthetic measurements of electron density and temperature over the 
duration of a single plasma discharge constitute the only physical dynamics 
observed by the PINNs from the 3D collisional plasma exhibiting blob- like 
filaments. ϕ, electric potential; Er, electric field; ne, electron density;  
Te, electron temperature. Figure courtesy of A. Matthews, MIT.
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At the present time, some of the actively developed 
libraries include DeepXDE154, SimNet155, PyDEns156, 
NeuroDiffEq157, NeuralPDE158, SciANN159 and 
ADCME160. Because Python is the dominant program-
ming language for ML, it is more convenient to use 
Python for physics- informed ML, and thus most of these 
libraries are written in Python, except the NeuralPDE158 
and ADCME160, which are written in Julia. All these 
libraries use the automatic differentiation mechanism 
provided in other softwares such as TensorFlow150. 
Some of these libraries (such as DeepXDE154 and 
SimNet155) can be used as a solver, that is, users only 
need to define the problem and then the solver will deal 
with all the underlying details and solve the problem, 
whereas some (such as SciANN159 and ADCME160) 
only work as a wrapper, meaning they wrap low- level 
functions of other libraries (such as TensorFlow) into 
relatively high- level functions for easier implementa-
tion of physics- informed learning and users still need to 
implement all the steps to solve the problem. Software 
packages such as GPyTorch161 and Neural Tangents162 
also enable the study of NNs and PINNs through the 
lens of kernel methods. This viewpoint has produced 
new understanding of the training dynamics of PINNs, 
subsequently motivating the design of new effective 
architectures and training algorithms76,77.

DeepXDE not only solves integer- order ODEs and 
PDEs, but it can also solve integro- differential equa-
tions and fractional PDEs. DeepXDE supports complex 
domain geometries via the technique of constructive 
solid geometry, and enables the user code to stay com-
pact, resembling closely the mathematical formulation. 
DeepXDE is also well- structured and highly configur-
able, since all its components are loosely coupled. We 
note that in addition to being used as a research tool 
for solving problems in computational science and engi-
neering, DeepXDE can also be used as an educational 
tool in diverse courses. Although DeepXDE is suitable 
for education and research, SimNet155 developed by 
Nvidia is specifically optimized for Nvidia GPUs for 
large- scale engineering problems.

In PINNs (Box 3), one needs to compute the deriva-
tives of the network outputs with respect to the network 

inputs. One can compute the derivatives using auto-
matic differentiation provided by ML packages such  
as TensorFlow150. For example, U

t
∂
∂

 can be computed using 
TensorFlow as tf.gradients(U, t), and second-  
order derivatives can be computed by applying tf.
gradients twice. DeepXDE provides a more con-
venient way to compute higher- order derivatives, for 
example using dde.grad.hessian to compute the 
Hessian matrix. Moreover, there are two extra advantages 
to using dde.grad.hessian: first, it is lazy evalu-
ation, meaning it will only compute an element in the 
Hessian matrix until that element is needed, rather than 
computing the whole Hessian matrix. Second, it memo-
rizes all the gradients that have already been computed 
to avoid duplicate computation, even if the user calls the 
function multiple times in different parts of the code. 
These two features could speed up the computation in 
problems where one needs to compute the gradients 
many times, for example in a system of coupled PDEs.

Most of these libraries (such as DeepXDE and 
SimNet) use physics as the soft penalty constraints 
(Box 3), and ADCME embeds DNNs in standard scien-
tific numerical schemes (such as Runge–Kutta methods 
for ODEs, and the finite- difference, finite- element and 
finite- volume methods for PDEs) to solve inverse prob-
lems. ADCME was recently extended to support implicit 
schemes and nonlinear constraints163,164. To enable truly 
large- scale scientific computations on large meshes, sup-
port for MPI- based domain decomposition methods is 
also available and was demonstrated to scale very well 
on complex problems165.

