NCERT solutions for class 8 maths chapter 9 algebraic expressions and identities

topic 9.1

what are expressions?

Question: 1 Give five examples of expressions containing one variable and five examples of expressions containing two variables.

Answer:

Five examples of expressions containing one variable are:
$x^{4}, y, 3 z, p^{2},-2 q^{3}$

Five examples of expressions containing two variables are:
$x+y, 3 p-4 q, a b, u v^{2},-z^{2}+x^{3}$

Question: 2(i) Show on the number line :
x

Answer:
x on the number line:

Question: 2(ii) Show on the number line :
$x-4$

Answer:
$x-4$ on the number line:

Question: 2(iii) Show on the number line :
$2 x+1$

Answer:
$2 x+1$ on the number line:

Question: 2(iv) Show on the number line:
$3 x-2$

Answer:
$3 x-2$ on the number line

NCERT solutions for class 8 maths chapter 9 algebraic expressions and identities topic 9.2 terms, factors and coefficients
$x^{2} y^{2}-10 x^{2} y+5 x y^{2}-20$

Answer:
coefficient of each term are given below

NCERT solutions for class 8 maths chapter 9 algebraic expressions and identities topic 9.3 monomials, binomials and polynomials

Question: 1(i) Classify the following polynomials as monomials, binomials, trinomials.
$-z+5$

Answer:

Binomial since there are two terms with non zero coefficients.

Question: 1(ii) Classify the following polynomials as monomials, binomials, trinomials.

$$
x+y+z
$$

Answer:

Trinomial since there are three terms with non zero coefficients.

Question:1(iii) Classify the following polynomials as monomials, binomials, trinomials.
$y+z+100$

Answer:

Trinomial since there are three terms with non zero coefficients.

Question: 1(iv) Classify the following polynomials as monomials, binomials, trinomials.
$a b-a c$

Answer:

Binomial since there are two terms with non zero coefficients.

Question: 1(v) Classify the following polynomials as monomials, binomials, trinomials.

17

Answer:

Monomial since there is only one term.

Question: 2(a) Construct 3 binomials with only x as a variable;

Answer:

Three binomials with the only \mathbf{x} as a variable are:
$x+2, x+x^{2}, 3 x^{3}-5 x^{4}$

Question: 2(b) Construct 3 binomials with x and y as variables;

Answer:

Three binomials with x and y as variables are:
$x+y, x-7 y, x y^{2}+2 x y$

Question: 2(c) Construct 3 monomials with x and y as variables;

Answer:

Three monomials with x and y as variables are
$x y, 3 x y^{4},-2 x^{3} y^{2}$

Question: 2(d) Construct 2 polynomials with 4 or more terms .

Answer:

Two polynomials with 4 or more terms are:
$a+b+c+d, x-3 x y+2 y+4 x y^{2}$

NCERT solutions for class 8 maths chapter 9 algebraic expressions and identities topic 9.4 like and unlike terms

Question:(i) Write two terms which are like
$7 x y$

Answer:
Two terms like $7 x y$ are:
$-3 x y$ and $5 x y$

Question:(ii) Write two terms which are like
$4 m n^{2}$

Answer:

Two terms which are like $4 m n^{2}$ are:
$m n^{2}$ and $-3 m n^{2}$.
we can write more like terms

Question:(iii) Write two terms which are like
$2 l$

Answer:

Two terms which are like $2 l$ are :
l and $-3 l$

NCERT solutions for class 8 maths chapter 9 algebraic expressions and identities-Exercise: 9.1

Question:1(i) Identify the terms, their coefficients for each of the following expressions.
$5 x y z^{2}-3 z y$

Answer

following are the terms and coefficient

The terms are $5 x y z^{2}$ and $-3 z y$ and the coefficients are 5 and -3 .

Question: 1(ii) Identify the terms, their coefficients for each of the following expressions.
$1+x+x^{2}$

Answer:

the following is the solution

The terms are $1, x$, and x^{2} and the coefficients are 1,1 , and 1 respectively.

Question:1(iii) Identify the terms, their coefficients for each of the following expressions.
$4 x^{2} y^{2}-4 x^{2} y^{2} z^{2}+z^{2}$

Answer:

Question: 1(iv) Identify the terms, their coefficients for each of the following expressions.
$3-p q+q r-r p$

Answer:

The terms are $3,-p q, q r$, and $-r p$ and the coefficients are $3,-1,1$ and -1 respectively.

Question:1(v) Identify the terms, their coefficients for each of the following expressions.
$\frac{x}{2}+\frac{y}{2}-x y$

Answer:

Question: 1(vi) Identify the terms, their coefficients for each of the following expressions.
$0.3 a-0.6 a b+0.5 b$

Answer:

The terms are $0.3 \mathrm{a},-0.6 \mathrm{ab}$ and 0.5 b and the coefficients are $0.3,-0.6$ and 0.5 .

Question: 2(a) Classify the following polynomials as monomials, binomials, trinomials Which polynomials do not fit in any of these three categories?
$x+y$

Answer:

Binomial.

Question: 2(b) Classify the following polynomials as monomials, binomials, trinomials.
Which polynomials do not fit in any of these three categories?

1000

Answer:

Monomial.

Question: 2(c) Classify the following polynomials as monomials, binomials, trinomials.
Which polynomials do not fit in any of these three categories?
$x+x^{2}+x^{3}+x^{4}$

Answer:

This polynomial does not fit in any of these three categories.

Question: 2(d) Classify the following polynomials as monomials, binomials, trinomials.
Which polynomials do not fit in any of these three categories?
$7+y-5 x$

Answer:

Trinomial.

Question: 2(e) Classify the following polynomials as monomials, binomials, trinomials.
Which polynomials do not fit in any of these three categories?
$2 y-3 y^{2}$

Answer:

Binomial.

Question: 2(f) Classify the following polynomials as monomials, binomials, trinomials.
Which polynomials do not fit in any of these three categories?
$2 y-3 y^{2}+4 y^{3}$

Answer:

Trinomial.

Question: 2(g) Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories?
$5 x-4 y+3 x y$

Answer:

Trinomial.

Question: 2(h) Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories?
$4 z-15 z^{2}$

Answer:

Binomial.

Question: 2(i) Classify the following polynomials as monomials, binomials, trinomials.
Which polynomials do not fit in any of these three categories?
$a b+b c+c d+d a$

Answer:

This polynomial does not fit in any of these three categories.

Question:2(j) Classify the following polynomials as monomials, binomials, trinomials.
Which polynomials do not fit in any of these three categories?
$p q r$

Answer:

Monomial.

Question: 2(k) Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories?
$p^{2} q+p q^{2}$

Answer:

Binomial.

Question: 2(i) Classify the following polynomials as monomials, binomials, trinomials.
Which polynomials do not fit in any of these three categories?
$2 p+2 q$

Answer:

Binomial.

Question: 3(i) Add the following.
$a b-b c, b c-c a, c a-a b$

Answer:

$a b-b c+b c-c a+c a-a b=0$.

