

MITNA
January 2015
Matthew Wall Scott Dynes Steve Bussolari
"This new ship here, is fitted according to the reported increase of knowledge among mankind. Namely, she is cumbered, end to end, with bells and trumpets and clocks and wires which, it has been told to me, can call Voices out of the air or the waters to con the ship while her crew sleep. But sleep thou lightly...It has not yet been told to me that the Sea has ceased to be the Sea"

- Rudyard Kipling

Outline

- Review
- Nautical chart types and scales
- Bouyage system (IALA Region B)
- Light characteristics
- Rules of the Road
- Tidal currents
- Basic navigational inputs
- Basic Navigation Skills
- Planning a course to steer
- Estimating your position
- Knowing where you are
- Inshore pilotage

Tools

- Pencil
- Eraser
- Paper
- Parallels
- Divider
- Clock
- Calculator
- Handheld Compass
- Binoculars
- Sextant

Worksheets

Geographical Coordinate System

Projections

Equirectangular

Robinson

61 different projections listed at wikpedia http://en.wikipedia.org/wiki/List_of_map_projections

HEALPix

Goode homolosine

Cassini

Mercator Projection

Mercator Projection

- Advantages
- easy-to-use rectangular grid
- straight lines cross meridians at constant angle (Rhumb Lines)
- Disadvantages
- chart scale not constant with position
- distance between lines oflatitude are exaggerated in polar regions

Nautical Chart Scales

- Boston Harbor
- large scale $(1 / 25,000)$
- covers small area

- Newport to Bermuda
- small scale $(1 / I, 058,400)$
- covers large area

Chart Number I

Chart No. 1

United States of America

Nautical Chart Symbols, Abbreviations and Terms

Q Buoys and Beacons
Chart I: Q Bouys and Beacons

Bouys: Identification

- 8 ways to identify a lateral mark
- color (green, red)
- shape (cylindrical, conical)
- dayboard (green square, red triangle)
- topmark (cylinder, cone)
- light color (green, red)
- reflector color (green, red)
- ID number (odd, even)
- sound (gong - clang, bell - ding)

Bouys: Light Rythms

- Fixed
- Occulting
- Isophase
- Flashing
- Quick
- Group or Composite Group
- Morse Code
- Fixed and Flashing
- Alternating

Bouyage Example

Navigation Rules

Navigation Rules

Tidal Currents

- Set: direction in which an object will travel at a given time if carried by the tidal current (displayed opposite to the way wind is represented)
- Drift: distance an object will trael in a given time if carried by the tidal current
- Current (or Flow): speed at which an object will travel at a given time if carried by the tidal current
- Ebb: tidal current in the falling phase of the tide
- Flood: tidal current in the rising phase of the tide

Current Table

BOSTON HARBOR (Deer Island Light)													
Predicted Tidal Current Flood Direction, 254 True. NOAA, National Ocean Service					April, 2008								
					Ebb (-)Direction, 111 True.								
	Slack	Maxim	num	Slack	Maxim	num	Slack	Maxim	num	Slack	Maximum	Slack	Maximum
	Water	Curren		Water	Curre		Water	Curren		Water	Current	Water	Current
Day	Time h.m.	Time h.m.	Veloc knots	Time h.m.	Time h.m.	Veloc knots	Time h.m.	Time h.m.	Veloc knots	Time h.m.	Time Veloc h.m. knots	Time h.m.	Time Veloc h.m. knots
1	0151	0500	+1.0	0733	1206	-1.1	1422	1738	+1.1	2010			
2		0032	-1.1	0245	0556	+1.1	0828	1249	-1.2	1511	$1827+1.2$	2102	
3		0115	-1.2	0336	0646	+1.2	0920	1328	-1.3	1559	1911 +1.4	2151	
4		0152	-1.3	0424	0730	+1.3	1010	1400	-1.3	1644	1950 +1.5	2237	
5		0223	-1.4	0511	0810	+1.4	1057	1429	-1.4	1729	$2026+1.6$	2322	
6		0254	-1.5	0558	0847	+1.5	1143	1503	-1.4	1813	$2059+1.6$		

Current
 Chart

Tidal Currents: Rules

Slack Water			Max Current C (kt)			Slack Water	
							r
	Hour 1	Hour 2	Hour 3	Hour 4	Hour 5	Hour 6	
Drift	$\begin{aligned} & 1 / 3 \mathrm{C} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & 2 / 3 \mathrm{C} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & 3 / 3 \mathrm{C} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & 3 / 3 \mathrm{C} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & 2 / 3 \mathrm{C} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & 1 / 3 \mathrm{C} \\ & (\mathrm{~nm}) \end{aligned}$	Rule of Thirds
Current (kt)							$\begin{gathered} \text { 50/90 } \\ \text { Rule } \end{gathered}$

