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This paper presents the results of both a high-fidelity simulation of spacecraft orbit 
determination in a near rectilinear halo orbit (NRHO), as well as investigations of various 
aspects of NRHO operations, including NRHO insertion and long-horizon orbit maintenance. 
Others in the literature have examined the NRHO navigation problem with linear covariance 
analysis, but the highly-nonlinear dynamics of this orbit challenge the assumptions underlying 
such analyses. The present work builds on similar analysis performed by other authors to 
contribute a fuller understanding of the operational requirements for NRHO navigation. The 
present work serves as a check to the assumptions of previous studies and an independent 
verification of those results. Various trades are performed, including: NRHO insertion 
cleanup, short-horizon and long-horizon orbit maintenance, tracking cadence, tracking pass 
placement, filter type, measurement noise, and measurement type. Spacecraft state 
uncertainty estimates are evaluated as a function of time. Simulated range and range-rate 
measurements with the Deep Space Network (DSN) ground stations are used to model orbit 
determination accuracy. Orbit maintenance maneuvers are performed using both short-
horizon and long-horizon stationkeeping targeting. Monte Carlo analysis of orbit 
determination and stationkeeping is performed.  

I. Introduction 
NASA’s current plans for human and robotic exploration include a renewed focus on the Moon. Two upcoming 

missions, the crew-tended Gateway and the robotic CAPSTONE spacecraft, plan to exploit low-cost mission 
opportunities offered by multibody orbits. Both spacecraft plan to primarily reside in Near Rectilinear Halo Orbits 
(NRHOs) near the Moon. Nearly-stable members of the halo orbit families, southern L2 NRHOs have low ΔV 
requirements for orbit maintenance, and they offer extensive coverage of the lunar south pole, fast and relatively 
inexpensive access to the lunar surface, and favorable aborts back to the Earth.1 To achieve inexpensive orbit 
maintenance, safe rendezvous, and reliable disposal of spacecraft from NRHO, accurate orbit determination (OD) 
within the NRHO is required.  

Many missions, including ICEE-3, Genesis, ACE, SOHO and Wind,2 have successfully operated in Sun-Earth 
halo orbits. The upcoming JWST and WFIRST3 missions are also planned to reside in Sun-Earth halos. A single 
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mission to date, the 2010 ARTEMIS mission that served as an end-of-life opportunity for two of the THEMIS 
spacecraft, has demonstrated successful operations, including accurate OD, in Earth-Moon halo orbits.4 The 
CAPSTONE mission, scheduled to launch in December 2020, and the Gateway starting in 2022 will be the first 
spacecraft to operate in NRHOs. 

NRHOs represent a subset of the L1 and L2 halo orbits, bounded by changes in linear stability. Some NRHOs are 
linearly stable in the Earth-Moon circular restricted three-body dynamics; others are slightly unstable. The current 
nominal orbit for the Gateway is a 9:2 synodic resonant southern L2 NRHO, meaning that the spacecraft completes 9 
revolutions about the Moon for every 2 synodic revolutions of the Moon about the Earth. This resonance is favorable 
because it minimizes the amount of time spent in the Earth’s shadow while offering favorable lunar surface access. 
NRHOs with a 9:2 resonance are linearly unstable. However, small maneuvers can maintain a safe orbit for a ΔV cost 
on the order of a few meters per second per year. A 9:2 resonant NRHO appears in the Earth-Moon rotating frame 
Figure 1a. 

Certain characteristics of NRHOs complicate orbit determination. For example, when propagated in a high-
fidelity ephemeris model, an NRHO is quasi-periodic in the Earth-Moon rotating frame, and the orbital plane is 
approximately perpendicular to the line-of-sight from Earth. This geometry leads to navigational challenges, since 
Earth-based range and range-rate measurements cannot directly measure the main orbital motion; the system is poorly 
observable. Additionally, NRHOs are characterized by large variations in the distance to the Moon; the radius of the 
9:2 NRHO ranges from approximately 3,500 km at perilune to about 71,000 km at apolune.  These significant 
differences cause the acceleration experienced by the spacecraft to vary by 2-3 orders of magnitude within a single 
revolution. The variation in acceleration experienced by a spacecraft in an NRHO is compared to the variation in 
acceleration experienced by a spacecraft in low lunar orbit (LLO) in Figure 1b. This extreme change in dynamics is 
comparable (in terms of navigational challenge) to performing a lunar flyby once every week.  

Further navigational complications arise from the limited control authority available to a spacecraft with solar 
electric propulsion (SEP), such as the Power and Propulsion Element (PPE) of the Gateway. It is apparent in Figure 
1b that the SEP control acceleration is considerably less than the gravity of the Moon and Earth at all times. If the 
orbit determination filter fails to track the spacecraft, there is a potential risk that the spacecraft’s path could diverge 
beyond the point of recoverability by the SEP thrusters. That is, there is some amount of spacecraft state error beyond 
which the spacecraft’s limited control authority is inadequate to return to the nominal NRHO without large corrections 
or the use of an alternative propulsion system such as RCS thrusters.  

 

 
Figure 1. 9:2 NRHO in the Earth-Moon rotating frame (a); Accelerations acting on spacecraft in LLO and 

NRHO orbits (b). 
  
