
University of Malta

Slide 1 of 65

Session 7

Software Maintenance and Process

Scheduling.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 2 of 65

Session Aims

The main aim of this session is to outline the maintenance
process in software engineering, to explain its various parts, to
provide a scientific framework for system evolution, and to
present a form of measurement of the maintenance effort. To
end, two methods used for project activity scheduling will be
explained.

• Introduce the ideas behind system maintenance in terms of overall

system development

• Lehman’s Laws of system evolution

• Maintenance measurement

• Activity scheduling methods

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 3 of 65

Session Contents

• Maintenance and system evolution

• Maintenance metrics

• System Complexity metrics

• Scheduling models

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 4 of 65

Common Views on Maintenance

Some basic misconceptions of maintenance:

• Can be considered after solution delivery

• Is something secondary to (and not as important as)
development

• Can be handled by less-competent developers

• Not that important to clients

• Not that costly

• Might never be needed anyway

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 5 of 65

The Truth Be Told…

The truth about maintenance in the modern system
development process:

• Must be a driving factor in the way a solution is built

• Is actually a mini development cycle in its own right

• The people who build the solution should be the ones who
maintain it

• Is often the clinching issue of many software development
contracts

• Should not be costly – however, if neglected can be even
more costly than the solution itself

• Is critical for the continued usefulness, and survival, of the
system

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 6 of 65

Maintenance in Development

25

5

10

60

Software Development Effort (as a percentage)

Analysis & Design

Coding

Testing

Maintenance

All values in chart are approximated from various sources and rounded.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 7 of 65

Reasons for High Maintenance Costs

• Reputation as being “second class development” amongst

software developers

• The widespread presence of legacy systems

• Innovation brings new errors with it

• Gradual degradation of long-standing and often-maintained

systems (this will be better explained in the part dealing with

Lehman’s Laws)

• Inaccurate and un-matching documentation

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 8 of 65

Highlighting the Importance of
Maintenance

Barry Boehm proposes the following stances (with some personal

adaptation):

• Link solution objectives to organisational goals

• Link software maintenance rewards to organisational

performance

• Make software members of operational teams take turns at

maintenance – create no distinction of roles

• Allow adequate budget and a good degree of independence

within teams handling maintenance

• Involve maintenance staff early in the software process and

during all stages of development.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 9 of 65

Types of Maintenance

• Perfective

Bringing solution “up-to-scratch” with any minor changes in

requirements as well as improving its external quality attributes

• Adaptive

Changes brought about by technology and/or working environment

changes

• Corrective

Carrying out repairs in any development phase of the system

• Preventive

Making the solution easier to maintain and understand

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 10 of 65

Maintenance Categories

50

25

15

10

Maintenance by Type (as a percentage)

Perfective

Adaptive

Corrective

Preventive

All values in chart are approximated from various surveys and rounded.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 11 of 65

A Maintenance Process Example

A maintenance process which uses the different types of

maintenance is the following:

Change

request

Impact

analysis
Plan

system

release

Implement

change
System

release

Perfective

maintenance

Adaptive

maintenance

Corective

maintenance

Taken from Ian Sommerville
Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 12 of 65

Regression Testing

When parts of a system are changed, one must ensure that the

unchanged parts work as they did before. This is called

regression testing, and is made up of the following steps:

• Prepare a general purpose set of test cases (TCs) for the

existing system.

• Run the TCs on the existing version and save the results.

• Make program modifications.

• Now run the same TCs on the modified and save the results.

• Compare both sets of results (i.e. from existing and modified).

RESULTS SHOULD BE IDENTICAL

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 13 of 65

Lehman’s Laws of System Evolution

Meir Manny Lehman (while Professor at Imperial College, University of

London), together with colleagues, proposed a set of distinct

behavioural patterns governing software system evolution. These

patterns came to be known as Lehman’s Laws.

Lehman’s Laws are 8 in all. However only 5 are

widely accepted, and of these usually only the

first 2 are most commonly quoted. These are the

following:

1) Continuing change
Software must continually evolve, or grow useless.

