Naval Diving and Salvage Training Center FORMULA BOOK

IAW U.S. Navy Diving Manual

PREPARED BY
NAVAL DIVING AND SALVAGE TRAINING CENTER PANAMA CITY, FLORIDA

MARCH 2011

Changes

DATE REVISED	REASON	INITIALS
13 Jul 10	CFR dated 20 Jun 10	AMT
21 Mar 11	Updated Time Fuse Burn	

Table of Contents

System Supplied Floodable Volumes 4
Conversion Formulas 5
Divers Breathing Requirements 6
Surface Supplied Diving Formulas 6
Minimum Manifold Requirements 6
Compressors 7
Duration of Scuba Air Supply 8
Air / O_{2} / Mixed Gas in Storage 9
Air / O_{2} / Mixed Gas Available for Use 10
EGS Pressure Calculation 10
Equivalent Air Depth Calculations 11
Surface Supplied Air / Mixed Gas Requirements 12
Chamber Air Requirements 13
Chamber O_{2} Requirements 15
"T" Formulas 16
General Gas Law Formula 20
Metabolic Make-up Formula 21
Demolition Formulas 22
Steel Cutting 22
Timber and Pile Cutting 24
Time Fuse Burn Calculation 25
Breaching Concrete and Masonry 26
Rigging Formulas 30
Hand Tools 31
Table 9-7 No-D Limits and Repetitive Group Designators for No-D Air Dives 32
Table 9-8 Residual Nitrogen Time Table for Repetitive Air Dives 33
Table 2A-1 No-D Limits and Rep. Group Desig. for Shallow Water Air No-D 34
Table 2A-2 Residual Nitrogen Time Table for Shallow Water Air Dives 35
Air Decompression Tables 36
Table 9-4 Sea Level Equivalent Depth (FSW) 57
Table 9-6 Required Surface Interval Before Ascent to Altitude After Diving 58
Table 9-5 Repetitive Groups Associated With Initial Ascent to Altitude 59
MK-16 (N2O2) Tables 60
MK-16 HEO2 Tables 87
Surface Supplied HE02 Tables 88

Surface Supplied Floodable Volumes

FARCC	I/L 136 cu ft	O/L 65 cu ft	TOTAL 201 cu ft
SNDL chamber	I/L 123 cu ft	O/L 69 cuft	192 cu ft
RCF 5000	I/L 162 cu ft	O/L 61 cuft	223 cu ft
RCF6500	I/L 440 cu ft	O/L 144 cu ft	584 cu ft
TRCS	I/L 45 cu ft	O/L 45.5 cu ft	90.5 cu ft
Army aluminum chamber	I/L 192 cu ft	O/L 37 cuft	229 cu ft
Steel chamber	I/L 285 cu ft	O/L 140 cu ft	425 cu ft
Steel chamber (T-ARS 50)	I/L 134 cu ft	O/L 68 cuft	202 cu ft
Scuba tank alum. 100	.470 cu ft		
Scuba tank alum. 80	.399 cu ft		
Scuba tank alum. 63	.319 cu ft		
Scuba tank alum. 50	.. 281 cu ft		
Scuba tank steel 120	.526 cu ft		
Scuba tank steel 100	.445 cu ft		
Scuba tank steel 72	.420 cu ft		
O2 bottle (K) 1800	1.64 cu ft		
O2 bottle (J) 3500	1.568 cu ft		
O2 cylinder (E) (2015 psi)	. 163 cu ft		
O2 cylinder (D) (2015 psi)	. 099 cu ft		
FADS III - ASRA Flask	3.15 cu ft		
MK3 (LWDS) - Flask	.935 cu ft		
SDASS - DASS Flask	3.15 cu ft		
SDASS - VTA Tank	8 cu ft		
Mini VTA	4 cu ft		
OSF Complex Volumes			
- Wet chamber	7100 cu ft		
- 'A' and 'E' chambers	$440 \mathrm{cu} \mathrm{ft} \mathrm{(each)}$		
- 'B' and ' D ' chambers	620 cu ft (each)		
- 'C' chamber	540 cu ft		
- Trunk	330 cu ft		
- Service Lock (5 locks)	$3.7 \mathrm{cu} \mathrm{ft} \mathrm{(each)}$		
OSF Complex Total			3300 cu ft
OSF Gas Flask (2400 psi) (8 @ 2400 psi)	78.7 cu ft ea		

Conversion Formulas

Depth (fsw) to ATA : $\frac{(\text { Depth }+33)}{33}=$ ATA 33	(Carry two decimal places)
ATA to Depth (fsw) : (ATA -1) X $33=$ Depth	(Round up to the next whole number)
PSIG to ATA : $\quad \frac{(\text { PSIG }+14.7)}{14.7}=$ ATA	(Carry two decimal places)
ATA to PSIG: $\quad(\mathrm{ATA}-1) \mathrm{X} 14.7=$ PSIG	(Round up to the next whole number)
Depth (fsw) to PSIG: Depth x . $445=$ PSIG	(Round up to the next whole number)
$\text { PSIG to Depth (fsw): } \frac{\text { PSIG }}{.445}=\text { Depth }$	(Round up to the next whole number)
PP of gas ATA $\mathrm{x} \%$ gas $=\mathrm{PP}$ in ATA	(Carry two decimal places)
$\mathrm{SEV}=\frac{\mathrm{PP} @ \operatorname{depth}(\text { in ATA }) \times 100 \%}{1 \text { ATA }}$	(Carry two decimal places)
$\mathrm{CO}_{2} \mathrm{SEV}=\frac{1.5}{\mathrm{ATA}} \quad\left(\mathrm{x} 100=\mathrm{CO}_{2} \%\right)$	(Carry two decimal places)
PSIG to PSIA: \quad PSIG + $14.7=$ PSIA	(Round up to next whole number)
Percentage to decimal: move decimal 2 place	or divide by 100
Decimal to percent: move decimal 2 places	ght or multiply by 100
Decimal to minutes or seconds: decimal x 60	$=$ minutes of seconds
Minutes or seconds to decimal: $\frac{\text { minutes or s }}{60}$	conds = decimal
PP in ATA to PP in mmHg: ATA X 760	
PP in mmHg to PP in ATA: mmHg divided by	y 760
Percent to ppm: Move decimal 4 places right	or multiply by 10,000
PPM to percent: Move decimal 4 places left or	divide by 10,000
AIR/O2 Trading Ratio at that stop Total Air	$\frac{\text { Stop time }}{\text { Stop time }}=\text { Air/O2 Trading Ratio }$
AIR/O2 Period Conversion \quad O2 Time	Remaining x 1.1 $=$ Chamber O2 Periods (Round up to next whole minute)
$\begin{array}{ll} \hline \text { SCF to ACF: } & \frac{\text { scf }}{\text { ata }}=\mathrm{acf} \\ \hline \end{array}$	(Carry two decimal places)
ACF to SCF: \quad ata \times acf $=\mathrm{scf}$	(Carry two decimal places)
Fahrenheit to Celsius: $\quad \frac{5(\mathrm{~F}-32)}{9}=\mathrm{C}$	(Carry one decimal places)
Celsius to Fahrenheit: $\quad\left(\frac{9}{5} \mathrm{X} \mathrm{C}\right)+32=\mathrm{F} \quad$ (Carry one decimal place)	
Fahrenheit to Absolute: $\quad \mathrm{F}+460=\mathrm{D}$	grees Rankine
Celsius to Absolute: $\quad \mathrm{C}+273=\mathrm{D}$	grees Kelvin

Divers Breathing Requirements (ACFM)

System	Descent / Bottom	Ascent/Decompression Stops	Heavy Work / Free Flow Vent
MK-21	1.4 ACFM	.75	6 ACFM / 8 ACFM
KM 37	1.4 ACFM	.75	6 ACFM / 8 ACFM
MK-20	1.4 ACFM		
SCUBA	1.4 ACFM		.3 ACFM

Surface Supplied Diving Formulas

Minimum Manifold Requirements (MMP):

A) MK-20 / MK-21 / KM-37

1) 60 FSW or shallower
(D x .445) $+90=$ MMP (round up to next whole number)
2) 61 FSW to 130 fsw
$(\mathrm{D} \mathrm{x} \mathrm{.445)}+135=$ MMP (round up to next whole number)
3) 130 fsw or deeper
(D x .445) $+165=$ MMP (round up to next whole number

Surface Supplied Diving Formulas (Continued)

Compressors:

A) Rating: Capacity in SCFM and delivery of pressure in PSIG
B) Output: PSIG after charging - PSIG before charging $=$

$$
\frac{\text { PSIG charged }}{14.7}=\mathrm{ATM}
$$

ATM x N x FV $=$ SCF (round down to next whole number)

N	$=$ number of flasks
FV	$=$ floodable volume of flasks $(\mathrm{cu} \mathrm{ft})$

$\frac{\text { SCF charged }}{\mathrm{T}} \quad=$ SCF output
$\mathrm{T}=$ Actual time to charge in minutes
C) Compressor percent efficiency:

Compressor SCFM output
Compressor SCFM rating
x $100=$ Percent efficiency
(Round down to next whole number)
D) Flow requirements:

ATA \times ACFM x $\mathrm{N}=$ SCFM required (round up to next whole number)
ACFM - average consumption rate
N - number of divers including standby
E) Compressor depth limit: Note: add output of all compressors used to get total SCFM
(Use the shallower output of steps 1 and 2)

1) SCFM output:

Total SCFM x 33
ACFM x N
$-33=$ Depth Limit

Total SCFM - Output of compressor (s)
ACFM - Average consumption rate
N - Number of divers including standby
2) Pressure rating:

60 fsw or shallower
$\frac{\text { PSIG }-90}{.445}=\begin{aligned} & \text { Depth } \\ & \text { Limit }\end{aligned} \quad$ (round down to next whole number)

Surface Supplied Diving Formulas (Continued)

61 fsw to 130 fsw
$\frac{\text { PSIG }-135}{.445}=$ Limit \quad (round down to next whole number)

130 fsw or deeper
$\frac{\text { PSIG }-165}{.445} \quad=$ Depth \quad Limit \quad (round down to next whole number)

$$
P S I G=\text { rated delivery pressure of compressor }
$$

F) Time to charge:

SCF deficit SCFM compressor output $=$ Time to charge (minutes) (Round up to next whole number)

Duration of SCUBA Air Supply

There are three steps in calculating how long a diver's air supply will last:

1. Calculate the diver's consumption rate:

$$
\mathrm{C}=\frac{\mathrm{D}+33}{33} \times \mathrm{RMV}
$$

Where: $\quad \mathrm{C}=$ Diver's consumption rate, standard cubic feet per minute (scfm) D = Depth, fsw
RMV = Diver's Respiratory Minute Volume, actual cubic feet per minute (acfm)

Duration of SCUBA Air Supply (Continued)

2. Calculate the available air capacity provided by the cylinders. The air capacity must be expressed as the capacity that will actually be available to the diver, rather than as a total capacity of the cylinder. The formula for calculating the available air capacity is:

$$
\begin{aligned}
& \qquad \begin{aligned}
& \mathrm{V}_{\mathrm{a}}=\underline{\mathrm{P}_{\mathrm{C}}}-\frac{\mathrm{P}_{\mathrm{m}}}{14.7} \times \mathrm{FV} \times \mathrm{N} \\
& \text { Where: } \mathrm{P}_{\mathrm{c}}= \text { Measured cylinder pressure, psig } \\
& \mathrm{P}_{\mathrm{m}}=\text { Minimum pressure of cylinder, } \mathrm{psig} \\
& \mathrm{FV}=\text { Floodable Volume (scf) } \\
& \mathrm{N}=\text { Number of cylinders } \\
& \mathrm{V}_{\mathrm{a}}=\text { Capacity available }
\end{aligned}
\end{aligned}
$$

3. Calculate the duration of the available capacity (in minutes) by using this formula:

$$
\text { Duration }=\frac{\underline{\mathrm{V}}_{\underline{a}}}{\mathrm{C}}
$$

Where:
$\mathrm{V}_{\mathrm{a}}=$ Capacity available, scf
C $=$ Consumption rate, scfm

Air / Oxygen / Mixed Gas in Storage

ATA $\times \mathrm{FV} \times \mathrm{N}=$ total SCF in storage (round down to the next whole number)

ATA - PSIG in flasks

FV - Floodable volume in flasks in cu ft
N - Number of flasks

Air / Oxygen / Mixed Gas Available for Use

$$
\left.\left.\begin{array}{rl}
\left(\mathrm{P}_{\mathrm{f}}-\left(\mathrm{P}_{\mathrm{mf}}+\mathrm{MMP}\right)\right. \\
14.7
\end{array}\right) \quad \times \mathrm{FV} \times \mathrm{N}=\mathrm{SCF} \text { available for use (round down to next whole number) }\right) \text { (plig) } \quad \begin{aligned}
\mathrm{P}_{\mathrm{f}}- & \text { Flask pressure (psig } \\
\mathrm{P}_{\mathrm{mf}}- & \text { Minimum flask pressure (} 200 \mathrm{psig} \text { air, } 100 \mathrm{psig} \mathrm{O}_{2} \\
\mathrm{FV}- & \text { Floodable volume in flasks in cu ft } \\
\mathrm{N}- & \text { Number of flasks }
\end{aligned}
$$

Note: If calculating air available for use for chamber operations where NO surface supplied diving is involved, DO NOT USE MMP. Use P_{mf} or regulator setting, whichever is higher.

Note: If calculating O2 available for use for chamber operations, DO NOT USE MMP. Use P_{mf} +O 2 regulator setting.

EGS Pressure Calculation

Minimum EGS pressure calculation example
(1) Planning calculations for minimum EGS pressure prior to any dive. Must be figured to divers first stop.
(2) Example:
(a) The Dive Supervisor needs to estimate how long it will take the divers to return to the stage and leave bottom for a 185 fsw stage depth. The divers are going to pick up an object about 15 feet from the stage; the estimated time to return will be 3 minutes.
(i) Estimated time of return to stage on a $185 / 10$ Sur "D" O2 $(185+33) \times 1.4 \times 3 \mathrm{~min}=27.72 \mathrm{scf}$ 33
(ii) Average Depth for ascent to first stop $\frac{(185+20)}{2}=102.5^{\prime}$ 2
$(102.5+33) \times .75 \times 6$ min Time To First Stop $=18.45$ SCF 33

EGS Pressure Calculation (Continued)

(iii) Formula used to figure the minimum amount of air in PSI needed to start this dive.
27.72 SCF Return to Stage +18.45 SCF Ascent to First Stop
46.17 Total Air to First Stop
$(\underline{\text { Total Air Required })} \times 14.7=($ Depth First stop x $.445+$ Reg setting $)$ FV of EGS
$(46.17) \times 14.7+(20$ ’ x $.445+135)=\mathbf{1 8 4 4 . 9}$ Minimum PSI . 399
. 399 Floodable volume for 80 cuft bottle

Equivalent Air Depth Calculations

$\mathrm{EAD}=\frac{(1<\mathrm{O} 2 \%)(\mathrm{D}+33)}{.79}-33$ or | ppN 2 |
| :--- |
| $\mathrm{ATA} \mid \mathrm{N} 2 \%$ |

$\mathrm{EAD}=$ equivalent depth on air (fsw)
D
$\mathrm{O} 2 \%=$ diving depth mixture (fsw)

Surfaced Supplied Air / Mixed Gas Requirements

Calculations are based on 1.4 ACFM for descent and bottom phase, . 75 ACFM for ascent and decompression phase, and .3 ACFM for BIBS. Include standby in the number of divers for all phases of the dive.
A) Descent and Bottom phase:

Bottom depth in ATA's x ACFM x N x $\mathrm{T}=\mathrm{SCF}$ required (carry two decimal places)

ACFM - Average consumption rate
N - Number of divers including standby
T- Time in minutes
B) Ascent to first Air, HeO 2 , and O 2 stop: (ATA's calculated for average depth)
$\frac{\text { Depth left }+ \text { depth reached }}{2}=$ average depth
ATA x ACFM x $\mathrm{N} \times \mathrm{T}=\mathrm{SCF}$ required (carry two decimal places)
C) Decompression stops:

1) Shift and Vent time $\mathrm{O}_{2} / \mathrm{HeO} 2(50 / 50)$:
(stop depth in ATA x ACFM x $\mathrm{N} \times \mathrm{T}$)
(carry two decimal places)
Note: - The time used for planning purposes is 3 minutes as stated in the USN Dive Manual.