Which model, framework, algorithm to use?
With a growing collection of methodologies and soft-
ware tools, a series of questions naturally arises: given a 
physical system and/or governing law and some obser-
vational data, which ML framework should one use? 
Which training algorithm to choose? How many train-
ing samples to consider? Although at present there are 
no rule- of- thumb strategies for answering these ques-
tions, and some degree of experience is required to set up 
a physics- informed ML model properly, meta- learning 
techniques166–168 could automate this process in the 

Increasing q(x) → q = 1q = 0

Optimization of the ‘committor function’
Dirichlet boundary conditions → two metastable states

Fig. 5 | Transitions between metastable states. Results obtained from studying transitions between metastable states  
of a distribution in a 144- dimensional Allen–Cahn type system. The top part of the figure shows the two metastable states. 
The lower part of the figure shows, from left to right, a learned sample path with the characteristic nucleation pathway  
for a transition between the two metastable states. Here, q is the committor function. Figure courtesy of G. M. Rotskoff, 
Stanford University, and E. Vanden- Eijnden, Courant Institute.
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future. The choices intimately depend on the specific 
task that needs to be tackled. In terms of providing a 
high- level taxonomy, we note that PINNs are typically 
used to infer a deterministic function that is compatible 
with an underlying physical law when a limited number 
of observations is available (either initial/boundary con-
ditions or other measurements). The underlying archi-
tecture of a PINNs model is determined by the nature 
of a given problem: multi- layer perceptron architectures 
are generally applicable but do not encode any special-
ized inductive biases, convolutional NN architectures 
are suitable for gridded 2D domains, Fourier feature 
networks are suitable for PDEs whose solution exhib-
its high frequencies or periodic boundaries, and recur-
rent architectures are suitable for non- Markovian and 
time- discrete problems. Moreover, probabilistic variants 
of PINNs can also be used to infer stochastic processes 
that can allow capturing epistemic/model uncertainty 
(via Bayesian inference or frequentist ensembles) or 
aleatoric uncertainty (via generative models such as 
variational auto- encoders and GANs). However, the 
DeepONet framework can be used to infer an operator 
(instead of a function). In DeepONet, the choice of the  
underlying architecture can also vary depending on  
the nature of available data, such as scattered sensor 
measurements (multi- layer perceptron), images (convo-
lutional NNs) or time series (recurrent NNs). In all the 
aforementioned cases, the required sample complexity is 
typically not known a priori and is generally determined 
by: the strength of inductive biases used in the architec-
ture; the compatibility between the observed data, and the  
underlying physical law used as regularization; and  
the complexity of the underlying function or operator 
to be approximated.

Current limitations
Multiscale and multiphysics problems
Despite the recent success of physics- informed learning 
across a range of applications, multiscale and multi-
physics problems require further developments. For 
example, fully connected NNs have difficulty learning 
high- frequency functions, a phenomenon referred to in 
the literature as the ‘F- principle’169 or ‘spectral bias’170. 
Additional work171,172 rigorously proved the existence of 
frequency bias in DNNs and derived convergence rates 

of training as a function of target frequency. Moreover, 
high- frequency features in the target solution generally 
result in steep gradients, and thus PINN models often 
struggle to penalize accurately the PDE residuals45. As 
a consequence, for multiscale problems, the networks 
struggle to learn high- frequency components and often 
may fail to train76,173. To address the challenge of learn-
ing high- frequency components, one needs to develop 
new techniques to aid the network learning, such 
as domain decomposition105, Fourier features174 and 
multiscale DNN45,175. However, learning multiphysics 
simultaneously could be computationally expensive. To 
address this issue, one may first learn each physics sep-
arately and then couple them together. In the method 
of DeepM&M for the problems of electro- convection60 
and hypersonics61, several DeepONets were first trained 
for each field separately and subsequently learned the 
coupled solutions through either a parallel or a serial 
DeepM&M architecture using supervised learning based 
on additional data for a specific multiphysics problem. 
It is also possible to learn the physics at a coarse scale 
by using the fine- scale simulation data only in small 
domains176.

Currently in NN- based ML methods, the physics-  
informed loss functions are mainly defined in a point-  
wise way. Although NNs with such loss functions can 
be successful in some high- dimensional problems, 
they may also fail in some special low- dimensional 
cases, such as the diffusion equation with non- smooth 
conductivity/permeability177.