2) Increasing complexity
The structure of evolving software tends to degrade.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 14 of 65

Maintenance Cost

Factors effecting maintenance costs are subdivided

into:

• Technical

• Non-technical

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 15 of 65

Technical Factors

Technical factors effecting maintenance cost:

• Module independence (maintainability)

• Programming language (understand-ability)

• Programming style (understand-ability)

• Program validation and verification (i.e. correction

avoidance)

• Documentation (understand-ability)

• Configuration management (i.e. structured evolution)

Ernest Cachia

Department of Computer Science Faculty of ICT

University of Malta

Slide 16 of 65

Non-Technical Factors

Non-technical factors effecting maintenance

cost:

• Application domain familiarity (i.e. clear comprehension)

• Staff stability (i.e. the builders are the maintainers)

• Program age (i.e. structure degradation)

• External environment (i.e. real-word dependence)

• Hardware stability (i.e. technology advancement)

Ernest Cachia

Department of Computer Science Faculty of ICT

University of Malta

Slide 17 of 65

Maintenance Cost Estimation

Annual Change Traffic (ACT) is the fraction (%) of a software

product’s source instructions which undergo change during a

(typical) year either through addition or modification (taken

from Ian Sommerville)

Annual Maintenance Effort (AME) is calculated as follows:

AME = ACT x PM

Where PM represents the estimated or actual development

effort in person (or programmer)-months for the whole system

After this, use AME as effort input to the Intermediate

COCOMO-1 method.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 18 of 65

Maintenance Effort Estimation Example

Let us assume that a 90pm were required to develop a

system. Furthermore, it is estimated that the annual change

traffic (ACT) is 15% (i.e. approx. 15% of code will change in

the course of a year)

Therefore, the annual maintenance effort (AME):

AME = 0.15 * 90pm = 13.5pm

Two possible problems to this approach (Sommerville):

1) What would the ACT value for new systems be?

2) Are all COCOMO development attributes applicable to

maintenance?

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 19 of 65

Modularity

Definition: “One of a set of separate parts which, when combined,
form a complete whole” (Cambridge on-line dictionary)

In may classifications, this is a recurring factor

influencing system maintenance.

Modularity influences system complexity which
directly effects system maintainability

The metrics used to measure system complexity are:

• Coupling (defined as 5 levels of coupling)

• Cohesion (defined as 7 levels of cohesion)

[These were covered in the first year of the Software Engineering stream]

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 20 of 65

Activity “CSA3170-D”

In the context of modular systems development, read up and

understand why and how coupling and cohesion effect system

maintainability. Name and briefly outline all five levels of coupling

and all seven levels of cohesion. One short paragraph for each

level is enough.

For your information (mainly to remind you):

The 5 levels of coupling are:

Context; Common; Control; Stamp; Data

The 7 levels of cohesion are:

Coincidental; Logical; Temporal; Procedural; Communicational;

Sequential; Functional

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 21 of 65

Project Scheduling

Definition: “A list of planned activities or things to be done

showing the times or dates when they are intended to happen

or be done” (Cambridge on-line dictionary)

A software project is made up of activities, and these must

happen according to plan – i.e. scheduled.

Schedulable components:

• Activities

• Resources (including the human variety)

• Time (durations and deadlines)

• Products (intermediate and final)

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 22 of 65

Activity On Arrow Diagrams

We need to be able to clearly model activities to be able to

schedule them. One approach is to use an Activity On Arrow

(AOA) style diagram.

A prime example of such (AOA) diagrams is the Project

Evaluation and Review Technique (or PERT) chart.

• Diagram components (symbols)

– Nodes (drawn as circles)

– Links (drawn as directed arcs)

• Symbol meanings

– Nodes: Start/Stop events (points)

– Links: Activities

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 23 of 65

AOA Chart Construction Rules

• Must contain only one start and one end node

• A link has duration (optionally shown)

• A node has no duration (simply start/stop point)

• Time flows from left to right

• Nodes are numbered sequentially

• Loops are not allowed (by concept)

• “Dangles” are not allowed (except in the case of the

one and only end node)

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 24 of 65

AOA Chart Example (1/3)

1 2 3

4

5 6 A

B

C

D

F

E

G

H

Explanation:

The above project (or part of) consists of eight activities (“A”~“H”).

The duration of each activity is not indicated. The project starts at

node one and ends at node six. The derived duration of activity “A”

is the time difference between node two and node one; the derived

duration of activity “B” is the time difference between node four and

node 1; and so on.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 25 of 65

AOA Chart Example (2/3)

1

3

2

4

5

Read

sources

Start word

processor

Type personal

notes

Write some

rev. questions

.

Explanation:

There are four activities in all. A student reads from various sources

and starts a word-processor to then type in some personal notes and

furthermore, manually writes some questions on paper to remember

to ask the lecturer. IN PRACTICE reading and writing questions can

proceed separately from starting the word processor to type in some

personal notes. Therefore…

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 26 of 65

AOA Chart Example (3/3)

1 3

2

4

5

Read

sources

Start word

processor

Type personal

notes

Write some

rev. questions

.