Question:3 (ii) Add the following.
$a-b+a b, b-c+b c, c-a+a c$

Answer:

$a-b+a b+b-c+b c+c-a+a c$
$=(a-a)+(b-b)+(c-c)+a b+b c+a c$
$=a b+b c+c a$

Question:3 (iii) Add the following
$2 p^{2} q^{2}-3 p q+4,5+7 p q-3 p^{2} q^{2}$

Answer:

$2 p^{2} q^{2}-3 p q+4+5+7 p q-3 p^{2} q^{2}$
$=(2-3) p^{2} q^{2}+(-3+7) p q+4+5$
$=-p^{2} q^{2}+4 p q+9$

Question: 3(iv) Add the following.
$l^{2}+m^{2}+n^{2}, n^{2}+l^{2}, 2 l m+2 m n+2 n l$

Answer:

$l^{2}+m^{2}+n^{2}+n^{2}+l^{2}+2 l m+2 m n+2 n l$
$=2 l^{2}+m^{2}+2 n^{2}+2 l m+2 m n+2 n l$

Question: 4(a) Subtract $4 a-7 a b+3 b+12$ from $12 a-9 a b+5 b-3$

Answer:

$12 a-9 a b+5 b-3-(4 a-7 a b+3 b+12)$
$=(12-4) a+(-9+7) a b+(5-3) b+(-3-12)$
$=8 a-2 a b+2 b-15$

Question: 4(b) Subtract $3 x y+5 y z-7 z x$ from ${ }^{5 x y}-2 y z-2 z x+10 x y z$

Answer:

$5 x y-2 y z-2 z x+10 x y z-(3 x y+5 y z-7 z x)$
$=(5-3) x y+(-2-5) y z+(-2+7) z x+10 x y z$
$=2 x y-7 y z+5 z x+10 x y z$
Question: 4(c) Subtract $4 p^{2} q-3 p q+5 p q^{2}-8 p+7 q-10$ from $18-3 p-11 q+5 p q-2 p q^{2}+5 p^{2} q$

Answer:

NCERT solutions for class 8 maths chapter 9 algebraic expressions and identities topic 9.7.2 multiplying three or more monomials

Question:1 Find $4 x \times 5 y \times 7 z$. First find $4 x \times 5 y$ and multiply it by $7 z$; or first find $5 y \times 7 z$ and multiply it by $4 x$.

Answer:

We observe that the result is same in both cases and the result does not depend on the order in which multiplication has been carried out.

NCERT solutions for class 8 maths chapter 9 algebraic expressions and identities-Exercise: 9.2

Question: 1(i) Find the product of the following pairs of monomials.
$4,7 p$

Answer:

$4 \times 7 p=28 p$

Question: 1(ii) Find the product of the following pairs of monomials.
$-4 p, 7 p$

Answer:
$-4 p \times 7 p$
$=(-4 \times 7) p \times p$
$=-28 p^{2}$

Question: 1(iii) Find the product of the following pairs of monomials $-4 p, 7 p q$

Answer:

$-4 p \times 7 p q$
$=(-4 \times 7) p \times p q$
$=-28 p^{2} q$

Question: 1(iv) Find the product of the following pairs of monomials.
$4 p^{3},-3 p$

Answer:

$4 p^{3} \times(-3 p)$
$=4 \times(-3) p^{3} \times p$
$=-12 p^{4}$

Question:1(v) Find the product of the following pairs of monomials.
$4 p, 0$

Answer:

$4 p \times 0=0$

Question:2(A) Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.
(p, q)

Answer:

The question can be solved as follows
Area $=$ length \times breadth
$=(p \times q)$
$=p q$

Question:2(B) Find the areas of rectangles with the following pairs of monomials as their lengths and breadth respectively.
$(10 m, 5 n)$

Answer:

the area is calculated as follows
Area $=$ length \times breadth
$=10 \mathrm{~m} \times 5 \mathrm{n}$
$=50 \mathrm{mn}$

Question:2(C) Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.
$\left(20 x^{2}, 5 y^{2}\right)$

Answer:

the following is the solution
Area $=$ length \times breadth
$=20 x^{2} \times 5 y^{2}$
$=100 x^{2} y^{2}$

Question:2(D) Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.
$\left(4 x, 3 x^{2}\right)$

Answer:

area of rectangles is
Area $=$ length \times breadth
$=4 x \times 3 x^{2}$
$=12 x^{3}$

Question:2(E) Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.
(3mn, 4np)

Answer:

The area is calculated as follows

$$
\begin{aligned}
& \text { Area }=\text { length } \times \text { breadth } \\
& =3 m n \times 4 n p \\
& =12 m n^{2} p
\end{aligned}
$$

Question:3 Complete the table of products.

First monomial \rightarrow	$2 x$	$-5 y$	$3 x^{2}$	$-4 x y$	$7 x^{2} y$	$-9 x^{2} y^{2}$
Second monomial \downarrow						
$2 x$	$4 x^{2}$	\ldots	\ldots	\ldots	\ldots	\ldots
$-5 y$	\ldots	\ldots	$-15 x^{2} y$	\ldots	\ldots	\ldots
$3 x^{2}$	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
$-4 x y$	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
$7 x^{2} y$	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
$-9 x^{2} y^{2}$	\ldots	\ldots	\ldots	\ldots	\ldots	

Answer:

First	$2 x$	$-5 y$	$3 x^{2}$	$-4 x y$	$7 x^{2} y$	$-9 x^{2} y^{2}$
monomial \rightarrow						

Second monomial \downarrow						
$2 x$	$4 x^{2}$	$-10 x y$	$6 x^{3}$	$-8 x^{2} y$	$14 x^{3} y$	$-18 x^{3} y^{2}$
$-5 y$	$-10 x y$	$25 y^{2}$	$-15 x^{2} y$	$20 x y^{2}$	$-35 x^{2} y^{2}$	$45 x^{2} y^{3}$
$3 x^{2}$	$6 x^{3}$	$-15 x^{2} y$	$9 x^{4}$	$-12 x^{3} y$	$21 x^{4} y$	$-27 x^{4} y^{2}$
$-4 x y$	$-8 x^{2} y$	$20 x y^{2}$	$-12 x^{3} y$	$16 x^{2} y^{2}$	$-28 x^{3} y$	$36 x^{3} y^{3}$
$7 x^{2} y$	$14 x^{3} y$	$-35 x^{2} y^{2}$	$21 x^{4} y$	$-28 x^{3} y^{2}$	$49 x^{4} y^{2}$	$-63 x^{4} y^{3}$
$-9 x^{2} y^{2}$	$-18 x^{3} y^{2}$	$45 x^{2} y^{3}$	$-27 x^{4} y^{2}$	$36 x^{3} y^{3}$	$-63 x^{4} y^{3}$	$81 x^{4} y^{4}$

Question:4(i) Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
$5 a, 3 a^{2}, 7 a^{4}$

Answer:

Volume $=$ length \times breadth \times height
$=5 a \times 3 a^{2} \times 7 a^{4}$
$=15 a^{3} \times 7 a^{4}$
$=105 a^{7}$

Question:4(ii) Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
$2 p, 4 q, 8 r$

Answer:

the volume of rectangular boxes with the following length, breadth and height is
Volume $=$ length \times breadth \times height
$=2 p \times 4 q \times 8 r$
$=8 p q \times 8 r$
$=64 p q r$

Question:4(iii) Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
$x y, 2 x^{2} y, 2 x y^{2}$

Answer:

the volume of rectangular boxes with the following length, breadth and height is

Question:4(iv) Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
a, $2 b, 3 c$

Answer:
the volume of rectangular boxes with the following length, breadth and height is
Volume $=$ length \times breadth \times height
$=a \times 2 b \times 3 c$
$=2 a b \times 3 c$
$=6 a b c$

Question:5(i) Obtain the product of
$x y, y z, z x$

Answer:

the product
$x y \times y z \times z x$
$=x y^{2} z \times z x$
$=x^{2} y^{2} z^{2}$

Question:5(ii) Obtain the product of
$a,-a^{2}, a^{3}$

Answer:
the product
$a \times\left(-a^{2}\right) \times a^{3}$
$=-a^{3} \times a^{3}=-a^{6}$

Question:5(iii) Obtain the product of
$2,4 y, 8 y^{2}, 16 y^{3}$

Answer:

the product
$2 \times 4 y \times 8 y^{2} \times 16 y^{3}$
$=8 y \times 8 y^{2} \times 16 y^{3}$
$=64 y^{3} \times 16 y^{3}$
$=1024 y^{6}$

Question:5(iv) Obtain the product of
$a, 2 b, 3 c, 6 a b c$

Answer:

the product
$a \times 2 b \times 3 c \times 6 a b c$
$=2 a b \times 3 c \times 6 a b c$
$=6 a b c \times 6 a b c$
$=36 a^{2} b^{2} c^{2}$

