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The Concept of Using a Sextant Altitude

Using the altitude of a celestial body is similar to using the altitude of a lighthouse or
similar object of known height, to obtain a distance.

Altitude
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Distance = Height/ TanfAltitude)

One object or body provides a distance but the observer can be anywhere on a circle
of that radius away from the object. At least two distances/ circles are necessary for a
position. (Three avoids ambiguity.)

Position

In practice, only that part of the circle near an assumed position would be drawn.



Using a Sextant for Celestial Navigation

After a few corrections, a sextant gives the true distance of a body if measured on an
imaginary sphere surrounding the earth.

Using a Nautical Almanac to find the position of the body, the body’s position could
be plotted on an appropriate chart and then a circle of the correct radius drawn around
it. In practice the circles are usually thousands of miles in radius therefore distances
are calculated and compared with an estimate.

Working on this sphere, the distance becomes [90° - Altitude.] The point on the
sphere corresponding to the Observer is known as his Zenith.
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Position Lines

Because of the immense radius, the short length of interest can be considered a
straight line.

Comparing the observed distance to the body and the calculated distance from an
assumed position provides the distance towards or away from the body. The bearing
is found by calculation and then it can be a simple matter of marking the assumed
position on a chart, drawing a line in the direction of the body and marking off the
difference between the observed and calculated distances.
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The observed distance is known as the True Zenith Distance (TZD.) The value
based on the assumed position is the Calculated Zenith Distance (CZD.) The
difference between the two is known as the Intercept.

The closest point on this circle is known as the Intercept Terminal Position (ITP)
and the line representing the circle at that position is called a Position Line.

Additional sights provide additional position lines that intersect to provide a Fix.



A Running Fix

A vessel is usually moving between sights therefore they are combined "on the run."

The position line from a first sight must be moved to allow it to be combined with
another position line for a different time.
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A double-headed arrow identifies a Transferred Position Line.

After a second sight has been calculated, its position line can be plotted and combined
with the first to provide a fix.
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The shorter the “run” between the two observations, the more accurate will be the
final result. This is why star sights are usually better than sun sights. The opportunity
to obtain more position lines of different directions is an additional benefit.



Notes on Running Fixes

Under normal conditions, one would expect an error of +/- 0°.3 in the Position Lines.
(This error is mainly due to the time recorded under practical conditions.) Land
Surveyors achieve accuracy comparable to a GPS using more sophisticated
instruments but the same calculations/ method.

Final accuracy is obviously improved by taking more observations. Six star sights will
typically provide a fix within 0’.2 of the true position.

Most people adopt some shortcuts in the interest of speed. These have a cost in terms
of accuracy. The Sun's Total Correction Tables assume that the Sun's semi-diameter is
either 159 or 16".2. A Sun Sight in April (SD = 16'.0) is immediately in error by 0'.2.
Tables are rounded to the nearest 0'.1 which could introduce a cumulative error of
0'05 for every item.

With Star sights, the short interval between the first and last sight means that many
people use a single position for all the sights and plot the results without allowing for
the vessel's movement. The error is larger than above, but quite acceptable in mid-
ocean.

Before GPS and Calculators

The method used until the 1980s was the Haversine Formula and Log Tables. A few
commercial navigators used Sight Reduction Tables but most preferred the longer
method in the interests of accuracy and flexibility.

The Haversine formula is a rearrangement of the Cosine formula (above) substituting
Haversines for the Cosine terms. (Hav(0) = %2 x [1 — Cos(0) ] ). This makes a
calculation using logarithms slightly easier, as the terms are always positive.

Hav(CZD) = Hav(Lat difference Dec) + Hav(LHA) x Cos(Lat) x Cos Dec)



Sight Calculations and obtaining a Position

The stages to resolving a sight are;
Correct the Sextant Altitude to find the true distance of the body
Calculate the bearing and distance from an assumed position
Using the difference in distances to obtain a Position Line

Finally Position Lines are combined to provide a fix.

Correcting a Sextant Altitude

An explanation of the corrections is found in the next section under “Corrections to a
Sextant Altitude.” All of these, except Index Error, are found in Nautical Tables.

