Nb₃Sn for SRF applications

High efficiency cavities for future accelerators

Grigory Eremeev

Tuesday, May 14, 2019

Office of Science

≻Michael Kelley, Uttar Pudasaini

- Hani Elsayed-Ali, Md. Nizam Sayeed, Jean Delayen, Jayendrika Tiskumara
- Gigi Ciovati, Charlie Reece, Bob Rimmer, Anne-Marie Valente-Feliciano, Larry Phillips, Peter Kneisel, John Mammosser
- ✓N. Hasan, C. Mounts, W. Oren, A. Solopova, M. Wright, M. Drury, J. Grames, R. Kazimi, M. Poelker, T. Powers, J. Preble, R. Suleiman, Y. Wang, M. Wright, A. Hutton, H. Areti et al.
- ✓ Matthias Liepe, Ryan Porter, Sam Posen, et al.

✓JLab technical staff

Motivation

➢Background

➤Current status

➢Path forward

Niobium – best superconducting properties among all pure metals:

- T_c ~ 9.25 K;
- H_c ~ 2000 Oe;
- $R_{bcs} \simeq .00001 \mbox{ m}\Omega$ at 2 K

```
\frac{Nb: R_{s} \sim .00001 \text{ m}\Omega}{Cu: Rs \sim 10 \text{ m}\Omega}
Q^{nb} \sim 10^{11} \text{ up to}
E_{acc} = 50.10^{6} \text{ Volts}
per meter
```


Niobium and its limitations

Limitation:	<u>Thermal</u> breakdow			r <u>mal</u> down	High field C reduction			Q- n		
Solution:	High-puri Nb, shee inspectio CBP, etc			purit sheet ection P, etc	Electropolishing, t low temperature n, baking,					
										7
1975	198	35	19	90	19	95	2000		2010	
3 MV/m	6 M\	//m	15 N	IV/m	25 N	IV/m	40 MV/r	n 50	MV/m	
Limitation:	<u>Electi</u> multiplic	r <u>on</u> cation			<u>Ele</u> <u>fi</u> emi	<u>ctron</u> <u>eld</u> ssion	L	<u>Q</u>	<u>uench</u>	1
Solution:	Improved cavity shape				High-pressure rinsing, cleanroom procedures			impr	Further improved cavity shapes	
((D		N								

5

Jefferson Lab

'Borrowed" from M. Liepe

Jefferson Lab Overview

- Core Competencies
 - Accelerator Science and Technology
 - Large Scale User Facilities/Advanced Instrumentation
 - Nuclear Physics
- Mission Unique Facilities
 - Continuous Electron Beam Accelerator Facility

CEBAF @ 12 GeV

- Constructed 1987-1993: ~ 1 km long
- *First large high-power CW* recirculating e-linac based on SRF technology
- *Recent energy upgrade to 12 GeV*

Add new experimental Hall D and upgrade existing Halls

CEBAF SRF cavities

JLab SRF is a part of global efforts to improve SRF technology

$$R_{BCS} \cong \frac{R_n}{\sqrt{2}} \left(\frac{\hbar\omega}{\pi\Delta}\right)^{\frac{3}{2}} \frac{\sigma_1}{\sigma_n} \cong A\sqrt{\rho_n} \ e^{-\frac{\Delta}{K_BT}}$$

$$\Delta = 1.45 \text{ meV} \Rightarrow R_s \ge 5 \text{ n}\Omega @ 2K @ ~ 1 \text{ GHz}$$

<u> $H_c \sim 200 \text{ mT} \Rightarrow H_{sh} \sim 240 \text{ mT} \Rightarrow E_{acc} \sim 50 \text{ MV/m}$ </u>