Basic Navigational Inputs

- Your eyes
- Look around
- Orient the chart
- Relate your visible surroundings to the chart
- Log/Clock
- Speed
- Distance run
- Depth Sounder
- Local depth
- Compass
- True Heading
- Variation
- Magnetic Heading
- Deviation
- Compass Heading

Declinations

Location	Declination	Change (Minutes per year)	
Nassau	$8^{\circ} 3^{\prime} \mathrm{W}$	$0^{\circ} 5^{\prime}$ West per year	
Punta Gorda Belize	$0^{\circ} 19^{\prime} \mathrm{E}$	$0^{\circ} 8^{\prime} \mathrm{W}$	
Boston, MA, USA	$14^{\circ} 49^{\prime} \mathrm{W}$	$0^{\circ} 4^{\prime} \mathrm{E}$	Sommerville
San Diego, CA, USA	$11^{\circ} 46^{\prime} \mathrm{E}$	$0^{\circ} 5^{\prime} \mathrm{W}$	
Athens, Greece	$4^{\circ} 10^{\prime} \mathrm{E}$	$0^{\circ} 6^{\prime} \mathrm{E}$	
Wellington, NZ	$22^{\circ} 25^{\prime} \mathrm{E}$	$0^{\circ} 44^{\prime} \mathrm{E}$	
			WMM2015
Graves Lighthouse	$14^{\circ} 54^{\prime} \mathrm{W}$	$0^{\circ} 44^{\prime} \mathrm{E}$	IGRF12
Graves Lighthouse	$14^{\circ} 55^{\prime} \mathrm{W}$	$0^{\circ} 44^{\prime} \mathrm{E}$	

The Poles are Moving

Graves Light

Date	Lat	Long	Magnetic Declination	Annual Change minutes/year	
$1 / 21 / 2015$	Today	42.3649 North	70.8691 West	$14^{\circ} 55.14^{\prime}$ West	3.6 East
$1 / 21 / 2005$	10 Years Ago	42.3649 North	70.8691 West	$15^{\circ} 33.36^{\prime}$ West	3.8 East
$1 / 21 / 1990$	25 Years Ago	42.3649 North	70.8691 West	$15^{\circ} 51.84^{\prime}$ West	-1.5 West
$1 / 21 / 1965$	50 Years Ago	42.3649 North	70.8691 West	$15^{\circ} 31.44^{\prime}$ West	.4 East
$1 / 21 / 1915$	100 Years Ago	42.3649 North	70.8691 West	$14^{\circ} 14.64^{\prime}$ West	-5.2 West

Changes in magnetic declination for Graves Light, Boston Harbor

Outline

- Review
- Nautical chart types and scales
- Bouyage system (IALA Region B)
- Light characteristics
- Rules of the Road
- Tidal currents
- Basic navigational inputs
- Basic Navigation Skills
- Planning a course to steer
- Estimating your position
- Knowing where you are
- Inshore pilotage

Planning a Course to Steer

- Course to Steer is what you tell the helm to steer
- by reference to a clear, distant, motionless visual mark (best)
- by reference to the compass at the helm (not as good)
- by reference to the wind (e.g., close hauled, broad reach)
- Use the chart plotter or parallel rulers on the chart to determine the direction to your destination
- this will be a True Course
- correct for leeway and current to get Course to Steer (in degrees True)
- correct for variation and deviation to get Course to Steer (in degrees Per Steering Compass, or "PSC")
- Whatever system you use, be clear and consistent
- you will be reading the chart when you are tired and seasick
- others will read the chart under similar conditions

Conventions

013005406

Conventions

0130	I:30 AM
054	54°
06	6 knots

Conventions

0130	I:30 AM	054 M	54° Magnetic
054	54°	054 T	54° True
06	6 knots	054 CTS	Course To Steer

Plotting a Course

Arrowhead indicates a course
Prefix C indicates Course
Suffix T or M indicates True or Magnetic
$\mathrm{C} 061^{\circ} \mathrm{T}$

If there is no leeway or current, you can correct this for Variation and Deviation and hand up to the helm as Course to Steer. Note the compass course in the ship's log.