Example for the Sun

Sextant Altitude 31°22°.0
Index Error 2°.0 Assuming "Off the Arc"
Observed Altitude  31°24°.0
Dip -3°.0 Subtract
Apparent Altitude 31°21°.0
Refraction -1°.6 Subtract
True Altitude 31°19°4
Semi-Diameter 16°.5 Add for Lower Limb
True Altitude 32°26°.8
90° 00’.0

True Zenith Distance 57° 33°.2

Altitudes of Stars do not need a Semi-Diameter correction while the Moon needs
more corrections. See examples at the end of the next section.

Calculating the Bearing and Distance

Positions for the observer and position lines can be plotted on a chart or calculated.
The section on “Sailings” deals with mathematical calculations.

The other terms in the following formulae are derived from a Nautical Almanac. (See
Nautical Almanac Information.)

The formulae for calculating the distance of the body and its altitude are
Cos(Zenith Distance) = Sin(Lat) x Sin(Dec) + Cos(Lat) x Cos(Dec) x Cos(LHA)

and
Tan(Azimuth) = Sin(LHA)/ (Cos(Lat) x Tan(Dec) — Sin(Lat) x Cos(LHA))



These formulae can be used without further knowledge however the section on
“Celestial Navigation Calculations” provides an introduction to spherical
trigonometry.



ABC Tables

ABC tables are very easy to use and more than adequate for the bearing of a celestial
body.

These tables avoid the need to use a calculator or Log tables but are based on the
previous formulae.

These transpose the Azimuth formula so that
A = Tan(Lat) / Tan(LHA)

B = Tan(Dec) / Sin(LHA)
C = Difference A ~ B = 1/ [Tan(Azimuth) x Cos(Lat) ]

ABC Tables Example
Latitude 20° N
Declination 45° S
LHA 30°

A 0.63 S Opposite to Latitude unless LHA > 180°
B 2.00 S Same as Declination

C 263 S Same name; Sum. Different names; Difference

The C Table gives a bearing of 22°.0. The sign of C means that this bearing is south.
It is west because the LHA is less than 180.

The C result would normally be written as "S 22.0 W" or 202°.

The effect of rounding ABC Tables’ values is negligible (+/- 0°1.) This is not true of
the older Sight Reduction Tables where the calculated altitude is rounded to the
nearest minute. Furthermore the need to use a plotting sheet with a rounded, estimated
position provides considerable scope for inaccuracy. (Sight Reduction Tables were
known as the Air Navigation Tables until 2003.)

The author’s preferred manual method is to use a calculator for the Zenith Distance
and ABC tables for Azimuths. Without a calculator he would still use the Cosine
formula but with log tables.



Obtaining a Position Line

The difference between the True (TZD) and Calculated (CZD) Zenith Distances is the
Intercept.

TRUE, TINY, TOWARDS
If the TZD is less than the CZD then the assumed position must be moved in the
direction of the body by the amount of the Intercept. This gives a position of the

correct distance from the body. It is known as the Intercept Terminal Position or ITP.

As the radius of the circle is normally very large, it is considered to be a straight line
near this point. A line at 90° to the direction of the body is the Position Line.

Combining Position Lines

A single Position Line must be combined with other observations for a fix. This can
be achieved using a plotting sheet and then transferring the ITP by the distance to the
next sight and redrawing the Transferred Position Line in the same direction as the
original.

For Sun sights, it is more usual to calculate the ITP of a morning sight and then
calculate the transferred position for the Sun's Meridian Passage (Noon.) The
difference between calculated and observed latitudes provides a longitude using
“Plane Sailing.” With a little practice, this will be found to be a faster, not to mention
more accurate method.

For Star Sights, many people use a single position and then plot the Position Lines
without allowing for the vessel's movement. This may appear a sloppy practice but a
few miles error mid-ocean is usually irrelevant. Even if the position at sunset was
perfect, there is no guarantee that the position an hour later is within a mile. Indeed
even if the position agrees perfectly with a GPS position, there is no guarantee that an
intervening military operation has not thrown the GPS position out let alone a fault in
the equipment/ aerial. “I am about here,” is a far safer assumption than “My
wheelhouse is/ was within 10m of this position.”



Corrections to a Sextant Altitude

Index Error
This error can be found using the horizon. The sextant’s altitude is set to zero and
then the two images of the horizon are aligned. The Index Error can then be read off.