New algorithms and computational frameworks
Physics- informed ML models often involve training 
large- scale NNs with complicated loss functions, which 
generally consist of multiple terms and thus are highly 
non- convex optimization problems178. The terms in 
the loss function may compete with each other dur-
ing training. Consequently, the training process may 
not be robust and sufficiently stable, and thus conver-
gence to the global minimum cannot be guaranteed179. 
To resolve this issue, one needs to develop more robust 
NN architectures and training algorithms for diverse 
applications. For example, refs76,77,173 have identified 
two fundamental weaknesses of PINNs, relating spec-
tral bias170 to a discrepancy in the convergence rate of 
different components in a PINN loss function. The 
latter is manifested by training instabilities leading to 
vanishing back- propagated gradients. As discussed in 
these refs76,77,173, these pathologies can be mitigated 
by designing appropriate model architectures and new 
training algorithms for PINNs. Also, ref.104 used the 
weak form of the PDE and hp- refinement via decompo-
sition to enhance the approximation capability of net-
works. Other examples include adaptively modifying the 
activation functions180 or sampling the data points and 
the residual evaluation points during training181, which 
accelerate convergence and improve the performance of 
physics- informed models. Moreover, the design of effec-
tive NN architectures is currently done empirically by 
users, which could be very time- consuming. However, 
emerging meta- learning techniques can be used to auto-
mate this search166–168. What is interesting here is that 

Table 1 | Major software libraries specifically designed for physics- informed 
machine learning

software name Usage Language Backend Ref.

DeepXDE Solver Python TensorFlow 154

SimNet Solver Python TensorFlow 155

PyDEns Solver Python TensorFlow 156

NeuroDiffEq Solver Python PyTorch 157

NeuralPDE Solver Julia Julia 158

SciANN Wrapper Python TensorFlow 159

ADCME Wrapper Julia TensorFlow 160

GPyTorch Wrapper Python PyTorch 161

Neural Tangents Wrapper Python JAX 162

hp- refinement
Dual refinement of the  
mesh by increasing either  
the number of subdomains  
or the approximations degree.
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the architecture may be changing as the bifurcation 
parameters of the system (such as the Reynolds num-
ber) increase. The training and optimization of deep 
learning models is expensive, and it is crucial to speed 
up the learning, for instance through transfer learning 
via DeepONets as in the example of crack propagation 
reported in ref.182. In addition, scalable and parallel 
training algorithms should be developed by using hard-
ware like GPUs and tensor processing units, using both 
data- parallel and model- parallel algorithms.

Unlike classic classification or regression tasks, where 
the first- order derivative is required for gradient descent, 
physics- informed ML usually involves higher- order 
derivatives. Currently, their efficient evaluation is not 
well supported in popular software frameworks such 
as TensorFlow and PyTorch. An ML software library 
that is more efficient for computing high- order deriv-
atives (for example, via Taylor- mode automatic differ-
entiation)183,184 could greatly reduce the computational 
cost and boost the application of physics- informed ML 
across different disciplines. In addition to integer- order 
derivatives, other operators such as integral operators 
and even fractional- order derivatives103 are very useful 
in physics- informed learning.

Data generation and benchmarks
In the ML community dealing with imaging, speech 
and natural language processing problems, the use of 
standard benchmarks is very common in order to assess 
algorithm improvement, reproducibility of results, and 
expected computational cost. The UCI Machine Learning 
Repository185, which was created over three decades ago, 
is a collection of databases and data generators that are 
often used to compare the relative performance of new 
algorithms. Currently, they also include experimental 
data sets in the physical sciences, for example noise gen-
erated by an aerofoil, ocean temperature and current 
measurements related to El Niño, and hydrodynamic 
resistance related to different yacht designs. These data 
sets are useful and are intended for data- driven mod-
elling in ML, but in principle they can also be used for 
benchmarking physics- informed ML methods, assuming 
that proper parameterized physical models can be explic-
itly included in the databases. However, in many differ-
ent applications in physics and chemistry, full- field data 
are required, which cannot be obtained experimentally 
(for example in density- functional theory and molecular 
dynamics simulation or in direct numerical simulations 
of turbulence), and which tax computational resources 
heavily both in terms of time and memory. Hence, care-
ful consideration should be given to how to make these 
data publicly available, how to curate such valuable data, 
and how to include the physical models and all param-
eters required for the generation of these databases.  
In addition, it will take a concerted effort by research-
ers to design meaningful benchmarks that test accuracy 
and speed- up of the new proposed physics- informed 
algorithms, which is a non- trivial task. Indeed, even for 
the aforementioned imaging and other established ML 
applications, there are still new developments on refining 
existing benchmarks and metrics, especially if software 
and hardware considerations are also factored in such 