- For in water O2 and HeO 2 dives use 8 ACFM for each diver venting

2) All Air / $\mathrm{O}_{2} / \mathrm{HEO}_{2}$ stops:

Stop depth in ATA \times ACFM $\times \mathrm{N} \times \mathrm{T}=\mathrm{SCF}$ required (carry two decimal places)

Surfaced Supplied Air / Mixed Gas Requirements (Continued)

D) Total requirement for dive:

Descent and bottom phase Ascent + Decompression stops
Total SCF required (round up to next whole number)

Note: 1. Add chamber requirement if applicable
2. Secondary system must be capable of recovering divers
3. Add O_{2} requirement if applicable
a. Amount of air used/required in PSIG:
$($ SCF x 14.7 $)+220=$ PSIG $($ Round up to next whole number $)$ N x FV

SCF $=$ SCF required
N = Number of Flasks
FV = Floodable Volume
PSIG $=$ Pressure required in flasks

Chamber / Air O2 Requirements

A) Chamber air requirement:

1. Air required for compression:

DEPTH \times FV $=$ SCF required (Carry 2 decimal places)
33
$\mathrm{FV}=$ floodable volume of chamber locks (cu. ft.)
2. Ventilation requirements:

ATA x total ventilation requirement $\mathrm{x}=\mathrm{SCF}$ required (carry 2 decimal places)

On $\mathbf{O}_{2:} \quad 12.5 \mathrm{acfm}$ - each person on O_{2} at rest, none required for tenders(s)
On AIR: 2 acfm - each person at rest, 4 acfm - each person not at rest (tenders are considered not at rest)

Chamber / Air O2 Requirements (Continued)

3. Air required for vents on ascent: (ATA figured for average depth)

$$
\frac{\text { Depth left }+ \text { depth reached }}{2}=\text { Average depth }
$$

Average depth in ATA x vent requirement $\mathrm{x} \mathrm{T}=\mathrm{SCF}$ required (carry two decimal places) ($\mathrm{T}=$ time)

To Determine Total Ventilation requirement:

On \mathbf{O}_{2} : 12.5 ACFM for each person on O_{2} at rest, none required for tender(s) 25 ACFM for each person who is not at rest

On AIR: 2 ACFM for each person at rest and 4 ACFM for each person not at rest (tenders are considered not at rest)
*These ventilation rates apply only to the number of people breathing O_{2} and are used only when no BIBS dump system is installed.
4. Total air vent requirements:
compression
vents on bottom
vents at stops

+ vents on ascent
Total SCF required (round up to next whole number)

5. Reduction in ventilation:
$\underline{\text { SCF available } \mathbf{x} \text { total vent requirement in ACFM }=\text { New vent rate (in acfm)* }}$
SCF required
*(round to the next whole number)

Chamber / Air O2 Requirements (Continued)

B) Chamber O^{2} consumption:

1. Descent, bottom and stops:

Bottom or stop depth in ATA x ACFM x $\mathrm{N} \times \mathrm{T}=\mathrm{SCF}$ required (carry two decimal places)
2. Ascent:

Average depth in ATA x ACFM x N x T $=\mathrm{SCF}$ required (carry two decimal places)
3. Total O_{2} consumption:

Descent, bottom and stops

+ Ascent
Total SCF consumed (round up to next whole number)

"T" Formulas

A "T" formula is an organizational device for expressing some mathematical concepts.
For example if:

$$
\begin{aligned}
& 2 \text { times } 3=6 \text { then } \\
& 6 \text { divided by } 2=3 \text { then } \\
& 6 \text { divided by } 3=2
\end{aligned}
$$

This can be expressed in a "T" formula.

Of course, we should not use a "T" formula for $2 \times 3=6$, but it is useful to organize more complicated relationships.

NOTE: Do not round numbers when performing conversions (i.e. psig to ata) within the " T " formula, wait until reaching the final answer and round the answer IAW rounding instructions on page 4.

"T" Formula for Standard Cubic Feet of Gas

scf	
ata	$\mathrm{fv}(\mathrm{cuft})$

Problem: How many cubic feet of gas are there in a flask that has a floodable volume of 78.7 cu ft , and a pressure of 2400 psi ?

12,927.67959 scf

$\frac{2400+14.7}{14.7}$	78.7 cu ft
$=164.2653061$ ata	

ans: $\mathbf{1 2 9 2 7 . 6 7}$ scf (carry 2 decimal places)

"T" Formula For Cubic Feet of Gas (Continued)

Problem: If $12,900.00$ standard cubic feet of gas is in a 78.7 cu ft floodable volume flask, what is the resultant gauge pressure?

$12,900.00 \mathrm{scf}$	
163.91359 ata	78.7 cu ft
$\frac{-1}{162.91359} \mathrm{~atm}$	
$\frac{\mathrm{x} \mathrm{14.7}}{\mathbf{2 3 9 4 . 8 2 9 8 5 9}} \mathbf{~ p s i g}$	

ans: 2395 psig (rounded up)
Problem: One 78.7 cubic foot floodable volume flask is on the line at 2400 psig. During a diving operation the flask pressure dropped to 2234 psig. What was the amount of gas used?

2400 psig
-2234 psig
$=166 \mathrm{psig}$

888.7210879 scf

$166 \mathrm{psig} / 14.7$ $=11.292517 \mathrm{~atm}$	78.7 cu ft

aans: $\mathbf{8 8 8 . 7 2}$ scf (carry 2 decimal places

"T" Formula for Equalization

scf		+	scf			scf	
ata	fv1		ata	fv2		ata	fv1 + fv2

Problem: One 78.7 cubic foot floodable volume flask, charged to 1000 psi, is equalized with one 78.7 cubic foot floodable volume flask charged to 2400 psi . What is the new flask pressure?

5,432.4414 scf		12, 927.679 scf		18, 360.12 scf	
$\begin{aligned} & \frac{1,000 \mathrm{psi}+}{\frac{14.7}{14.7}} \\ & =69.02721 \mathrm{ata} \end{aligned}$	78.7 cu ft	$\begin{aligned} & \frac{2,400 \mathrm{psi}+}{} \\ &+\quad \frac{14.7}{14.7} \\ &= 164.26530 \\ & \text { ata } \end{aligned}$	$\begin{gathered} 78.7 \mathrm{cu} \\ \mathrm{ft} \end{gathered}$	$\begin{aligned} & 116.64625 \text { ata } \\ & \frac{-1}{115.64625} \mathrm{~atm} \\ & \frac{\times 14.7}{=\mathbf{1 , 6 9 9 . 9 9 9 8}} \begin{array}{c} \text { psig } \end{array} \end{aligned}$	$\begin{gathered} \frac{78.7 \mathrm{cu} \mathrm{ft}}{\mathrm{x} 2} \\ \frac{157.4 \mathrm{cu}}{\mathrm{ft}} \end{gathered}$

ans: $\mathbf{1 , 7 0 0} \mathbf{p s i g}$ (rounded up)

"T" Formula for Final Pressure

$=\quad$| ata \mid fcf |
| :--- |
| fv1 |

Problem: One bank of eight 78.7 cu ft flasks charged @ 2000 psig is on line. The complex (3300 cu ft) is at 180 fsw . You press down to 279 fsw . What is the final pressure in the bank?

ans: $1,769 \mathbf{p s i g}$ (rounded up)

"T" Formula for Partial Pressure, Maximum O_{2} and Cutoff Depth

PARTIAL PRESSURE IN ATA'S	
ATA	\% OF GAS

Problem: What is the cutoff depth for a $25 \% \mathrm{O}_{2}$ mix maintaining a maximum partial pressure of O_{2} at 1.6 ata?

$1.6 \mathrm{ppO}_{2}$ ata	
$\mathbf{6 . 4}$ ata	25%
$\frac{-1}{5.4 \mathrm{~atm}}$	$=.25$
$\frac{\mathrm{x} 33}{\mathbf{1 7 8 . 2} \mathbf{~ f s w}}$	

ans: $\mathbf{1 7 8}$ fsw

"T" Formula for Partial Pressure, Maximum O_{2} and Cutoff Depth (Continued)

Problem: At 180 fsw , what percent gas is needed to maintain a partial pressure of 1.6 ata?

$1.6 \mathrm{ppO}_{2}$ ata	
$\frac{180 \text { fsw }+33}{33}$.2478873
$=6.45454$ ata	$=24.78873 \%$

ans: $\mathbf{2 4 . 7 9 \%} \mathbf{O}_{\mathbf{2}}$ (rounded up)
Problem: At 180 fsw , and using $15 \% \mathrm{O}_{2}$, what is the partial pressure in ata?

Problem: The ppO_{2} is .97 ata, and the $\%$ of gas is 15%, what is the depth?

$.97 \mathrm{ppO}_{2}$ ata	
6.4666666 ata	15%
$\frac{-1}{5.4666666 ~ a t m ~}$	$=.15$
$\frac{\mathrm{x} 33}{\mathbf{1 8 0 . 3 9 9 9 9} \mathbf{~ f s w}}$	

ans: 180.4 (rounded up)
Problem: The ppO_{2} is .97 ata and the depth is 180 fsw. What is the percent of gas?
$.97 \mathrm{ppO}_{2}$ ata

$180 \mathrm{fsw}+33$ 33	.1502816
$=6.4545454 \mathrm{ata}$	

ans: $\mathbf{1 5 . 0 3 \%}$ (rounded up)

General Gas Law Formula

$$
\underline{\mathrm{P}}_{1} \frac{\times \mathrm{V}_{1}}{\mathrm{~T}_{1}} \quad \underline{\mathrm{P}}_{2} \frac{\times \mathrm{V}_{2}}{\mathrm{~T}_{2}}
$$

The General Gas Law can be used to predict the behavior of a given quantity of gas when any of the factors change. *If some factors do not change in the equation $\left(V_{1}=V_{2}\right)$, they can be removed from the equation.

Express all temperatures in absolute (degrees Rankine) by adding 460 to existing temperatures (${ }^{\circ} \mathrm{F}+460={ }^{\circ} \mathrm{R}$).

Express all pressures or depths in absolute by adding 14.7 psi or 33 fsw.
P_{1} - Initial Pressure (absolute) To solve for any of the individual factors:
V_{1} - Initial Volume
$\begin{array}{lrll}\mathrm{T}_{1}-\text { Initial Temperature (absolute) } \\ \mathrm{P}_{2}-\text { Final Pressure (absolute) }\end{array} \quad \mathrm{P}_{1}=\underline{\mathrm{P}}_{2} \underline{\mathrm{~V}_{2}} \underline{\mathrm{~T}}_{2} \mathrm{~T}_{1} \quad \mathrm{P}_{2}=\underline{\mathrm{P}}_{1} \underline{\mathrm{~V}_{1}} \underline{\mathrm{~T}_{2}} \underline{\mathrm{~T}}_{2} \mathrm{~V}_{1}=\underline{\mathrm{P}}_{2} \underline{\mathrm{~V}}_{2} \mathrm{~T}_{1}$
V_{2} - Final Volume
T_{2} - Final Temperature (absolute)

$$
\mathrm{V}_{2}=\underline{\mathrm{P}}_{1} \underline{\mathrm{~V}_{1}} \underline{\mathrm{P}}_{2} \underline{\mathrm{~T}_{2}} \quad \mathrm{~T}_{1}=\underline{\mathrm{T}_{2}} \underline{\mathrm{P}_{1}} \underline{\mathrm{P}}_{2} \underline{\mathrm{~V}}_{1} \frac{\mathrm{~T}_{2}}{\mathrm{~V}_{2}}=\underline{\mathrm{P}_{2}} \underline{\mathrm{~V}_{2}} \underline{\mathrm{~T}_{1}} \underline{\mathrm{~T}}_{1}
$$

Problem: The complex is pressed to 220 fsw, it cools from $92^{\circ} \mathrm{F}$ to $76^{\circ} \mathrm{F}$, and no gas is added or lost, what is the final depth?

$$
\begin{aligned}
& \mathrm{P}_{2}=\mathrm{P}_{1} \frac{\mathrm{~V}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1} \mathrm{~V}_{2}} \quad \begin{array}{c}
* \text { The volume of the complex is not going to change } \\
\text { (Complex } \mathbf{f v}=\mathbf{3 3 0 0} \text { cu ft), so remove } \mathrm{V}_{1} \text { and } \mathrm{V}_{2} \text { from the } \\
\text { equation. }
\end{array} \\
& \mathrm{P}_{1}=\frac{220 \mathrm{fsw}+33}{33}=\quad 7.666666 \text { ata } \\
& \mathrm{T}_{2}=76^{\circ} \mathrm{F}+460=\quad 536^{\circ} \mathrm{R} \\
& \mathrm{~T}_{1}=92^{\circ} \mathrm{F}+460=\quad 552^{\circ} \mathrm{R} \\
& \mathrm{P}_{2}=\frac{7.66666 \times 536}{552} \\
& \mathrm{P}_{2}=\frac{4109.333332}{552}=7.4444442 \mathrm{ata} \\
& \mathrm{P}_{2}=7.4444442-1=6.4444442 \mathrm{~atm} \\
& \mathrm{P}_{2}=6.4444442 \times 33=212.66665 \mathrm{fsw}
\end{aligned}
$$

ans: 212 fsw

Metabolic Makeup Formula

$\left(\mathrm{ppO}_{2}\right.$ desired $-\mathrm{ppO}_{2}$ present $) \times 33 \times \frac{\% \text { of gas being added }}{100}=\mathrm{ft}$ of $\mathrm{O}_{\mathbf{2}}$
The metabolic makeup formula is used to calculate how much oxygen addition is needed to maintain the proper partial pressure limits.

Problem: The ppO_{2} is .40 ata and we wish to increase it to .45 ata, how many additional feet must we press down with 100% oxygen?
$(.45-.40)=\quad .05$
$.05 \times 1 \times 33=1.65 \mathrm{ft}$ of O_{2}
ans: $\mathbf{1 . 6 5} \mathrm{ft}$ of $\mathrm{O}_{\mathbf{2}}$
To bring the ppO_{2} up to .45 ata, depth in the complex must be increased 1.65 ft using pure oxygen.

DEMOLITIONS

Steel Cutting

A) Structural Steel (I or H BEAMS)

$$
\begin{array}{rl}
P=3 / 8 A & \mathrm{P}=\text { Pounds of Explosive Required } \\
\mathrm{A} & =\text { Area (in square inches) }
\end{array}
$$

B) Steel Bars, Cables and Chain

$$
\mathrm{P}=\mathrm{A}
$$

C) Ribbon Charge

Thickness of charge $=1 / 2$ the thickness of the target
Width of charge $=3$ times the thickness of the charge
Length of charge $=$ length of desired cut

Steel Cutting (Continued)

D) Cross Fracture Charge (Saddle Charge)

Target Diameter Less Than 3":
Thickness of charge $=1$ " thick (thickness of M112 block)
Long axis of charge = circumference of the target
Base of charge $\quad=1 / 2$ of the long axis

Target Diameter of 3" or Greater:

Thickness of charge	$=1 "$ thick
Long axis of charge	$=$ circumference of the target +6.25
Base of charge	$=1 / 2$ of the long axis

NOTE: Circumference = Diameter $\times 3.14$

E) Stress Wave Method (Diamond Charge)

Target Diameter Less Than 3":
Thickness of charge $=1 "$ thick (thickness of M112 block)
Long axis of charge = circumference of the target
Base of charge $\quad=1 / 2$ of the long axis
Target Diameter 3" or Greater:
Thickness of charge $\quad=1$ " thick
Long axis of charge $\quad=$ circumference of the target +6.25
Base of charge $\quad=1 / 2$ of the long axis

Timber and Pile Cutting

External Charge

$$
P=\frac{D^{2}}{40}
$$

P = Pounds of Explosives Required
$\mathrm{D}=$ Diameter of Timber in Inches

Internal Charge

$$
P=\frac{D^{2}}{250}
$$

$$
\mathrm{P}=\text { Pounds of Explosives Required }
$$

$$
\mathrm{D}=\text { Diameter of Timber in Inches }
$$

Calculation of Time Fuse Burn

1. Burn 6' of time fuse then convert burn time (BT) into seconds. ($\mathrm{BT}=4$ minutes $(: 4 \mathrm{x}:: 60=240 \mathrm{sec}$).
2. Divide seconds by feet $(6)=$ burn rate $(B R)$ seconds per foot. $(B R=40 \mathrm{sec})$.
3. Establish safe separation time (SST) in seconds.
$($ SST is 8 minutes 26 seconds $=506 \mathrm{sec})$.
4. Divide SST (506) by BR (40). This equals 12.65 .
5. Number that is left of decimal is feet of time fuse needed. (12).
6. Multiply remaining (.65) by 12. (7.80).
7. The number left of the decimal is inches of time fuse needed. (7). (In addition to the 12 feet, step 5).
8. Take the number to the right of the decimal (.80) and multiply it by 8 . This number to the left of the decimal is the $1 / 8$'s of an inch of time fuse to add to the inches from step (7). ($.80 \times 8=6.4$) The ". 4 " is discarded. So $6 / 8$'s or $3 / 4$'s of an inch is added to the number of inches in step 8 .
9. This results in a total time fuse length of $\mathbf{1 2}$ feet and 7 - $\mathbf{3} / 4$ inches.

Breaching Concrete and Masonry

External Charge

$$
P=R^{3} K C
$$

$\mathrm{P}=$ Pounds of Explosives Required
$\mathrm{R}=$ Breaching Radius (thickness of the target)
$\mathrm{K}=$ Material Factor
$\mathrm{C}=$ Charge Placement and Tamping Factor

Internal Charge
$\mathrm{P}=$ Pounds of Explosives Required
$\mathrm{R}=$ Breaching Radius (if charge is placed at center

$$
P=R^{3} K C
$$

of target the radius is equal to only half the target thickness)
K = Material Factor $\mathrm{C}=$ Charge Placement and Tamping Factor

NOTE: Add 10% to a calculated charge of less than 50 lbs for a single target.
NOTE: To calculate these formulas for breaching concrete and masonry, refer to values for K and C factors.

1. Calculate for amount of TNT needed.
2. Add the 10% if amount for a single target is less than 50 lbs .
3. Multiply the number of targets.
4. Divide the relative effectiveness of explosive being used.