If the sextant altitude reads high, the correction is subtractive and termed “On the
Arc.” “Off the Arc” is the opposite.

After Index Error has been applied, the Sextant Altitude it is referred to as the
Observed Altitude.

Dip/ Height of Eye

The True Horizon is at 90° to the Earth’s gravitational field. It coincides with the
apparent horizon at sea level. However the Apparent Horizon starts to dip below the
horizontal plane as the height of (the observer’s) eye increases.

Dip includes an allowance for Refraction below the horizontal plane.
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The formulae are;
Dip = 0.97 x Square Root (Ht of Eye in feet)
Dip = 1.76 x Square Root (Ht of Eye in meters)

Dip is subtracted from the Observed Altitude to give Apparent Altitude.

Refraction
The deflection of light as it enters/ passes through the atmosphere is known as
Refraction.

Refraction is stable and therefore predictable above about 15°, below that one needs
to consider the characteristics of the atmospheric layers through which the light
passes at that time. (Taking the altitude of bodies at less than 15° is usually avoided
for this reason.)

For altitudes above 15°, a simplified formula is adequate (= 0°.02)
Refraction = 0.96/ Tan (Altitude)

Refraction tables make assumptions on the layers for low altitudes and should be
treated with caution. +/- 2° is not uncommon at an altitude of 2°.

Refraction is subtracted from the Apparent Altitude to obtain the True Altitude.



Temperature and Pressure Correction for Refraction

The correction for Refraction assumes a temperature of 10° C and pressure of
1010mb. This may be modified for actual temperature and pressure. A temperature
difference of 10° C will alter Refraction by 3% and a 10mb pressure difference will
change Refraction by 1%. (0’05 and 0°.02 for an altitude of 30°)

The multiplier to correct for Temperature (°C) and Pressure (mb)
= Pressure/ 1010 * 283/ (Temperature + 273)

Semi-Diameter

When measuring the altitudes of the Sun, Moon, Venus and Mars, it is usual to use
either the top (Upper Limb) or bottom (Lower Limb) of the body. This offset must
then be removed before comparison with the calculated value.

The angular diameter of a body depends on its distance from the Earth. Thus for the
Sun the Semi-Diameter varies between 16°.3 in January, when the Sun is closest and
15°.7 in June when it is furthest away.

For a lower limb observation, the Semi-Diameter should be added to the True altitude.

Augmentation of the Moon’s Semi-Diameter

The Earth’s radius is about 1/ 60™ of the distance to the Moon. The reduction in
distance compared to when on the horizon, has a measurable effect on its size. In
contrast the Sun’s distance is 23,000 times the Earth’s radius and the effect is
negligible.

Augmentation = Sin (Altitude) x Horizontal Parallax

Horizontal Parallax is used in the formula as the lunar distance is not provided in a
Nautical Almanac.

This correction is typically 0°.15 and should be added to the Moon’s Semi-Diameter
before applying the Semi-Diameter to the True Altitude.



Parallax in Altitude
The Parallax correction allows for the difference in the altitude measured on the
Earth’s surface versus the altitude that would be measured at the centre of the Earth.

)

FParallax

The effect of parallax reduces with altitude. It is greatest when the body is at the
horizon (Horizontal Parallax) and declines to zero when the body is overhead.

The effect is also proportional to the distance of the body. Thus the Horizontal
Parallax for the Moon is about 1° but only 0°.15 for the Sun. This correction must be
included for the Moon but is usually ignored for the Sun. It can be significant for
Venus and Mars, depending on their distance, but is always insignificant for Jupiter
and Saturn. (< 0°.05)
Sin (Horizontal Parallax) = Earth’s Radius/ Distance of Body
After correcting for altitude, the correction is known as Parallax in Altitude.
Parallax in Altitude = Horizontal Parallax x Cos (Altitude)
Parallax in Altitude should be added to the True Altitude.
Reduction of the Moon’s Horizontal Parallax

Horizontal Parallax is proportional to the Earth’s radius. Therefore as the Earth’s
radius declines with latitude, so does Horizontal Parallax.

Correction = Horizontal Parallax * [Sin (Lat) * 2] /298.3

This should be subtracted from Horizontal Parallax before calculating Parallax in
Altitude.