evaluations (for example, an in- depth analysis for image 
recognition)186. In physical systems, these difficulties are 
exacerbated by the fact that the aim is to predict dynam-
ics, and it will be complicated, for example, to determine 
how to capture or identify bifurcations in dynamical  
systems and chaotic states.

However, new metrics such as the valid- time-  
prediction introduced in ref.187 may be appropriate and 
offer a promising direction to follow.

New mathematics
Despite the empirical success of physics- informed 
learning models, little is known about the theoretical 
foundation of such constrained NNs. A new theory is 
required to rigorously analyse the capabilities and lim-
itations of physics- informed learning (for example, the 
learning capacity of NNs). More specifically, a funda-
mental question is: can a network find solutions to PDE 
via gradient- based optimization? To answer this ques-
tion, one should analyse the total error in deep learning, 
which can be decomposed into three types of errors: 
approximation error (can a network approximate a solu-
tion to PDE with any accuracy?), optimization error (can 
one attain zero or very small training loss?) and gener-
alization error (does smaller training error mean more 
accurate predicted solution?). It is important to analyse 
the well- posedness of the problem and the stability and 
convergence in terms of these errors. In particular, if the 
operator to be solved is (possibly partially) learned by 
the data themselves, establishing how well- posed any 
problem involving this operator is becomes an exciting 
mathematical challenge. The challenge is exacerbated 
when the initial/boundary/internal conditions are 
provided themselves as (possibly uncertain) data. This 
well- posedness issue must be analysed mathematically, 
aided by ML computational exploration.

The first mathematical analysis for PINNs in solv-
ing forward problems appeared in ref.188, where the 
Hölder regularization was introduced to control generaliza-
tion error. Specifically, ref.188 analysed the second- order 
linear elliptic and parabolic type PDEs and proved the 
consistency of results. References189,190 used quadrature 
points in the formulation of the loss and provided an 
abstract error estimate for both forward and inverse prob-
lems. However, no convergence results were reported, 
as the use of quadrature points does not quantify the 
generalization error. In subsequent work, ref.191 studied 
linear PDEs and proposed an abstract error estimates 
framework for analysing both PINNs7 and variational 
PINNs104,192. Based on the compactness assumptions 
and the norm equivalence relations, sufficient condi-
tions for convergence to the underlying PDE solution 
were obtained. The generalization error was handled by 
the rademacher complexity. For the continuous loss for-
mulation, refs49,193–195 derived some error estimates based 
on the continuous loss formulations of PINNs. Although 
known error bounds involved with continuous norms 
(from PDE literature) may serve as error bounds for 
(continuous) PINNs, data samples have to be taken into 
account to quantify the generalization error.

In general, NNs are trained by gradient- based optimi-
zation methods, and a new theory should be developed 

Hölder regularization
A regularization term 
associated with Hölder 
constants of differential 
equations that controls the 
derivatives of neural networks.

Rademacher complexity
A quantity that measures 
richness of a class of 
real- valued functions with 
respect to a probability 
distribution.
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to better understand their training dynamics (gradient 
descent, stochastic gradient descent, Adam196 and so on).  
In ref.197, over- parameterized two- layer networks were 
analysed, and it was proved that the convergence of 
gradient descent for second- order linear PDEs, but the 
boundary conditions were not included in the analysis.