Several investigations have already begun to explore orbit determination in the lunar NRHO regime.  Newman et 

al. 5 perform a linear covariance analysis as a first look at NRHO navigation with Deep Space Network (DSN) tracking. 
Winternitz et al.6 explore the enhancement in the OD solution available when a GPS receiver is included onboard, and 
Yun et al.7 investigate adding optical measurements as well. Guinn et al.8 investigate relative-only optical navigation 
strategies. Since the highly-nonlinear dynamics of this orbit challenge the assumptions underlying linear covariance 
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analyses, further analyses by Newman et al.9 and Volle et al.10,11 employ Monte Carlo OD simulations using both DSN 
and relative measurements. 

The present work serves as a check to the assumptions of previous studies and an independent verification of 
those results. Various navigation trades are performed, including: tracking cadence, tracking pass placement, filter 
type, measurement noise, and measurement type. Spacecraft state uncertainty estimates are evaluated as a function of 
time. Simulated range and range-rate measurements with DSN ground stations are used to model orbit determination 
accuracy. Orbit maintenance maneuvers are performed using both short-horizon and long-horizon stationkeeping 
targeting. Finally, a Monte Carlo analysis of orbit determination and stationkeeping is performed. 

II. Dynamics and Assumptions 
Spacecraft dynamics are modeled in GMAT (the General Mission Analysis Tool, developed at Goddard Space 

Flight Center)12 and Monte (Mission Analysis, Operations, and Navigation Toolkit Environment, developed at the Jet 
Propulsion Laboratory).13 In this analysis, GMAT generates the “truth” solution with the following forces modeled:  

● 32x32 spherical harmonics gravity field model of the Moon from the GRGM 900c model.  
● Point masses of the Earth, Sun, and barycenters of all other planetary systems in the solar system, with states 

from the JPL DE430 ephemerides.14 
● Solar radiation pressure (SRP) with a spherical spacecraft with coefficient of reflectivity of 1.3. Mass and 

surface area depend on the Gateway configuration according to Table 1. These values are representative of 
possible Gateway configurations.  

● Relativistic correction.  
The filter dynamics are slightly different from the “true” dynamics in order to represent realistic mis-modeling of 

small forces. Note that although the spherical model for SRP is not generally very accurate, it is a good approximation 
in this case. The Gateway is assumed to be oriented in SPEA (solar pressure equilibrium attitude), a sun-fixed attitude 
identified to minimize torques caused by SRP. Since this attitude is fixed relative to the Sun, using an equivalent area 
flat plate or spherical model captures the true dynamics accurately. The filter dynamics are implemented separately in 
GMAT and Monte and include the following forces:  

● 16x16 spherical harmonics gravity field model of the Moon from the GRGM 900c model.  
● Point masses of the Earth, Sun, and barycenters of all other planetary systems in the solar system, with states 

from the JPL DE430 ephemerides.14 
● Solar radiation pressure with a spherical spacecraft. Mass, surface area, and coefficient of reflectivity are 

initialized randomly with error according to the uncertainties given in Table 2.  
● Relativistic correction.  
Navigation is simulated separately in GMAT and in Monte. In both navigation simulations, the filter defines the 

dynamics in an Earth-centered J2000 inertial reference frame. The GMAT simulation uses a batch filter iterated until 
convergence. Convergence is defined as meeting the absolute and relative weighted RMS convergence criteria (0.01 
and 0.001, respectively) and usually takes 3-5 iterations. GMAT’s outer loop sigma editing (OLSE) is not used here 
because the simulated measurements are known to all be valid. In real operations, outlier measurements would be 
ignored to avoid incorporating bad data.  

The Monte simulation compares two different filters: the U-D factorized covariance filter, and the square root 
information filter (SRIF). Both of these filters are meant to mitigate the numerical instability of conventional Kalman 
filters as the covariance matrix becomes ill-conditioned.15,16 The SRIF has been previously used in interplanetary 
spaceflight on Mariner 10, and showed key advantages over a conventional batch filter during Venus flyby, a key 
phase of the mission. The low perilune of an NRHO provides a dynamic environment somewhat comparable to a 
planetary flyby, and as such, these filters are likely well-suited for use in an NRHO. Both filters in Monte use stochastic 
accelerations on the order of 5x10-7 mm/s2 updated every 8 hours to absorb dynamical mis-modeling.  

In this analysis, a data arc always consists of nearly one complete orbit, starting immediately after the orbit 
maintenance maneuver (OMM) performed at apolune, and ending at the data cutoff 24 hours before the next apolune. 
Ground station tracking passes are allowed between apolune and data cutoff only. OMMs are not estimated. Future 
analysis will model the OMMs in the filter and also allow tracking passes during the 24 hours between data cutoff and 
the next apolune (these data would be used to estimate the state for the subsequent data cutoff).  

All analyses in this paper use three DSN (Deep Space Network) ground stations, with a maximum of one ground 
station active at a time. The ground stations simulate a 35-m dish at the Madrid, Canberra, and Goldstone facilities. 
The Gateway performs tracking passes with the DSN on X-band radio. Measurement noise in reality is dependent on 
the signal to noise ratio of the communication link, which is in turn dependent on many factors, such as the ground 
radio specifications, spacecraft radio specifications, and weather in Earth’s ionosphere.17 The measurement noise 
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specified in Table 2 is chosen to be similar to the real measurement noise found from post-processing of the ARTEMIS 
mission18 All maneuvers are assumed to be impulsive changes in velocity (ΔV).  