NOTE: To calculate the number of charges required to breach a wall use the following formula:
$\mathrm{N}=\mathrm{L} / 2 \mathrm{R}$ (round up to the next whole number)
$\mathrm{N}=$ Number of charges required
$\mathrm{L}=$ Length of the wall
$\mathrm{R}=$ Breaching Radius (remember that if using internal charges the radius will only be $1 / 2$ the wall thickness)

Breaching Concrete and Masonry (Continued)

Value of C for the R3KC formula for an Internal Breaching Charge:

Value of C for the R3KC formula for an External Wall Breach Charge:

UNDERWATER C - 1
DEPTH AT WHICH CHARGE IS PLACED IS EQUAL TO OR MORE THAN THE WALL THICKNESS

Breaching Concrete and Masonry (Continued)

Values for Relative Effectiveness Factor (REF) (Characteristics of U.S. Military Explosives)

Explosive	Typical Uses	Average Rate of Detonation (Feet Per Second)	Relative Effectiveness as an External Charge (TNT = 1.00)	Intensity of Toxic Fumes	Water Resistance
Amatol	Bursting Charge	16,000 fps	1.17	Dangerous	Poor
Ammonium Nitrate	Cratering Charge and Composition Explosives	8,900 fps	0.42	Dangerous	None
Black Powder	Time Blasting Fuse	1300 fps	0.55	Dangerous	None
CH-6	Demolition Charge Booster Charge	28,000 fps	1.50	Dangerous	Excellent
Composition A-3	Booster Charge and Bursting Charge	26,500 fps	1.35	Dangerous	Good
Composition A-5	Booster Charge	29, 300 fps	1.40	Dangerous	Excellent
Composition B	Bursting Charge	25, 600 fps	1.35	Dangerous	Excellent
Composition C-3	Demolition Charge	$25,000 \mathrm{fps}$	1.26	Dangerous	Good
Composition C-4	Demolition Charge	26, 400 fps	1.34	Slight	Excellent
DXN-1	Primary Charge	21, 600 fps	1.50	Dangerous	Good
H-6	Demolition Charge	24, 300 fps	1.35	Dangerous	Excellent
HBX-1	Demolition Charge	$24,600 \mathrm{fps}$	1.33	Dangerous	Excellent
	Demolition Charge	24, 700 fps	1.11	Dangerous	Excellent
	Demolition Charge	30, 000 fps	1.50	Dangerous	Excellent
Military Dynamite	Demolition Charge	$20,000 \mathrm{fps}$	0.92	Dangerous	Fair
Octol-70/25	Demolition Charge	27, 500 fps	1.16	Dangerous	Excellent
Octol-70/30	Demolition Charge	26, 400 fps	1.15	Dangerous	Excellent
PBX	See NAVSEA SW010-AG-ORD-010				
Pentolite 50/50	Booster Charge and Bursting Charge	24, 400 fps	1.26	Dangerous	Excellent
PETN	Detonation Cord, Blasting Cap and Demolition Charge	27, 200 fps	1.66	Slight	Excellent
RDX	Blasting Caps, Composition Explosives	27, 400 fps	1.60	Dangerous	Excellent
Tetryl	Booster Charge and Composition Explosives	23, 300 fps	1.25	Dangerous	Excellent
Tetrytol 75/25	Demolition Charge	23, 000 fps	1.20	Dangerous	Excellent
TNT	Demolition Charge and Composition Explosives	22,600 fps	1.00	Dangerous	Excellent
Sheet Explosive M118	Cutting Charge	24, 000 fps	1.14	Dangerous	Excellent
Shaped Charges	Cutting Charge	25, 600 fps	1.17	Dangerous	Excellent

Breaching Concrete and Masonry (Continued)

Values of K for the $\mathrm{R}^{3} \mathrm{KC}$ Formula

Material	R	K
Ordinary Earth good	All values	0.05
Poor masonry, shale and hardpan, timber and earth construction	All values	0.225
Good masonry, ordinary concrete		
and rock	Less than 3 ft	0.35
	3 to 5 ft	0.275
	5 to 7 ft	0.25
Dense concrete and first class	More than 7 ft	0.225
masonry	Less than 3 ft	0.45
	3 to 5 ft	0.375
Reinforced concrete (concrete	5 to 7 ft	0.325
only,	Lers than 7 ft	0.275
Will not cut reinforcing steel)	3 to 5 ft	0.70
	5 to 7 ft	0.55

Rigging Formulas

C	$=$ Circumference
BS	$=$ Breaking Strength
SWL or SWC	$=$ Safe Working Load/Capacity
SF	$=$ Safety Factor
D	$=$ Diameter

Breaking strength of manila line: C^{2} x $900=B S$
Breaking strength of nylon line: $C^{2} \times 2400=B S$
Safe working load for line: $\frac{\mathrm{BS}}{\mathrm{SF}}=\mathrm{SWL}$
SWL of a shackle: $3 \times \mathrm{D}^{2} \times 1$ ton $=\mathrm{SWL}$ (tons)
SWL of a hook: $2 / 3 \times D^{2} \times 1$ ton $=$ SWL
Safe working load for wire rope: $D^{2} \times 8=S W L$ (tons)
CLIPS: \# of wire rope clips needed
$3 \times \mathrm{D}+1=$ \# of clips
Spacing between wire rope clips
$6 \times \mathrm{D}=$ spacing (inches)
SEIZINGS: \# of seizings for wire rope
$3 \times D=\#$ of seizings (minimum of 3)
Spacing of seizings for wire rope
$2 \times \mathrm{D}=$ spacing (inches)
Width of seizings for wire rope 1 to $1.5 \times \mathrm{D}=$ width (inches)

HAND TOOLS

$\cdot T(W)=T(E) \quad X \quad L / L+E$
$-E=$ Effective length of adapter
$-L=$ Length of the wrench
$-\mathbf{T}(\mathrm{W})=$ Torque set or read on wrench
$-T(E)=$ Applied Torque (required torque)

Table 9-7. No-Decompression Limits and Repetitive Group Designators for No-Decompression Air Dives.

Depth (faw)	No-Stop Limit	Repetitive Group Designation															
		A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	Z
10	Unlimited	57	101	158	245	426	*										
15	Unlimited	36	60	88	121	163	217	297	449	*							
20	Unlimited	26	43	61	82	106	133	165	205	256	330	461	*				
25	595	20	33	47	62	78	97	117	140	166	198	236	285	354	469	595	
30	371	17	27	38	50	62	76	91	107	125	145	167	193	223	260	307	371
35	232	14	23	32	42	52	63	74	87	100	115	131	148	168	190	215	232
40	163	12	20	27	36	44	53	63	73	84	95	108	121	135	151	163	
45	125	11	17	24	31	39	46	55	63	72	82	92	102	114	125		
50	92	9	15	21	28	34	41	48	56	63	71	80	89	92			
55	74	8	14	19	25	31	37	43	50	56	63	71	74				
60	60	7	12	17	22	28	33	39	45	51	57	60					
70	48	6	10	14	19	23	28	32	37	42	47	48					
80	39	5	9	12	16	20	24	28	32	36	39						
90	30	4	7	11	14	17	21	24	28	30							
100	25	4	6	9	12	15	18	21	25								
110	20	3	6	8	11	14	16	19	20								
120	15	3	5	7	10	12	15										
130	10	2	4	6	9	10											
140	10	2	4	6	8	10											
150	5	2	3	5													
160	5		3	5													
170	5			4	5												
180	5			4	5												
190	5			3	5												

* Highest repetfive group that can be achieved at this depth regardless of cottom time.

Table 9-8. Residual Nitrogen Time Table for Repetitive Air Dives.

${ }^{\text {" }}$ Residual Nitrogen Time cannot be determined using this table (see paragraph $9-9.1$ subparagraph 8 for instructions).
\dagger Read vertically downward to the 30 fsw repetitive dive depth. Use the corresponding residual nitrogen times to compute the equivalent single dive time. Decompress using the 30 fsw air decompression table.

Table 2A-1. No-Decompression Limits and Repetitive Group Designators for Shallow Water Air NoDecompression Dives.

Depth (fsw)	$\begin{gathered} \text { No-Stop } \\ \text { Limit(min) } \end{gathered}$	Repetitive Group Designation															
		A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	z
30	371	17	27	38	50	62	76	91	107	125	145	167	193	223	260	307	371
31	334	16	26	37	48	60	73	87	102	119	138	158	182	209	242	282	334
32	304	15	25	35	46	58	70	83	98	114	131	150	172	197	226	261	304
33	281	15	24	34	45	56	67	80	94	109	125	143	163	186	212	243	281
34	256	14	23	33	43	54	65	77	90	104	120	137	155	176	200	228	256
35	232	14	23	32	42	52	63	74	87	100	115	131	148	168	190	215	232
36	212	14	22	31	40	50	61	72	84	97	110	125	142	160	180	204	212
37	197	13	21	30	39	49	59	69	81	93	106	120	136	153	172	193	197
38	184	13	21	29	38	47	57	67	78	90	102	116	131	147	164	184	
39	173	12	20	28	37	46	55	65	76	87	99	112	126	141	157	173	
40	163	12	20	27	36	44	53	63	73	84	95	108	121	135	151	163	
41	155	12	19	27	35	43	52	61	71	81	92	104	117	130	145	155	
42	147	11	19	26	34	42	50	59	69	79	89	101	113	126	140	147	
43	140	11	18	25	33	41	49	58	67	76	87	98	109	122	135	140	
44	134	11	18	25	32	40	48	56	65	74	84	95	106	118	130	134	
45	125	11	17	24	31	39	46	55	63	72	82	92	102	114	125		
46	116	10	17	23	30	38	45	53	61	70	79	89	99	110	116		
47	109	10	16	23	30	37	44	52	60	68	77	87	97	107	109		
48	102	10	16	22	29	36	43	51	58	67	75	84	94	102			
49	97	10	16	22	28	35	42	49	57	65	73	82	91	97			
50	92	9	15	21	28	34	41	48	56	63	71	80	89	92			

Table 2A-2. Residual Nitrogen Time Table for Repetitive Shallow Water Air Dives.

Residual Nitrogen Times (Minutes)

Table 9-9. Air Decompression Table. (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	Gas Mix	able 9-9. Air Decompression Table (Continued). DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
				90	DECO Stop ti: exc 80	$\begin{aligned} & \text { MPRES } \\ & \text { hes (mi } \\ & \text { ot first } \\ & 70 \end{aligned}$	$\begin{aligned} & \text { SION } \\ & \text { 1) indu } \\ & \text { ir and } \\ & 60 \end{aligned}$	$\begin{aligned} & \text { TOPS } \\ & \text { de tray } \\ & \text { irst O } \\ & 50 \end{aligned}$	$\begin{aligned} & \text { (FSW) } \\ & \text { el time } \\ & \text { stop } \\ & 40 \end{aligned}$	30	20			
50 FSW														
92	1:40	AIR									0	1:40	0	M
		$\mathrm{AlR} / \mathrm{O}_{2}$									0	1:40		
95	1:00	AIR									2	3:40	0.5	M
		$\mathrm{AlR} / \mathrm{O}_{2}$									1	2:40		
100	1:00	AIR									4	5:40	0.5	N
		$\mathrm{AlR} / \mathrm{O}_{2}$									2	3:40		
110	1:00	AIR										9:40	0.5	0
		$\mathrm{AlR} / \mathrm{O}_{2}$									4	5:40		
In-Water Airl O_{2} Decompression or SurDO_{2} Recommended														
120	1:00	AIR									21	22:40	0.5	0
		$\mathrm{AlR} / \mathrm{O}_{2}$									7	8:40		
130	1:00	AIR									34	35:40	0.5	z
		$\mathrm{AlR} / \mathrm{O}_{2}$									12	13:40		
140	1:00	AIR									45	46:40	1	z
		$\mathrm{AlR} / \mathrm{O}_{2}$									16	17:40		
150	1:00	AlR									56	57:40	1	z
		$\mathrm{AlR} / \mathrm{O}_{2}$									19	20:40		
160	1:00	AIR									78	79:40	1	z
		$\mathrm{AlR} / \mathrm{O}_{2}$									23	24:40		
Exoeptional Exposure: In-Water Air Decompression ----- In-Water Airl O_{2} Decompression or SurDO ${ }_{2}$ Required -----														
170	1:00	AIR									96	97:40	1	z
		$\mathrm{AlR} / \mathrm{O}_{2}$									26	27:40		
180	1:00	AIR									111	112:40	1.5	z
		$\mathrm{AlR} / \mathrm{O}_{2}$									30	31:40		
180	1:00	AIR									125	126:40	1.5	z
		$\mathrm{AlR} / \mathrm{O}_{2}$									35	36:40		
200	1:00	AIR									136	137:40	1.5	z
		$\mathrm{AlR} / \mathrm{O}_{2}$									39	45:40		
210	1:00	AIR									147	148:40	2	
		$\mathrm{AlR} / \mathrm{O}_{2}$									43	49:40		
220	1:00	AIR									168	167:40	2	
		$\mathrm{AlR} / \mathrm{O}_{2}$									47	53:40		
230	1:00	AIR									183	184:40	2	
		$\mathrm{AlR} / \mathrm{O}_{2}$									50	56:40		
240	1:00	AIR									198	199:40	2	
		$\mathrm{AlR} / \mathrm{O}_{2}$									53	59:40		
270	1:00	AIR									236	237:40	2.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$									62	68:40		
300	1:00	AIR									285	286:40	3	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									74	85:40		
Exceptional Exposure: In-Water $\mathrm{Air}^{2} \mathrm{O} 2$ Decompression $-\ldots-\ldots-\ldots$														
330	1:00	AIR									345	346:40	3.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$									83	94:40		
360	1:00	AIR									393	394:40	3.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$									92	103:40		
Exceptional Exposure: SurDO_{2}---														
420	1:00	AIR									484	485:40	4.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$									113	129:40		

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and frst O_{2} stop									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
			100	90	80	70	60	50	40	30	20			
55 FSW														
74	1.50	AIR									0	1:50	0	L
		$\mathrm{AlR}^{\text {O }} \mathrm{O}_{2}$									0	1:50		
75	1:10	AIR									1	2.50	0.5	L
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									1	$2 \cdot 50$		
80	1:10	AIR									4	5.50	0.5	M
		$\mathrm{AlR}^{\text {(}} \mathrm{O}_{2}$									2	3:50		
90	1:10	AIR									10	11:50	0.5	N
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									5	6.50		
100	1:10	AIR									17	18:50	0.5	0
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									8	9.50		
110	1:10	AIR									34	35.50	0.5	0
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									12	13:50		
120	1:10	AIR									48	48.50	1	z
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									17	18:50		
130	1:10	AIR									59	60:50	1	z
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									22	23:50		
140	1:10	AIR									84	$85: 50$	1	z
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									26	27:50		
Exceptional Exposure: In-Water Air Decompression ----- In-Water Air/O2 Decompression or SurDO, Required ------														
150	1:10	AIR									105	108:50	1.5	Z
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									30	31:50		
180	1:10	AIR									123	124:50	1.5	z
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									34	35.50		
170	1:10	AlR									138	139:50	1.5	z
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									40	46:50		
180	1:10	AIR									151	152-50	2	z
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									45	51:50		
190	1:10	AIR									169	170:50	2	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									50	56:50		
200	1:10	AIR									190	191:50	2	
		$\mathrm{AlR/O}_{2}$									54	60:50		
210	1:10	AIR									208	209:50	2.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									58	64:50		
220	1:10	AIR									224	225:50	2.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									62	68:50		
230	1:10	AIR									239	240:50	2.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									66	77:50		
240	1:10	AIR									254	255.50	3	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									69	80:50		
270	1:10	AIR									313	314:50	3.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									83	94:50		
300	1:10	AIR									380	381:50	3.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									94	105.50		
330	1:10	AIR									432	433-50	4	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									106	122.50		
Exceptional Exposure: SurDO_{2}														
380	1:10	AIR									474	475:50	4.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									118	134:50		
9-68											Nav	Diving	anual -	olume 2

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

$\begin{aligned} & \text { Bottom Time } \\ & (\mathrm{min}) \end{aligned}$	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O_{2} stop								Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
			10090	80	70	60	50	40	30	20			
60 FSW													
60	2:00	AIR								0	2:00	0	K
	$\mathrm{AlR} / \mathrm{O}_{2}$									0	2:00		
65	1:20	AIR								2	4:00	0.5	L
$\mathrm{AlR} / \mathrm{O}_{2}$										1	3:00		
70	1:20	AIR								7	9:00	0.5	L
${\mathrm{AlR} / \mathrm{O}_{2}}^{1}$										4	6:00		
80	1:20	AIR								14	16:00	0.5	N
$\mathrm{AlR} / \mathrm{O}_{2}$										7 9:00			
90	1:20	AIR								23	25:00	0.5	0
$\mathrm{AlR} / \mathrm{O}_{2}$										10	12:00		
100	1:20	AIR								42	44:00	1	z
$\mathrm{AlR} / \mathrm{O}_{2}$										15	17:00		
110	1:20	AIR								57	59:00	1	z
$\mathrm{AlR} / \mathrm{O}_{2}$										21	23:00		
120	1:20	AIR								75	77:00	1	z
AIR/ $/ \mathrm{O}_{2}$										$26 \quad 28: 00$			
Exceptional Exposure: In-Water Air Decompression ---- In-Water Airl O_{2} Decompression or SurDO_{2} Required -----													
130	1:20	AIR								102	104:00	1.5	Z
$140{\mathrm{AlR} / \mathrm{O}_{2}}^{2}$										31	33:00		
140	1:20	AIR								124	126:00	1.5	z
$\mathrm{AlR} / \mathrm{O}_{2}$										35	37:00		
150	1:20	AIR								143	145:00	2	z
$\mathrm{AlR} / \mathrm{O}_{2}$										41	48:00		
160	1:20	AIR								158	160:00	2	z
$\mathrm{AlR} / \mathrm{O}_{2}$										48	55:00		
AIR $/ \mathrm{O}_{2}$										178	180:00	2	
										53	60:00		
180	1:20	AIR								201	203:00	2.5	
$\mathrm{AlR} / \mathrm{O}_{2}$										59	66:00		
180	1:20	AIR								222	224:00	2.5	
$\mathrm{AlR} / \mathrm{O}_{2}$										64	71:00		
200	1:20	AIR								240	242:00	2.5	
$\mathrm{AlR} / \mathrm{O}_{2}$										68	80:00		
210 1:20 AIR $\begin{array}{cc}\text { AIR } / \mathrm{O}_{2}\end{array}$										256	258:00	3	
										73	85:00		
$220 \quad 1: 20 \begin{array}{cc}\text { AIR } \\ \text { AIR/O2 }\end{array}$										278	280:00	3	
										77	89:00		
230	1:20	AIR								300	302:00	3.5	
$\mathrm{AlR} / \mathrm{O}_{2}$										82	94:00		
240 1:20 AIR $\begin{gathered}\text { AIR } / \mathrm{O}_{2}\end{gathered}$										321	323:00	3.5	
										88	100:00		
$270 \begin{array}{ccc}1: 20 & \begin{array}{c}\text { AlR } \\ \text { AlR/O }\end{array}\end{array}$										398	400:00	4	
										102	119:00		
Excestional Exposure: SurDO_{2}													
300	1:20	AIR								456	458:00	4.5	
	$\mathrm{AlR} / \mathrm{O}_{2}$									115	132:00		