Question:5(v) Obtain the product of
$m,-m n, m n p$

Answer:

the product

$$
\begin{aligned}
& m \times(-m n) \times m n p \\
& =-m^{2} n \times m n p \\
& =-m^{3} n^{2} p
\end{aligned}
$$

NCERT solutions for class 8 maths chapter 9 algebraic expressions and identities topic 9.8.1 multiplying a monomial by a binomial

Question:(i) Find the product
$2 x(3 x+5 x y)$

Answer:

Using distributive law,
$2 x(3 x+5 x y)=6 x^{2}+10 x^{2} y$

Question:(ii) Find the product
$a^{2}(2 a b-5 c)$

Answer:

Using distributive law,

We have : $a^{2}(2 a b-5 c)=2 a^{3} b-5 a^{2} c$

NCERT solutions for class 8 maths chapter 9 algebraic expressions and identities topic 9.8 .2 multiplying a monomial by a trinomial

Question:1 Find the product:
$\left(4 p^{2}+5 p+7\right) \times 3 p$

Answer:

By using distributive law,
$\left(4 p^{2}+5 p+7\right) \times 3 p=12 p^{3}+15 p^{2}+21 p$

NCERT solutions for class 8 maths chapter 9 algebraic expressions and identities-Exercise: 9.3

Question:1(i) Carry out the multiplication of the expressions in each of the following pairs.
$4 p, q+r$

Answer:

Multiplication of the given expression gives :

By distributive law,
$(4 p)(q+r)=4 p q+4 p r$

Question:1(ii) Carry out the multiplication of the expressions in each of the following pairs.
$a b, a-b$

Answer:

We have ab, (a-b).

Using distributive law we get,
$a b(a-b)=a^{2} b-a b^{2}$

Question:1(iii) Carry out the multiplication of the expressions in each of the following pairs.
$a+b, 7 a^{2} b^{2}$

Answer:

Using distributive law we can obtain multiplication of given expression:
$(a+b)\left(7 a^{2} b^{2}\right)=7 a^{3} b^{2}+7 a^{2} b^{3}$

Question:1(iv) Carry out the multiplication of the expressions in each of the following pairs.
$a^{2}-9,4 a$

Answer:

We will obtain multiplication of given expression by using distributive law :
$\left(a^{2}-9\right)(4 a)=4 a^{3}-36 a$

Question:1(v) Carry out the multiplication of the expressions in each of the following pairs.
$p q+q r+r p, 0$

Answer:

Using distributive law :
$(p q+q r+r p)(0)=p q(0)+q r(0)+r p(0)=0$

Question:2 Complete the table

	First expression	Second expression	Product
	a	$b+c+d$	\ldots

(ii)	$x+y-5$	$5 x y$	\ldots
(iii)	p	$6 p^{2}-7 p+5$	\ldots
(iv)	$4 p^{2} q^{2}$	$p^{2}-q^{2}$	\ldots
(v)	$a+b+c$	$a b c$	\ldots

Answer:

We will use distributive law to find product in each case.

	First expression	Second expression	Product
(i)	a	$c+d$	$a b+a c+a d$
(ii)	$x+y-5$	$5 x y$	$5 x^{2} y+5 x y^{2}-25 x y$
(iii)	p	$6 p^{2}-7 p+5$	$6 p^{3}-7 p^{2}+5 p$
(iv)	$4 p^{2} q^{2}$	$p^{2}-q^{2}$	$4 p^{4} q^{2}-4 p^{2} q^{4}$
(v)	$a+b+c$	$a b c$	$a^{2} b c+a b^{2} c+a b c^{2}$

Question:3(i) Find the product.

$$
\left(a^{2}\right) \times\left(2 a^{22}\right) \times\left(4 a^{26}\right)
$$

Answer:

Opening brackets :
$\left(a^{2}\right) \times\left(2 a^{22}\right) \times\left(4 a^{26}\right)=\left(a^{2} \times 2 a^{22}\right) \times\left(4 a^{26}\right)=2 a^{24} \times 4 a^{26}$
or $=8 a^{50}$

Question:3(ii) Find the product.
$\left(\frac{2}{3} x y\right) \times\left(\frac{-9}{10} x^{2} y^{2}\right)$

Answer:

We have,
$\left(\frac{2}{3} x y\right) \times\left(\frac{-9}{10} x^{2} y^{2}\right)=\frac{-3}{5} x^{3} y^{3}$

Question:3(iii) Find the product.

$$
\left(\frac{-10}{3} p q^{3}\right) \times\left(\frac{6}{5} p^{3} q\right)
$$

Answer:

We have
$\left(\frac{-10}{3} p q^{3}\right) \times\left(\frac{6}{5} p^{3} q\right)=-4 p^{4} q^{4}$

Question:3(iv) Find the product.
$x \times x^{2} \times x^{3} \times x^{4}$

Answer:

We have $x \times x^{2} \times x^{3} \times x^{4}$
$x \times x^{2} \times x^{3} \times x^{4}=\left(x \times x^{2}\right) \times x^{3} \times x^{4}$
or $\left(x^{3}\right) \times x^{3} \times x^{4}$
$=x^{10}$

Question:4(a) Simplify $3 x(4 x-5)+3$ and find its values for
(i) $x=3$

Answer:
(a) We have
$3 x(4 x-5)+3=12 x^{2}-15 x+3$

Put $x=3$,

We get : $12(3)^{2}-15(3)+3=12(9)-45+3=108-42=66$

Question:4(a) Simplify $3 x(4 x-5)+3$ and find its values for
(ii) $x=\frac{1}{2}$

Answer:

We have
$3 x(4 x-5)+3=12 x^{2}-15 x+3$

Put
$x=\frac{1}{2}$
. So We get,
$12 x^{2}-15 x+3=12\left(\frac{1}{2}\right)^{2}-15\left(\frac{1}{2}\right)+3=6-\frac{15}{2}=\frac{-3}{2}$
Question:4(b) Simplify $a\left(a^{2}+a+1\right)+5$ and find its value for
(i) $a=0$

Answer:

We have : $a\left(a^{2}+a+1\right)+5=a^{3}+a^{2}+a+5$

Put a $=0:=0^{3}+0^{2}+0+5=5$

Question:4(b) Simplify $a\left(a^{2}+a+1\right)+5$ and find its value for
(ii) $a=1$

Answer:

We have ${ }^{a\left(a^{2}+a+1\right)+5=a^{3}+a^{2}+a+5}$

Put $\mathrm{a}=1$,
we get : $1^{3}+1^{2}+1+5=1+1+1+5=8$

Question:4(b) Simplify $a\left(a^{2}+a+1\right)+5$ and find its value for
(iii) $a=-1$

Answer:

We have ${ }^{a\left(a^{2}+a+1\right)+5}$.
or $a\left(a^{2}+a+1\right)+5=a^{3}+a^{2}+a+5$

Put $\mathrm{a}=(-1)$
$=(-1)^{3}+(-1)^{2}+(-1)+5=-1+1-1+5=4$

Question:5(a) Add: $p(p-q), q(q-r)$ and $r(r-p)$

Answer:

(a)First we will solve each brackets individually.
$p(p-q)=p^{2}-p q ; q(q-r)=q^{2}-q r ; r(r-p)=r^{2}-r p$
Addind all we get : $p^{2}-p q+q^{2}-q r+r^{2}-r p$
$=p^{2}+q^{2}+r^{2}-p q-q r-r p$

Question:5(b) Add: $2 x(z-x-y)$ and $2 y(z-y-x)$

Answer:

Firstly, open the brackets:
$2 x(z-x-y)=2 x z-2 x^{2}-2 x y$
and $2 y(z-y-x)=2 y z-2 y^{2}-2 x y$