As the Gateway is constructed element-by-element, there will be many different vehicle configurations, each with 
its own operational requirements. In the present analysis, only the first two potential configurations are examined: 
PPE (power & propulsion element) only, and PPE + HALO (Habitation and Logistics Outpost). In these 
configurations, Gateway is in a quiescent (uncrewed) state, which results in smaller and less frequent perturbations. 
With crew aboard, venting becomes a significant source of uncertainty in the dynamics. Later configurations also 
experience larger gravity gradient torques near perilune, requiring more frequent momentum wheel desaturation 
maneuvers. The present analysis assumes that a single desaturation maneuver is performed each orbit in a random 
direction, immediately before each OMM.  
 
Table 1. Representative values for the Gateway configurations analyzed.  

Gateway Configuration Mass [kg] Sun-facing area [m2] 

1) PPE 5700 310 

2) PPE + HALO 13700 340 
 
 
Table 2. Assumed sources of uncertainty.  

Error source Uncertainty (3𝜎) 

Mass uncertainty 3% 

SRP area 30% 

Coefficient of reflectivity 45% 

OMM execution error 1.42 mm/s fixed, 1.5% proportional, 1 deg 
pointing 

Measurement bias 7.5 m (range), 2.5 mm/s (range-rate) 

Measurement noise 3 m (range), 1 mm/s (range-rate) 
 
 
Table 3. A priori state error and covariance.  

Estimated parameter 3𝜎 a priori state error relative to truth 
(applied once at start of simulation) 

a priori covariance (re-initialized 
at the start of every data arc) 

Position in Earth-centered J2000 10 km ∞ km 

Velocity in Earth-centered J2000 10 cm/s ∞ m/s 

Coefficient of reflectivity 45% ∞ 

Range measurement bias 1 m ∞ 

Range-rate measurement bias 1 mm/s ∞ 

III. Navigation Study Setup 
The present work builds on results from the literature discussed above to outline the operational requirements for 

NRHO navigation. Typical statistical orbit determination relies on two fundamental assumptions:  
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1) The spacecraft state uncertainty distribution is always Gaussian.  
2) The state dynamics and measurement-state relationships can be linearized relative to a reference trajectory.  

In an NRHO, both of these assumptions are pushed to their limits. Figure 2 shows how the standard moments (standard 
deviation, skewness, and excess kurtosis) evolve over time, for an initial 3𝜎 covariance of 10 km position in each axis 
and 10 cm/s velocity in each axis, sampled at apolune. The values in Figure 2 are computed based on a Monte Carlo 
simulation with 1,000 samples. Even over a single orbit, the dynamics are clearly nonlinear, and the state uncertainty 
quickly becomes non-Gaussian.  

  
Figure 2. Evolution of position and velocity standard moments over time in an NRHO. 

Linear covariance analysis is a common way to approximate spacecraft navigation performance. A covariance 
analysis, also known as a Cramer-Rao analysis,19 is essentially equivalent to a single iteration of a sequential filter. 
The update to the covariance matrix is computed with each measurement, but the measurement is not used to update 
the state estimate. Covariance analysis is adequate when the fundamental assumptions described above are satisfied 
or nearly satisfied. However, covariance analysis on its own can be misleading. For instance, it is entirely possible 
that a navigation filter would saturate and converge on an incorrect solution. Stochastic acceleration may be required 
in a real filter to capture significant but difficult-to-model forces. Engineering intuition is required to ensure that the 
covariance analysis does not return overly-optimistic results. Given the highly-nonlinear dynamics in an NRHO, it is 
not immediately obvious to what extent linear covariance analysis can be trusted in this regime. The goal of the present 
analysis is to set up a realistic navigation analysis which makes the fewest assumptions possible, then quantify the 
navigation performance for various operations parameters.  

The navigation simulation uses three spacecraft: the Reference, which is an idealized target; the Truth, which 
simulates the real spacecraft; and the Navigation spacecraft, which represents the best estimate of the Truth at any 
time. Figure 3 illustrates the role each of these spacecraft play in the simulation. The filter never knows the state of 
the Truth directly. Simulated range and range-rate measurements are generated (with noise and bias errors) from the 
Truth and subsequently passed through the filter, as shown in Figure 4.  
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Figure 3. Conceptual diagram of the relationship between the Reference, Navigation, and Truth spacecraft.  

 
Figure 4. Conceptual diagram of measurement errors.  