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and frst O_{2} stop									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
				90	80	70	60	50	40	30	20			
70 FSW														
48	$2 \cdot 20$	AIR									0	220	0	K
	AlRO_{2}										0	220		
50	$1: 40$	AIR									2	4:20	0.5	K
	${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$										1	$3: 20$		
55	$1: 40$	AIR									9	11:20	0.5	L
	AlRO_{2}										5	7:20		
60	$1: 40$	AIR									14	10:20	0.5	M
	${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$										8	10:20		
70	1:40	AIR									24	26:20	0.5	N
	$\mathrm{AlR}^{\text {(}} \mathrm{O}_{2}$										13	15:20		
80	$1: 40$	AIR									44	46:20	1	0
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									17	19:20		
90	1:40	AIR									64	68:20	1	z
		AlRJO_{2}									24	28:20		
100	1:40	AIR									88	90:20	1.5	z
		AlRNO_{2}									31	33:20		
Exceptional Exposure: In-Water Air Decompression ---- In-Water Air/ O_{2} Decompression or SurDO_{2} Required -----														
110	1:40	AIR									120	122-20	1.5	Z
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									38	45:20		
120	1:40	AIR									145	147:20	2	z
		AlRO_{2}									44	51:20		
130	1:40	$\begin{gathered} \mathrm{AlR} \\ \mathrm{AlR} / \mathrm{O}_{2} \end{gathered}$									167	109:20	2	z
											51	58:20		
140	1:40	$\begin{gathered} \mathrm{AlR} \\ \mathrm{AlR} / \mathrm{O}_{2} \end{gathered}$									189	191:20	2.5	
											59	68:20		
150	1.40	$\begin{gathered} \mathrm{AlR} \\ \mathrm{AlR}_{2} \mathrm{O}_{2} \end{gathered}$									219	221:20	2.5	
											66	78:20		
160	$1: 20$	$\begin{gathered} \mathrm{AlR} \\ \mathrm{AlR} / \mathrm{O}_{2} \end{gathered}$								1	244	247:00	3	
										1	72	85:00		
Exceptional Exposure: In-Water AirlO ${ }_{2}$ Decompression $-\ldots-$ SurDO $_{2}$ Required $-\ldots-\ldots$														
170	$1: 20$	$\begin{gathered} \mathrm{AlR} \\ \mathrm{AlR}_{2} \end{gathered}$								2	265	269:00	3	
										1	78	91:00		
180	$1: 20$	AIR								4	289	295:00	3.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$								2	83	97:00		
180	$1: 20$	AIR								5	316	323:00	3.5	
		AlRO_{2}								3	88	103:00		
200	1:20	AIR								9	345	356:00	4	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$								5	93	115:00		
210	$1: 20$	AIR								13	378	383:00	4	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$								7	98	122:00		
Exceptional Exposure: SurDO_{2}														
240	1:20	AIR								25	454	481:00	5	
		$\mathrm{AlR}^{2} \mathrm{O}_{2}$								13	110	140:00		
9-70											Nav	Diving	anual -	olume 2

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and frst O_{2} stop									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
			100	90	80	70	60	50		30	20			
90 FSW														
30	3.00	AIR									0	$3: 00$	0	I
		$\mathrm{AlR}^{(1)}$									0	3.00		
35	$2 \cdot 20$	AIR									4	7:00	0.5	J
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									2	5.00		
40	$2 \cdot 20$	AIR									14	17:00	0.5	L
		$\mathrm{AlR}^{\mathrm{AlO}}$									7	10:00		
45	220	AIR									23	28:00	0.5	M
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									12	15:00		
50	220	AIR									31	34:00	1	N
		$\mathrm{AlR}^{\mathrm{A}} \mathrm{O}_{2}$									17	20:00		
55	220	AIR									39	42:00	1	0
		$\mathrm{AlR}^{2} \mathrm{O}_{2}$									21	24:00		
60	$2 \cdot 20$	AIR									56	59:00	1	0
		$\mathrm{AlR}^{2} \mathrm{O}_{2}$									24	27:00		
70	2.20	AlR									83	88:00	1.5	z
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									32	35:00		
Exceptional Exposure: In-Water Air Decompression ———— In-Water Air/ O_{2} Decompression or SurDO_{2} Required -----														
80	200	AIR								5	125	132:40	2	Z
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$								3	40	50:40		
90	2.00	AIR								13	158	173:40	2	z
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$								7	46	60:40		
100	2.00	AlR								18	185	200:40	2.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$								10	53	70:40		
110	2.00	AIR								25	224	251:40	3	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$								13	61	88:40		
120	1:40	AIR							1	29	256	288:20	3.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$							1	15	70	88:40		
130	$1: 40$	AIR							5	28	291	320:20	3.5	
		$\mathrm{AlR}^{(1)}$							5	15	78	110:40		
140	1:40	AIR							8	28	330	368:20	4	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$							8	15	86			
Exceptional Exposure: SurDO_{2}														
150	1:40	AIR							11	34	378	425:20	4.5	
		$\mathrm{AlR}^{(1)}$							11	17	94	139:40		
180	$1: 40$	AIR							13	40	418	473:20	4.5	
		$\mathrm{AlR}^{(1)} \mathrm{O}_{2}$							13	21	100	151:40		
170	1:40	AIR							15	45	451	513:20	5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$							15	23	106	188:40		
180	$1: 40$	AIR							16	51	479	548:20	5.5	
		$\mathrm{AlR}^{2} \mathrm{O}_{2}$							16	26	112	176:40		
240	1.40	AIR							42	68	502	704:20	7.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$							42	34	159	267:00		

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) indude travel fime, except first air and first O_{2} stop									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
				90	80	70	60			30	20			
100 FSW														
25	3:20	AIR									0	3:20	0	H
		$\mathrm{AlR} / \mathrm{O}_{2}$									0	3:20		
30	2:40	AIR									3	6:20	0.5	J
		$\mathrm{AlR} / \mathrm{O}_{2}$									2	5:20		
35	2:40	AIR									15	18:20	0.5	L
		AIR/O2									8	11:20		
40	2:40	AIR									26	29:20	1	M
		$\mathrm{AlR} / \mathrm{O}_{2}$									14	17:20		
45	2:40	AlR									36	39:20	1	N
		$\mathrm{AlR} / \mathrm{O}_{2}$									19	22:20		
50	2:40	AIR									47	50:20	1	0
		$\mathrm{AlR} / \mathrm{O}_{2}$									24	27:20		
55	2:40	AIR									65	68:20	1.5	z
		$\mathrm{AlR} / \mathrm{O}_{2}$									28	31:20		
60	2:40	AIR									81	84:20	1.5	z
		$\mathrm{AlR} / \mathrm{O}_{2}$									33	35:20		
Exceptional Exposure: In-Water Air Decompression ----- In-Water Air) O_{2} Deoompression or SurDO 2 Required -----														
70	2:20	AIR								11	124	138:00	2	Z
		$\mathrm{AlR} / \mathrm{O}_{2}$								6	39	53:00		
80	2:20	AIR								21	180	184:00	25	z
		$\mathrm{AlR} / \mathrm{O}_{2}$								11	45	64:00		
80	2:00	AIR							2	28	196	228:40	2.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$							2	15	52	82:00		
100	2:00	AIR							9	28	241	280:40	3	
		$\mathrm{AlR} / \mathrm{O}_{2}$							9	14	66	102:00		
110	2:00	AIR							14	28	278	322:40	3.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$							14	15	75	117:00		
120	2:00	AIR							18	28	324	373:40	4	
		AIR/O2							18	15	84	136:00		
Exceptional Exposure: SurDO_{2}														
150	1:40	AIR						3	28	46	481	538:20	5	
		AIR/O2						3	28	24	108	183:40		

Table 9-9. Air Decompression Table (Continued).
(DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except frst air and frst O_{2} stop									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
			100	90	80	70	60	50		30	20			
110 FSW														
20	3:40	AIR									0	$3: 40$	0	H
		AlRO_{2}									0	$3: 40$		
25	3.00	AIR										6.40	0.5	1
		AlRO_{2}									2	5.40		
30	3.00	AIR									14	17:40	0.5	K
		AlR/O ${ }_{2}$									7	10:40		
35	3.00	AIR									27	$30: 40$	1	M
		$\mathrm{AlR}^{(1)} \mathrm{O}_{2}$									14	$17: 40$		
40	3.00	AIR									39	42.40	1	N
		AlRO_{2}									20	23:40		
45	3.00	AIR									50	53.40	1	0
		$\mathrm{AlR}^{(1)}$									26	29.40		
50	3.00	AIR									71	74.40	1.5	z
		$\mathrm{AlR}^{(2)}$									31	34.40		
Exceptional Exposure: In-Water Air Decompression ----- In-Water Air/O O_{2} Decompression or SurDO_{2} Required ------														
55	2:40	AIR								5	85	93:20	1.5	Z
		AlRNO_{2}								3	33	44:20		
60	2-40	AIR								13	111	127:20	2	z
		AlRO_{2}								7	36	51:20		
70	2-40	AIR								28	155	184:20	2.5	z
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$								13	43	64:20		
80	$2 \cdot 20$	AIR							9	28	200	240:00	2.5	
		AlRO_{2}							9	15	53	90:20		
Exceptional Exposure: In-Water AirlO2 Decompression --- SurDO $_{2}$ Required -														
80	2:20	AIR							17	29	248	297:00	3.5	
		AlRO_{2}							17	15	67	112.20		
100	$2 \cdot 20$	AIR							25	28	295	351:00	3.5	
		AlRO_{2}							25	15	78	131:20		
110	2.00	AIR						5	26	28	353	414:40	4	
		AlRO_{2}						5	26	15	90	154:00		
Exceptional Exposure: SurDO_{2}														
120	2.00	AIR						10	26	35	413	$488 \cdot 40$	4.5	
		$\mathrm{AlR}^{2} \mathrm{O}_{2}$						10	26	18	101	173:00		
180	$1: 40$	AIR					3	23	47	68	583	738:20	7.5	
		$\mathrm{AlR}^{(1)}$					3	23	47	34	159	298:00		

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O_{2} stop									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
				90	80	70		50		30	20			
120 FSW														
15	4:00	AIR									0	4:00	0	F
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									0	4:00		
20	$3: 20$	AIR									2	6:00	0.5	H
		$\mathrm{AlR} / \mathrm{O}_{2}$									1	5:00		
25	3:20	AIR									8	12:00	0.5	J
		$\mathrm{AlR} / \mathrm{O}_{2}$									4	8:00		
30	3:20	AIR									24	28:00	0.5	L
		$\mathrm{AlR} / \mathrm{O}_{2}$									13	17:00		
35	$3: 20$	AIR									38	42:00	1	N
		$\mathrm{AlR} / \mathrm{O}_{2}$									20	24:00		
40	3:20	AIR									51	55:00	1	0
		$\mathrm{AlR} / \mathrm{O}_{2}$									27	31:00		
45	3:20	AIR									72	76:00	1.5	z
		$\mathrm{AlR} / \mathrm{O}_{2}$									33	37:00		
Excestional Exposure: In-Water Air Decompression --_-- In-Water Air O_{2} Decompression or SurDO_{2} Required -----														
50	3:00	AIR								9	86	98:40	1.5	Z
		$\mathrm{AlR} / \mathrm{O}_{2}$								5	33	46:40		
55	3:00	AIR								18	116	138:40	2	z
		$\mathrm{AlR} / \mathrm{O}_{2}$								10	35	53:40		
60	$3: 00$	AIR								27	142	172:40	2	z
		$\mathrm{AlR} / \mathrm{O}_{2}$								14	39	61:40		
70	2:40	AIR							12	28	189	233:20	2.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$							12	15	50	85:40		
80	2:40	AIR							24	28	246	301:20	3	
		$\mathrm{AlR} / \mathrm{O}_{2}$							24	14	67	118:40		
80	2:20	AIR						7	28	28	303	367:00	3.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$						7	28	15	79	140:20		
100	2:20	AIR						14	26	28	372	443:00	4	
		$\mathrm{AlR} / \mathrm{O}_{2}$						14	28	15	94	167:20		
Exceptional Exposure: SurDO														
110	2:20	AIR						21	25	38	433	520:00	5	
		$\mathrm{AlR} / \mathrm{O}_{2}$						21	25	20	104	188:20		
120	2:00	AIR					3	23	25	47	480	580:40	5.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$					3	23	25	24	113	211:00		

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except frst air and frst O_{2} stop									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
				90						30	20			
130 FSW														
10	$4 \cdot 20$	AIR									0	4:20	0	E
		AlRO_{2}									0	4:20		
15	$3: 40$	AIR									1	5:20	0.5	G
		AlRO_{2}									1	5:20		
20	$3: 40$	AIR									4	$8 \cdot 20$	0.5	1
		$\mathrm{AlR} / \mathrm{O}_{2}$									2	6:20		
25	3:40	AIR									17	21:20	0.5	K
		AlRO_{2}									9	13:20		
30	3:40	AIR									34	38:20	1	M
		$\mathrm{AlR}^{(1)}$									18	22.20		
35	$3: 40$	AIR									49	53.20	1	N
		AlRO_{2}									26	$30: 20$		
40	$3: 20$	AIR								3	67	74:00	1.5	z
		AlRO_{2}								2	31	37:00		
Exceptional Exposure: In-Water Air Decompression ----- In-Water Air/O O_{2} Decompression or SurDO_{2} Required ------														
45	3:20	AIR								12	84	100:00	1.5	Z
		AlRNO_{2}								6	33	48:00		
50	320	AIR								22	116	142:00	2	z
		$\mathrm{AlR}^{(1)}$								11	35	55:00		
55	3.00	AIR							4	28	145	180:40	2	z
		$\mathrm{AlR}^{(1)} \mathrm{O}_{2}$							4	15	39	67:00		
60	3.00	AIR							12	28	170	213:40	2.5	z
		AlR_{2}							12	15	45	81:00		
Exceptional Exposure: In-Water AirlO2 Decompression --- SurDO $_{2}$ Required -														
70	2:40	AIR						1	26	28	235	283:20	3	
		AlRO_{2}						1	26	14	63	117:40		
80	$2 \cdot 40$	AIR						12	26	28	297	368:20	3.5	
		AlRO_{2}						12	26	15	78	144:40		
90	2:40	AIR						21	26	28	374	452.20	4	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$						21	26	15	94	174.40		
Exceptional Exposure: SurDO_{2}														
100	2:20	AIR					6	23	26	38	444	540:00	5	
		AlRO_{2}					6	23	26	20	106	204:20		
120	$2 \cdot 20$	AIR					17	23	28	57	533	661:00	6	
		$\mathrm{AlR}^{(1)}$					17	23	28	29	130	255:20		
180	200	AIR				13	21	45	57	94	658	$890: 40$	9	
		$\mathrm{AlR}^{(1)} \mathrm{O}_{2}$				13	21	45	57	46	198	417:20		

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O_{2} stop									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
				90	80	70	60			30	20			
140 FSW														
10	4:40	AIR									0	4:40	0	E
		$\mathrm{AlR} / \mathrm{O}_{2}$									0	4:40		
15	4:00	AIR									2	6:40	0.5	H
		$\mathrm{AlR} / \mathrm{O}_{2}$									1	5:40		
20	4:00	AIR									7	11:40	0.5	J
		AlR/O2									4	8:40		
25	4:00	AIR									26	30:40	1	L
		$\mathrm{AlR} / \mathrm{O}_{2}$									14	18:40		
30	4:00	AIR									44	48:40	1	N
		$\mathrm{AlR} / \mathrm{O}_{2}$									23	27:40		
35	$3: 40$	AIR								4	59	67:20	1.5	0
		$\mathrm{AlR} / \mathrm{O}_{2}$								2	30	36:20		
Exceptional Exposure: In-Water Air Decompression --_- In-Water Airi O_{2} Decompression or SurDO S_{2} Required -----														
40	3:40	AIR								11	80	95:20	1.5	Z
		$\mathrm{AlR} / \mathrm{O}_{2}$								6	33	48:20		
45	3:20	AIR							3	21	113	141:00	2	z
		$\mathrm{AlR} / \mathrm{O}_{2}$							3	11	34	57:20		
50	3:20	AIR							7	28	145	184:00	2	z
		$\mathrm{AlR} / \mathrm{O}_{2}$							7	14	40	70:20		
55	3:20	AIR							16	28	171	219:00	2.5	Z
		$\mathrm{AlR} / \mathrm{O}_{2}$							16	15	45	85:20		
60	3:00	AIR						2	23	28	209	265:40	3	
		$\mathrm{AlR} / \mathrm{O}_{2}$						2	23	15	55	109:00		
70	3:00	AIR						14	25	28	276	346:40	3.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$						14	25	15	74	142:00		
80	2:40	AIR					2	24	25	29	382	445:20	4	
		$\mathrm{AlR} / \mathrm{O}_{2}$					2	24	25	15	91	175:40		
Exceptional Exposure: SurDO_{2} -														
90	2:40	AIR					12	23	26	38	443	545:20	5	
		$\mathrm{AlR} / \mathrm{O}_{2}$					12	23	26	19	107	210:40		