Adding both, we get :
$2 x z-2 x^{2}-2 x y+2 y z-2 y^{2}-2 x y$
or $=-2 x^{2}-2 y^{2}-4 x y+2 x z+2 y z$

Question:5(c) Subtract: $3 l(l-4 m+5 n)$ from $4 l(10 n-3 m+2 l)$

Answer:

At first we will solve each bracket individually,
$3 l(l-4 m+5 n)=3 l^{2}-12 l m+15 l n$
and $4 l(10 n-3 m+2 l)=40 l n-12 m l+8 l^{2}$

Subtracting:
$40 l n-12 m l+8 l^{2}-\left(3 l^{2}-12 l m+15 l n\right)$
or $=40 l n-12 m l+8 l^{2}-3 l^{2}+12 l m-15 l n$
or $=25 l n+5 l^{2}$

Question:5(d) Subtract: $3 a(a+b+c)-2 b(a-b+c)$ from $4 c(-a+b+c)$

Answer:

Solving brackets :
$3 a(a+b+c)-2 b(a-b+c)=3 a^{2}+3 a b+3 a c-2 a b+2 b^{2}-2 b c$
$=3 a^{2}+a b+3 a c+2 b^{2}-2 b c$
and $4 c(-a+b+c)=-4 a c+4 b c+4 c^{2}$

Subtracting: $-4 a c+4 b c+4 c^{2}-\left(3 a^{2}+a b+3 a c+2 b^{2}-2 b c\right)$
$=-4 a c+4 b c+4 c^{2}-3 a^{2}-a b-3 a c-2 b^{2}+2 b c$
$=-3 a^{2}-2 b^{2}+4 c^{2}-a b+6 b c-7 a c$

NCERT solutions for class 8 maths chapter 9 algebraic expressions and identities-Exercise: 9.4

Question:1(i) Multiply the binomials.
$(2 x+5)$ and $(4 x-3)$

Answer:

We have $(2 x+5)$ and $(4 x-3)$
$(2 x+5) \times(4 x-3)=(2 x)(4 x)+(2 x)(-3)+(5)(4 x)+(5)(-3)$
$=8 x^{2}-6 \mathrm{x}+20 \mathrm{x}-15$
$=8 x^{2}+14 \mathrm{x}-15$

Question:1(ii) Multiply the binomials.
$(y-8)$ and $(3 y-4)$

Answer:

We need to multiply $(y-8)$ and $(3 y-4)$
$(y-8) \times(3 y-4)=(y)(3 y)+(y)(-4)+(-8)(3 y)+(-8)(-4)$
$=3 y^{2}-4 \mathrm{y}-24 \mathrm{y}+32$
$=3 y^{2}-28 \mathrm{y}+32$

Question:1(iii) Multiply the binomials
$(2.5 l-0.5 m)$ and $(2.5 l+0.5 m)$

Answer:

We need to multiply (2.5I-0.5m) and (2.5I $+0 . .5 m)$
$(2.5 \mathrm{l}-0.5 \mathrm{~m}) \times(2.5 \mathrm{l}+0 . .5 \mathrm{~m})=(2.5 l)^{2}-(0.5 m)^{2}$ using $(a-b)(a+b)=(a)^{2}-(b)^{2}$ $=6.25 l^{2}-0.25 m^{2}$

Question:1(iv) Multiply the binomials.
$(a+3 b)$ and $(x+5)$

Answer:

$(a+3 b) X(x+5)=(a)(x)+(a)(5)+(3 b)(x)+(3 b)(5)$
$=a x+5 a+3 b x+15 b$

Question:1(v) Multiply the binomials.

$$
\left(2 p q+3 q^{2}\right) \text { and }\left(3 p q-2 q^{2}\right)
$$

Answer:

$$
\begin{aligned}
& \left(2 p q+3 q^{2}\right) \times\left(3 p q-2 q^{2}\right)=(2 p q)(3 p q)+(2 p q)\left(-2 q^{2}\right)+\left(3 q^{2}\right)(3 p q)+\left(3 q^{2}\right)\left(-2 q^{2}\right) \\
& =6 p^{2} q^{2}-4 p q^{3}+9 p q^{3}-6 q^{4} \\
& =6 p^{2} q^{2}+5 p q^{3}-6 q^{4}
\end{aligned}
$$

Question:1(vi) Multiply the binomials.
$\left(\frac{3}{4} a^{2}+3 b^{2}\right)$ and $4\left(a^{2}-\frac{2}{3} b^{2}\right)$

Answer:

Multiplication can be done as follows

$$
\begin{aligned}
& \left(\frac{3}{4} a^{2}+3 b^{2}\right) \times\left(4 a^{2}-\frac{8}{3} b^{2}\right)= \\
& =3 a^{4}-2 a^{2} b^{2}+12 a^{2} b^{2}-8 b^{4} \\
& =3 a^{4}+10 a^{2} b^{2}-8 b^{4}
\end{aligned}
$$

Question:2(i) Find the product.
$(5-2 x)(3+x)$

Answer:
$(5-2 x) \times(3+x)=(5)(3)+(5)(x)+(-2 x)(3)+(-2 x)(x)$
$=15+5 x-6 x-2 x^{2}$
$=15-\mathrm{x}-2 x^{2}$

Question:2(ii) Find the product.
$(x+7 y)(7 x-y)$

Answer:

$(x+7 y) X(7 x-y)=(x)(7 x)+(x)(-y)+(7 y)(7 x)+(7 y)(-y)$
$=7 x^{2}-x y+49 x y-7 y^{2}$
$=7 x^{2}+48 x y-7 y^{2}$

Question:2(iii) Find the product.
$\left(a^{2}+b\right)\left(a+b^{2}\right)$

Answer:

$\left(a^{2}+\mathrm{b}\right) \times\left(\mathrm{a}+b^{2}\right)=\left(a^{2}\right)(\mathrm{a})+\left(a^{2}\right)\left(b^{2}\right)+(\mathrm{b})(\mathrm{a})+(\mathrm{b})\left(b^{2}\right)$
$=a^{3}+a^{2} b^{2}+a b+b^{3}$

Question:2(iv) Find the product.
$\left(p^{2}-q^{2}\right)(2 p+q)$

Answer:

following is the solution
$\left(p^{2}-q^{2}\right) \times(2 p+q)=\left(p^{2}\right)(2 p)+\left(p^{2}\right)(q)+\left(-q^{2}\right)(2 p)+\left(-q^{2}\right)(q)$
$2 p^{3}+p^{2} q-2 q^{2} p-q^{3}$

Question:3(i) Simplify.
$\left(x^{2}-5\right)(x+5)+25$

Answer:

this can be simplified as follows
$\left(x^{2}-5\right) \times(\mathrm{x}+5)+25=\left(x^{2}\right)(\mathrm{x})+\left(x^{2}\right)(5)+(-5)(\mathrm{x})+(-5)(5)+25$
$=x^{3}+5 x^{2}-5 x-25+25$
$=x^{3}+5 x^{2}-5 x$

Question:3(ii) Simplify .

$$
\left(a^{2}+5\right)\left(b^{3}+3\right)+5
$$

Answer:

This can be simplified as
$\left(a^{2}+5\right) \times\left(b^{3}+3\right)+5=\left(a^{2}\right)\left(b^{3}\right)+\left(a^{2}\right)(3)+(5)\left(b^{3}\right)+(5)(3)+5$
$=a^{2} b^{3}+3 a^{2}+5 b^{3}+15+5$
$=a^{2} b^{3}+3 a^{2}+5 b^{3}+20$

Question:3(iii) Simplify.
$\left(t+s^{2}\right)\left(t^{2}-s\right)$

Answer:

simplifications can be
$\left(\mathrm{t}+s^{2}\right)\left(t^{2}-\mathrm{s}\right)=(\mathrm{t})\left(t^{2}\right)+(\mathrm{t})(-\mathrm{s})+\left(s^{2}\right)\left(t^{2}\right)+\left(s^{2}\right)(-\mathrm{s})$
$=t^{3}-t s+s^{2} t^{2}-s^{3}$