In multi-body dynamics, results in the literature have shown that the navigation state accuracy is closely correlated 
to mission ΔV.20 The present results agree with that finding. Figure 5 shows a conceptual diagram of why that is the 
case. Trajectory correction maneuvers (TCMs) or orbit maintenance maneuvers (OMMs) are always designed based 
on the Navigation spacecraft — the best estimate of the Truth state. In general, there will always be some error between 
the Navigation state and the Truth state at the maneuver execution epoch. This error is exacerbated by a simple 
practical concern: the maneuver must be designed based on data available as of the data cutoff epoch, which is assumed 
here to be 24 hours before the maneuver execution epoch. Between the data cutoff epoch and the maneuver execution 
epoch, the ground-based navigation team must carry out a series of important analyses: process the measurement data 
to-date, design a nominal maneuver, ensure that the maneuver execution error will not endanger the mission, build the 
spacecraft instructions, and upload the instructions to the spacecraft. A good example of this process is described in 
the experience from the Dawn mission.21  

While these ground-based operations are taking place, the Navigation state uncertainty grows. When the 
maneuver is executed, it is based on an incorrect state estimate and executed with error. If these errors are small, they 
do not contribute much to the total ΔV of the mission. However, the chaotic nature of multi-body dynamics means 
that real errors have a significant effect on the mission. In a navigation simulation, care must be given to represent 
these constraints and errors realistically.  
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Figure 5. Conceptual diagram of navigation errors and uncertainty.  

In order to preserve the validity of the results of a simulated navigation study, it is important that the navigation 
estimate never directly touches the truth. Or, in other words, the navigation simulation must not cheat by having 
unrealistic knowledge of the truth. This concept is visualized in Figure 6. The present analysis goes to lengths to 
ensure that the Truth and Navigation spacecraft are isolated from each other. This is done by modeling them in 
different software (Truth in GMAT, Navigation in Monte), using different force models, and using realistic a priori 
state error and covariance in the filter.  

 

 
Figure 6. Conceptual relationship between truth and the navigation estimate. 

 
One common metric for filter performance is the covariance at the end of a data arc. However, as noted above, 

the covariance alone is not a sufficient metric. In the present analysis, filter performance is judged based on the 
following characteristics, in addition to the covariance:  

● Convergence or divergence.  
● Truth trajectory remaining within the uncertainty bounds of the navigation solution.  
● Accuracy of the navigation solution (relative to truth).  
● The ability of the truth spacecraft to efficiently and safely maintain its orbit while executing maneuvers 

designed based on the navigation solution.  
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IV. Results 
The results in this section describe analyses of NRHO insertion cleanup, stationkeeping, and navigation trades—

all with simulated orbit determination.  

A. NRHO Insertion 
Because the NRHO Insertion Maneuver (NIM) is modeled to occur at perilune, an area known to be very 

dynamically sensitive, a pair of post-insertion maneuvers is designed to bring the resulting trajectory closer to the 
reference. The strategy for these maneuvers is based on the long-horizon orbit maintenance strategy described by 
Davis et. al.22 The Insertion Correction Maneuver (ICM) strategy is depicted in Figure 7. ICM-1 targets the position 
of the reference orbit at the epoch of ICM-2. After ICM-1 is performed, the spacecraft coasts to ICM-2, where it 
targets velocity continuity with the reference at the same epoch. This maneuver is not applied, however, and instead 
is used as the initial guess for an OMM, which is performed in place of ICM-2. The standard OMM procedure is 
described in Section IV B.  

 
Figure 7. Conceptual diagram of the Insertion Correction Maneuvers strategy. 

 
For this analysis, it is assumed that there is continuous tracking between insertion and the first data cutoff point, 

labelled DCO-1 in Figure 7, as well as between ICM-1 and DCO-2. Trades in the elapsed time between each of DCO 
points and maneuver execution times, as well as the temporal spacing of the maneuvers, are all considered. The trades 
are summarized in Table 4. Each case represents a Monte Carlo analysis of approximately 100 runs, each sampling 
random errors for insertion, desaturation perturbations, and OMM execution. The insertion errors were determined by 
sampling errors from the NRHO insertion maneuver (NIM) of a ballistic lunar transfer (BLT). The navigation 
requirements and expected performance are studied in a parallel analysis in Parrish et al.23 
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Table 4. Summary of Insertion Correction Maneuver trades. Note that true anomaly is undefined for three-body 
orbits, but the osculating true anomaly serves as a useful metric for position within the orbit. See Phillips et al.24 for 
a depiction of osculating true anomaly in the context of a 9:2 NRHO. 

 Event Separation Event True Anomaly (Osculating) [degrees] 

Case NIM to 
DCO-1  

DCO-1 to 
ICM-1 

ICM-1 to 
DCO-2 

DCO-2 to 
ICM-2 

DCO-1 ICM-1 DCO-2 ICM-2 

1 1 day 8 hours 2 days 1 day 158 163 181 189 

2 2 days 8 hours 2 days 1 day 170 173 189 201 

3 2 days 1 day 2 days 1 day 170 179 196 217 

 
The results for each case are presented in Table 5. In all cases, ICM-1 contributes a majority of the total ΔV, with 
ICM-2 often possessing a maneuver that is an order of magnitude smaller. The results indicate that ICMs performed 
closer to perilune result in a smaller total ΔV, but a greater separation between the maneuvers does not correspond to 
a lower ΔV. While it is clear from the results that the spacing of the maneuvers has a large impact on the total cost, it 
is not necessarily true that Case 1 is an optimal solution, as this trade space was small. Again, it appears that maneuvers 
performed closer to perilune offer greater fuel savings, but more analysis is required to identify the best location; an 
ICM performed very close to perilune might yield a low initial cost, but the sensitivity of the NRHO around perilune 
may result in a higher total ΔV and/or a trajectory that is still very far from the reference due to maneuver execution 
errors and other perturbations. Future analysis will explore this trade more thoroughly.  
 