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and frst O_{2} stop									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
			100	90		70	60	50		30	20			
150 FSW														
5	5.00	AIR									0	5:00	0	C
		AlRO_{2}									0	5:00		
10	$4: 20$	AIR									1	6:00	0.5	F
		AlRO_{2}									1	6:00		
15	$4: 20$	AIR									3	8.00	0.5	H
		$\mathrm{AlR}^{2} \mathrm{O}_{2}$									2	7:00		
20	4:20	AIR									14	18:00	0.5	K
		AlRNO_{2}									8	13:00		
25	4.20	AIR									35	40:00	1	M
		AlRNO_{2}									19	24:00		
30	4:00	AIR								3	51	58.40	1.5	0
		AlRO_{2}								2	26	32.40		
35	4:00	AIR								11	72	87:40	1.5	z
		AlRNO_{2}								6	31	46.40		
Exceptional Exposure: In-Water Air Decompression ----- In-Water Air/ O_{2} Decompression or SurDO 2 Required ------														
40	3:40	AIR							4	18	102	128:20	2	Z
		AlRNO_{2}							4	9	34	56.40		
45	$3: 40$	AIR							10	25	140	179:20	2	z
		AlRJ_{2}							10	13	39	71:40		
50	3.20	AIR						3	15	28	170	220:00	2.5	z
		AlR/O2						3	15	15	45	87:20		
Exceptional Exposure: In-Water Airl $_{2}$ Decompression - $-\ldots \mathrm{SurDO}_{2}$ Required -														
55	3.20	AIR						6	22	28	211	271:00	3	
		AlRO_{2}						6	22	15	56	113:20		
60	3.20	AIR						11	26	28	248	317:00	3	
		AlRO_{2}						11	26	15	66	$132 \cdot 20$		
70	3.00	AIR					3	24	25	28	330	413:40	4	
		AlR_{2}					3	24	25	15	84	170:00		
Exceptional Exposure: SurDO2														
80	3:00	AIR					15	23	26	35	430	532.40	4.5	
		AIR/O2					15	23	26	18	104	205:00		
90	2:40	AIR				3	22	23	26	47	488	620:20	5.5	
		AlRO_{2}				3	22	23	26	24	118	238.40		
120	$2 \cdot 20$	AIR			3	20	22	23	50	75	608	804:00	8	
		AlRO_{2}			3	20	22	23	50	37	168	355.40		
180	2.00	AIR		2	18	20	42	48	79	121	694	1027:40	10.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$		2	19	20	42	48	79	58	222	537:20		

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O_{2} stop									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
(min)			100	90	80	70	60	50	40	30	20			
160 FSW														
5	5:20	AIR									0	5:20	0	C
$\mathrm{AlR} / \mathrm{O}_{2}$											0	5:20		
$\begin{array}{llcc}10 & \text { 4:40 } & \\ & \\ & \\ & \text { AlR } / \mathrm{O}_{2}\end{array}$											1	6:20	0.5	F
											1	6:20		
15	4:40	AIR									5	10:20	0.5	I
$\mathrm{AlR} / \mathrm{O}_{2}$											3	8:00		
In-Water $\mathrm{Air} \mathrm{O}_{2}$ Decompression or Sur) O_{2} Recommended $\ldots \ldots \ldots$														
20	4:40	$\begin{gathered} \mathrm{AlR} \\ \mathrm{AlR} / \mathrm{O}_{2} \end{gathered}$									22	27:20	0.5	L
											12	17:20		
25	4:20	AIR								3	41	49:00	1	N
		$\mathrm{AlR} / \mathrm{O}_{2}$								2	21	28:00		
30	4:00	AIR							1	8	60	73:40	1.5	0
$\mathrm{AlR} / \mathrm{O}_{2}$									1	5	28	39:00		

n	S									
70	3:20	AIR		15	23	28	29	399	498:00	4.5
		$\mathrm{AlR} / \mathrm{O}_{2}$		15	23	28	15	99	197:20	
80	3:00	AIR	6	21	24	25	44	482	805:40	5.5
		$\mathrm{AlR} / \mathrm{O}_{2}$	6	21	24	25	23	114	237:00	

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Bottom Time	Time to First Stop		DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and frst O_{2} stop									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
(min)	(M:S)	Gas Mix								30	20			
170 FSW														
5	5:40	AIR									0	5.40	0	D
		$\mathrm{AlR} / \mathrm{O}_{2}$									0	5.40		
10	$5: 00$	AIR									2	7:40	0.5	G
		$\mathrm{AlR} / \mathrm{O}_{2}$									1	6.40		
15	5.00	AIR									7	12.40	0.5	J
		$\mathrm{AlR} / \mathrm{O}_{2}$									4	9.40		
20	4:40	AIR								1	29	$35: 20$	1	L
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$								1	15	21:20		
25	420	AIR							1	6	48	58:00	1	N
		AlRO_{2}							1	4	23	33:20		
Exceptional Exposure: In-Water Air Decompression ---- In-Water Air/ O_{2} Decompression or SurDO ${ }_{2}$ Required -----														
30	$4: 20$	AIR							5	11	72	83:00	1.5	Z
		$\mathrm{AlR} / \mathrm{O}_{2}$							5	6	29	45:20		
35	400	AIR						2	9	17	113	145.40	2	z
		AlRJO_{2}						2	9	9	35	65:00		
40	4:00	AIR						6	13	23	155	201:40	2.5	z
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$						6	13	12	43	84:00		
45	4:00	AIR						12	16	28	194	254:40	2.5	
		AlRJ_{2}						12	18	15	51	109:00		
50	$3: 40$	AIR					5	12	23	28	243	315:20	3	
		AlRO_{2}					5	12	23	15	65	134:40		
55	3.40	AIR					9	16	25	28	287	369:20	3.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$					9	16	25	15	76	155.40		
60	320	AIR				2	11	21	28	28	344	438:00	4	
		$\mathrm{AlR}^{2} \mathrm{O}_{2}$				2	11	21	26	15	87	181:20		
Exceptional Exposure: SurDO2														
70	$3 \cdot 20$	AIR				7	18	24	25	39	454	572.00	5	
		$\mathrm{AlR}^{(1)}$				7	18	24	25	20	109	228:20		
80	320	AIR				17	22	23	26	53	525	670:00	6	
		$\mathrm{AlR} / \mathrm{O}_{2}$				17	22	23	28	27	128	267:20		
90	3.00	AIR			7	20	22	23	37	68	574	752.40	7	
		$\mathrm{AlR} / \mathrm{O}_{2}$			7	20	22	23	37	33	148	318:20		
120	$2 \cdot 40$	AIR		9	19	20	22	42	60	94	659	928:20	9	
		$\mathrm{AlR} / \mathrm{O}_{2}$		9	18	20	22	42	60	46	198	454:00		
180	220	AIR	10	18	18	40	43	70	97	156	703	1159:00	11.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$	10	18	19	40	43	70	97	75	228	648:00		

Table 9-9. Air Decompression Table (Continued) (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and first O_{2} stop									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
			100	90			60		40	30	20			
180 FSW														
5	6:00	AIR									0	6:00	0	D
		$\mathrm{AlR} / \mathrm{O}_{2}$									0	6:00		
10	5:20	AIR									3	9:00	0.5	G
		$\mathrm{AlR} / \mathrm{O}_{2}$									2	8:00		
15	5:20	AIR									11	17:00	0.5	J
		$\mathrm{AlR} / \mathrm{O}_{2}$									6	12:00		
20	5:00	AIR								4	34	43:40	1	M
		$\mathrm{AlR} / \mathrm{O}_{2}$								2	18	25:40		
25	4:40	AIR							4	7	54	70:20	1.5	0
		$\mathrm{AlR} / \mathrm{O}_{2}$							4	4	26	39:40		
Exceptional Exposure: In-Water Air Decompression --- In-Water Air/O2, Decompression or SurDO_{2} Required -----														
30	4:20	AIR						2	7	14	83	111:00	1.5	Z
		$\mathrm{AlR} / \mathrm{O}_{2}$						2	7	7	31	57:20		
35	4:20	AIR						5	13	19	138	180:00	2	z
		$\mathrm{AlR} / \mathrm{O}_{2}$						5	13	10	40	78:20		
40	4:00	AIR					2	11	12	28	175	232:40	2.5	z
		$\mathrm{AlR} / \mathrm{O}_{2}$					2	11	12	14	47	96:00		
45	4:00	AIR					7	11	20	28	231	301:40	3	
		$\mathrm{AlR} / \mathrm{O}_{2}$					7	11	20	15	61	129:00		
50	$3: 40$	AIR				1	11	13	25	28	276	358:20	3.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$				1	11	13	25	15	74	153:40		
55	3:40	AIR				5	11	19	26	28	336	429:20	4	
		$\mathrm{AlR} / \mathrm{O}_{2}$				5	11	19	28	14	87	181:40		
Exceptional Exposure: SurDO_{2}														
60	3:40	AIR				8	13	24	25	31	405	510:20	4.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$				8	13	24	25	16	100	205:40		
70	$3: 20$	AIR			3	13	21	24	25	48	498	636:00	5.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$			3	13	21	24	25	25	118	253:20		

Table 9-9. Air Decompression Table (Continued).
(DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except frst air and frst O_{2} stop									Total Ascent Time (M:S)	$\begin{aligned} & \text { Chamber } \\ & \mathrm{O}_{2} \\ & \text { Periods } \end{aligned}$	Repet Group
(min)										30	20			
190 FSW														
5	6.20	AIR									0	6.20	0	D
		AlRO_{2}									0	6.20		
10	$5: 40$	AIR									4	10:20	0.5	H
		$\mathrm{AlR}_{2} \mathrm{O}_{2}$									2	8:20		
15	5.40	AIR									17	23:20	0.5	K
		$\mathrm{AlR}^{2} \mathrm{O}_{2}$									9	15:20		
20	5:00	AIR							1	7	37	50:40	1	N
		$\mathrm{AlR}^{\text {O }}$							1	4	19	30:00		
25	4.40	AIR						2	6	9	67	$89: 20$	1.5	z
		$\mathrm{AlR}_{2} \mathrm{O}_{2}$						2	6	5	28	40:40		
Exceptional Exposure: In-Water Air Decompression ----- In-Water AiriO O_{2} Decompression or SurDO ${ }_{2}$ Required ------														
30	4:40	AIR						6	8	14	111	144:20	2	z
		AlRO_{2}						6	8	8	35	67:40		
35	$4: 20$	AIR					3	8	13	22	160	211:00	2.5	z
		$\mathrm{AlR}^{(1)} \mathrm{O}_{2}$					3	8	13	12	44	90:20		
40	$4 \cdot 20$	AlR					7	12	14	29	210	277:00	3	
		$\mathrm{AlR}^{2} \mathrm{O}_{2}$					7	12	14	15	56	119.20		
45	4:00	AIR				2	11	12	23	28	262	342.40	3.5	
		AlRO_{2}				2	11	12	23	15	70	148:00		
50	4:00	AIR				7	11	16	26	28	321	413:40	4	
		${\mathrm{AlR} / \mathrm{O}_{2}}$				7	11	16	28	15	83	178:00		
55	$3: 40$	AIR			2	10	10	24	25	30	398	501:20	4.5	
		AlRO_{2}			2	10	10	24	25	16	98	204:40		
60	$3: 40$	AIR			5	10	16	24	25	40	454	578:20	5	
		AlRO_{2}			5	10	16	24	25	21	108	233:40		
90	3.20	AIR		11	19	20	21	28	51	83	628	863:00	8.5	
		AlRO_{2}		11	19	20	21	28	51	42	177	408:40		
120	3.00	AIR	15	17	19	20	37	46	79	113	681	1040:40	10.5	
		$\mathrm{AlR}^{(1)} \mathrm{O}_{2}$	15	17	18	20	37	46	79	55	219	550:20		

$\begin{aligned} & \text { Bottom Time } \\ & (\mathrm{min}) \end{aligned}$	Time to First Stop (M:S)	Gas Mix	DECOMPRESSION STOPS (FSW) Stop times (min) indude travel time, except first air and first O_{2} stop								20	Total Ascent Time (M:S)	$\begin{aligned} & \text { Chamber } \\ & \mathrm{O}_{2} \\ & \text { Periods } \end{aligned}$	Repet Group
			100	90			60	50	40	30				
200 FSW														
5	6:00	AIR									1	7:40	0.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$									1	7:40		
10	6:00	AIR									2	8:40	0.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$									1	7:40		
15	5.40	AIR								2	22	30:20	0.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$								1	11	18:20		
20	5:20	AIR							5	6	43	60:00	1	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$							5	4	21	36:20		
25	5:00	AIR						5	6	11	78	105:40	1.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$						5	6	6	29	52:00		
30	4:40	AIR					4	5	11	18	136	179:20	2	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$					4	5	11	9	40	79.40		
35	4:20	AIR				1	6	10	13	26	179	240:00	2.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$				1	6	10	13	13	49	102:20		
40	4:20	AIR				3	10	12	18	28	243	319:00	3	
		$\mathrm{AlR} / \mathrm{O}_{2}$				3	10	12	18	15	65	138:20		
45	4:20	AIR				8	11	12	28	28	300	300:00	3.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$				8	11	12	28	15	79	168:20		
50	4:00	AIR			3	10	11	20	28	28	377	479:40	4.5	
		$\mathrm{AlR} / \mathrm{O}_{2}$			3	10	11	20	28	15	95	200:00		

210 FSW

5	6:20	AIR							1	8:00	0.5
		$\mathrm{AlR} / \mathrm{O}_{2}$							1	8:00	
10	6:20	AIR							5	12:00	0.5
		$\mathrm{AlR} / \mathrm{O}_{2}$							3	10:00	
15	6:00	AIR						5	26	37:40	1
		$\mathrm{AlR} / \mathrm{O}_{2}$						3	13	22:40	
20	5:20	AIR				2	6	7	50	71:00	1.5
		$\mathrm{AlR} / \mathrm{O}_{2}$				2	6	4	24	42:20	
25	5:00	AIR			2	6	7	13	94	127:40	1.5
		$\mathrm{AlR} / \mathrm{O}_{2}$			2	6	7	7	32	65:00	
30	4:40	AIR		2	5	6	13	21	156	208:20	2
		$\mathrm{AlR} / \mathrm{O}_{2}$		2	5	6	13	11	43	90:40	
35	4:40	AIR		5	6	12	14	28	214	284:20	3
		$\mathrm{AlR} / \mathrm{O}_{2}$		5	6	12	14	14	58	124:40	
40	$4: 20$	AIR	2	6	11	12	22	28	271	357:00	3.5
		$\mathrm{AlR} / \mathrm{O}_{2}$	2	6	11	12	22	15	74	157:20	
45	$4: 20$	AIR	4	10	11	16	25	29	347	447:00	4
		$\mathrm{AlR} / \mathrm{O}_{2}$	4	10	11	16	25	15	89	190:20	
50	$4: 20$	AIR	9	10	11	23	28	35	426	545:00	4.5
		$\mathrm{AlR} / \mathrm{O}_{2}$	9	10	11	23	28	18	104	221:20	

Table 9-9. Air Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

	Time to First Stop		DECOMPRESSION STOPS (FSW) Stop times (min) include travel time, except first air and frst O_{2} stop									Total Ascent Time (M:S)	Chamber O_{2} Periods	Repet Group
(min)	(M:S)	Gas Mix	100	90		70	60	50	40	30	20			
220 FSW														
5	6:40	AlR									2	$9: 20$	0.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$									1	$8: 20$		
10	8:40	AIR									8	15:20	0.5	
		${\mathrm{AlR} / \mathrm{O}_{2}}$									4	11:20		
15	6:00	AIR							1	7	30	44.40	1	
		$\mathrm{AlR}^{\text {O }}$ 2							1	4	15	27:00		
20	$5: 40$	AIR						5	6	7	63	87:20	1.5	
		$\mathrm{AlR}^{\text {/ }} \mathrm{O}_{2}$						5	6	4	27	48:40		
25	$5: 20$	AIR					5	6	8	14	118	158:00	2	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$					5	6	8	7	38	75:20		
30	5:00	AIR				5	5	8	13	24	174	234:40	2.5	
		$\mathrm{AlR}^{\text {/ }} \mathrm{O}_{2}$				5	5	8	13	13	47	102.00		
35	4.40	AIR			3	5	9	11	18	28	244	323:20	3	
		AlR^{2}			3	5	9	11	18	15	66	142:40		
40	4.20	AIR		1	4	9	11	11	26	28	312	407-00	4	
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$		1	4	9	11	11	26	15	82	179:20		

250 FSW

5	7:40	$\begin{gathered} \mathrm{AlR} \\ \mathrm{AlR} / \mathrm{O}_{2} \end{gathered}$								3		11:20	0.5
											2	10:20	
10	7.20	AIR								2	15	25:00	0.5
		$\mathrm{AlR} / \mathrm{O}_{2}$								1	8	17:00	
15	6.40	AIR						3	7	7	41	65:20	1
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$						3	7	4	21	42-40	
20	6800	AIR				2	6	5	7	12	106	144:40	2
		$\mathrm{AlR} / \mathrm{O}_{2}$				2	6	5	7	6	35	73:00	
25	5.40	AIR			4	5	5	7	13	24	175	239.20	2.5
		$\mathrm{AlR} / \mathrm{O}_{2}$			4	5	5	7	13	13	47	105:40	
30	5.20	AIR		4	4	5	9	11	20	28	257	344:00	3.5
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$		4	4	5	9	11	20	14	70	153:20	
35	5.00	AIR	2	5	4	10	11	14	25	29	347	452.40	4
		${\mathrm{AlR} / \mathrm{O}_{2}}^{2}$	2	5	4	10	11	14	25	15	89	198:00	

300 FSW

Table 9-4. Sea Level Equivalent Depth (fsw).