Ideas for the future

800°C + BCP on hot spot cut-out 120°C baked cavity cut-out

Nb₃Sn

The α and β Peaks in Cold-Worl Niobium

. W. STANLEY", Z. C. SZKOPIA

Received & June 190

- If flux penetration/dissipation is happening or not depends on the relation between τ_A and RF period T_{rf}
 - $\tau_A > T_{rf}$ => vortex-induced dissipation is delayed beyond Hsh
 - τ_Δ < T_{rf} => Hc1 and superheating become more relevant more DC-like
 - $\tau_{\Lambda} >> T_{rf} =>$ vortices don't matter as they never form
- $\tau_{\Delta} \sim \tau_{GL} <<$ 1 ns is only relevant for gapless superconductors (which Nb is not) > was understood by e.g. Tinkham and Bezuglii in late 1980s
- For gapped superconductors at low T: $\tau_A \sim \tau_E > 1$ ns for Nb

A. Romanenko | IPAC'2018 - Vancouver, Canada

 E_{acc} (MV/m)

40

Bare clean Nb

20 30

T= 2 [K]

0 10 Baking

Dirty Nb layer

Clean bulk Nb

1990s

50 60 on

Clean bulk Nb

2016

90 100

80

70

1.0E+10

1.0E+09

T _c [K]	ρ _n [µΩcm]	∆ [meV]	H _c (0) [T]	H _{sh} (0) [T]	H _{c1} (0) [T]	λ (0) [nm]	Material
9.25	0.1	1.45	~ 0.2	~ 0.24	~ 0.17	40	Nb
17.2	70	2.6	~ 0.23	~ 0.19	~ 0.02	~ 200	NbN
17.5	35	3.0	~ 0.28	~ 0.24	~ 0.03	~ 151	NbTiN
18.3	5	3.1	~ 0.54	~ 0.45	~ 0.05	~ 85	Nb ₃ Sn
40	2	2.3/7.1	~ 0.43	~ 0.27	~ 0.03	~ 140	MgB ₂

- s-wave superconductor
- large energy gap
- high H_{Sh}
- low normal-conducting resistivity

Material	Nb	Nb ₃ Sn	
Т _с [K]	9.25	18.3	
ρ _n [µΩcm]	0.1	~ 5	
H _{sh} (0) [T]	0.24	~ 0.45	
∆ [meV]	1.45	~ 3.1	
Q ^{BCS} @ 2K	~ 5·10 ¹⁰	~ 5·10 ¹⁴	
Q ^{BCS} @ 4K	~ 5·10 ⁸	~ 5·10 ¹⁰	
E _{acc} [MV/m]	~ 50	~ 100	

Nb3Sn properties and perspectives

Nb₃Sn: past and present

Nb₃Sn for SRF!! ... not exactly new

- 1953, discovered by B. Matthias et al.
- 1962, Saur and Wurm
- 1973, Siemens AG
- 1974, Karlsruhe
- 1974, Cornell University
- 1975, University of Wuppertal
- 1986, CERN

- 2009, Cornell University
- 2012, Jefferson Lab
- 2015, Fermilab

B. Hillenbrand and H. Martens, J. Appl. Phys. 47, 4151 (1976)

Nb3Sn: Cornell, Jlab, and Fermilab

Nb₃Sn cavities cooled by cryocoolers

Cryocooler-cooled cryomodules?!

http://www.shicryogenics.com//wpcontent/uploads/2012/11/Cryocooler-Product-Catalogue.pdf

Nb₃Sn cavities for compact light sources

Nb₃Sn cavities for Upgraded Injector Test Facility (UITF) @ Jlab

D. Abbott et al. , Phys. Rev. Lett. 116, 214801 B. DiGiovine et al., Proc. AIP Conf. 1563, 239 (2013) http://wiki.jlab.org/ciswiki/index.php/Main Page

Thickness of Tungsten [mm]

Fig. 12. Schematic of the proposed experiment.

The photon yield that hits the bubble chamber is shown in figure 14. Here the electron beam has a kinetic energy of 8.5 MeV and is irradiating the 0.02 mm Cu radiator. Since the ${}^{16}O(\gamma, \alpha){}^{12}C$ cross section is very steep, only photons next to the end point will produce events from this reaction.