Further Examples of Corrections to a Sextant Observation

Add or Subtract

For a Star
Sextant Altitude 31°22°.0
Index Error 2°.0 Depends on the error
Observed Altitude  31°24°.0
Dip -3°.0 Subtract
Apparent Altitude 31°21°.0
Refraction -1°.6 Subtract
True Altitude 31°19°4
90° 00’.0

True Zenith Distance 58° 40°.6

For the Moon

Sextant Altitude 31°22°.0

Index Error 2°.0 Depends on the error
Observed Altitude  31°24°.0
Dip -3°.0 Subtract
Apparent Altitude ~ 31°21°.0
Refraction -1°.6 Subtract
True Altitude 31°19°.4
Semi-Diameter 16°.5 Add for Lower Limb
Parallax (in Altitude) 51°.1 Add
True Altitude 32°26°.8
90° 00°.0

True Zenith Distance 57° 33°.2

Moon’s Additional Corrections

Tabulated Horizontal Parallax 59°.9
Latitude Correction -0°.1 e.g. 52°N
Horizontal Parallax 59°.8
Tabulated Semi-Diameter 16’.3

Augmentation of Semi-Diameter ~ +0°.15
Moon’s Semi-Diameter 16°.5




Nautical Almanac Information

Greenwich Hour Angle (GHA)

This is the body’s angular distance west of the Greenwich meridian.

The GHA for the Sun, Moon and Planets is tabulated in a Nautical Almanac for each

hour.
2011 January 19, 20, 21 (Wed, Thur, Fri)

SATURN 08 STARS SUN MOON
GHA Dec Name SHA Dec GHA Dec GHA ¥ Dec d HP
281°15'2 472668 | Acamar 315°19°5 4001588 | 1777228 2002708 107 09°4 6.1 21708 5N Te 593
296" 176 26'6 Achernar 335°28°0 571118 1927226 26'5 247345 6.0 oorg T 594
3t 200 26'6 Acrux 1737111 63° 0958 207" 224 250 38" 6H0°5 6.1 20763 2N T8
326°22'5 266 Adhara 255°13'5 2875945 2227222 25'5 53°24'6 6.1 454 g0
M1t 24'9 26'6 Aldebaran 2907511 16°31°9N| 23772270 250 67" 497 6.2 T4 g1 595
3567273 266 2527218 24'5 az 149 6.1 293 g3
1°29'8 266 Aliath 166" 21'9 55" BIEN| 267218 23'9 G6° 400 6.2 210 g4
26°32'2 266 Alkaid 1537 00°1 49° 15 IN|[ 2827214 234 117052 6.3 128 g5
417 34'6 2676 Alnair 277 468'2 465455 2077213 22'9 125305 6.3 041 a7 596
56° 370 266 Alnilam 275473 1es| 322214 22'4 139" 558 6.3 19° 554N ga
71°39'5 2676 Alphard 217" 575 874265 3277208 219 1547 211 6.3 466 a0
86419 26'6 34772007 213 1687 46'4 6.4 376 a1
101744'3 4" 266 S | Alphacca 126°12'6 267404 N| 357205 20720088 183°11'8 6.4 19°28°5 N g2 507
1167 46'8 26'6 Alpheratz 357°45'5 20709 3N 1272003 203 1977372 6.5 193 g4
131749'2 26"6 Altair 62°10°2 8" 539N 277201 19'8 2127027 65 099 a4
1467 51'6 26'6 Ankaa 353°17'5 42°14'98 42°19'9 192 2267 28'2 6.5 oos aT
1617 541 26'6 Antares 12288 2672738 ET°19.7 187 240537 6.6 1876008 N a7 508
1767 565 26'6 72195 18'2 255°19'3 6.6 411 a9

An increment is applied to allow for the minutes and seconds. These assume that the
GHA s change by a uniform amount per hour. This assumption is corrected using a

(Y4

v’ correction.