Actual Depth (fsw)	Altitude (feet)									
	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000
10	10	15	15	15	15	15	15	15	15	15
15	15	20	20	20	20	20	20	25	25	25
20	20	25	25	25	25	25	30	30	30	30
25	25	30	30	30	35	35	35	35	35	40
30	30	35	35	35	40	40	40	45	45	45
35	35	40	40	45	45	45	50	50	50	60
40	40	45	45	50	50	50	55	55	60	60
45	45	50	55	55	55	60	60	70	70	70
50	50	55	60	60	70	70	70	70	70	80
55	55	60	70	70	70	70	80	80	80	80
60	60	70	70	70	80	80	80	90	90	90
65	65	70	80	80	80	90	90	90	100	100
70	70	80	80	90	90	90	100	100	100	110
75	75	90	90	90	100	100	100	110	110	110
80	80	90	90	100	100	100	110	110	120	120
85	85	100	100	100	110	110	120	120	120	130
90	90	100	110	110	110	120	120	130	130	140
95	95	110	110	110	120	120	130	130	140	140
100	100	110	120	120	130	130	130	140	140	150
105	105	120	120	130	130	140	140	150	150	160
110	110	120	130	130	140	140	150	150	180	180
115	115	130	130	140	140	150	150	160	170	170
120	120	130	140	140	150	150	160	170	170	180
125	125	140	140	150	180	180	170	170	180	190
130	130	140	150	160	180	170	170	180	180	190
135	135	150	160	160	170	170	180	180	190	200
140	140	180	160	170	170	180	180	190	200	210
145	145	160	170	170	180	190	180	200	210	
150	180	170	170	180	190	190	200	210		
155	170	170	180	180	180	200	210			
160	170	180	180	190	200	200				
165	180	180	190	200	200					
170	180	180	190	200						
175	180	190	200							
180	180	200	210							
185	200	200								
190	200									
Table Water Stops					alent	Depths				
10	10	9	9	9	8	8	8	7	7	7
20	19	18	18	17	17	16	15	15	14	14
30	29	28	27	26	25	24	23	22	21	21
40	39	37	36	35	33	32	31	30	29	28
50	48	47	45	43	42	40	39	37	36	34
60	58	56	54	52	50	48	46	45	43	41

Note:

Table 9-6. Required Surface Interval Before Ascent to Altitude After Diving.

NOTE 1 When using Table 9-6, use the highest repetitive group designator obtained in the previous 24 -hour period.
NOTE 2 Table 9-6 may only be used when the maximum altitude achieved is 10,000 feet or less. For ascents above 10,000 feet, consult NAVSEA 00 C for guidance.
NOTE 3 The cabin pressure in commercial aircraft is maintained at a constant value regardless of the actual altitude of the flight. Though cabin pressure varies somewhat with aircraft type, the nominal value is 8,000 feet. For commercial flights, use a final altitude of 8,000 feet to compute the required surface interval before flying.
NOTE 4 No surface interval is required before taking a commercial flight if the dive site is at 8,000 feet or higher. In this case, flying results in an increase in atmospheric pressure rather than a decrease.
NOTE 5 For ascent to altitude following a non-saturation helium-oxygen dive, wait 12 hours if the dive was a no-decompression dive. Wait 24 hours if the dive was a decompression dive.

Table 9.5. Repeitive Groups Associated with Intial Ascent to Aftitude.

Alitude (feet)	Repetitive Group
1000	A
2000	A
3000	B
4000	C
5000	D
6000	E
7000	F
8000	G
9000	H
10000	I

MK 16 TABLES

Table 18-9. No Decompression Limits and Repetitive Group Designators for MK $16 \mathrm{MOD} 1 \mathrm{~N}_{2} \mathrm{O}_{2}$ Dives.

Depth (fsw)	No-Stop Limit	Repetitive Group Designator															
		A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	z
10	Unlimited	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	Unlimited	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	Unlimited	153	420	*													
25	Unlimited	51	87	133	196	295	557	*									
30	Unlimited	31	50	72	98	128	164	210	273	372	629	*					
35	Unlimited	22	35	50	66	84	103	126	151	181	217	263	326	425	680	*	
40	Unlimited	89	168	318	*												
50	Unlimited	27	44	63	84	108	136	169	210	265	344	496	*				
60	297	16	25	36	46	58	70	83	97	113	130	149	170	194	222	255	297
70	130	11	18	25	32	39	47	55	64	73	83	93	103	115	127	130	
80	70	9	14	19	24	30	36	42	48	54	61	68	70				
90	50	7	11	15	20	24	29	33	38	43	48	50					
100	39	6	9	13	16	20	24	28	32	36	39						
110	32	5	8	11	14	17	20	24	27	30	32						
120	27	4	7	9	12	15	18	20	23	26	27						
130	23	3	6	8	11	13	16	18	21	23							
140	21	3	5	7	9	12	14	16	18	21							
150	17	3	5	6	8	10	12	15	17								
160	15	3	4	6	8	9	11	13	15								
170	13	4	5	7	9	10	12	13									
180	12		3	5	6	8	9	11	12								
190	10			4	6	7	9	10									

- Diver does not acquire a repettive group designator during dives to these depths.
* Highest repetitive group that can be achieved at this depth regardless of bottom time.

Table 18-10. Residual Nitrogen Timetable for MK 16 MOD $1 \mathrm{~N}_{2} \mathrm{O}_{2}$ Dives.

- Repetitive dives to these depths are equivalent to remaining on the surface. Add the bottom time of the dive to the preceding surface interval. Use the Surface Interval Credit Table (SICT) to determine the repetitive group at the end of the dive.
" Residual Nitrogen Time cannot be determined using this table (see paragraph $9-9.1$ for instructions).

REPETITIVE DIVE WORKSHEET FOR
 MK 16 MOD $1 \mathrm{~N}_{2} \mathrm{O}_{2}$ DIVES

Part 1. Previous Dive
minutes
feet
repetitive group designator from Table 18-9
if the dive was a no-decompression dive, or
Table 18-11 if the dive was a decompression dive.

Part 2. Surface Interval:

Enter the top section of Table 18-10 at the row for the repetitive group designator from Part 1 and move horizontally to the column in which the actual or planned surface interval time lies. Read the final repetitive group designator from the bottom of this column.
\qquad hours \qquad minutes on the surface
\qquad final repetitive group from Table 18-10

Part 3. Equivalent Single Dive Time for the Repetitive Dive:

Enter the bottom section of Table 18-10 at the row for the maximum depth of the planned repetitive dive. Move horizontally to the column of the final repetitive group designator from Part 2 to find the Residual Nitrogen Time (RNT). Add this RNT to the planned bottom time for the repetitive dive to obtain the equivalent single dive time.
\qquad minutes: RNT
$+$ minutes: planned bottom time
\qquad minutes: equivalent single dive time

Part 4. Decompression Schedule for the Repetitive Dive:

Locate the row for the depth of the planned repetitive dive in Table 18-9. Move horizontally to the column with bottom time equal to or just greater than the equivalent single dive time and read the surfacing repetitive group for the repetitive dive from the top of the column. If the equivalent single dive time exceeds the no-decompression limit, locate the row for the depth and equivalent single dive time in Table 18-11. Read the required decompression stops and surfacing repetitive group from the columns to the right along this row.
\qquad minutes: equivalent single dive time from Part 3
\qquad feet: depth of the repetitive dive.
\qquad Schedule (depth/bottom time) from Table 18-9 or Table 18-11.
Ensure RNT Exception Rule does not apply.
Figure 18-5. Repetitive Dive Worksheet for MK 16 MOD $1 \mathrm{~N}_{2} \mathrm{O}_{2}$.

Table 18-11. MK 16 MOD $1 \mathrm{~N}_{2} \mathrm{O}_{2}$ Decompression Tables.
(DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	DECOMPRESSION STOPS (fsw) Stop times (min) include travel time, except first stop							Total Ascent Time (M:S)	Repet Group
		80	70	60	50	40	30	20		
60 FSW										
297	2:00							0	2:00	z
300	120							1	3:00	z
310	120							2	4:00	z
320	1:20							3	5:00	z
330	1:20							4	6:00	z
340	1:20							5	7:00	
350	120							6	8:00	
360	1:20							7	9:00	
370	1:20							8	10:00	
380	1:20							9	11:00	
390	1:20							10	12-00	

70 FSW				
130	2-20	0	220	0
140	1:40	3	5:20	0
150	1:40	6	8:20	0
160	1:40	8	10:20	z
170	1:40	10	12-20	z
180	1:40	12	14:20	z
190	1:40	14	16:20	z
200	1:40	16	18:20	z
210	1:40	19	21:20	z
220	1:40	22	24:20	z
230	1:40	24	26:20	z
240	1:40	26	28:20	
250	1:40	29	31:20	
260	1:40	31	33-20	
270	1:40	33	35:20	
280	1:40	35	37:20	
290	1:40	37	39:20	
300	1:40	38	40:20	
310	$1: 40$	40	42:20	
320	1:40	42	44:20	
340	1:40	47	49:20	
350	1:40	49	51:20	

Table 18-11. MK 16 MOD $1 \mathrm{~N}_{2} \mathrm{O}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	DECOMPRESSION STOPS (fsw)Stop times (min) include travel time, except first stop							Total Ascent Time (M:S)	Repet Group
		80	70	60	50	40	30	20		
80 FSW										
70	2:40							0	2:40	L
75	2:00							2	4:40	L
80	2:00							4	6:40	M
85	2:00							5	7:40	M
90	2:00							6	8:40	N
95	2:00							7	9:40	N
100	2:00							9	11:40	N
110	2:00							12	14:40	0
120	2:00							16	18:40	0
130	2:00							20	22:40	z
140	2:00							24	26:40	z
150	2:00							27	29:40	z
160	2:00							30	$32 \cdot 40$	z
170	2:00							34	36:40	z
180	2:00							39	41:40	
180	2:00							43	45:40	
200	2:00							47	49:40	
210	2:00							50	52:40	
220	2:00							54	56:40	
230	2:00							57	59:40	
240	2:00							60	62:40	
250	2:00							63	65:40	
280	2:00							67	69:40	
270	2:00							70	72:40	
280	2:00							74	78:40	
290	2:00							77	79:40	
300	2:00							81	83:40	
310	2:00							84	88:40	
320	2:00							87	89:40	

Table 18-11. MK 16 MOD $1 \mathrm{~N}_{2} \mathrm{O}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	DECOMPRESSION STOPS (fsw)Stop times (min) include travel time, except first stop							Total Ascent Time (M:S)	Repet Group
		80	70	60	50	40	30	20		
90 FSW										
50	3:00							0	3:00	K
55	220							3	6:00	K
60	$2 \cdot 20$							6	9:00	L
65	2-20							8	11:00	L
70	220							11	14:00	M
75	2-20							13	18:00	M
80	220							14	17:00	N
85	$2 \cdot 20$							16	18:00	N
90	2.20							18	21:00	0
95	2-20							21	24:00	0
100	2.20							24	27:00	0
110	2-20							30	33:00	0
120	220							35	38:00	z
130	2.20							40	43:00	z
140	2-20							45	48:00	
150	2.20							51	54:00	
160	$2 \cdot 20$							57	80:00	
170	2.00						1	62	85:40	
180	2:00						2	66	70:40	
190	2.00						2	71	75:40	

100 FSW

39	3:20		0	3:20	J
40	2-40		1	4:20	J
45	2-40		5	8:20	K
50	2-40		9	12-20	L
55	2.40		12	15:20	L
60	2-40		15	18:20	M
65	$2 \cdot 40$		18	21:20	M
70	2-40		21	24:20	N
75	2.40		23	28:20	N
80	2-40		28	29:20	0
85	2-40		30	33:20	\bigcirc
90	$2 \cdot 40$		34	37:20	0
95	2.20	1	37	41:00	0
100	220	3	39	45:00	0
110	2-20	6	43	52-00	
120	2-20	8	47	58:00	

Table 18-11. MK 16 MOD $1 \mathrm{~N}_{2} \mathrm{O}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 80 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	DECOMPRESSION STOPS (fsw) Stop times (min) include travel time, except first stop							Total Ascent Time (M:S)	Repet Group
		80	70	60	50	40	30	20		
110 FSW										
32	3:40							0	3:40	J
35	3:00							3	6:40	J
40	3:00							8	11:40	K
45	3:00							13	16:40	L
50	3:00							17	20:40	L
55	3:00							21	24:40	M
60	3:00							25	28:40	M
65	3:00							28	31:40	N
70	2:40						1	30	34:20	\bigcirc
75	2:40						4	32	39:20	0
80	2:40						7	34	44:20	0
85	2:40						9	37	49:20	
90	2.40						11	39	53:20	
95	2.40						13	42	58:20	
100	2.40						15	44	62:20	
110	2:20					3	15	49	70:00	
120	2:20					6	15	56	80:00	

120 FSW

27	4:00			0	4:00	J
30	$3: 20$			4	8:00	J
35	3:20			10	14:00	K
40	3:20			16	20:00	L
45	3:20			21	25:00	L
50	$3: 20$			26	30:00	M
55	3:20			30	34:00	M
60	3:00		4	31	38:40	N
65	3:00		8	30	41:40	0
70	3:00		12	32	47:40	
75	3:00		15	35	53:40	
80	$2: 40$	3	15	38	59:20	
85	2.40	6	15	41	65:20	
90	2.40	8	15	44	70:20	
95	2.40	10	15	47	75:20	
100	2:40	12	15	51	81:20	

Table 18-11. MK $16 \mathrm{MOD} 1 \mathrm{~N}_{2} \mathrm{O}_{2}$ Decompression Tables (Continued). (DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

$\begin{aligned} & \text { Bottom Time } \\ & (\mathrm{min}) \end{aligned}$	Time to First Stop (M:S)	DECOMPRESSION STOPS (fsw) Stop times (min) include travel time, except first stop							Total Ascent Time (M:S)	Repet Group
		80	70	60	50	40	30	20		
130 FSW										
23	4:20							0	4:20	1
25	3.40							2	$6: 20$	J
30	3:40							10	14:20	K
35	3:40							17	21:20	K
40	3:40							23	27:20	L
45	3:40							29	33:20	M
50	320						4	30	38:00	N
55	3:20						9	30	43:00	N
60	3.20						14	30	48:00	
85	3.00					3	15	33	54:40	
70	3:00					7	15	36	61:40	
75	3:00					11	15	39	68:40	
80	3:00					14	15	42	74.40	

140 FSW

21	4:40				0	4:40	1
25	4:00				7	11:40	J
30	4:00				16	20:40	K
35	4:00				23	27:40	L
40	$3: 40$			2	29	35:20	L
45	3:40			7	30	41:20	M
50	320		1	12	30	47:00	
55	3:20		4	15	30	53:00	
60	320		9	15	33	81:00	
65	3:20		13	15	36	68:00	
70	3:00	3	15	15	40	76.40	
75	3:00	7	15	15	44	84:40	
80	3:00	10	15	15	50	93:40	

Table 18-11. MK $16 \mathrm{MOD} 1 \mathrm{~N}_{2} \mathrm{O}_{2}$ Decompression Tables (Continued). (DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	DECOMPRESSION STOPS (fsw)Stop times (min) include travel time, except first stop							Total Ascent Time (M:S)	Repet Group
		80	70	60	50	40	30	20		
150 FSW										
17	5:00							0	5:00	H
20	4:20							3	8:00	1
25	4:20							13	18:00	J
30	4:20							22	27:00	K
35	4:00						3	27	34:40	L
40	4:00						8	30	42:40	M
45	3:40					4	11	30	49:20	
50	$3: 40$					7	15	30	56:20	
55	3:20				2	11	15	33	65:00	
60	3:20				4	14	15	37	74:00	
65	3:20				8	15	15	40	82:00	
70	3:20				13	15	15	46	93:00	
75	3:00			2	15	15	15	52	102:40	
80	3:00			6	15	15	15	59	113:40	

160 FSW

15	5:20						0	5:20	H
20	4:40						7	12:20	J
25	4:20					1	17	23:00	K
30	4:20					3	25	33:00	L
35	4:00				1	8	28	41:40	M
40	4:00				5	10	30	49:40	
45	$3: 40$			2	7	14	30	57:20	
50	$3: 40$			5	10	15	33	67:20	
55	3:40			8	14	15	30	77:20	
60	$3: 20$		3	10	15	15	41	88:00	
65	$3: 20$		5	13	15	15	48	100:00	
70	$3: 20$		8	15	15	15	55	112:00	
75	$3: 20$		13	15	15	15	61	123:00	
80	$3: 00$	3	15	15	15	15	68	134:40	

Table 18-11. MK $16 \mathrm{MOD} 1 \mathrm{~N}_{2} \mathrm{O}_{2}$ Decompression Tables (Continued). (DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	DECOMPRESSION STOPS (fsw) Stop times ($\mathbf{m i n}$) include travel time, except first stop							Total Ascent Time (M:S)	Repet Group
		80	70	60	50	40	30	20		
170 FSW										
13	5:40							0	5:40	H
15	5:00							2	7:40	1
20	5:00							12	17:40	J
25	4:40						3	20	28:20	K
30	4:20					3	5	28	39:00	L
35	4:00				1	5	8	30	48:40	
40	4:00				4	7	12	30	57:40	
45	4:00				8	8	15	32	67:40	
50	3.40			4	7	13	15	36	79:20	
55	$3: 40$			7	9	15	15	41	91:20	
60	320		2	7	14	15	15	48	105:00	

180 FSW

12	8:00							0	6:00	H
15	5:20							4	10:00	I
20	5:00						2	14	21:40	K
25	4:40					3	3	23	34:20	L
30	4:20				2	4	7	27	45:00	
35	4:00			1	3	8	9	30	55:40	
40	4:00			2	7	8	14	30	65:40	
45	4:00			6	7	11	15	35	78:40	
50	3:40		2	8	8	15	15	40	92-20	
55	3:40		5	8	12	15	15	48	108:20	
80	320	1	7	9	15	15	15	57	123:00	

190 FSW

10	6.20							0	6:20	G
15	5:40							6	12:20	J
20	5:00					1	4	16	28:40	K
25	4:40				2	4	4	24	39.20	L
30	4.20			2	3	5	8	29	52:00	
35	4.20			4	5	8	11	30	63:00	
40	4:00		2	5	8	8	15	34	78:40	
45	4:00		4	8	7	14	15	39	91:40	
50	3.40	1	7	8	11	15	15	47	108:20	
55	3:40	4	8	8	15	15	15	56	125:20	
60	3.40	7	7	13	15	15	15	65	141:20	

Table 18-12. No Decompression Limits and Repetitive Group Designators for MK 16 MOD 1 HeO ${ }_{2}$ Dives.