Jlab cavities : C20/C50/C75 vs C100

<u>C20/C50/C75:</u>

- OC/HC shape
- Waveguide HOM coupler/load inside helium vessel
- Worm/Wheel Gear
- Nb flanges/In seals

<u>C100:</u>

- LL shape
- Coax HOM coupler
- Cavity magnetic shielding
- "scissor-jack" tuner
- Supply/return cryogenic circuits
- NbTi flanges/AlMg gaskets

0L03 & 0L04 @ 4K

Cavity #	E _{max} [MV/m]	JT @ E _{max}
1	8.7	75%
2	(6.0)	59%
3	9.9	75%
4	8.4	70%
5	3.5	54%
6	3.4	53%
7	10.0	71%
8	6.9	72%

Cavity #	E _{max} [MV/m]	JT @ E _{max}
1	3	85%
2		
3		
4		
5		
6		
7		
8		

Jefferson Lab

4K quarter cryomodule and CEBAF test

N. Hasan, C. Mounts, W. Oren, A. Solopova, M. Wright, M. Drury, J. Grames, R. Kazimi, M. Poelker, T. Powers, J. Preble, R. Suleiman, Y. Wang, M. Wright, A. Hutton, H. Areti et al.

4K vs 2K beam quality

Parameter	Unit	March 23, 2016	June 17, 2016
CHL Condition	К		
Cavities	#	0L02-7,8	0L02-7,8
Gradient	MV/m	5.00, 5.32	5.00, 5.32
PSET (Crest)	deg	164.8, 83.2	-168.4, 123.6
Momentum	MeV/c	6.34	6.47
Laser Used	Hall	А	А
Max Intensity (IBC0L02)	μA	80	60
Horizontal Normalized Emittance (MQJ0L02)	mm-mrad	0.38 ± 0.01	0.44 ± 0.01
Horizontal Beta (MQJ0L02)	m	5.21 ± 0.08	9.55 ± 0.12
Horizontal Alpha (MQJ0L02)	rad	-1.01 ± 0.01	-3.03 ± 0.04
Vertical Normalized Emittance (MQJ0L02)	mm-mrad	0.34 ± 0.01	0.54 ± 0.01
Vertical Beta (MQJ0L02)	m	2.53 ± 0.06	15.8 ± 0.1
Vertical Alpha (MQJ0L02)	rad	-0.42 ± 0.01	-4.39 ± 0.02
Horizontal Profile Scan (IHA2D00)	mm	2.35 ± 0.02	1.46 ± 0.02
Momentum Spread (dp/p)	%	0.22%	0.14%
Energy Spread (dE/E)	keV	14	9
Nb ₃ Sn 21			Jefferson Lab

Jlab Nb₃Sn development timeline

Present single-cell work

Titanium hypothesis

Zum anderen wurde zur Reduktion des Sauerstoffpartialdrucks im Ofeninneren der Resonator außen mit einer 0.5 mm dicken Titanfolie ummantelt. Dies führte während der Nb₃Sn-Beschichtung zu einer Titanbeschichtung der Resonatoraußenfläche. Eine geringe Verunreinigung der innen aufwachsenden Nb₃Sn-Schicht durch hineindiffundierendes Titan wird man praktisch kaum vermeiden können (siehe Kap. II.3). Dieser Effekt wird aber als unkritisch angesehen, da nach Ref. 71 Titananteile von 5 % nur zu einer T_c- Reduktion von weniger als 0.2 K führen. Zur Vermeidung von Keimbildungsproblemen

Nb₃Sn M. Peiniger, dissertation, 1989 ²⁴

Titanium hypothesis

Effect of high temperature heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity, P. Dhakal et al., Phys. Rev. ST Accel. Beams 16, 042001, 2013

Recent data after the coating system upgrade

- Following system upgrade, Qslope free Nb₃Sn-coated cavity were observed
- Q₀ improved at all fields
- At low fields, Q_0 reached 10^{11}
- $Q_0 \sim 5.10^{10} @ E_{acc} = 15 \text{ MV/m}$
 - Cavities are still coated in <u>"Siemens" configuration</u>, i.e., no secondary heater for the tin source
- The cavity had NbTi flanges replaced with Nb flanges

Current data

- Q-slope free Nb₃Sn-coated cavity was reproduced on another cavity
- Consistent Q₀ between Qslope free cavities
- Q-slope limited performance for some coatings was linked to variation in Sn source; studies are ongoing
- RDT7, RDT10 & TE1G001 had NbTi flanges replaced with Nb flanges

Nb₃Sn growth and defects

Concentration gradients

U. Pudasaini, J. Tuggle

 Nb_3Sn

Concentration gradients, stoichiometry, and sputtering

Application to 5-cell cavities

 Nb_3Sn

5/14/2019 31

31

CEBAF 5-cell cavities

Tested by C. Reece!