Correcting for Leeway

Remember:This is the course you are trying to make good through the water

Estimate your leeway angle (in this case 9°)
If there is no current, correct for Variation and instruct the helm to steer 068° on the binnacle compass (corrected for Deviation if necessary)

Note the compass course steered in the ship's $\log \left(068^{\circ}\right.$ PSC)

Correcting for Current

With current, we must distinguish between the Course we make good through the water and our Desired Track

The Track is often called the "Course Made Good Over the Bottom"
Since the Track will be different than our Course made good through the water, we label it differently

Connect the current vector to the desired track using estimated distance the boat will travel through the water in the same interval (I hour)

Correcting for Current

Label the desired course made good through the water

Correcting for Current

Correct for leeway and label as course to steer (if desired) Correct for variation and deviation and hand up to the helm Note compass course steered (057° PSC) in ship's log

Construct current correction triangle on a separate plotting sheet or clear area on chart Plot Course to Steer directly on Track

Outline

- Review
- Nautical chart types and scales
- Bouyage system (IALA Region B)
- Light characteristics
- Rules of the Road
- Tidal currents
- Basic navigational inputs
- Basic Navigation Skills
- Planning a course to steer
- Estimating your position
- Knowing where you are
- Inshore pilotage

Ship's Log

Time	Log	Course	Weather	Remarks
1900	33.5	057 PSC	NNWIO, I005mb, Fair	GPS Fix, GPS OFF

Ship's Log

Time	Log	Course	Weather	Remarks
1900	33.5	057 PSC 062 PSC	NNWIO, I005mb, Fair NIO	GPS Fix, GPS OFF, Close hauled on Port Tack
2000	39.5	062 PSC	NIO, I005mb, Fair	Close hauled, Port

Ship's Log

Time	Log	Course	Weather	Remarks
1900	33.5	057 PSC 062 PSC	NNWIO, I005mb, Fair NIO	GPS Fix, GPS OFF, Close hauled on Port Tack
2000	39.5	062 PSC	NIO, 1005mb, Fair	Close hauled, Port
2100	45.5	322 PSC	NIO, 1005mb, Fair	Tacked, Close hauled, Stbd

Ship's Log

Time	Log	Course	Weather	Remarks
1900	33.5	057 PSC 062 PSC	NNWIO, I005mb, Fair NIO	GPS Fix, GPS OFF, Close hauled on Port Tack
2000	39.5	062 PSC	NIO, 1005mb, Fair	Close hauled, Port
2100	45.5	322 PSC	NIO, 1005mb, Fair	Tacked, Close hauled, Stbd

Where are we?
 What do we do next?

Estimating Your Position

- Plot a Dead Reckoning Position
- Course steered and distance logged
- Use ship's log as the source of information
- Plot an Estimated Position
- Position adjusted for leeway and current

Plotting a Dead Reckoning Position

Plotting a Dead Reckoning Position

GPS 1900
From I900 to 2000, compass course steered was 062° PSC and log difference is $6 \mathrm{~nm}(39.5-33.5)$ Course steered was $046^{\circ} \mathrm{T}$ (remember TVMDC)

Plotting a Dead Reckoning Position

Draw a line from the 1900 position, along the course steered $\left(046^{\circ} \mathrm{T}\right)$ and mark a point at the distance traveled (6 nm)

Label this as the 2000 DR position (DR is not corrected for leeway or current)

Plotting an Estimated Position

Plot a line representing your Course Made Good through the water
GPS 1900 (i.e., the course steered, adjusted for leeway)

In this case it is $046^{\circ} \mathrm{T}+9^{\circ}=055^{\circ} \mathrm{T}$
Make the length of the line the distance traveled from 1900-2000 (6nm)

Plotting an Estimated Position

GPS 1900
Since nothing changed between 2000 and 2100, you can simply lay your plotting tool along a line between the 1900 GPS Fix and the 2000 EP and mark the 2100 EP along the extension of that line

Plotting an Estimated Position

The distance between the 2000 EP and the 2100 EP should be the same as between the 1900 GPS Fix and the 2000 EP

Assess the Situation

On the present tack, the helm is steering 322C (306T)
Accounting for leeway, the boat is making 297T through the water at ~ 6 knots Even accounting for current, this looks like a bad tack

Plan a Course to Steer
 Instruct the watch captain to return to port tack and remain closehauled. If the wind backs, the helm can stay with it up to 057 PSC, then maintain 057 PSC to parallel the desired track

After tacking, make a log entry and get some sleep...