Depth (fsw)	No-Stop Limit	Repetitive Group Designator															
		A	B	C	D	E	F	G	H	1	J	K	1	M	N	0	Z
10	Unlimited	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	Unlimited	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	Unlimited	129	269	*													
25	Unlimited	45	72	106	146	200	278	425	*								
30	332	27	43	60	78	100	124	152	185	227	281	332					
35	190	19	30	41	54	67	81	97	114	133	154	178	190				
40	Unlimited	122	246	*													
50	325	27	43	59	78	99	123	150	183	223	276	325					
60	134	15	23	32	41	51	61	71	83	95	108	123	134				
70	86	11	16	22	28	34	41	47	54	61	69	77	85	86			
80	63	8	12	17	21	26	30	35	40	45	51	56	62	63			
90	44	6	10	13	17	20	24	28	32	36	40	44					
100	31	5	8	11	14	17	20	23	25	30	31						
110	24	4	7	9	12	14	17	20	22	24							
120	20	4	6	8	10	13	15	17	19	20							
130	17	3	5	7	9	11	13	15	17								
140	15	3	4	6	8	10	12	13	15								
150	13	3	4	6	7	9	10	12	13								
160	12		3	5	6	8	9	11	12								
170	11		3	4	6	7	9	10	11								
180	10		3	4	5	6	8	9	10								
190	9			4	5	6	7	8	9								
200	8				4	5	7	8									

- Diver does not acquire a repetitive group designator during dives to these depths.
* Highest repetitive group that can be achieved at this depth regardless of bottom time.

Table 18-13. Residual Helium Timetable for MK 16 MOD $1 \mathrm{HeO}_{2}$ Dives.

REPETITIVE DIVE WORKSHEET FOR MK 16 MOD $1 \mathrm{HeO}_{2}$ DIVES

Part 1. Previous Dive:
minutes
feet
repetitive group designator from Table $18-12$ if
the dive was a no-decompression dive, or from
Table 18-14 if the dive was a decompression
dive.

Part 2. Surface Interval:
Enter the top section of Table 18-13 at the row for the repetitive group designator from Part 1 and move horizontally to the right to the column in which the time equal to or just greater than the actual or planned surface interval time lies. Read the final repetitive group designator from the bottom of this column.
\qquad hours \qquad minutes on the surface
___ final repetitive group from Table 18-13

Part 3. Equivalent Single Dive Time for the Repetitive Dive:
Enter the bottom section of Table 18-13 at the row for the maximum depth of the planned repetitive dive. Move horizontally to the right to the column of the final repetitive group designator from Part 2 to find the Residual Helium Time (RHT). Add this RHT to the planned bottom time for the repetitive dive to obtain the equivalent single dive time.
\qquad minutes: RHT
\qquad minutes: planned bottom time
$=$ \qquad minutes: equivalent single dive time

Part 4. Decompression Schedule for the Repetitive Dive:

Locate the row for the depth of the planned repetitive dive in Table 18-12. Move horizontally to the right to the column with bottom time equal to or just greater than the equivalent single dive time and read the surfacing repetitive group for the repetitive dive from the top of the column. If the equivalent single dive time exceeds the no-decompression limit, locate the row for the depth and equivalent single dive time in Table 18-14. Read the required decompression stops and surfacing repetitive group from the columns to the right along this row.
\qquad minutes: equivalent single dive time from Part 3
\qquad feet: depth of the repetitive dive
\qquad Schedule (depth/bottom time) from Table 18-12 or Table 18-14

Ensure RHT Exception Rule does not apply.
Figure 18-6. Repetitive Dive Worksheet for MK 16 MOD $1 \mathrm{HeO}_{2}$ Dives.

Table 18-14. MK $16 \mathrm{MOD} 1 \mathrm{HeO}_{2}$ Decompression Tables.
(DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom	Time to First	DECOMPRESSION STOPS (fsw)Stop times (min) include travel time, except first stop																Total Ascent Time (M:S)	Repet Group
(min)	$(\mathrm{M}: \mathbf{S})$	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		
30 FSW																			
332	1:00																0	1:00	
340	0:20																4	5:00	
360	0:20																13	14:00	
420	0:20																34	35:00	
480	0:20																48	49:00	
540	0:20																59	60:00	
600	0:20																70	71:00	
660	0:20																87	88:00	
720	0:20																101	102:00	

35 FSW

190	$1: 10$	0	$1: 10$
200	$0: 30$	12	$13: 10$
210	$0: 30$	23	$24: 10$
220	$0: 30$	33	$34: 10$
230	$0: 30$	42	$43: 10$
240	$0: 30$	50	$51: 10$
270	$0: 30$	71	$72: 10$
300	$0: 30$	89	$90: 10$
330	$0: 30$	103	$104: 10$
360	$0: 30$	115	$116: 10$
390	$0: 30$	126	$127: 10$
420	$0: 30$	145	$148: 10$
450	$0: 30$	182	$183: 10$
480	$0: 30$	177	$178: 10$

50 FSW

| 325 | $1: 40$ | 0 | $1: 40$ | K |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 330 | $1: 00$ | 1 | $2: 40$ | K |
| 340 | $1: 00$ | 2 | $3: 40$ | K |
| 350 | $1: 00$ | 3 | $4: 40$ | K |
| 360 | $1: 00$ | 5 | $6: 40$ | K |
| 420 | $1: 00$ | 11 | $12: 40$ | |
| 480 | $1: 00$ | 15 | $16: 40$ | |
| 540 | $1: 00$ | 18 | $19: 40$ | |
| 600 | $1: 00$ | 21 | $22: 40$ | |
| 60 | $1: 00$ | 25 | $28: 40$ | |
| 720 | $1: 00$ | 28 | $30: 40$ | |

Table 18-14. MK 16 MOD $1 \mathrm{HeO}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	$\begin{gathered} \text { Time } \\ \text { to First } \\ \text { Stop } \\ \text { (M:S) } \end{gathered}$	DECOMPRESSION STOPS (fsw) Stop times (min) include travel time, except first stop																Total Ascent Time (M:S)	Repet Group
		170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		
60 FSW																			
134	2.00																0	2.00	L
140	120																3	5:00	L
150	120																8	10:00	L
160	120																12	14:00	L
170	120																16	18:00	L
180	120																20	22.00	
190	120																24	26:00	
200	120																27	29:00	
210	$1: 20$																31	33-00	
220	120																34	36:00	
230	$1: 20$																37	39-00	
240	120																40	42:00	
250	120																42	44:00	
260	1:20																45	47-00	
270	120																47	49:00	
280	120																49	51:00	
290	120																51	53-00	
300	120																53	55:00	
310	1:20																55	57-00	
320	1220																57	59:00	
330	120																59	61:00	
340	1:20																61	63:00	
350	1220																64	68:00	
380	1:20																66	88:00	

70 FSW

| 86 | $2: 20$ | 0 | $2: 20$ | M |
| :--- | :--- | :--- | ---: | :---: | :---: |
| 90 | $1: 40$ | 3 | $5: 20$ | M |
| 95 | $1: 40$ | 8 | $10: 20$ | |
| 100 | $1: 40$ | 12 | $14: 20$ | |
| 110 | $1: 40$ | 19 | $21: 20$ | |
| 120 | $1: 40$ | 28 | $28: 20$ | |
| 130 | $1: 40$ | 33 | $35: 20$ | |
| 140 | $1: 40$ | 39 | $41: 20$ | |
| 150 | $1: 40$ | 45 | $47: 20$ | |
| 160 | $1: 40$ | 50 | $52: 20$ | |
| 170 | $1: 40$ | 55 | $57: 20$ | |
| 180 | $1: 40$ | 60 | $62: 20$ | |
| 180 | $1: 40$ | 64 | 6620 | |
| 200 | $1: 40$ | 68 | $70: 20$ | |
| 210 | $1: 40$ | 72 | $74: 20$ | |
| 220 | $1: 40$ | 78 | $78: 20$ | |

Table 18-14. MK $16 \mathrm{MOD} 1 \mathrm{HeO}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom Time (min)	Time to First Stop (M:S)	DECOMPRESSION STOPS (fsw) Stop times ($\mathbf{m i n}$) include travel time, except first stop																Total Ascent Time (M:S)	Repet Group
		170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		
80 FSW																			
63	2:40																0	2:40	M
65	2:00																2	4:40	M
70	2:00																8	10:40	
75	2:00																14	16:40	
80	2:00																19	21:40	
85	2:00																24	26:40	
90	2:00																29	$31: 40$	
95	2:00																34	38:40	
100	2:00																39	41:40	
110	2:00																48	50:40	
120	2:00																56	58:40	
130	2:00																63	65:40	
140	2:00																70	72:40	
150	2:00																76	78:40	
160	2:00																82	84:40	
170	2:00																88	90:40	
180	2:00																93	95:40	
190	2:00																98	100:40	

90 FSW

44	3:00	0	3:00	K
45	2.20	1	4:00	K
50	$2: 20$	2	5:00	L
55	2:20	7	10:00	M
60	2:20	15	18:00	
65	2:20	22	25:00	
70	2:20	29	32:00	
75	2:20	35	38:00	
80	2:20	41	44:00	
85	2:20	47	50:00	
90	2:20	53	56:00	
95	2:20	58	61:00	
100	2:20	63	68:00	
110	2:20	73	78:00	
120	2:20	82	85:00	
130	2:20	90	93:00	
140	2:20	97	100:00	
150	2:20	105	108:00	
180	2:20	112	115:00	

Table 18-14. MK 16 MOD $1 \mathrm{HeO}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom	Time to First	DECOMPRESSION STOPS (fsw)Stop times (min) include travel time, except first stop																Total Ascent Time (M:S)	Repet Group
(min)	$(\mathrm{M}: \mathrm{S})$	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		
100 FSW																			
31	3:20																0	3:20	J
35	2.40																2	5-20	K
40	2:40																4	7:20	L
45	2:40																6	9:20	M
50	2:40																16	19:20	
55	2.40																24	27-20	
60	2.40																33	36:20	
65	$2 \cdot 40$																41	44:20	
70	2.40																48	51:20	
75	2:40																55	58-20	
80	2.40																62	65-20	
85	2.40																68	71:20	
90	2-40																74	77.20	
95	2-40																80	83-20	
100	2:40																85	88:20	
110	2:40																96	99.20	
120	2:40																105	108:20	
130	2:20															1	114	118:00	
140	$2 \cdot 20$															1	124	128:00	

110 FSW

24	3.40			0	3:40	1
25	3:00			1	4:40	1
30	3:00			4	7:40	J
35	3:00			7	10:40	L
40	3:00			10	13:40	M
45	3.00			21	24:40	
50	3-00			31	34:40	
55	3:00			40	43:40	
60	2.40		1	48	53-20	
65	2.40		2	57	62:20	
70	2-40		3	64	70-20	
75	2.40		4	71	78:20	
80	2.40		5	77	85:20	
85	2-40		5	84	92:20	
90	2.40		6	89	98:20	
95	2.40		6	95	104:20	
100	2.40		6	101	110-20	
110	2.40		7	112	122-20	
120	2:40		7	123	133:20	
130	2-40		7	136	146:20	
140	2:20	1	7	149	180-00	

Table 18-14. MK 16 MOD $1 \mathrm{HeO}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom	Time to First	DECOMPRESSION STOPS (fsw) Stop times (min) include travel time, except first stop																Total Ascent Time (M:S)	Repet Group
(\min)	$(M: S)$	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		
120 FSW																			
20	4:00																0	4:00	1
25	3:20																4	8:00	J
30	3:20																8	12:00	K
35	3:20																12	16:00	M
40	3:20																23	27:00	
45	3:00															2	34	39:40	
50	3:00															4	43	50:40	
55	3:00															6	52	61:40	
60	3:00															7	60	70:40	
65	2:40														2	7	68	80:20	
70	2:40														3	7	76	89:20	
75	2:40														3	8	83	97:20	
80	2:40														4	7	91	105:20	
85	2:40														5	7	97	112:20	
90	2:40														5	8	103	119:20	
95	2:40														6	7	110	128:20	
100	2:40														6	7	117	133:20	
110	2:40														7	7	131	148:20	
120	2:40														7	7	145	162:20	

130 FSW

17	4:20				0	4:20	H
20	3:40				3	7:20	1
25	3:40				8	12:20	K
30	3:40				13	17:20	L
35	3:20			2	21	27:00	L
40	3:20			5	32	41:00	L
45	3:00		1	7	43	54:40	L
50	3:00		3	7	53	68:40	
55	3:00		5	7	63	78:40	
60	3:00		6	8	71	88:40	
65	2:40	1	7	7	81	99:20	
70	2:40	2	7	7	89	108:20	
75	2.40	3	7	7	97	117:20	
80	2:40	3	8	7	104	125:20	
85	2:40	4	8	7	111	133:20	
EXCEPTIONAL EXPOSURE							
90	2:40	5	7	7	119	141:20	
95	2:40	5	8	7	127	150:20	
100	2:40	6	7	7	136	159:20	
110	2:40	6	8	7	152	176:20	
120	2:40	7	7	18	159	194:20	

Table 18-14. MK 16 MOD $1 \mathrm{HeO}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 80 FPM-ASCENT RATE 30 FPM)

150 FSW

13	5:00						0	5:00	H
15	4:20						3	8-00	H
20	4:20						10	15:00	J
25	4:00					2	14	20-40	L
30	4:00					7	24	35:40	L
35	3:40				4	8	37	53:20	L
40	3:20			1	7	8	50	70:00	
45	3:20			4	8	7	63	86:00	
50	3:20			7	7	8	74	100:00	
55	3:00		2	8	7	7	88	113:40	
60	3:00		4	8	7	7	98	125:40	
65	3:00		6	7	7	8	105	136:40	
70	3:00		7	7	8	7	114	146:40	
75	2:40	1	8	7	7	8	124	158-20	
80	2-40	2	8	7	7	8	135	170-20	
85	2:40	3	7	8	7	7	146	181-20	
90	2-40	4	7	7	8	9	155	193-20	

Table 18-14. MK 16 MOD $1 \mathrm{HeO}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom	Time to First	DECOMPRESSION STOPS (fsw) Stop times (min) include travel time, except first stop																Total Ascent Time (M:S)	Repet Group
(min)	(M:S)	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		
160 FSW																			
12	5:20																0	5:20	H
15	4:40																5	10:20	1
20	4:40																13	18:20	K
25	4:20															6	16	27:00	M
30	4:00														4	8	31	47:40	
35	3:40													2	7	8	46	67:20	
40	3:40													6	8	7	80	85:20	
45	3:20												3	7	7	8	73	102:00	
50	3:20												6	7	7	8	85	117:00	
55	3:00											1	7	8	7	7	97	130:40	
60	3:00											3	7	8	7	8	107	143:40	
65	3:00											5	7	8	7	7	118	155:40	
70	3:00											6	8	7	7	8	130	169:40	
75	3:00											8	7	7	8	7	142	182:40	
80	2:40										2	7	7	8	7	7	154	195:20	
85	2:40										2	8	7	8	7	16	158	209:20	
90	2:40										3	8	7	7	8	25	161	222:20	

170 FSW

11	5:40								0	5:40	H
15	5:00								8	13:40	I
20	4:40							2	15	22:20	K
25	4:20						2	8	22	37:00	L
30	4:00					2	7	7	39	59:40	L
35	4:00					7	7	8	55	81:40	
40	$3: 40$				4	8	7	7	70	100:20	
45	3:20			1	7	8	7	7	84	118:00	
50	$3: 20$			4	7	8	7	8	96	134:00	
55	$3: 20$			7	7	7	8	7	108	148:00	
60	3:00		2	7	8	7	7	8	120	162:40	
65	3:00		4	7	8	7	7	8	134	178:40	
70	3:00		5	8	7	8	7	7	148	193:40	
75	3:00		7	7	8	7	7	12	157	208:40	
80	2:40	1	7	8	7	7	8	22	160	223:20	

Table 18-14. MK 16 MOD $1 \mathrm{HeO}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 60 FPM -ASCENT RATE 30 FPM)