In ref.76, the neural tangent kernel theory198 was 
extended to PINNs, and it was shown that the training 
dynamics of PINNs sometimes can be regarded as a kernel  
regression as the width of network goes to infinity.

It is also helpful to understand the training process 
of networks by visualizing the landscape of loss func-
tion of different formulations (strong form, weak form 
and so on). Furthermore, more methods are being rap-
idly developed nowadays, and thus it is also important 
to understand the equivalence between models and 
the equivalence between different loss functions with 
different norms.

Analysing the physics- informed ML models based 
on rigorous theory calls for a fruitful synergy between 
deep learning, optimization, numerical analysis and 
PDE theory that not only has the potential to lead to 
more robust and effective training algorithms, but also 
to build a solid foundation for this new generation of 
computational methods.

Outlook
Physics- informed learning integrates data and math-
ematical models seamlessly even in noisy and high-  
dimensional contexts, and can solve general inverse 
problems very effectively. Here, we have summarized 
some of the key concepts in Boxes 1–3 and provided 
references to frameworks and open- source software for 
the interested reader to have a head start in exploring 
physics- informed learning. We also discussed current 
capabilities and limitations and highlighted diverse 
applications from fluid dynamics to biophysics, plasma 
physics, transition between metastable states and other 
applications in materials. Next, we present possible new 
directions for applications of physics- informed learn-
ing machines as well as research directions that will 
contri bute to their faster training, more accurate pre-
dictions, and better interpretability for diverse physics 
applications and beyond.

Although there have been tools like TensorBoard 
to visualize the model graph, track the variables and 
metrics, and so on, for physical problems, extended 
requirements may include incorporating multiple 
physics and complicated geometry domain into the 
learning algorithm, visualizing the solution field (even 
high- dimensional ones), as in traditional computing 
platforms such as FEniCS199, OpenFOAM10 and others. 
A user- friendly, graph- based ML development environ-
ment that can address the above issues could help 
more practitioners to develop physics- informed ML  
algorithms for applications to a wide range of diverse 
physical problems.

Future directions
Digital twins. ‘Digital twins’, a concept first put forth 
by General Electric to describe the digital copy of 
an engine manufactured in their factories, are now 

becoming a reality in a number of industries. By assim-
ilating real measurements to calibrate computational 
models, a digital twin aims to replicate the behaviour 
of a living or non- living physical entity in silico. Before 
these emerging technologies can be translated into 
practice, a series of fundamental questions need to be 
addressed. First, observational data can be scarce and 
noisy, are often characterized by vastly hetero geneous 
data modalities (images, time series, lab tests, histo-
rical data, clinical records and so on), and may not 
be directly available for certain quantities of interest. 
Second, physics- based computational models heavily 
rely on tedious pre- processing and calibration proce-
dures (such as mesh generation or calibration of initial 
and boundary conditions) that typically have a consid-
erable cost, hampering their use in real- time decision- 
making settings. Moreover, physical models of many 
complex natural systems are, at best, ‘partially’ known 
as conservation laws, and do not provide a closed sys-
tem of equations unless appropriate constitutive laws 
are postulated. Thanks to its natural capability of blend-
ing physical models and data as well as the use of auto-
matic differentiation that removes the need for mesh 
generation, physics- informed learning is well placed 
to become an enabling catalyst in the emerging era of 
digital twins.

Data and model transformations, fusion and inter-
pretability. As the interactions between physics- based 
modelling and ML intensify, one will encounter — with 
increasing frequency — situations in which different 
researchers arrive at different data- driven models of the 
same phenomenon, even if they use the same training 
data (or equally informative data, observed through dif-
ferent sensors). For example, two research groups using 
the same or equivalent alternative data may end up 
having differently trained networks (differently learned 
latent spaces, differently learned operators) even though 
their predictions are practically indistinguishable on the 
training set. Recognizing that there is often no unique 
physical interpretation of an observed phenomenon, 
here we foresee the importance of building ML- based 
transformations between predictive models, models 
at different fidelities, and theories, that are one- to- one 
(transformable, ‘dual’, calibratable) to each other in a 
verifiable manner. Researchers are increasingly discov-
ering such transformations (for example from nonlinear 
dynamics to the corresponding Koopman model; from 
a Poisson system to the corresponding Hamiltonian 
one; from Nesterov iterations to their corresponding 
ODEs) in a data- driven manner. Such transformations 
will allow data and models to be systematically fused. 
Transformations between the ML latent space fea-
tures and the physically interpretable observables, or 
ML- learned operators and closed- form equations, will 
obviously bolster the interpretability of the ML model. 
Ultimately, one needs to test how far these transforma-
tions generalize: for what range of observations an ML 
model can be mapped to a different ML model, or to 
a physical model, and what the generalization limit is, 
beyond which they cannot be transformed or calibrated 
to each other.