Question:3(iv) Simplify.
$(a+b)(c-d)+(a-b)(c+d)+2(a c+b d)$

Answer:

$$
\begin{aligned}
& (a+b) X(c-d)+(a-b) X(c+d)+2(a c+b d) \\
& =(a)(c)+(a)(-d)+(b)(c)+(b)(-d)+(a)(c)+(a)(d)+(-b)(c)+(-b)(d)+2(a c+b d) \\
& =a c-a d+b c-b d+a c+a d-b c-b d+2(a c+b d) \\
& =2(a c-b d)+2(a c+b d) \\
& =2 a c-2 b d+2 a c+2 b d \\
& =4 a c
\end{aligned}
$$

Question:3(v) Simplify.
$(x+y)(2 x+y)+(x+2 y)(x-y)$

Answer:

$$
\begin{aligned}
& (\mathrm{x}+\mathrm{y}) \mathrm{X}(2 \mathrm{x}+\mathrm{y})+(\mathrm{x}+2 \mathrm{y}) \mathrm{X}(\mathrm{x}-\mathrm{y}) \\
& =(\mathrm{x})(2 \mathrm{x})+(\mathrm{x})(\mathrm{y})+(\mathrm{y})(2 \mathrm{x})+(\mathrm{y})(\mathrm{y})+(\mathrm{x})(\mathrm{x})+(\mathrm{x})(-\mathrm{y})+(2 \mathrm{y})(\mathrm{x})+(2 \mathrm{y})(-\mathrm{y}) \\
& =2 x^{2}+\mathrm{xy}+2 \mathrm{xy}+y^{2}+x^{2}-\mathrm{xy}+2 \mathrm{xy}-2 y^{2} \\
& =3 x^{2}+4 \mathrm{xy}-y^{2}
\end{aligned}
$$

Question:3(vi) Simplify.
$(x+y)\left(x^{2}-x y+y^{2}\right)$

Answer:

simplification is done as follows
$(\mathrm{x}+\mathrm{y}) \mathrm{X}\left(x^{2}-x y+y^{2}\right)=\mathrm{x} \times\left(x^{2}-x y+y^{2}\right)+\mathrm{y}\left(x^{2}-x y+y^{2}\right)$
$=x^{3}-x^{2} y+x y^{2}+y x^{2}-x y^{2}+y^{3}$
$=x^{3}+y^{3}$

Question:3(vii) Simplify.
$(1.5 x-4 y)(1.5 x+4 y+3)-4.5 x+12 y$

Answer:
$(1.5 x-4 y) \times(1.5 x+4 y+3)-4.5 x+12 y=(1.5 x) \times(1.5 x+4 y+3)-4 y \times(1.5 x+4 y+3)$
$-4.5 x+12 y$
$=2.25 x^{2}+6 x y+4.5 x-6 x y-16 y^{2}-12 y-4.5 x+12 y$
$=2.25 x^{2}-16 y^{2}$

Question:3(viii) Simplify.
$(a+b+c)(a+b-c)$

Answer:

$(a+b+c) X(a+b-c)=a X(a+b-c)+b X(a+b-c)+c X(a+b-c)$
$=a^{2}+\mathrm{ab}-\mathrm{ac}+\mathrm{ab}+b^{2}-\mathrm{bc}+\mathrm{ac}+\mathrm{bc}-c^{2}$
$=a^{2}+b^{2}-c^{2}+2 \mathrm{ab}$

NCERT solutions for class 8 maths chapter 9 algebraic expressions and identities topic 9.11 standerd identities

Question:1(i) Put -b in place of bin identity 1. Do you get identity 2 ?

Answer:

Identity $1 \Rightarrow(a+b)^{2}=a^{2}+2 a b+b^{2}$
If we replace b with -b in identity 1
We get,
$a^{2}+2 a(-b)+(-b)^{2}=a^{2}-2 a b+b^{2}$
which is equal to
$(a-b)^{2}$ which is identity 2
So, we get identity 2 by replacing b with -b in identity 1

NCERT free solutions for class 8 maths chapter 9 algebraic expressions and identities topic 9.11 standard identities

Question:1 Verify Identity (IV), for $a=2, b=3, x=5$

Answer:

Identity IV
$(\mathrm{a}+\mathrm{x})(\mathrm{b}+\mathrm{x})=x^{2}+(a+b) x+a b$
So, it is given that $a=2, b=3$ and $x=5$
Lets put these value in identity IV
$(2+5)(3+5)=5^{2}+(2+3) 5+2 \times 3$
$7 \times 8=25+5 \times 5+6$
$56=25+25+6$
$=56$
L.H.S. = R.H.S.

So, by this we can say that identity IV satisfy with given value of a, b and x

Question:2 Consider, the special case of Identity (IV) with $a=b$, what do you get? Is it related to Identity

Answer:

Identity IV is $\Rightarrow(a+x)(b+x)=x^{2}+(a+b) x+a b$
If $a=b$ than
$(\mathrm{a}+\mathrm{x})(\mathrm{a}+\mathrm{x})=x^{2}+(a+a) x+a \times a$
$(a+x)^{2}=x^{2}+2 a x+a^{2}$
Which is identity I

Question:3 Consider, the special case of Identity (IV) with $a=-c$ and $b=-c$ What do you get? Is it related to Identity ?

Answer:

Identity IV is $\Rightarrow(a+x)(b+x)=x^{2}+(a+b) x+a b$
If $\mathrm{a}=\mathrm{b}=-\mathrm{c}$ than,
$(\mathrm{x}-\mathrm{c})(\mathrm{x}-\mathrm{c})=x^{2}+(-c+(-c)) x+(-c) \times(-c)$
$(x-c)^{2}=x^{2}+-2 c x+c^{2}$
Which is identity II

Question:4 Consider the special case of Identity (IV) with $b=-a$. What do you get? Is it related to Identity?

Answer:

Identity IV is $\Rightarrow(a+x)(b+x)=x^{2}+(a+b) x+a b$
If $b=-a$ than,
$(\mathrm{x}+\mathrm{a})(\mathrm{x}-\mathrm{a})=x^{2}+(a+(-a)) x+(-a) \times a$
$=x^{2}-a^{2}$
Which is identity III

NCERT solutions for class 8 maths chapter 9 algebraic expressions and identities-Exercise: 9.5

Question:1(i) Use a suitable identity to get each of the following products.
$(x+3)(x+3)$

Answer:
$(\mathrm{x}+3) \mathrm{X}(\mathrm{x}+3)=(x+3)^{2}$
So, we use identity I for this which is
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
In this $a=x$ and $b=x$
$(x+3)^{2}=x^{2}+2(x)(3)+3^{2}$
$=x^{2}+6 x+9$

Question:1(ii) Use a suitable identity to get each of the following products in bracket.
$(2 y+5)(2 y+5)$

Answer:
$(2 y+5) \times(2 y+5)=(2 y+5)^{2}$
We use identity I for this which is
$(a+b)^{2}=a^{2}+2 a b+b^{2}$

IN this $\mathrm{a}=2 \mathrm{y}$ and $\mathrm{b}=5$
$(2 y+5)^{2}=(2 y)^{2}+2(2 y)(5)+5^{2}$
$=(2 y+5)^{2}=4 y^{2}+20 y+25$

Question:1(iii) Use a suitable identity to get each of the following products in bracket.
$(2 a-7)(2 a-7)$

Answer:

$(2 \mathrm{a}-7) \mathrm{X}(2 \mathrm{a}-7)=(2 a-7)^{2}$
We use identity II for this which is
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
in this $\mathrm{a}=2 \mathrm{a}$ and $\mathrm{b}=7$
$(2 a-7)^{2}=(2 a)^{2}-2(2 a)(7)+7^{2}$
$=4 a^{2}-28 a+49$