Table 5. Summary of ICM results. 

 
Case 

ICM-1 Cost [m/s] ICM-2 Cost [m/s] Total ICM Cost [m/s] 

Mean STD Mean STD Min Max Mean STD DV99 

1 1.879 1.380 0.431 0.307 0.056 9.053 2.311 1.682 7.589 

2 2.839 2.158 0.784 0.581 0.094 15.10 3.623 2.735 12.024 

3 3.934 2.964 1.125 0.822 0.106 19.721 5.059 3.782 16.308 

 

B. Stationkeeping 
This analysis implements both a short-horizon and a long-horizon stationkeeping strategy, with state estimation 

updates provided by a navigation filter processing simulated observations. The short-horizon algorithm is designed to 
keep the spacecraft in the vicinity of the NRHO without applying stringent, high-ΔV constraints. The long-horizon 
strategy is applied to maintain the phase of the NRHO; that is, to ensure the perilune passage time of the Gateway 
does not drift far from that of the reference NRHO. The goal is to avoid long eclipses from the Earth’s shadow, which 
are absent from the reference,25 and also to provide a predictable state for spacecraft arriving and departing from the 
Gateway. The predictable timing of the Gateway state within the NRHO will facilitate transfers to and from Earth as 
well as lander missions to the lunar surface. 

The short-horizon stationkeeping strategy implemented in the current study is an x-axis crossing control scheme.  
A maneuver at apolune is designed to target the x-component of rotating velocity, vx, along a reference trajectory at 
perilune 6.5 revolutions downstream. This strategy has been found effective in literature.9,26 OMMs with magnitudes 
under 3 cm/s are not executed for the sake of operational simplicity. 
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Stationkeeping ΔV as a function of Gateway configuration  
Different configurations of the Gateway have different physical properties. An important parameter that affects 

stationkeeping cost is the vehicle’s area-to-mass ratio (AMR), which influences the magnitude of SRP perturbations. 
This is especially important when targeting the 15-year reference NRHO, which does not include SRP forces. To 
illustrate this effect, two configurations of the Gateway, PPE vs PPE+HALO are simulated in the NRHO for one year 
with a consistent tracking schedule of 8 hours per day. The only differences between the simulations are the area and 
mass properties of the vehicle. Note that these cases did not implement any long-horizon stationkeeping maneuvers, 
and the OMM fixed execution error is larger than what is listed in Table 2 at 9 mm/s. The results are listed in Table 
6. The second configuration, with the lower area-to-mass ratio, results in an annual stationkeeping cost that is 
approximately half that of the higher AMR case. The standard deviation of both cases is similar, though, which 
indicates that the area-to-mass ratio in this range does not significantly impact the spread of maneuver magnitudes. 

 
Table 6 Stationkeeping cost as a function of Gateway configuration. 

Gateway Configuration Mean Annual ΔV[m/s] Annual ΔV 1𝝈 [m/s] 

PPE 4.43 0.58 

PPE + HALO 2.42 0.51 

 
Comparison of long-horizon SK implementation options 

This analysis implements an alternative long horizon stationkeeping strategy, depicted in Figure 8. The strategy 
is similar to that of Davis et al.22 with some minor modifications, most notably with regard to the timing of the 
maneuvers along the orbit: both of the long-horizon maneuvers are performed at apolune. The first maneuver, which 
occurs at time t0, targets the position vector and the apolune epoch of the reference NRHO one revolution downstream, 
at time t1. The resulting post-maneuver state is propagated for one revolution, to t1, at which time the second long-
horizon maneuver is designed. This second maneuver simply achieves velocity continuity with the reference at t1. 

Upon reaching t1, there are two feasible options. The first option performs the second maneuver as designed 
(subject to maneuver execution errors). The second option does not perform that maneuver, but instead uses it as the 
initial guess for an OMM that occurs at t1, according to the short horizon stationkeeping strategy. Both options are 
effective strategies for long-term maintenance of the NRHO, as both implementations are found to safely maintain the 
NRHO for at least one year. However, the first option achieves an orbit that is closer to the reference, as it targets the 
full 7-state (position, velocity, and time). Because of these extra constraints, though, this option results in higher-ΔV 
long-horizon maneuvers than the second option. It is possible that the first option, though more expensive, may prove 
necessary for multi-year stationkeeping—such an investigation is outside the scope of this analysis, however. A 
comparison of these strategies is presented in Table 7.  
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Figure 8. Conceptual diagram of the apolune-to-apolune long-horizon stationkeeping strategy.  

 
Cases 1 & 2 use a batch filter on simulated range and range-rate data. Cases 3–6 approximate navigation by 

perturbing the “navigation” spacecraft relative to the “truth” spacecraft prior to performing the maneuver. Cases 1–4 
use the second apolune-to-apolune long-horizon maneuver option (using the long-horizon maneuver at t1 as the initial 
guess for an OMM), while cases 5-6 use the first apolune-to-apolune option (implementing the long-horizon maneuver 
as designed). 