m
30 INCREMENTS AND CORRECTIONS
v v v
Sun Sun

8 | ppanets Aries Moon gr Corr'n gT Corrn gr Corn | |8 | i Aries Moon
00| 7300 732 7°09'5 0.0 0.0 60 3.1 |120 61 00| 77450 7" 46'3 75238
01| 7° 302 7315 77097 01 04 61 31 [ 121 62 01| 7453 7°46'5 T 24
02| 7°30.5 7318 7U10%0 0.2 04 62 32 |122 62 02| 7°45'5 7" 46'8 70243
03| 7308 70320 72 03 02 63 32 |123 63 03| 7°45.7 470 7o 24'5
04| 7310 72323 7°10'5 04 02 64 33 | 124 63 04| 77460 7473 T 248
05| 7312 1~32'5 =107 0.5 03 65 33 |125 64 05| 77463 7°47'5 17250
06| 7315 7°328 710e 06 03 6.6 34 | 126 64 06| 77465 7478 17282
07| 7318 7°33'0 77112 07 04 67 34 |127 65 07| 77467 7°48'0 TTIR'5
08| 7320 77333 ™11'4 0E 04 68 35 |123 65 08| 77470 7748'3 28ty
0a| 7322 773358 7116 0o 05 68 315|129 66 og| 7472 7°48'5 75260

To find the Increment, the Increments and Corrections pages are entered with the
minutes and seconds of the sight. For a Sun sight taken at exactly 30 minutes past the
hour, the increment value would be 7° 30°.0,

On the left hand side of the Increments page for the appropriate minutes, there is the
correction to apply based on the tabulated “v” value for the body. The “v”’ corrections
are considered to be linear but are actually tabulated for halfway through the minute.
This is why a “v”” of 12.0 produces 6.1 for 30 minutes. The “v” adjustment is always

positive for the Moon but can be negative for the planets.

The “v” correction for the planets is found at the bottom of the daily pages. The rapid
changes in the motion of the Moon mean that a “v” value is tabulated for each hour.
No “v” correction is supplied for the Sun. Instead the GHA values for each hour in the
tables are massaged.



The GHA for stars are treated differently. Here the SHA (Sidereal Hour Angle) or
angular distance west of Aries is tabulated for each three day period. The GHA of
Aries is then tabulated for each hour and the Increment value for minutes and seconds
is found in exactly the same way as for the Sun, Moon and planets. No “v” value is
given for simplicity. The GHA for a star is the sum of the GHA for Aries and the
SHA.

Local Hour Angle (LHA)

This is the angular distance west of the observer. Thus we find the GHA of a body
and then adjust it for longitude. An easterly longitude is added to the GHA and a
westerly longitude is subtracted.

LHA = GHA +/- Longitude

Declination (Dec)
The Declination for most bodies is tabulated for each hour. Due to the very small
movement of stars, it is only provided once for each three day period.

The hourly change of Declination is usually small therefore the adjustment is found
using the “d” value at the bottom of the page for the Sun and planets. (It is negligible
for stars.) The Moon however moves rapidly which means that its” “d” value is
provided for each hour.

The “d” correction is found in the same manner as for “v” by going to the appropriate
Increments and Corrections page to obtain the appropriate correction from the right
hand “v and d” section.

The direction in which to apply the “d” correction (North or South) is determined by
examining the next hourly value.

Simplifications Vs Accuracy in Nautical Almanacs

In the explanation section at the back of the UK/ US Governments’ “The Nautical
Almanac,” paragraph 24 provides details of the expected errors in the values of GHA
and Declination. The maximum error in each is 0’.2 for the planets, 0°.25 for the Sun
and 0°.3 for the Moon. These errors are caused entirely by the need to keep the
presentation as simple as possible.

It goes on to say; “In practice it may be expected that only one third of the values of
GHA and Dec taken out will have errors larger than 0°.05 and less than one tenth will
have errors larger than 0°.1.”

The superficial attraction of using data from a source such as the Astronomical
Almanac in the interests of accuracy is illusory. RA and Declination may be quoted in
arc-seconds to several decimal places but the bodies, particularly the Moon, do not
necessarily move in a linear manner during the day. Similarly the Hour Angle of
Aries does not change linearly. Irregular motions are included in Nautical Almanac
data.