Question:1(iv) Use a suitable identity to get each of the following products in bracket.
$\left(3 a-\frac{1}{2}\right)\left(3 a-\frac{1}{2}\right)$

Answer:
$\left(3 a-\frac{1}{2}\right) \times\left(3 a-\frac{1}{2}\right)=\left(\left(3 a-\frac{1}{2}\right)\right)^{2}$
We use identity II for this which is
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
in this $a=3 a$ and $b=-1 / 2$
$\left(3 a-\frac{1}{2}\right)^{2}=(3 a)^{2}-2(3 a)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}$
$=9 a^{2}-3 a+\frac{1}{4}$

Question:1(v) Use a suitable identity to get each of the following products in bracket.
$(1.1 m-4)(1.1 m+4)$

Answer:

$(1.1 m-4)(1.1 m+4)$
We use identity III for this which is
$(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=a^{2}-b^{2}$
In this $\mathrm{a}=1.1 \mathrm{~m}$ and $\mathrm{b}=4$
$(1.1 m-4)(1.1 m+4)=(1.1 m)^{2}-(4)^{2}$
$=1.21 m^{2}-16$

Question:1(vi) Use a suitable identity to get each of the following products in bracket.
$\left(a^{2}+b^{2}\right)\left(-a^{2}+b^{2}\right)$

Answer:

take the (-)ve sign common so our question becomes
$--\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right)$
We use identity III for this which is
$(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=a^{2}-b^{2}$
In this $\mathrm{a}=a^{2}$ and $\mathrm{b}=b^{2}$
$-\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right)=-\left(\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}\right)=-a^{4}+b^{4}$

Question:1(vii) Use a suitable identity to get each of the following.
$(6 x-7)(6 x+7)$

Answer:

$(6 x-7) \times(6 x-7)=(6 x-7)^{2}$
We use identity III for this which is
$(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=a^{2}-b^{2}$
In this $\mathrm{a}=6 \mathrm{x}$ and $\mathrm{b}=7$
$(6 x-7) X(6 x-7)=(6 x)^{2}-(7)^{2}=36 x^{2}-49$

Question:1(viii) Use a suitable identity to get each of the following product.
$(-a+c)(-a+c)$

Answer:

take (-)ve sign common from both the brackets So, our question become $(\mathrm{a}-\mathrm{c}) \mathrm{X}(\mathrm{a}-\mathrm{c})=(a-c)^{2}$

We use identity II for this which is
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
In this $\mathrm{a}=\mathrm{a}$ and $\mathrm{b}=\mathrm{c}$
$(a-c)^{2}=a^{2}-2 a c+c^{2}$

Question:1(ix) Use a suitable identity to get each of the following product.
$\left(\frac{x}{2}+\frac{3 y}{4}\right)\left(\frac{x}{2}+\frac{3 y}{4}\right)$

Answer:

$$
\left(\frac{x}{2}+\frac{3 y}{4}\right) \times\left(\frac{x}{2}+\frac{3 y}{4}\right)=\left(\frac{x}{2}+\frac{3 y}{4}\right)^{2}
$$

We use identity I for this which is
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
In this $\mathrm{a}=\frac{x}{2}$ and $\mathrm{b}=\frac{3 y}{4}$
$=\frac{x^{2}}{4}+\frac{3 x y}{4}+\frac{9 y^{2}}{16}$

Question:1(x) Use a suitable identity to get each of the following products.
$(7 a-9 b)(7 a-9 b)$

Answer:

$(7 a-9 b) \times(7 a-9 b)=(7 a-9 b)^{2}$

We use identity II for this which is
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
In this $a=7 a$ and $b=9 b$
$(7 a-9 b)^{2}=(7 a)^{2}-2(7 a)(9 b)+(9 b)^{2}$
$=49 a^{2}-126 a b+81 b^{2}$

Question:2(i) Use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$ to find the following products.
$(x+3)(x+7)$

Answer:

We use identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$
in this $\mathrm{a}=3$ and $\mathrm{b}=7$
$(x+3)(x+7)=x^{2}+(3+7) x+3 \times 7$
$=x^{2}+10 x+21$
Question:2(ii) Use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$ to find the following products.
$(4 x+5)(4 x+1)$

Answer:

We use identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$
In this $\mathrm{a}=5, \mathrm{~b}=1$ and $\mathrm{x}=4 \mathrm{x}$
$(4 x+5)(4 x+1)=(4 x)^{2}+(5+1) 4 x+(5)(1)$
$=16 x^{2}+24 x+5$
Question:2(iii) Use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$ to find the following products.
$(4 x-5)(4 x-1)$

Answer:

We use identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$
in this $\mathrm{x}=4 \mathrm{x}, \mathrm{a}=-5$ and $\mathrm{b}=-1$
$(4 x-5)(4 x-1)=(4 x)^{2}+(-5-1) 4 x+(-5)(-1)$
$=16 x^{2}-24 x+5$

Question:1(iv) Use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$ to find the following products.
$(4 x+5)(4 x-1)$

Answer:

We use identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$
In this $a=5, b=-1$ and $x=4 x$
$(4 x+5)(4 x-1)=(4 x)^{2}+(5+(-1)) 4 x+(5)(-1)$
$=16 x^{2}+16 x-5$

Question:2(v) Use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$ to find the following products.
$(2 x+5 y)(2 x+3 y)$

Answer:

We use identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$
In this $a=5 y, b=3 y$ and $x=2 x$

$$
\begin{aligned}
& (2 x+5 y)(2 x+3 y)=(2 x)^{2}+(5 y+3 y)(2 x)+(5 y)(3 y) \\
& =4 x^{2}+16 x y+15 y^{2}
\end{aligned}
$$

Question:2(vi) Use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$ to find the following products.
$\left(2 a^{2}+9\right)\left(2 a^{2}+5\right)$

Answer:

We use identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$
In this $\mathrm{a}=9, \mathrm{~b}=5$ and $\mathrm{x}=2 a^{2}$
$\left(2 a^{2}+9\right)\left(2 a^{2}+5\right)=\left(2 a^{2}\right)^{2}+(9+5) 2 a^{2}+(9)(5)$
$=4 a^{4}+28 a^{2}+45$
Question:2(vii) Use the identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$ to find the following products.
$(x y z-4)(x y z-2)$

Answer:

We use identity $(x+a)(x+b)=x^{2}+(a+b) x+a b$
In this $\mathrm{a}=-4, \mathrm{~b}=-2$ and $\mathrm{x}=\mathrm{xyz}$
$(x y z-4)(x y z-2)=(x y z)^{2}+((-4)+(-2)) x y z+(-4)(-2)$
$=x^{2} y^{2} z^{2}-6 x y z+8$

Question:3(i) Find the following squares by using the identities.
$(b-7)^{2}$

Answer:

We use identity
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
In this $\mathrm{a}=\mathrm{b}$ and $\mathrm{b}=7$
$(b-7)^{2}=b^{2}-2(b)(7)+7^{2}$
$=b^{2}-14 b+49$

Question:3(ii) Find the following squares by using the identities.
$(x y+3 z)^{2}$

Answer:

We use
$(a+b)^{2}=a^{2}+2 a b+b^{2}$

In this $a=x y$ and $b=3 z$
$(x y+3 z)^{2}=(x y)^{2}+2(x y)(3 z)+(3 z)^{2}$
$=x^{2} y^{2}+6 x y z+9 z^{2}$

Question:3(iii) Find the following squares by using the identities.
$\left(6 x^{2}-5 y\right)^{2}$

Answer:

We use
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
In this $\mathrm{a}=6 x^{2}$ and $\mathrm{b}=5 y^{2}$
$(6 x-5 y)^{2}=(6 x)^{2}-2(6 x)(5 y)+(5 y)^{2}$
$=36 x^{2}-60 x y+25 y^{2}$