The first noteworthy comparison is between cases 3–4 and cases 5–6, which shows that the second long-horizon 
options produced maneuvers that are almost half the DV cost as compared to the first option. The second noteworthy 
comparison is between cases 1–2 and cases 3–4, which shows that the results generated using simulated DSN 
measurements produced a smaller annual cost. This is expected, as the state uncertainties returned from the 8-hours-
per-day cadence are almost always smaller than the state uncertainties sampled for the navigation perturbations in 
cases 3–6. Finally, in all cases, more frequent long-horizon maneuvers resulted in higher annual costs, but the change 
was not dramatic. 
 

Table 7. Results of Monte Carlo trials of apolune-to-apolune stationkeeping strategy. 

Case Long-Horizon 
Frequency [# of orbits] 

3𝜎 State Uncertainties [km, 
cm/s] 

Mean Annual ΔV 
[m/s] 

1 10 N/A (8hr / day tracking) 4.273 ± 2.061 

2 15 N/A (8hr / day tracking) 4.050 ± 2.093 

3 10 10, 10 7.141 ± 1.048 

4 15 10, 10 6.856 ± 1.169 

5 10 10, 10 12.434 ± 3.046 

6 15 10, 10 11.51 ± 2.50 

 
Figures 9-11 show the results of a Monte Carlo analysis with 100 random trials for Case 1. The results shown 

here are for Gateway configuration #1 (PPE only, no crew). Figure 9 shows the OMMs as performed. Note that most 
maneuvers are approximately 5-10 cm/s, but every 10 revolutions, a pair of larger maneuvers of approximately 50 
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cm/s each are performed. The small maneuvers are the short-horizon OMMs, and the large ΔVs correspond to the 
long-horizon maneuvers.  

 
Figure 9. Stationkeeping maneuver magnitudes as performed. 

 
Figure 10 shows the 1𝜎 position and velocity covariance returned by a batch filter once per revolution at the data 

cutoff (24 hours before maneuver execution). The geometry and ground tracking for all the random trials is very 
similar, so the covariance results do not vary significantly from trial to trial. It is observed that following some of the 
long-horizon maneuvers, the state uncertainty is significantly larger than on the other revolutions. It is hypothesized 
that these come as a result of long-horizon maneuvers which happen to be aligned with the unstable eigenvector of 
the NRHO, but additional testing is required to understand the phenomena better. Further, the larger maneuvers 
necessarily result in larger execution errors. For the given tracking schedule, the state uncertainties are comparable to 
those found by past studies. This result implies that the general findings of covariance analyses are valid despite the 
nonlinearity of the problem. However, outliers are common, and further study is required to verify.  

 

 
Figure 10. State uncertainty at each estimation epoch, with one eight-hour tracking pass per day. 

 
Figure 11 shows the state error for each random trial immediately following each stationkeeping maneuver 

execution. The position errors are slightly larger than the uncertainties reported above, which is consistent with the 
uncertainty growing over the 24 hours between data cutoff and maneuver execution. The velocity error is substantially 
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larger because of the ~3 cm/s desaturation maneuver performed immediately before the OMM and because of the 
OMM execution error.  

 

 
Figure 11. State error relative to truth immediately after each maneuver execution. 

C. Navigation Trades 
Several trades are presented to discuss the impact on navigation filter performance from tracking cadence, 

tracking pass phasing (where in the orbit the tracking passes take place), filter type, measurement noise, and 
measurement type.  
 
Comparison of tracking cadence 

For this analysis, a number of tracking cadences are evaluated with the U-D factorized covariance filter:  
● Continuous 
● 8 hours per pass, 7 passes per week 
● 8 hours per pass, 3 passes per week 
● 8 hours per pass, 2 passes per week 
● 2 hours per pass, 7 passes per week 
● 2 hours per pass, 3 passes per week 
● 2 hours per pass, 2 passes per week 

 
Table 8. Position and velocity 1𝝈 uncertainties as a function of tracking cadence with U-D factorized 

covariance filter.  
Tracking Cadence Apolune Position 

Uncertainty [km] 
Apolune Velocity 
Uncertainty [m/s] 

Continuous 6.57×10-3 6.65×10-5 

8 hours 7/week 1.91×10-2 1.31×10-4 

8 hours 3/week 1.68×10-1 8.85×10-4 

8 hours 2/week 7.80×10-2 1.58×10-3 
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2 hours 7/week 2.48×10-2 1.65×10-4 

2 hours 3/week 4.40×10-2 2.25×10-4 

2 hours 2/week 5.26×10-2 1.24×10-3 
 

Interestingly, the “8 hours 3/week” case performs worse here than the “8 hours 2/week” case in terms of position 
uncertainty, but still shows a smaller velocity uncertainty. This is because of where the tracking passes happen to fall 
in the orbit. This analysis schedules tracking passes on a temporal basis alone, without any regard as to Gateway’s 
phasing in the NRHO. For short data arcs like an NRHO revolution, the placement of tracking arcs with respect to the 
desired state can be more important than your cumulative tracking time. 
 