Example of Calculations for the Moon ~ 00:30:05 GMT, 19 January 2011

GHA at 00:00 10°09’.4

Increment for 30m 05s +7°10°.7

“v” (6°.1 at 00:00) + 3.1

GHA at 00:30:05 17°23°.2

Longitude 10°00’.0 E

LHA 27°23’.2

Declination at 00:00 21°08’.5 S

“d” (7°.6 at 00:00) 3’88 S by inspection
Declination at 00:30:05 21°04°.7S

Example of Calculations for Acamar ~ 00:30:05 GMT, 19" ] anuary 2011

GHA of Aries at 00:00 118°02°.7 (Not visible below)
Increment for 30m 05s + 7°32°.5

SHA 315°19°.5

GHA of Acamar at 00:30:05 80° 54°.7 (440° 54’ - 360°)
Longitude 10°00°.0 W

LHA 70° 54°.7

The Declination value of 40° 15°.8 taken from the day’s pages is not adjusted.

2011 January 19, 20, 21 (Wed, Thur, Fri)

SATURN +0.8 STARS SUN MOON
GHA Dec MName SHA Dec GHA Dec GHA v Dec d HP
2817152 4°266S | Acamar 315°19'5 40°15'8S| 177°228 20°27°0S 10° 09° 4 6.1 21°08'5N 76 59°3
206° 17" 6 26'6 | Achernar 335°28'0 57°11'"1S| 192°22'6 26'5 24°34'5 6.0 009 T 59°4
3117200 266 | Acrux 1737111 63°09'5S| 207°224 26'.0 38°59'5 6.1 20° 532N Ta
326°22'5 26'6 | Adhara 2557135 28°59'48| 2227222 25'5 53°24'6 6.1 45'4 8.0
341°24'9 26'6 | Aldebaran 290° 51°1 16°31'9N| 2377220 25'.0 B7°49°7 6.2 374 81 59'5
3567 27'3 266 252°21'8 24'5 82°14'9 6.1 203 83
11°29'8 266 | Alioth 1667 21'9 55° 536 N| 267°216 239 96°40°0 6.2 210 84
26°32'2 26'6 | Alkaid 1537 00"1 49°15' 1 N| 282°214 234 111°05'2 6.3 126 85
41°34'6 26'6 | Alnair 27" 46'2 46°54'55| 297°213 22'9 125°30'5 6.3 041 87 59°6
567370 26'6 | Alnilam 275° 478 11188 3127211 22'4 139° 55'8 6.3 19° 65" 4 N 88
71°29'5 26'6 | Alphard 217° 575 8°4268| 327°2000 219 154° 211 6.3 46'6 90
86°41'9 266 34272007 21'3 1687 46'4 6.4 76 91
101°44'3  4° 256 S | Alphecca 1267 12'6 26°40°4 N| 357°2005 20°2008S| 1837118 6.4 19° 285N g2 507
116° 46' 8 26'6 | Alpheratz 357° 45'5 20°09'3N| 127203 2013 197° 372 6.5 193 94
131°49'2 266 | Altair 62°10'2 B°EFON| 27201 19'8 212°02.7 6.5 09'9 o4
146° 516 26'6 | Ankaa 353175 42°149S| 42°199 19'.2 226°28'2 6.5 00's 97
161° 54'1 26'6 | Antares 112°28'6 26°27'3S| 57°197 187 2407537 6.6 18°50°8 N 97 59'8
176° 56' 5 26'6 727195 18'2 355°19'3 66 411 ]
m
30 INCREMENTS AND CORRECTIONS
v v v
Sun Sun
5 - Arias Moon O corrn| ®'corrn| 9" Corn|| S Aries Moon
Planets d d d Plansts
00| 7°300 7312 7°09'5 00 00| 60 311|120 61 ||(00| 7°45'0 7 46'3 7°23'8
b1] ‘302 72315 7°09'7 01 04 61 31 (121 62 (01| 77453 75 46'5 7" 24" 1
02| 73005 72318 710.0 02 DA 62 32 (122 62 |[(02| 7°45'5 7" 46'8 7°24'3
03| 77308 7°32'0 70102 03 02| 63 32 (123 63 ||[D3| 7°45'7 7470 T7e24'5
04| 7310 Fa2h3 7105 04 02) 64 33 (124 63 ||D4| 77460 7o 473 7°24'8
05 7312 7°32'5 7°10°7 05 03 65 33 (125 64 ||D5| 77463 7°47'5 7°25'0
06| 731’5 7°32'8 75109 06 D3 66 34 (126 64 |[DB| 7°46'5 7478 7252
07| 7318 72330 7112 07 D4 67 34 (127 65 ||07F| 7°46'7 7o 48'0 T°25'5
08| 77320 7333 7114 0E D4 6.8 35 (128 65 ||(08| 7470 7°48'3 25
09| 7322 7335 7" 116 085 05| 69 35 (129 66 |[D9| 7-472 7 48'5 T 26'0