3a

Dummy

link

Please note, that a “dummy link” has zero duration time and

uses absolutely no resources.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 27 of 65

PERT Chart Nodes

Earliest

date

Latest

date

PERT Chart (milestone) node

Activity ID and duration
PERT Chart activity

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 28 of 65

PERT Chart Example (1/2)

Activity Duration (units) Dependencies

Task 1 10

Task 2 12

Task 3 17 Task 2

Task 4 25 Tasks 1 & 3

Task 5 35 Tasks 1 & 3

Task 6 18 Tasks 4 & 5

Let us take the table below, representing various activities in

a hypothetical project, as an example.

A PERT chart model of this sequence of activities is shown

on the next slide.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 29 of 65

PERT Chart Example (2/2)

0

0

10

29

12

12

29

29

Task 3 (17)

54

64

T
a
s
k
 4

 (
2
5
)

Task 5 (35) 64

64

82

82

The “critical path” is the one that contains activities that would

cause project delay on the whole had they to be delayed

themselves. In this example: Tasks 2, 3, 5, and 6.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 30 of 65

Gantt Chart Example

Time

(units)

1
2

3
4
5
6

Activity

10 0 30 20 50 40 70 60 80 90

Critical

path

Gantt charts are a form of bar chart published by

Henry Laurence Gantt (an American mechanical

engineer) in 1910.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 31 of 65

Summary (Session 7)

• An introduction to software system maintenance

• Types of maintenance

• Software evolution through two of Lehman’s Laws

• Maintenance measurement and regression testing

• Coupling and cohesion as complexity/maintainability metrics

• An introduction to scheduling

• Scheduling through PERT and Gantt charts

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 32 of 65

Barry W. Boehm

Back to originating slide

Dr. Barry Boehm served within the U.S. Department of Defense (DoD) from 1989

to 1992 as director of the DARPA Information Science and Technology Office and

as director of the DDR&E Software and Computer Technology Office. He worked

at TRW from 1973 to 1989, culminating as chief scientist of the Defense Systems

Group, and at the Rand Corporation from 1959 to 1973, culminating as head of

the Information Sciences Department. He entered the software field at General

Dynamics in 1955.

His current research interests involve recasting software engineering into a

value-based framework, including processes, methods, and tools for value-based

software definition, architecting, development, validation, and evolution. His

contributions to the field include the Constructive Cost Model (COCOMO), the

Spiral Model of the software process, and the Theory W (win-win) approach to

software management and requirements determination. He has received the

ACM Distinguished Research Award in Software Engineering and the IEEE

Harlan Mills Award, and an honorary ScD in Computer Science from the

University of Massachusetts. He is a Fellow of the primary professional

societies in computing (ACM), aerospace (AIAA), electronics (IEEE), and

systems engineering (INCOSE), and a member of the U.S. National Academy of

Engineering.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 33 of 65

Session 8

Software Quality Assurance and Related

Measurements.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 34 of 65

Session Aims

The main aim of this session is to explain Function Point
calculation and use, and to introduce the student to some basic
ways in which software quality can be measured from a
statistical point of view in terms of defects and from a
probabilistic point of view in terms of reliability

• Explain Function Points and calculation and measurement based

upon them

• Introduce the fundamentals of Statistical Quality Assurance

• Present the fundamentals of defect classification and modelling

• Offer some basic reliability and availability calculation techniques

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 35 of 65

Session Contents

• Function Points

• Statistical Quality Assurance

• Error Modelling

• System Reliability and Availability

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 36 of 65

Function Points

Some basic concepts of Function Points*

• Function Points (FPs) are an attribute of a system based

on its internal functions

• Function Points are sometimes preferred to Lines of Code
(LOC) as a base measure

• Closer to user perspective of the system - Its function
“size” rather than its coding size

• LOC can be misleading when, amongst other things,
language generations are crossed

* Developed by Allan Albrecht working at IBM in 1979

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 37 of 65

Function Point Determination

The next four slides will show you the sequence

of how to extract FPs and determine their count,

for a particular system. Following this, a practical

example will be presented.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 38 of 65

Function Point Calculation (1/4)

Isolate the basic function types in a system’s specification
and decide in which of the following categories each function
would fit. Use Albrecht’s 5-type categorisation, as follows:

1. External inputs

Distinct data used by system (e.g. data structures, file names, etc.)