Variations

You can string multiple tacks together with multiple current estimates
2100
This is particularly helpful with tidal currents and longer passages

Outline

- Review
- Nautical chart types and scales
- Bouyage system (IALA Region B)
- Light characteristics
- Rules of the Road
- Tidal currents
- Basic navigational inputs
- Basic Navigation Skills
- Planning a course to steer
- Estimating your position
- Knowing where you are
- Inshore pilotage

Knowing Where You Are

- Position by immediate observation
- Position fixes defined by lines
- Running fix

Position by Immediate Observation

1535: abeam red bell \#2 three and one-half fathoms ledge

Position Defined by Lines

Position Defined by Lines

Try to select objects whose LOPs will intersect at 45° or more

Position Defined by Lines

Try to select objects whose LOPs will intersect at 45° or more

Sources of Lines of Position

- Ranges
- "Official" range set up for navigation
- "Unofficial" range based on charted objects
- Compass bearings on objects
- Quality depends on compass, observation conditions, and position stability of object
- Depth contours
- Quality depends on bottom contour, condition, and tide
- Distance off
- Measured by RADAR
- Measured by sextant
- Dipping of object of known height (typically lighthouses)

Using a Single Line of Position

Let's say that you are keeping a series of estimated positions, using your estimates of your course made good through the water and current set and drift

Using a Single Line of Position

At 1600 you get a good single LOP from a mark

Using a Single Line of Position

You can update your estimated position by moving it from your initial estimate to the closest point along the LOP

This is not a fix. It is simply an adjusted estimated position

Running Fix

Some time later you get another LOP on the same mark

Running Fix

Plot your course made good through the water and estimated current set

Running Fix

Advance the earlier line of position in the diretion and distance you estimate that you've traveled over the bottom

Label it as an advanced LOP

Running Fix

Plot your running fix and label it as such

Running Fix: Caution

The running fix appears precise, but it is only as accurate as your ability to estimate your distance and direction traveled over the bottom

Your LOPs should subtend and angle of no less than 45-60 degrees

Runningn fixes are a very blunt navigational tool, but sometimes they're all you have

Running Fix: Special Cases

 the fix.

Doubling Angle on the Bow

Running Fix: Special Cases

Distance AB is equal to distance from B to lighthouse. Bearing from lighthouse completes the fix.

Doubling Angle on the Bow

45-90 Doubling Angle

Running Fix: Special Cases

Doubling Angle on the Bow

45-90 Doubling Angle

Beam Bearing Drift Rate

When abeam the mark, the distance between B and the mark is equal to the time (in minutes) that it takes the bearing angle to change (in degrees) an amount equal to the vessel speed (in knots)

Outline

- Review
- Nautical chart types and scales
- Bouyage system (IALA Region B)
- Light characteristics
- Rules of the Road
- Tidal currents
- Basic navigational inputs
- Basic Navigation Skills
- Planning a course to steer
- Estimating your position
- Knowing where you are
- Inshore pilotage

Inshore Pilotage

- In waters crowded with bouys, beacons, and hidden hazards, there is often no time for formal chartwork
- Typically these occur at beginning or end of a passage - often in unfamiliar waters
- Procedures must be simple to set up and follow
- Most navigation aboard X-Dimension in and around Boston Harbor is inshore pilotage

Clearing or Danger Bearing

Inshore Pilotage Tips

- For complex harbor entries, plan ahead with appropriate bearings and informal ranges
- For landfall in low visibility, bias your course to steer so you know which way to turn when shore becomes visible
- Keep a chart on deck with you and refer to it often, even in familiar waters
- "Prove" your bearings with informal ranges where possibel to account for current
- Communicate clearly to helm and crew - give them time to prepare
- Check and double-check your information

Double-Check Everything

Celestial Navigation

"Sextant: an entertaining, albeit expensive, device, which, together with a good atlas, is of use in introducing the boatman to many interesting areas on the earth's surface which he and his craft are not within 1,000 nautical miles of."

- Beard and McKie
"I looked in the Nautical Almanac and found that on that very day, June 7 , the sun was behind time 1 minute and 26 seconds, and that it was catching up at a rate of $14 / 67$ seconds per hour. The chronometer said that at the precise moment of taking the sun's altitude it was 25 minutes after 8:00 in Greenwich. From this date it would seem a schoolboy's task to correct the Equation of Time. Unfortunately I was not a schoolboy."
- Jack London, The Cruise of the Snark