Sailings

Plane (or Plain) Sailing

The relationships can be laid out as two triangles. The sides of the top triangle are
Distance, difference in latitude (dLat) and Departure. Departure is the longitude
distance in miles. The lower triangle relates Departure to the difference in longitude
(dLong.) The angle labelled mLat stands for Mean Latitude.

dLat

From the top triangle:-
dLat = Distance x Cos (Course) Eq1l
Departure = Distance x Sin (Course) Eq2

From the lower triangle:-
dLong = Departure/ Cos(Mean Latitude) Eq3

Tabulated values are found in Nautical Tables as “Traverse Tables.” However the
simplicity of the formulae are ideal for calculators.

Example

Initial Position 45° N 30° W
Course 045°T
Distance 100°

Using the first formula (Eq 1):

dLat = 100 x Cos(45°)
dLat = 70°.7 =1°10°.7
Final Latitude 45°+1°10°.7 =46° 10°.7N

From the second formula (Eq 2);
Departure = 100 x Sin (045°) = 70.71

From the third formula (Eq 3)
dLong = 70.71/ Cos (45° +70.7/ 2)
dLong =101°.04=1°41".0
Therefore the final longitude =30°+ 1°41°.0=31°41".0 W

For a Noon calculation, dLat is the difference between the calculated and observed
latitudes. The "Course" becomes the direction of the Position Line.

Distance = dLat/ Cos(P/L Dirn)
Departure = Distance x Sin(P/L Dirn)
dLong = Departure/ Cos(Mean Latitude)



Plane Sailing is adequate for distances up to about 60°. If the example is worked using
Mercator Sailing, there is a difference of 0°.3 in the final longitude.

Mercator Sailing.
Mercator Sailing allow for the oblate shape of the Earth. (A squashed sphere.)

The formulae are

dLat = Dist x Cos(Course) As for Plane Sailing - Eq 1
and

dLong = Tan(Course) x DMP Eq 4

DMP stands for Difference in Meridian Parts. Meridian Parts are the distance in
nautical miles from the equator to the required latitude. These are tabulated in
Nautical Tables.

Example

Initial Position 45° N 30°W
Course 045°T

Distance 100°

Using the first formula (Eq 1):

dLat = 100 x Cos(45°)
dLat = 70°.7=1°10’.7N because the track is northerly
Final Latitude 45°+1°10°.7=46°10".7N
Meridian Parts
for 45° 3013.38
for 46° 10°.7 3114.08

Difference in Meridian Parts 100.7

From the second formula (Eq 4);
dLong = Tan (045°) x 100.7 =100".7= 1°40°.7

Original Longitude 30°00°.0 W
dLong 1°40°.7 West because the course is westerly
Final Longitude 31°40°.7 W

The drawback with Mercator Sailing is the need to refer to tables. If you use a
programmable calculator then this is the formula to calculate Meridian Parts. (The
infinite series of terms in Bowditch et al is simply an expansion of this.)

A x Ln(Tan( 45° + Lat/ 2)/ ((1 + e x Sin(Lat))/ (1 — e x Sin(Lat)) " (e/ 2)
For WGS84; A =3437.74677 and e = 0.08182
Note that most nautical tables are based on the Clarke 1880 spheroid that uses a

different compression to WGS84. The difference is small but noticeable (0.27 at 45°.)
For Clarke 1880 use e = 0.08248.



Celestial Navigation Calculations

An imaginary sphere surrounding the Earth is used for calculations. This is known as
the Celestial Sphere. Declination corresponds to Latitude and Hour Angles to
Longitudes.

Solving a sight uses spherical trigonometry. The triangle is known as the PZX
triangle.

- Zenith Distance _
or 907 - alttude

P is the Pole, Z, the Observer’s Zenith and X is the body.