2. External outputs

e.g. reports, normal/error messages, menu screens, etc.

3. Enquiries

Interactive inputs (these require an immediate response)

4. External files

Files shared with other systems

5. Internal files

Files not visible outside the system

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 39 of 65

For this use the tables on next slide.

Function Point Calculation (2/4)

• These basic function types are then counted and weighted
according to their complexity [The criteria for this may vary between
organisations and if taken as an absolute value can be subjective. However, if
they are consistently applied organisation-wide, then they are very useful]

• The following top-level process is used to compute an initial

FP count value:

Count them
Determine their

complexity

Determine their

score (based on

their complexity)

Sum the scores

from all

categories

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 40 of 65

Function Point Calculation (3/4)

Function

type

Determinants

of files eff. # of rec. eff. # of fields eff.

1 2 3 1 2 3 1 2 3

Input 0-1 2 ≥3 - - - 1-4 5-15 ≥16

Output 0-1 2-3 4 - - - 1-5 6-19 ≥20

Internal file - - - 1 2-5 ≥6 1-19 20-50 ≥51

External file - - - 1 2-5 ≥6 1-19 20-50 ≥51

Query Use the greater of either its input or output part

Grade Complexity

level

2-3 Simple

4 Average

5-6 Complex

Function

type

Score

Simple Average Complex

Input 3 4 6

Output 4 5 7

Internal file 7 10 15

External file 5 7 10

Query 3 4 6






Grade = 1 + 2 = 3 = Simple

Score = 4 (Sum of all scores = UFC)

UFC means “Unadjusted FP Count”

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 41 of 65

Function Point Calculation (4/4)

Once the unadjusted function count (UFC) has been calculated,
the following relationship can be applied:

FP = UFC  [0.65 + 0.01   Fi]

Fi is known as the complexity factor. It is obtained by grading in
a range of “0” to “5” (“0” meaning “least relevant”, “5” meaning
“extremely relevant”) a list of 14 characteristics called “General
System Characteristics” (GSCs), and then taking the sum of all
the characteristic grades. Click here to see these 14
characteristics.

The constants used in the above formula are derived
empirically.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 42 of 65

Function Point Example (1/6)

Inputs

Outputs

Internal files

Queries

X External files

5

2

1

1

Faculty of ICT

Ernest Cachia

Department of Computer Science

System Description

The system will enable new customers to be
added and deleted from a customer database.
The system must also support paying in and
withdrawal transactions, and will display a
warning message if a borrower has an excessive
overdraft. Customers should be able to query
their account balance via apposite terminals. A
report of overdrawn customers can be
requested.

System description taken from

“Foundations of Software Measurement”,

by M. Shepperd

University of Malta

Slide 43 of 65

Function Point Example (2/6)

Inputs:
• Add customer

• Delete customer

• Pay-in

• Withdraw

• Request overdrawn customers
report

Outputs:
• Warning message

• Report of overdrawn customers

Queries:
• Request account balance

Internal files:
• Customer database

External files:
<none>

Function Categorisation

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 44 of 65

Function Point Example (3/6)

Given (or deduced) Values

Assumptions for this example:

• A customer record can contain up to 20

separate fields;

• Only one customer file will be used;

• Every customer entity data will be distributed

over three separate tables.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 45 of 65

Function Point Example (4/6)

Tabulate Function Complexities
Function type # files # recs. # fields Complexity Score

Add 1 - 20 average 4

Delete 1 - 8 simple 3

pay-in 1 - 2 simple 3

withdraw 1 - 2 simple 3

report request 1 - 0 simple 3

warning message 1 - 5 simple 4

overdrawn report 1 - 12 simple 4

balance query 1 - 6 simple 3

customer file - 3 25 average 10

UFC: 37

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 46 of 65

Function Point Example (5/6)

Refine the UFC
According to:

FP = UFC(0.65 + (0.01∙∑Fi))

 Where ∑Fi is the sum of the resulting replies to the 14

Complexity Adjustment Values.