Question:3(iv) Find the following squares by using the identities.
$\left(\frac{2}{3} m+\frac{3}{2} n\right)^{2}$

Answer:

we use the identity
$(a+b)^{2}=a^{2}+2 a b+b^{2}$

In this $\mathrm{a}=\frac{2 m}{3}$ and $\mathrm{b}=\frac{3 n}{2}$
$=\frac{4 m^{2}}{9}+2 m n+\frac{9 n^{2}}{4}$

Question:3(v) Find the following squares by using the identities.
$(0.4 p-0.5 q)^{2}$

Answer:

we use
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
In this $\mathrm{a}=0.4 \mathrm{p}$ and $\mathrm{b}=0.5 \mathrm{q}$
$(0.4 p-0.5 q)^{2}=(0.4 p)^{2}-2(0.4 p)(0.5 q)+(0.5 q)^{2}$
$=0.16 p^{2}-0.4 p q+0.25 q^{2}$

Question:3(vi) Find the following squares by using the identities.
$(2 x y+5 y)^{2}$

Answer:

we use the identity
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
In this $a=2 x y$ and $b=5 y$
$(2 x y+5 y)^{2}=(2 x y)^{2}+2(2 x y)(5 y)+(5 y)^{2}$
$=4 x^{2} y^{2}+20 x y^{2}+25 y^{2}$

Question:4(i) Simplify:
$\left(a^{2}-b^{2}\right)^{2}$

Answer:

we use
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
In this $\mathrm{a}=a^{2}$ and $\mathrm{b}=b^{2}$
$\left(a^{2}-b^{2}\right)^{2}=\left(a^{2}\right)^{2}-2\left(a^{2}\right)\left(b^{2}\right)+\left(b^{2}\right)^{2}$
$=a^{4}-2 a^{2} b^{2}+b^{4}$

Question:4(ii) Simplify.
$(2 x+5)^{2}-(2 x-5)^{2}$

Answer:

we use
$a^{2}-b^{2}=(a-b)(a+b)$
In this $\mathrm{a}=(2 \mathrm{x}+5)$ and $\mathrm{b}=(2 \mathrm{x}-5)$
$(2 x+5)^{2}-(2 x-5)^{2}=((2 x+5)-(2 x-5))((2 x+5)+(2 x-5))$
$=(2 x+5-2 x+5)(2 x+5+2 x-5)$
$=(4 \mathrm{x})(10)$
$=40 \mathrm{x}$
or
remember that
$(a+b)^{2}-(a-b)^{2}=4 a b$
here $a=2 x, b=5$
$4 a b=4 \times 2 x \times 5=40 x$

Question:4(iii) Simplify.
$(7 m-8 n)^{2}+(7 m+8 n)^{2}$

Answer:

we use
$(a-b)^{2}=a^{2}-2 a b+b^{2}$ and $(a+b)^{2}=a^{2}+2 a b+b^{2}$
In this $\mathrm{a}=7 \mathrm{~m}$ and $\mathrm{b}=8 \mathrm{n}$
$(7 m-8 n)^{2}=(7 m)^{2}-2(7 m)(8 n)+(8 n)^{2}$
$=49 m^{2}-112 m n+64 n^{2}$
and
$(7 m+8 n)^{2}=(7 m)^{2}+2(7 m)(8 n)+(8 n)^{2}$
$=49 m^{2}+112 m n+64 n^{2}$

So, $(7 m-8 n)^{2}+(7 m+8 n)^{2}=49 m^{2}-112 m n+64 n^{2}+49 m^{2}+112 m n+64 n^{2}$
$=2\left(49 m^{2}+64 n^{2}\right)$
or
remember that
$(a-b)^{2}+(a+b)^{2}=2\left(a^{2}+b^{2}\right)$

Question: 4(iv) Simplify.
$(4 m+5 n)^{2}+(5 m+4 n)^{2}$

Answer:

we use
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
1) In this $\mathrm{a}=4 \mathrm{~m}$ and $\mathrm{b}=5 \mathrm{n}$
$(4 m+5 n)^{2}=(4 m)^{2}+2(4 m)(5 n)+(5 n)^{2}$
$=16 m^{2}+40 m n+25 n^{2}$
2) in this $\mathrm{a}=5 \mathrm{~m}$ and $\mathrm{b}=4 \mathrm{n}$
$(5 m+4 n)^{2}=(5 m)^{2}+2(5 m)(4 n)+(4 n)^{2}$
$=25 m^{2}+40 m n+16 n^{2}$

So, $(4 m+5 n)^{2}+(5 m+4 n)^{2}=16 m^{2}+40 m n+25 n^{2}+25 m^{2}+40 m n+16 n^{2}$
$=41 m^{2}+80 m n+41 n^{2}$

Question: 4(v) Simplify.
$(2.5 p-1.5 q)^{2}-(1.5 p-2.5 q)^{2}$

Answer:

we use
$a^{2}-b^{2}=(a-b)(a+b)$

1) In this $a=(2.5 p-1.5 q)$ and $b=(1.5 p-2.5 q)$

$$
\begin{aligned}
&(2.5 p-1.5 q)^{2}-(1.5 p-2.5 q)^{2}=((2.5 p-1.5 q)-(1.5 p-2.5 q))((2.5 p- \\
&1.5 q)+(1.5 p-2.5 q)) \\
&=(2.5 p-1.5 q-1.5 p+2.5 q)(2.5 p-1.5 q+1.5 p-2.5 q) \\
&= 4(p+q)(p-q) \\
&= 4\left(p^{2}-q^{2}\right)
\end{aligned}
$$

Question:4(vi) Simplify.
$(a b+b c)^{2}-2 a b^{2} c$

Answer:

We use identity
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
In this $\mathrm{a}=\mathrm{ab}$ and $\mathrm{b}=\mathrm{bc}$
$(a b+b c)^{2}=(a b)^{2}+2(a b)(b c)+(b c)^{2}$
$=a^{2} b^{2}+2 a b^{2} c+b^{2} c^{2}$
Now, $a^{2} b^{2}+2 a b^{2} c+b^{2} c^{2}-2 a b^{2} c$
$=a^{2} b^{2}+b^{2} c^{2}$

Question:4(vii) Simplify.
$\left(m^{2}-n^{2} m\right)^{2}+2 m^{3} n^{2}$

Answer:

We use identity
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
In this $\mathrm{a}=m^{2}$ and $\mathrm{b}=n^{2} m$
$\left(m^{2}-n^{2} m\right)^{2}=\left(m^{2}\right)^{2}-2\left(m^{2}\right)\left(n^{2} m\right)+\left(n^{2} m\right)^{2}$
$=m^{4}-2 m^{3} n^{2}+n^{4} m^{2}$
Now, $m^{4}-2 m^{3} n^{2}+n^{4} m^{2}+2 m^{3} n^{2}$
$=m^{4}+n^{4} m^{2}$

Question:5(i) Show that
$(3 x+7)^{2}-84 x=(3 x-7)^{2}$

Answer:

L.H.S. $=(3 x+7)^{2}-84 x=9 x^{2}+42 x+49-84 x$
$=9 x^{2}-42 x+49$
$=(3 x-7)^{2}$
= R.H.S.

Hence it is prooved

Question:5(ii) Show that
$(9 p-5 q)^{2}+180 p q=(9 p+5 q)^{2}$

Answer:

L.H.S.
$=(9 p-5 q)^{2}+180 p q=81 p^{2}-90 p q+25 q^{2}+180 p q$ (Using $\left.(a-b)^{2}=a^{2}-2 a b+b^{2}\right)$
$=81 p^{2}+90 p q+25 q^{2}$
$=(9 p+5 q)^{2}\left((a+b)^{2}=a^{2}+2 a b+b^{2}\right)$
= R.H.S.