Koopman model
Linear model of a (nonlinear) 
dynamical system obtained via 
a Koopman operator theory.

Nesterov iterations
iterations of an algorithm for 
the numerical computation  
of equilibria.
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Searching for intrinsic variables and emergent, useful 
representations. Most of the current physics- informed 
ML methods follow this paradigm: first define a set of 
(humanly interpretable) observables/variables; then col-
lect data; formulate the physics completely or incom-
pletely using a ‘reasonable’ dictionary of operators 
based on the chosen observables; and finally apply the 
learning algorithm of choice. An emerging paradigm 
fuelled by advances in ML is to use observations and 
learning methods to automatically determine good/
intrinsic variables and to also find useful or informative 
physical model formulations. Stepping beyond princi-
pal component analysis, manifold learning techniques 
(from isoMAP to t- sNe and diffusion maps) and their 
deep learning counterparts of generative models and 
(possibly variational) auto- encoders are used to embed 
raw observations in reduced, mathematically useful 
latent spaces, in which evolution rules can be learned. 
Remarkably, these useful representations can go beyond  
embedding the relevant features, the dependent vari ables 
in a PDE. For spatiotemporally disordered data, one  
can also create ML- driven emergent spaces200,201 in terms 
of ML- learned independent variables: emergent ‘space- 
times’ in which the model operators will be learned. The 
DARPA Shredder Challenge202 of 2011 recreated space 
by effectively solving puzzles: documents shredded using 
a variety of paper shredding techniques. Today, disor-
ganized spatiotemporal observations can be embedded 
in informative ‘independent variable’ emergent spaces. 
For example, evolution operators in the form of PDEs or 

SODEs will then be learned in terms of these new, emer-
gent space — even possibly time — independent vari-
ables; there is a direct analogy here with the discussion  
of emergent space- time in modern physics203.

Such new paradigms could play a critical role in 
design optimization or in building a digital twin for 
complicated systems, even systems of systems, where 
humans can hardly write down a neat physical formu-
lation in closed form. Moreover, instead of collecting 
data from experiments first and then performing the 
learning algorithm, it becomes important to integrate 
both in an active learning framework. In this way,  
a judicious selection of new and informative data can be 
aided by exploiting the geometry of latent space of the 
learning algorithms, while the algorithms can gradually 
improve the choice of latent space descriptors, as well as 
the mathematical formulation governing the physics, so 
as to yield realistic predictions as the experiments go on.

Ultimately, the main element we see changing is what 
we mean by ‘understanding’. Up to now, understanding 
meant that, say, each term in a PDE had a physical or 
mechanistic interpretation operated on some physically 
meaningful observables (dependent variables) and also 
operated in terms of some physically meaningful space/
time (independent) variables. Now, it becomes possi-
ble to make accurate predictions without this type of 
mechanistic understanding — and ‘understanding’ is 
something that may be redefined in the process.
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ISOMAP
A nonlinear dimensionality 
reduction technique for 
embedding intrinsically 
low- dimensional data  
from high- dimensional 
representations to 
lower- dimensional spaces.

t- SNE
t- distributed stochastic 
neighbour embedding.  
A nonlinear dimensionality 
reduction technique for 
embedding intrinsically 
low- dimensional data  
from high- dimensional 
representations to 
lower- dimensional spaces.

Diffusion maps
A nonlinear dimensionality 
reduction technique for 
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