Now assuming that ∑Fi = 30, this would yield:

FP = 37(0.65 + (0.01 x 30)) = 35.15

i.e. 35.15 function points.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 47 of 65

Function Point Example (6/6)

Example of how one could use FP counts

Pascal program: 4500 LOC; C# program: 1200 LOC

Pascal programmer takes 6 months

C# programmer takes 2 months

Productivity (LOC):

PP = 4500/6 = 750 LOC/month 

CP = 1200/2 = 600 LOC/month

Productivity (FP):

PP = 35.15/6 = 5.86 FP/month

CP = 35.15/2 = 17.58 FP/month 

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 48 of 65

Statistical Quality Assurance

A quantitative way to qualitative evaluation

The Main Steps Involved

1. Categorise data on s/w defects

2. Define the underlying causes of s/w defects

3. Use the “Pareto principle” (aka “The 20/80

Rule”) to condense the defect causes

4. Implement corrective measures on causes

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 49 of 65

The Pareto Principle

80% of effects are attributable to 20% of the causes

• Not something to do with software development only

• Has been around for quite a while now
Since 1906, introduced by Italian economist (Vilfredo Pareto) as a
mathematical formula in a study of wealth distribution in Italian society

• Has proven its validity in many domains on many occasions
since its inception

Vilfredo Pareto
(1848 – 1923)

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 50 of 65

The Causes of Software Defects

• Incomplete or erroneous spec. (IES)

• Misinterpretation of customer comm.

• Intentional deviation from spec.

• Violation of programming standards.

• Error in data representation. (EDR)

• Inconsistent module interface.

• Error in design logic. (EDL)

• Incomplete or erroneous testing.

• Incomplete or inaccurate documentation.

• Programming language translation of design error. (PLT)

• Ambiguous or inconsistent HCI.

• Miscellaneous. (a form of catch-all)

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 51 of 65

Corrective Measure Examples

• IES - Improve specification techniques, introduce new
methods, upgrade personnel, etc.

• EDR - Adopt automated data design tools, impose
stringent data modelling and reviews, etc.

• PLT - Use more visibility, check design phase output,
enforce strict translation techniques, etc.

• EDL – Reinforce good requirements understanding,
ensure personnel quality, adopt widespread design
techniques, etc.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 52 of 65

The “Error Index”

• The “Error Index” (EI) is an arbitrary value by

which to quantify the quality, in terms of errors

in code, of software development.

• The EI is determined for a software product as

a whole and is derived from an error index at

every development phase known as a “Phase

Index” (PI).

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 53 of 65

EI Calculation Procedure

Calculate the PI for a given phase:

PIi = ws(Si/Ei) + wm(Mi/Ei) + wt(Ti/Ei)

Where: Si: number of serious errors,
 Mi: number of moderate errors,
 Ti: number of trivial errors,
 Ei: total errors uncovered in ith step of the process
 ws / wm / wt: The weighting given to each type of error (i.e.

 serious, moderate, or trivial)

Unless stated otherwise, it is recommended that:
 ws = 10; wm = 3; wt = 1

The final error index is the sum of all the phase indices weighted
according to their sequence in the SE process.

EI = ∑(i  PIi)/PSi = (PI1 + 2PI2 + … + iPIi)/PS

Where: PSi is product size at ith step (depending on the phase reached, could be feature

list, requirements, design units, LOC, specification units, FPs, etc.)

An example follows after the next slide…

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 54 of 65

Defect Amplification

This is when a defect in a development phase is not detected and

therefore “amplifies” its negative effect on the product in

subsequent phases. This effect can be modelled using what is

called a “Defect Amplification Model” (DAM) – Developed by IBM in 1981.

DAM charts are built from chains of nodes like the one shown here:

Errors passed through

Amplified errors

Newly generated errors

Error detection

efficiency (%)

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 55 of 65

EI Calculation example (1/3)

For the sake of this example, let the following

development process be assumed.

Requirements

Capture

Requirements

Specification

Architectural

Design

Component

Design
Coding

1 2 3 4 5

Assuming 10% serious, 50% moderate and 40% trivial errors after
every phase. Also assuming the following error-flow chart...

16 errors

1 2 3 4 5
0
0
5

80%
1

0:2
15

70%
4

1:3
15

60%
7

2:4
20

60%
10
4:5
10

60%

Error counts in the DAM chart are rounded.