Comparison of tracking pass phasing 

A basic test to demonstrate the importance of where measurements are taken in the NRHO can be seen by 
analyzing the instantaneous estimated uncertainty during a continuous tracking cadence. A plot showing this 
uncertainty is shown in Figure 12. The data arc begins at one apolune and ends at the next apolune, with perilune 
marked.  

 
Figure 12. Position and velocity 1𝜎 covariance magnitudes over one NRHO revolution with continuous 

tracking.  
 

At perilune, the system is the most observable because the spacecraft traverses a large distance in a short time. 
As a result, the position covariance reaches its minimum at perilune. However, the difference between the gravity 
field used in the Truth and Navigation models becomes most apparent at perilune. The assumption that the dynamics 
are linearizable also breaks down the most at perilune. As a result of these effects, the velocity uncertainty is at a local 
maximum at perilune. It is not immediately obvious whether the improved observability or the degraded linearizability 
has the greater net effect.  

Additionally, despite continuous tracking through the entire orbit, a spike in velocity uncertainty still occurs as 
the spacecraft passes through perilune. Figure 13 shows prefit and postfit Doppler residuals (in X-band Hz) of the 
simulated measurements. The uncertainty spike in velocity at perilune highlights the sensitivity of the dynamics, and 
in particular reveals that the filter has a hard time modeling the epoch of perilune. A slight state error at apolune 
corresponds to a large error at perilune, and a slight state error at perilune corresponds to a large error at apolune.  
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(a) 

 
(b) 

 
Figure 13. Prefit (a) and postfit (b) Doppler residuals (X-band Hz) over one NRHO revolution with continuous 
tracking.  
 

Despite showing improvement over the a priori guess of the state, there are still clear artifacts of the chaotic 
dynamics at perilune, which leads to a spike in the velocity uncertainty. For this continuous tracking case, the spike is 
short lived, as new observations quickly correct the residuals. However, for cases where a tracking pass begins or ends 
at perilune, the filter may be thrown off by the fast dynamics. This has implications for spacecraft operations: an object 
deployed at or near perilune will have a large state uncertainty, and may prove troublesome for filter convergence. 
 
Comparison of filter type 

For this analysis, there are three tracking cadences used to compare the filter performance between GMAT and 
Monte. Each of the cadences uses a combination of three predefined tracking windows. The three tracking cadences 
are each 8 hours in duration, spaced about the NRHO in approximately-equal intervals. They are depicted in Figure 
14. The first pass begins 1 day after apolune, the second pass begins 3 days after apolune, and the third pass begins 8 
hours before DCO. The first analysis case uses only pass #3, the second case uses passes #1 and #3, and the third case 
uses all three passes.  

In addition to the GMAT and Monte filter performance comparison, each case was simulated for one year with 
100 random samples using with the GMAT batch filter. The results of each case are presented in Table 9. The columns 
under the header “All” represent the results of all attempted orbit determination events, including those for which the 
filter did not converge—hence the large covariances. The columns under the header “Converged Only” consider only 
the orbit determination events for which the filter converged, and the metric “Filter Convergence” represents the 
number of successfully converged orbit determination events (each event corresponds to one revolution of the NRHO). 
Because the tracking cadences are quite sparse, it is unsurprising that there is a relatively high number of unconverged 
events. The state errors are evaluated by comparing the estimated state to the state of the truth spacecraft at the same 
epoch. Such a comparison is impossible in actual operations, as the state of the truth spacecraft is never known, but 
this is one useful metric of identifying if the filter is trustworthy; state errors that are within some bound of the 
covariance—1-sigma in this example—indicate that the filter is converging on a realistic solution. 

As expected, more frequent tracking yields a higher convergence percentage, as well as smaller covariances and 
state errors. The single-pass case exhibits the worst performance in all metrics, with the other cases providing 
improvements by at least one order of magnitude. Further, the mean state errors from the “Pass 3 only” case are larger 
than the corresponding 1-sigma covariance, while the mean state errors in the other two cases are smaller than their 
corresponding 1-sigma covariances. Note that this does not necessarily mean that the first case yields an unusable 
solution, only that the other cases are producing more trustworthy solutions. 
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Figure 14. Three tracking windows used for comparison. 

 
 

Table 9. Comparison of GMAT batch filter performance for different tracking cadences.  

 
 
 

Case 

All Converged Only 

Filter 
Convergence 

Mean 1𝝈 
Covariance 
[km, m/s] 

Mean 1𝝈 
Covariance 
[km, m/s] 

Mean State 
Error 

[km, m/s] 

State Error 
Standard Deviation 

[km, m/s] 

Pass 3 
only 65% 125.74, 

2.144 
8.819, 
0.055 

10.094, 
0.0680 

219.24, 
0.4803 

Passes 1 
and 3 90% 0.1058, 

7.119×10-4 
0.0809, 

6.409×10-4 
0.0604, 

4.446×10-4 
0.0670, 

3.865×10-4 

Passes 1, 
2, and 3 99% 0.0186, 

1.149×10-4 
0.0185, 

1.148×10-4 
0.0150, 

9.435×10-5 
0.0153, 

9.117×10-5 

 
The batch filter is then compared directly to the U-D Factorized Covariance filter and the Square Root Information 