Bottom	$\begin{gathered} \text { Time } \\ \text { to First } \end{gathered}$	DECOMPRESSION STOPS (fsw)Stop times (min) include travel time, except first stop																Total Ascent Time (M:S)	Repet Group
(min)	(M:S)	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		
180 FSW																			
10	6.00																0	6:00	H
15	5:20																11	17:00	J
20	5:00															6	14	25:40	L
25	4:40														6	8	29	48:20	L
30	4.20													6	7	8	47	73:00	
35	4:00												4	8	7	8	64	95:40	
40	3:40											2	8	7	7	8	80	116-20	
45	3:40											6	8	7	7	8	94	134:20	
50	3:20										3	7	7	8	7	7	108	151:00	
55	3:20										5	8	7	8	7	7	121	167-00	
60	3:00									1	7	8	7	7	8	7	136	184:40	
65	3:00									3	7	8	7	7	8	7	151	201:40	
70	3:00									5	7	7	8	7	7	16	158	218-40	

190 FSW

9	6:20											0	6-20	H
10	5:40											2	$8: 20$	H
15	5:40											14	20-20	J
20	4:40								1	1	8	16	31:20	M
25	3:20				1	0	0	0	4	7	7	38	61:00	
30	3.00			1	0	0	2	2	7	7	8	57	87:40	
35	2.40		1	0	0	2	0	8	7	8	7	75	111:20	
40	220	1	0	0	0	2	6	8	7	7	8	91	133:00	
45	2.20	1	0	0	0	5	7	8	7	7	8	105	151:00	
50	2:20	1	0	0	0	8	8	7	8	7	7	120	169-00	
55	$2: 20$	1	0	0	4	8	7	7	8	7	7	138	190-00	
60	2.20	1	0	0	7	7	8	7	7	8	7	153	208-00	
65	2.20	1	0	2	7	7	8	7	7	8	19	159	228:00	
70	2:20	1	0	3	8	7	8	7	7	8	31	164	247-00	

Table 18-14. MK 16 MOD $1 \mathrm{HeO}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom	Time to First	DECOMPRESSION STOPS (fsw) Stop times (min) include travel time, except first stop																Total Ascent Time (M:S)	Repet Group
(min)	$(\mathrm{M}: \mathrm{S})$	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		
200 FSW																			
8	6:40																0	6:40	G
10	6:00																5	11:40	H
15	5:20														1	1	15	23:00	K
20	3:20								1	0	0	2	0	0	5	7	25	44:00	L
25	2:00				1	0	0	0	2	0	1	0	1	7	7	7	47	75:40	L
30	1:20		1	0	0	2	0	0	0	2	0	1	7	7	8	7	69	108:00	
35	1:20		1	0	1	1	0	0	2	0	0	7	7	7	8	7	87	130:00	
40	1:00	1	0	1	1	0	0	2	0	0	5	8	7	7	8	7	104	152:40	
45	1:00	1	0	1	1	0	0	2	0	2	7	8	7	8	7	7	120	172:40	
EXCEPTIONAL EXPOSURE																			
50	1:00	1	0	1	1	0	1	0	1	6	7	7	8	7	8	7	139	195:40	
55	1:00	1	0	1	1	0	1	0	2	8	7	7	8	7	8	8	155	215:40	
60	1:00	1	0	1	1	0	1	0	5	7	8	7	7	8	7	22	161	237:40	

210 FSW

5	7:00											0	7:00
10	6:20											5	12:00
15	6:00										7	5	18:40
20	5:00							5	3	2	2	28	45:40
25	4:20					3	3	3	2	3	3	57	79:00
30	4:20					6	3	2	2	6	12	76	112:00
35	3:40			3	3	3	2	3	5	12	12	95	142:20
40	3:20		3	2	3	2	3	5	12	11	12	113	170:00
45	3:20		4	2	3	2	4	11	12	12	11	131	196:00
50	3:20		4	3	2	3	10	11	12	12	11	149	221:00
55	3:00	3	2	3	2	7	11	11	12	11	12	185	242:40
60	3:20		5	3	2	11	12	11	11	12	21	173	285:00

Table 18-14. MK 16 MOD $1 \mathrm{HeO}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 80 FPM-ASCENT RATE 30 FPM)

Bottom	$\begin{gathered} \text { Time } \\ \text { to First } \end{gathered}$	DECOMPRESSION STOPS (fsw)Stop times (min) include travel time, except first stop																Total Ascent Time (M:S)	Repet Group
$\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$	$\begin{aligned} & \text { Stop } \\ & \text { (M:S) } \end{aligned}$	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		
220 FSW																			
5	7:20																0	7.20	
10	6.40																5	12:20	
15	5-40													4	3	2	6	21:20	
20	5.00											4	3	2	3	2	37	56.40	
25	5:00											7	3	3	2	8	65	93.40	
30	4:00								3	3	2	3	3	3	10	12	84	127:40	
35	$4: 20$									8	2	3	2	12	12	11	106	161:00	
40	4:20									9	3	2	12	11	12	11	126	191:00	
45	3:40							6	2	3	2	10	12	11	12	11	144	217:20	
50	4:00								8	3	8	11	12	11	11	12	164	244:40	
55	4:00								9	4	12	11	12	11	11	18	177	269:40	

230 FSW

5	7:40													0	7:40
10	7:00													6	13:40
15	6.00										5	3	2	9	25:40
20	5-00							3	3	2	3	3	2	48	67-40
25	4:40						5	2	3	3	2	3	12	71	106:20
30	4:00				3	3	2	3	2	3	6	12	12	93	143:40
35	4:00				5	3	2	3	2	8	12	12	11	116	178:40
40	3:20		2	3	2	3	2	3	8	12	11	12	11	137	210:00
45	4:00				8	2	3	7	12	11	11	12	11	159	240.40
50	3:20		4	3	2	3	5	11	13	11	11	11	16	174	288:00
55	3:00	2	3	2	4	2	12	11	11	11	11	11	38	172	293:40

240 FSW

5	8:00												0	8:00
10	7:20												8	16:00
15	6:00								4	3	2	4	15	34.40
20	5:20						5	2	3	2	3	3	54	78:00
25	$5 \cdot 20$						9	3	2	2	8	12	80	122:00
30	4:20			5	3	2	2	3	3	11	12	12	103	161:00
35	4:20			7	3	2	3	4	12	11	12	12	127	198:00
40	4:20			8	3	3	4	12	12	11	12	12	150	232:00
45	4:20			10	2	4	12	12	11	12	11	12	173	264:00
50	$3: 40$	6	3	2	3	12	11	11	12	11	11	32	174	292:20

Table 18-14. MK $16 \mathrm{MOD} 1 \mathrm{HeO}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom	Time to First	DECOMPRESSION STOPS (fsw)Stop times (min) include travel time, except first stop																Total Ascent Time (M:S)	Repet Group
	$(\mathrm{M}: \mathrm{S})$	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		
250 FSW																			
5	8:20																0	8:20	
10	7:40																9	17:20	
15	6:20												5	3	3	2	24	44:00	
20	5:40										6	3	2	3	3	6	61	90:20	
25	5:00								6	3	2	2	3	3	12	12	87	135:40	
30	4:20						4	3	3	2	3	2	8	11	12	12	112	177:00	
35	4:40							9	2	3	2	10	12	12	11	12	139	217:20	
40	4:20						8	3	2	3	11	12	11	11	12	11	164	253:00	
45	4:00					7	3	3	2	11	11	12	11	11	12	25	175	287:40	
50	3:40				6	2	3	3	9	12	11	11	12	11	11	49	175	319:20	

260 FSW

5	8:40													0	8:40
10	8:00													11	19:40
15	6:20								4	3	3	2	3	31	53:00
20	5:40						5	3	3	2	3	3	10	67	102:20
25	5:20					8	3	2	2	3	7	13	12	96	152:00
30	4:40			6	3	2	3	2	3	12	12	13	11	123	195:20
35	4:40			8	3	3	2	6	12	12	11	12	11	151	238:20
40	$4: 20$		8	3	2	3	7	12	12	11	11	12	14	175	275:00
45	4:00	7	3	2	3	8	12	11	11	11	12	11	42	173	310:40

270 FSW

5	8:20													5	14:00
10	8:20													13	22:00
15	6:20							3	3	3	2	3	3	39	63:00
20	6:20							9	3	2	3	5	12	75	116:00
25	5:40					9	3	2	3	3	12	11	12	105	188:20
30	5:00			8	3	2	3	2	9	11	12	11	12	134	212:40
35	4:40		8	3	2	3	3	11	12	12	11	11	12	183	250:20
40	4:20	8	3	3	1	5	12	12	11	11	11	12	30	174	298:00
45	4:20	9	3	2	5	12	13	10	11	11	12	11	56	176	336:00

Table 18-14. MK $16 \mathrm{MOD} 1 \mathrm{HeO}_{2}$ Decompression Tables (Continued).
(DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom	Time to First	DECOMPRESSION STOPS (fsw) Stop times (min) include travel time, except first stop																Total Ascent Time (M:S)	Repet Group
	$(\mathrm{M}: \mathrm{S})$	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		
280 FSW																			
5	8:40																5	14:20	
10	8:40																14	23-20	
15	7:00											7	3	2	3	3	47	72:40	
20	6.20									9	2	3	2	3	9	12	82	129:00	
25	5:20						6	3	3	2	3	2	7	12	12	12	114	182:00	
30	$5 \cdot 20$						10	3	2	3	3	12	12	11	12	12	145	231:00	
35	4:40				8	2	3	2	3	8	12	12	11	11	11	13	178	277:20	
40	4:40				10	2	3	2	11	12	11	12	12	10	12	45	174	$321: 20$	
45	4:40				11	3	3	11	11	12	11	11	11	12	11	72	178	362-20	

290 FSW

5	9:00													5	14:40
10	8:00										4	4	2	6	24:40
15	7:00							6	3	2	3	3	2	55	81:40
20	6-20					8	2	3	2	3	4	12	12	88	141:00
25	5:40			8	3	2	3	3	2	12	12	11	12	122	196:20
30	5:00	7	3	2	3	3	2	9	12	12	11	11	12	156	248:40
35	5:00	10	2	3	2	5	12	11	12	11	11	12	28	178	300:40
40	5:00	12	2	3	7	12	11	12	11	11	11	12	59	177	345:40
45	5:00	13	3	9	11	12	11	11	11	11	11	18	82	180	388:40

300 FSW

5	9:20													5	15:00
10	8:20										6	3	2	9	29-00
15	7:00						5	3	2	3	2	3	5	61	91:40
20	6-20				7	3	2	3	2	4	6	12	12	96	154:00
25	5.20	5	3	2	3	3	2	3	7	12	11	12	11	132	212:00
30	5:20	9	3	2	3	2	5	12	12	11	11	12	12	169	269:00
35	5:20	12	2	3	2	10	12	11	12	11	11	12	41	176	321:00
40	5:20	14	2	4	12	12	11	11	12	11	11	11	74	180	371:00

Table 18-14. MK 16 MOD 1 HeO ${ }_{2}$ Decompression Tables (Continued).
(DESCENT RATE 60 FPM-ASCENT RATE 30 FPM)

Bottom	Time to First				Stop	time	$\begin{aligned} & \text { DECC } \\ & 5(\mathrm{~min} \end{aligned}$	OMPR) incl	ESSI ude tr									Total Ascent	
Time (min)	$\begin{aligned} & \text { Stop } \\ & \text { (M:S) } \end{aligned}$	170	160	150		130	120	110	100	90	80	70	60	50	40	30	20	Time (M:S)	Repet Group

310 FSW

10	8:20									5	2	3	3	14	36:00
15	7:20						6	3	3	2	3	2	9	66	102:00
20	6:20			6	3	2	3	2	3	3	12	11	12	103	167:00
25	6:00		9	3	2	3	3	2	12	11	12	12	11	142	228:40
30	5:40	11	3	2	2	3	10	12	11	11	12	12	17	176	288:20
35	5:40	14	2	3	6	12	11	12	11	11	11	12	55	178	344:20
40	5:40	16	2	10	12	11	12	11	11	11	11	19	83	182	397:20

320 FSW

EXCEPTIONAL EXPOSURE															
10	8:20								4	2	3	3	2	21	44:00
15	7:40						8	3	2	3	2	3	12	71	112:20
20	6:20		6	2	3	2	3	2	4	5	12	12	12	111	181:00
25	6:20		11	3	2	2	3	7	12	11	12	11	12	153	248:00
30	6:00	13	2	3	2	6	12	11	12	11	11	12	30	177	308:40
35	6:00	15	3	3	11	12	11	12	11	11	11	12	88	182	368:40
40	6:00	18	7	11	12	11	11	11	12	11	11	35	83	185	424:40

DECOMPRESSION CHARTS USED IN SURFACE SUPPLIED HELIUMOXYGEN DIVING OPERATIONS

HEO2 TABLES

Table 14-3. Surface-Supplied Helium-Oxygen Decompression Table.

Table 14-3. Surface-Supplied Helium-Oxygen Decompression Table (Continued). (DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

100
xotxoum
110
120
yano
Max $\mathrm{O}_{2}=26.3 \%$
Min $\mathrm{O}_{2}=14.0 \%$
Table 14-3. Surface-Supplied Helium-Oxygen Decompression Table (Continued).
(DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

Bottom Time (min.)	Time to First Stop (min:sec)	Decompression Stops (fsw) Stop times (min) include travel time, except first HeO_{2} and first O_{2} stop																		
		190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	
		Bottom Mix										$50 \% \mathrm{O}_{2}$						$100 \% \mathrm{O}_{2}$		
10	3.00															10	10	6	8	1
20	3.00															10	10	12	19	1
30	3.00															10	10	18	30	2
40	2:40														7	10	10	22	40	2
60	2:40														7	10	10	29	52	3
80	2.40														7	10	10	33	60	3
100	2:40														7	10	10	35	64	4
120	2:40														7	11	11	35	66	4

150
 $\mathrm{Max} \mathrm{O}_{2}=23.4 \%$ $\mathrm{Min} \mathrm{O}_{2}=14.0 \%$

160
$\mathrm{Max} \mathrm{O}_{2}=22.2 \%$
$\mathrm{Min} \mathrm{O}_{2}=14.0 \%$
170
$\mathrm{Max} \mathrm{O}_{2}=21.1 \%$
$\mathrm{Min} \mathrm{O}_{2}=14.0 \%$
Table 14-3. Surface-Supplied Hellum-Oxygen Decompression Table (Continued).

Depth (fsw)
180
Max $\mathrm{O}_{2}=20.1 \%$
$\mathrm{Min} \mathrm{O}_{2}=14.0 \%$
190
Max $\mathrm{O}_{2}=19.2 \%$
Min $\mathrm{O}_{2}=14.0 \%$
200
$\mathrm{Max} \mathrm{O}_{2}=18.4 \%$
$\mathrm{Min} \mathrm{O}_{2}=14.0 \%$
210
$\begin{aligned} & \operatorname{Max} \mathrm{O}_{2}=17.7 \% \\ & \operatorname{Min} \mathrm{O}_{2}=10.0 \%\end{aligned}$
Table 14-3. Surface-Supplied Helium-Oxygen Decompression Table (Continued).

(msy) uldea
Max $\mathrm{O}_{2}=17.0 \%$
230
Max $\mathrm{O}_{2}=16.3 \%$
$\operatorname{Min} \mathrm{O}_{2}=10.0 \%$
240
Max $\mathrm{O}_{2}=15.7 \%$
Min $\mathrm{O}_{2}=10.0 \%$
250
$\operatorname{Max} \mathrm{O}_{2}=15.2 \%$
$\operatorname{Min} \mathrm{O}_{2}=10.0 \%$
Table 14-3. Surface-Supplied Helium-Oxygen Decompression Table (Continued).
(DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)

097
$\operatorname{Max} \mathrm{O}_{2}=14.6 \%$
$\operatorname{Min} \mathrm{O}_{2}=10.0 \%$
270
$\operatorname{Max} \mathrm{O}_{2}=14.2 \%$
$\mathrm{Min} \mathrm{O}_{2}=10.0 \%$

280

$\operatorname{Max} \mathrm{O}_{2}=13.7 \%$
$\operatorname{Min} \mathrm{O}_{2}=10.0 \%$
290
$\operatorname{Max} O_{2}=13.3 \%$
$\operatorname{Min} \mathrm{O}_{2}=10.0 \%$
Table 14-3. Surface-Supplied Hellum-Oxygen Decompression Table (Continued).

(msı) uldea
00ε
$\mathrm{Max} \mathrm{O}_{2}=12.9 \%$
$\mathrm{Min} \mathrm{O}_{2}=10.0 \%$
310
$\operatorname{Max} \mathrm{O}_{2}=12.5 \%$
$\operatorname{Min} \mathrm{O}_{2}=10.0 \%$
320
$\mathrm{Max} \mathrm{O}_{2}=12.2 \%$
Min $\mathrm{O}_{2}=10.0 \%$
330
$\begin{aligned} & M \operatorname{sx} \mathrm{O}_{2}=11.8 \% \\ & \operatorname{Min} \mathrm{O}_{2}=10.0 \%\end{aligned}$
Table 14-3. Surface-Supplied Helium-Oxygen Decompression Table (Continued).

$\begin{aligned} & \text { Depth (fsw) } \\ & \mathbf{3 4 0}\end{aligned}$
$\begin{aligned} & M a x \\ & \mathrm{O}_{2}=11.5 \% \\ & \operatorname{Min} \mathrm{O}_{2}=10.0 \%\end{aligned}$

350

360
$\mathrm{Max} \mathrm{O}_{2}=10.9 \%$
$\operatorname{Min} \mathrm{O}_{2}=10.0 \%$
Table 14-3. Surface-Supplied Helium-Oxygen Decompression Table (Continued).

380
$\begin{aligned} & M \operatorname{ax} \mathrm{O}_{2}=10.4 \% \\ & \operatorname{Min} \mathrm{O}_{2}=10.0 \%\end{aligned}$
(DESCENT RATE 75 FPM-ASCENT RATE 30 FPM)
$\operatorname{Min} \mathrm{O}_{\mathrm{z}}=10.0 \%$