…will result in the following… (see next slide)

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 56 of 65

EI Calculation example (2/3)

Error breakdown after each phase (from previous DAM chart and

using error severity percentages from previous slide):

From 1: Requirements capture

1 error: 0 serious / 1 moderate / 0 trivial

From 2: Requirements specification

4.8 errors: 0.48 serious / 2.4 moderate / 1.92 trivial

From 3: Architectural design

8.8 errors: 0.88 serious / 4.4 moderate / 3.52 trivial

From 4: Component design

14 errors: 1.4 serious / 7 moderate / 5.6 trivial

From 5: Coding

16 errors: 1.6 serious / 8 moderate / 6.4 trivial

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 57 of 65

EI Calculation example (3/3)

Now apply the relationships from slide 21 to compute EI from

the various PIs:

PI1 = 10(0/1) + 3(1/1) + 1(0/1) = 3

PI2 = 10(0.48/4.8) + 3(2.4/4.8) + 1(1.92/4.8) = 2.9

PI3 = 10(0.88/8.8) + 3(4.4/8.8) + 1(3.52/8.8) = 2.9

PI4 = 10(1.4/14) + 3(7/14) + 1(5.6/14) = 2.9

PI5 = 10(1.6/16) + 3(8/16) + 1(6.4/16) = 2.9

Now if we had to assume a product size (PS) of 50 KLOC:

EI = (3 + 22.9 + 32.9 + 42.9 + 52.9)/100 = 43.6/50

= 0.872 KLOC-1 (i.e. statistically this many errors per thousand LOC)

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 58 of 65

Reliability

Meaning:

An attribute of any system that consistently produces the same

results, preferably meeting or exceeding its specifications. - The

Free On-line Dictionary of Computing. Retrieved April 26, 2008, from Dictionary.com

website.

The probability of failure free operation in a specified

environment for a specified time. – John D. Musa

Practically speaking, assume that program “P” has a reliability

value of 0.95 during 10 hours of operation. This would mean that,

if “P” is executed 100 times and each time it is executed it runs

for 10 hours, then “P” is likely to fail in some way 5 times (i.e.

0.05 times per execution).

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 59 of 65

Availability

Closely related to reliability

Meaning:

The degree to which a system suffers degradation or interruption in

its service to the customer as a consequence of failures of one or

more of its parts. - The Free On-line Dictionary of Computing. Retrieved April

26, 2008, from Dictionary.com website.

Practically speaking, assume that program “P” is likely to encounter

some sort of failure on average once every 100 hours of operation.

This would mean that if “P” is executed 10 times each time running

for 5 hours, then the chances of finding the system available

throughout the executions is 99.5% (i.e. 99.95% per execution).

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 60 of 65

The Meaning of Reliability-Related
Measures

• MTTF (Mean Time To Failure)
The average time taken from the start of observation to
successive failures

• MTTR (Mean Time To Repair)
The average time between successive successful repair actions

• MTBF (Mean Time Between Failures)
The average time between successive failures

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 61 of 65

Basic Reliability and Availability Metrics

MTBF = MTTF + MTTR
(i.e. the time it works well + the time taken to fix it)

Availability = MTTF/(MTTF + MTTR) X 100%

Reliability = (MTTF + MTTR)/(MTTF + MTTR + 1)

or... = MTBF/(MTBF + 1)

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 62 of 65

Combining Reliability

Faculty of ICT

Ernest Cachia

Department of Computer Science

This is a study of the way reliability changes when

components (or systems) are brought to work together. There

are two ways in which components can be combined:

Serial combination

In this case reliability decreases:

e.g. Rsys1 = 0.95; Rsys2 = 0.88  Rsys = 0.95 x 0.88 = 0.836

Parallel (redundant) combination

In this case reliability increases:

e.g. Rsys1 = 0.95; Rsys2 = 0.88  Rsys = 1 – [(1 - 0.95) x (1 - 0.88)] =

0.994

University of Malta

Slide 63 of 65

Activity “CSA3170-E”

Look up and describe two variations on the original FP

technique.

1) The “Mark II” FPs

2) The “3D” FPs

You should only write what they are, what

prompted their inception, how they differ from the

original FP technique, and what they are mainly

used for.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 64 of 65

Summary (session 8)

• An introduction to Function Points (FPs)

• How to calculate FPs

• A practical example in determining the FP count of a system

• Statistical Quality Analysis (SQA) and error measurement

• Introduction to what reliability and availability are

• Some basic metrics to estimate reliability and availability

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 65 of 65

General System Characteristics

Back to originating slide

1. Data Communications

2. Distributed Data Processing

3. Performance

4. Heavily Used Configuration

5. Transaction Rate

6. Online Data Entry

7. End-User Efficiency

8. Online Update

9. Complex Processing

10. Reusability

11. Installation Ease

12. Operational Ease

13. Multiple Sites

14. Facilitate Change

Allocate a number between 0 and

5 to each of the 14 characteristics

shown on the left. “0” means not

important or relevant to the

system, and “5” means very

important or critical for the

system.

Faculty of ICT

Ernest Cachia

Department of Computer Science