Filter (SRIF), for a single revolution in the NRHO. The same Truth spacecraft is used in both GMAT and Monte. The 
two pieces of software generate simulated measurements separately, with the same measurement noise and tracking 
passes. Results of the comparison are shown in Table 10. As expected, all three filters find that increasing the number 
of tracking passes per revolution improves filter performance. The U-D Factorized Covariance filter and the SRIF 
both return exactly the same covariance, which is different than the value returned by the GMAT batch filter. In the 
first two cases, the GMAT batch filter yielded worse performance, but in the final case, the batch filter yielded the 
best performance (noting that all the covariances are on the same order of magnitude for this case). 
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Table 10. Comparison of filter types and tracking cadences over a single data arc. 
Case 1𝝈 uncertainty, GMAT 

Batch 
1𝝈 uncertainty, Monte 
U-D Factorized 
Covariance 

1𝝈 uncertainty, Monte 
SRIF 

Pass 3 only 5.641 km, 0.120 m/s 1.836 km, 0.0175 m/s 1.836 km, 0.0175 m/s 

Pass 1 & 3 0.306 km, 0.00351 m/s 0.040 km, 0.00083 m/s 0.040 km, 0.00083 m/s 

Pass 1, 2, & 3 (nominal) 0.016 km, 0.00009 m/s 0.025 km, 0.00016 m/s 0.025 km, 0.00016 m/s 
 
Comparison of measurement noise 

In this analysis, the impact of measurement noise is considered for the case where three tracking passes are used 
per orbit, as described above. The U-D factorized covariance filter in Monte is used. Filter performance is reported as 
covariance at the end of a representative data arc (apolune 24 hours after data cut-off). Results are shown in Table 11.  
 

Table 11. Position and velocity 1𝝈 uncertainties as a function of measurement noise with U-D factorized 
covariance filter.  

Measurement noise (3𝝈) Apolune Position 
Uncertainty [km] 

Apolune Velocity 
Uncertainty [m/s] 

3 m, 1 mm/s (nominal) 2.49x10-2 1.60x10-4 

10 m, 10 mm/s 3.39x10-2 2.06x10-4 

15 m, 25 mm/s 3.92x10-2 2.38x10-4 

 
Comparison of measurement type 

In this analysis, the impact of measurement type is considered for the case where three tracking passes are used 
per orbit, as described above. Range-only, range-rate-only, and range plus range-rate data types are considered with 
the U-D factorized covariance filter. Range measurements require more communications bandwidth than Doppler 
measurements, so it would be useful if spacecraft could perform reasonable navigation on Doppler alone, particularly 
for spacecraft with small antennas. Filter performance is reported as covariance at the end of a representative data arc 
(apolune 24 hours after data cut-off). Results are shown in Table 12. Note that the uncertainty is smaller for the case 
with range data only than the case with range and range-rate data. This is most likely because the filter struggles to fit 
velocity through perilune (as observed in Figs 13-14). However, the highly-nonlinear behavior near perilune is real. 
The filter with range data only is likely returning an overly-optimistic estimate of the state uncertainty. This reveals 
one of the limitations of relying completely on covariance to determine filter performance.  
 

Table 12. Position and velocity 1𝝈 uncertainties as a function of measurement type with U-D factorized 
covariance filter.  

Measurement type Apolune Position 
Uncertainty [km] 

Apolune Velocity 
Uncertainty [m/s] 

Range only 1.91x10-2 1.32x10-4 

Range-rate only 6.60x10-2 3.56x10-4 

Range + range-rate (nominal) 2.49x10-2 1.60x10-4 

 



18 
American Institute of Aeronautics and Astronautics 

 

V. Conclusion 
The analyses in this paper address a range of questions related to operating a spacecraft in an NRHO. These results 

can inform requirements for flight. Various trades on NRHO insertion cleanup, short-horizon, and long-horizon 
stationkeeping were performed. Realistic options are considered for tracking cadence, tracking measurement noise, 
and tracking pass phasing. 

It was found that a two-maneuver strategy can successfully clean up errors associated with NRHO insertion, 
which often occurs in an area that is highly dynamically sensitive. The cost of insertion cleanup varies with the location 
of the maneuvers, with the total cleanup cost ranging from 0.056 m/s to over 16 m/s. It was shown that the area-to-
mass ratio of a spacecraft in an NRHO has a large impact on the annual stationkeeping cost due to SRP perturbations. 
Further, various implementations of long-horizon stationkeeping maneuvers can produce significantly lower or higher 
annual costs. 

It was found that the phasing tracking passes within the NRHO can be more important than the cumulative 
tracking time, partially due to the significant nonlinearities associated with region around perilune. Various tracking 
cadences were implemented to compare the delivered state uncertainties and filter performance. Different filters were 
also applied to these cadences. Finally, trades in measurement noise and measurement types were studied to compare 
the filter performance.  

Future work will consider additional combinations of the various trades presented here. NASA and Advanced 
Space will demonstrate NRHO navigation and operation with the CAPSTONE mission, currently planned for launch 
in December 2020.  

The authors wish to acknowledge support from the NASA SBIR (Small Business Innovative Research) program 
for funding, and Caltech for the use of Monte software.  
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