Altitude Vs Zenith Distance
An Altitude is a terrestrial measurement while calculations are carried out on the
Celestial sphere.

The reason that the calculations do not allow for the shape of the Earth is because the
calculations are performed on the Celestial Sphere. Gravity ensures that the horizon
(and thus Altitude,) corresponds with the equivalents on the celestial Sphere.

Zenith Distance is the correct term and helps avoid confusion.



Parts of the PZX Triangle

Q1 to Q2 is the Equator and the Vertical line from P to G is the Greenwich Meridian
(0° GHA and Longitude.)

The compliment of an angle is 90° - the angle. This is also true of the sides in a
spherical triangle.

The distance from P to Q1 is 90 ° therefore PX = 90° - Declination or
PX = co-Declination.

Compliments enable formulae to be simplified because the Sine of an angle equals the
Co-Sine of the compliment of that angle. This also applies to Tangents and
Cotangents, Secants and Cosecants.

Sin(60°) = Co-Sine(90° - 60°) = Cosine(30°)

The compliment of a compliment is the same as the original angle;
Cos(co0-30°) = Sin(90° - (90° - 30°)) = Sin(30°)



Simplifying the diagram and adding some labels:-

- Zenith Distance
SPHERICAL FORMULAE

A

To Calculate a Side - The Cosine Formula
Cos(a) = Cos(b) x Cos(c) + Sin(b) x Sin(c) x Cos(A)

Applying this to the PZX triangle we get:-

Cos(Zenith Distance) = Cos(co-Lat) x Cos(co-Dec) + Sin(co-Lat) x Sin(Co-Dec)
x Cos(LHA)

Because Sin(co-A) = Cos(A) and Cos(co-A) = Sin(A)

Cos(Zenith Distance) = Sin(Lat) x Sin(Dec) + Cos(Lat) x Cos(Dec) x Cos(LHA)
If Altitude is preferred; Zenith Distance = co-Altitude thus

Sin(Altitude) = Sin(Lat) x Sin(Dec) + Cos(Lat) x Cos(Dec) x Cos(LHA)

For an Angle

Tan(C) = Sin(A)/ [Sin(b)/ Tan(c) — Cos(b) x Cos(A)]

Inserting terms from the PZX triangle this becomes

Tan(Az) = Sin(LHA)/ [Sin(co-Lat)/ Tan(co-Dec) — Cos(co-Lat) x Cos(LHA)]
Or

Tan(Az) = Sin(LHA)/ (Cos(Lat) x Tan(Dec) — Sin(Lat) x Cos(LHA))

The Spherical Sine Formulae

Sin(a)/ Sin(A) = Sin(b)/ Sin(B) = Sin(c)/ Sin(C)



Napier’s Rules
These can be used when one of the sides or angles is 90°.

I

B a

If angle A is 90° then a diagram is drawn with A above the circle and the sectors
filled with the adjoining sides.

Notice that the three sectors of the lower half are marked “co-" In other words the
compliment of these angles is used.

The two formulae are;
Sin(Mid Part) = Tan (Adjacent Parts)
e.g. Sin(c) = Tan(co-B) x Tan(b)
or Sin(c) =Cot(B) x Tan(b)
And

Sin (Mid Part) = Cos(Opposite Parts)
e.g. Sin(c) = Cos(co-a) x Cos(co-C)
or Sin(c) = Sin(a) x Sin(C)



Example using Napier’s Rules
Assume that the True Altitude is 0° therefore the Zenith Distance is 90°.

< Zenith Distance

Zenith Distance

bt Azimuth

If co-Dec is the mid-part then the two opposites are Azimuth and co-Lat.

Sin (Mid Part) = Cos(Opposites)
Sin(co-Dec) = Cos(Azimuth) x Cos(co-Lat)

Cos(Dec) = Cos(Azimuth) x Sin(Lat)
Cos(Azimuth) = Sin(Dec)/ Sin(Lat)

The Amplitude of a body is measured from East or West rather than North. In other
words Amplitude = 90° - Azimuth = co-Azimuth.

Sin(Amplitude) = Sin(Dec)/ Sin(Lat)

This gives the formula that many readers will be familiar with of
Sin(Amplitude) = Sin(Dec) x Sec(Lat)
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