5-cell cavity coating results

- The first CEBAF cavity coated in the upgraded system
- The cavity limited at E_{acc} = 11 MV/m in the baseline test before coating
- Results are shown for the coating #8 done in Nov. 17
- Coated cavity had high $Q_0(\sim 10^{11})$, but a strong Q-slope
- Re-tests after December 2017 to see if there is any degradation
- Clear degradation in August test...why?

33

5-cell cavity coating results

Uniform coating, no obvious asymmetry!

U. Pudasaini

Pair work and results

Pair work and results

Quality factor and quench degraded after the cavity was tuned by about 200 kHz down. Tuning added field-dependent surface resistance, which increase by about 30 n Ω at low fields

Strain sensitivity

Degradation of critical current as a function of strain for some materials

Dependence of the critical temperature on strain in Nb₃Sn

A. Godeke, Ph.D. dissertation M. Mentink, Ph.D. dissertation

Tuning simulation

1 mm change in the cavity length corresponds to ~ 300 kHz of the frequency change

Simulated Nb cell

The goal was to simulate compression and extension of the center cell. The cavity needs to be squeezed/stretched beyond the desired frequency change in order to achieve the desired plastic deformation.

Tuning simulation

Equivalent Total Strain : 0.71 mm jaw compression yields 0.25 mm deformation

Equivalent Total Strain: -1.445 jaw compression yields 1 mm deformation

Tuning simulation

Weak points?

Jefferson Lab

Tuner in C20/C50/C75 cryomodules

- 1. The cell holder are assembled "loose" (~ 0.02" "float")
- Cavities are de-tuned by ~ 100 kHz before cooldown
- 3. Cavity pair is attached to the helium vessel by four mounts, which hold the cavities by the iris
- 4. Frequency shifts during cooldown

Alternative tuning solution: bellow tuner

F.Dziuba et al., PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 13, 041302 (2010)

GSI, Helmholtz Institute Mainz, Goethe University Frankfurt

Plunger for CEBAF cavities and its challenges

Strain sensitivity is not necessarily an issue for new designs

Compact high-power CW SRF accelerator for industrial application

- 1-year design collaboration among JLAB, AES, General Atomics
- Funded by DOE-HEP (Accelerator Stewardship)
- Use in wastewater and flue-gas treatment

- Patent on Cryomodule design filed on 01/29/18
- Slide from G. Ciovati

Nb₃Sn

Summary #1 : high-Q Nb₃Sn layers

The goal is to optimize the coating process towards Q_0 of 10^{11} at $E_{acc} = 20$ MV/m at 2 K.

- Cavities w/o Q-slope were produced <u>in "Siemens"</u> <u>configuration</u>
- Q_0 of 10^{11} are measured at low fields
- Current focus is on low-field and medium field Q-slopes
- Temperature-controlled Sn source is being built
- It may be challenging to consistently reach E_{acc} = 20 MV/m w/o cleanroom around the coating system.

Summary #2 : Nb₃Sn for practical applications

The goal is to study coating degradation by accelerating electron beams in <u>a cryomodule with $Q_0 \text{ of } 10^{10}$ at $E_{acc} = 10 \text{ MV/m at 4 K.}$ </u>

• Cavities are limited to below $E_{acc} = 10 \text{ MV/m in VTA tests}$

Possible substrate issues, expecting two new C75 cavities arrive to Jlab this month

- Discovered significant degradation after tuning
- Possible mitigations are surface smoothening and minimized tuning
- The best solution likely involves redesign of a quarter cryomodule

Summary #3 : optimum Nb₃Sn layers

Thank you for your attention!