Question:5(iii) Show that.
$\left(\frac{4}{3} m-\frac{3}{4} n\right)^{2}+2 m n=\frac{16}{9} m^{2}+\frac{9}{16} n^{2}$

Answer:

First we will solve the LHS :

$$
\begin{aligned}
& =\left(\frac{4}{3} m-\frac{3}{4} n\right)^{2}+2 m n=\frac{16}{9} m^{2}-2 m n+\frac{9}{16} n^{2}+2 m n \\
& \text { or }=\frac{16}{9} m^{2}+\frac{9}{16} n^{2} \\
& =\text { RHS }
\end{aligned}
$$

Question:5(iv) Show that.

$(4 p q+3 q)^{2}-(4 p q-3 q)^{2}=48 p q^{2}$

Answer:

Opening both brackets we get,

$$
\begin{aligned}
& (4 p q+3 q)^{2}-(4 p q-3 q)^{2}=16 p^{2} q^{2}+24 p q^{2}+9 q^{2}-\left(16 p^{2} q^{2}-24 p q^{2}+9 q^{2}\right) \\
& \left.=16 p^{2} q^{2}+24 p q^{2}+9 q^{2}-16 p^{2} q^{2}+24 p q^{2}-9 q^{2}\right) \\
& =48 p q^{2}
\end{aligned}
$$

= R.H.S.

Question:5(v) Show that

$$
(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0
$$

Answer:

Opening all brackets from the LHS, we get :

$$
\begin{aligned}
& (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a) \\
= & a^{2}+a b-a b-b^{2}+b^{2}+b c-b c-c^{2}+c^{2}+c a-a c-a^{2} \\
= & 0=\text { RHS }
\end{aligned}
$$

Question:6(i) Using identities, evaluate.
71^{2}

Answer:

We will use the identity:
$(a+b)^{2}=a^{2}+2 a b+b^{2}$

So, $71^{2}=(70+1)^{2}=70^{2}+2(70)(1)+1^{2}$
$=4900+140+1$
$=5041$

Question:6(ii) Using identities, evaluate.
99^{2}

Answer:

Here we will use the identity :
$(a-b)^{2}=a^{2}-2 a b+b^{2}$

So : $99^{2}=(100-1)^{2}=100^{2}-2(100)(1)+1^{2}$
or $=10000-200+1$
$=9801$

Question:6(iii) Using identities, evaluate.
102^{2}

Answer:

Here we will use the identity :
$(a+b)^{2}=a^{2}+2 a b+b^{2}$

So :
$102^{2}=(100+2)^{2}=100^{2}+2(100)(2)+2^{2}$
or $=10000+400+4$
$=10404$

Question:6(iv) Using identities, evaluate.
998^{2}

Answer:

Here we will the identity :
$998^{2}=(1000-2)^{2}=1000^{2}-2(1000)(2)+2^{2}$
or $=1000000-4000+4$
or $=996004$

Question:6(v) Using identities, evaluate.
5.2^{2}

Answer:

Here we will use :
$(a+b)^{2}=a^{2}+2 a b+b^{2}$

Thus
$(5.2)^{2}=(5.0+0.2)^{2}=5^{2}+2(5)(0.2)+(0.2)^{2}$
or $=25+2+0.04$
$=27.04$

Question:6(vi) Using identities, evaluate.
297×303

Answer:

This can be written as:
$297 \times 303=(300-3) \times(300+3)$
using $(a-b)(a+b)=a^{2}-b^{2}$
or $=90000-9$
$=89991$

Question:6(vii) Using identities, evaluate.
78×82

Answer:

This can be written in form of :
$78 \times 82=(80-2) \times(80+2)$
or $=80^{2}-2^{2} \because(a-b)(a+b)=a^{2}-b^{2}$
or $=6400-4=6396$

Question:6(viii) Using identities, evaluate.
8.9^{2}

Answer:

Here we will use the identity :
$(a-b)^{2}=a^{2}-2 a b+b^{2}$

Thus:
$8.9^{2}=(9-0.1)^{2}=9^{2}-2(9)(0.1)+0.1^{2}$
or $=81-1.8+0.01$
or $=79.21$

Question:6(ix) Using identities, evaluate.
10.5×9.5

Answer:

This can be written as:
$10.5 \times 9.5=(10+0.5) \times(10-0.5)$
or $=10^{2}-0.5^{2} \because(a+b)(a-b)=a^{2}-b^{2}$
or $=100-0.25$
or $=99.75$

Question:7(i) Using $a^{2}-b^{2}=(a+b)(a-b)$, find
$51^{2}-49^{2}$

Answer:

We know,
$a^{2}-b^{2}=(a+b)(a-b)$

Using this formula,
$51^{2}-49^{2}=(51+49)(51-49)$
$=(100)(2)$
= 200

Question:7(ii) Using $a^{2}-b^{2}=(a+b)(a-b)$, find $(1.02)^{2}-(0.98)^{2}$

Answer:

We know,
$a^{2}-b^{2}=(a+b)(a-b)$

Using this formula,
$(1.02)^{2}-(0.98)^{2}=(1.02+0.98)(1.02-0.98)$
$=(2.00)(0.04)$
$=0.08$

Question:7(iii) Using $a^{2}-b^{2}=(a+b)(a-b)$, find.
$153^{2}-147^{2}$

Answer:

We know,
$a^{2}-b^{2}=(a+b)(a-b)$

Using this formula,
$153^{2}-147^{2}=(153-147)(153+147)$
$=(6)(300)$
$=1800$

Question:7(iv) Using $a^{2}-b^{2}=(a+b)(a-b)$, find
$12.1^{2}-7.9^{2}$

Answer:

We know,
$a^{2}-b^{2}=(a+b)(a-b)$

Using this formula,
$(1.02)^{2}-(0.98)^{2}=(1.02+0.98)(1.02-0.98)$
$=(2.00)(0.04)$
$=0.08$

Question:8(i) Using $(x+a)(x+b)=x^{2}+(a+b) x+a b 103 \times 104$

Answer:

We know,
$(x+a)(x+b)=x^{2}+(a+b) x+a b$

Using this formula,
$103 \times 104=(100+3)(100+4)$

Here $x=100, a=3, b=4$
$\therefore 103 \times 104=100^{2}+(3+4) 100+(3 \times 4)$
$=10000+1200+12$
$=11212$

Question:8(ii) Using $(x+a)(x+b)=x^{2}+(a+b) x+a b$, find
5.1×5.2

Answer:

We know,
$(x+a)(x+b)=x^{2}+(a+b) x+a b$

Using this formula,
$5.1 \times 5.2=(5+0.1)(5+0.2)$

Here $x=5, a=0.1, b=0.2$
$\therefore 5.1 \times 5.2=5^{2}+(0.1+0.2) 5+(0.1 \times 0.2)$
$=25+1.5+0.02$
$=26.52$

Question:8(iii) Using $(x+a)(x+b)=x^{2}+(a+b) x+a b$, find 103×98

Answer:

We know,
$(x+a)(x+b)=x^{2}+(a+b) x+a b$

Using this formula,
$103 \times 98=(100+3)(100-2)=(100+3)\{100+(-2)\}$

Here $x=100, a=3, b=-2$
$\therefore 103 \times 98=100^{2}+(3+(-2)) 100+(3 \times(-2))$
$=10000+100-6$
$=10094$

Question: 8(iv) Using $(x+a)(x+b)=x^{2}+(a+b) x+a b$, find
9.7×9.8

Answer:

We know,
$(x+a)(x+b)=x^{2}+(a+b) x+a b$

Using this formula,
$9.7 \times 9.8=(10-0.3)(10-0.2)=\{10+(-0.3)\}\{10+(-0.2)\}$

Here $x=10, a=-0.3, b=-0.2$
$\therefore 9.7 \times 9.8=10^{2}+((-0.3)+(-0.2)) 10+((-0.3) \times(-0.2))$
$=100-5+0.06$
$=95$.

