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An improved method for nearly orthogonal grid generation is presented in this
study. The generating system is based on solution of a system of partial differential
equations with finite difference discretization. To prevent grid lines from collapsing
onto each other, the grid cell aspect ratio is controlled by functions that limit excessive
ratios. Bounding all the aspect ratios is essential for high-quality numerical approxi-
mations using such grid-based methods as finite elements, finite differences, or finite
volumes. The influence of the number of grid points, type of boundary, and intensity
of the grid quality control function and grid properties are investigated. Specification
of both boundary point distribution on all sides and moving boundaries is used. The
proposed method is applied to various test problems from the literature. This method
is shown to provide a good balance between controlling grid orthogonality and cell
aspect ratio. c© 2001 Academic Press
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1. INTRODUCTION

To solve partial differential equations posed on spatial domains, a collection of points
called a grid is imposed on the computational domain. Grid quality is important for mini-
mizing computational error. A well-designed grid should be orthogonal. Additionally, for
isotropic problems, grid aspect ratios near one are important for good conditioning of the
discrete operator, as well as for reducing errors in derivatives of the approximate solution.

Orthogonal grid generation is the subject of many studies [3–21]. One of the well-known
and frequently used ways to obtain orthogonal grids in two dimensions is through conformal
mapping. Theoretical foundations of elliptic grid generation owe much to the theory of
conformal mappings, which preceded it by several decades. In fact, the main impetus for
the development of elliptic methods is the lack of versatility in the construction of conformal
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maps and inability to control the distribution of grid points in the generated grid [1, 3, 8,
11, 12, 16, 20].

Conformal mapping is restricted to having equal scale factors in all directions, i.e. a
region of small circles or rectangles remains as circles or rectangles after transformation [1,
8, 20]. Therefore, such techniques may perform well with respect to aspect ratio, but may
perform poorly with respect to orthogonality. To improve orthogonality some researchers
have prescribed scale factors, i.e. the scale factor is not unit but rather some adjustable
constant throughout the domain [4, 5]. However, the use of prescribed scale factors is
still too restrictive for a generally applicable transformation technique [7, 8, 17, 18, 20].
Mobley and Stewart [7] have used a simple increasing function to perform a 1-D stretching
transformation on the region after conformal mapping. In this method, the scale factors
have to be determined.

Ryskin and Leal [8] generalized Mobley and Stewart’s idea to nonconstant scale factors by
proposing the covariant Laplace equations as a generating system for the grid coordinates. In
this method, constraints on the components of the metric tensor of the curvilinear coordinates
are used to achieve orthogonality and to control the spacing of coordinate lines. This method
has been the subject of many articles [9–16, 20]. The main problem in all these methods is
determination of the so-called distortion functionf which controls the scale factors.

Albert [9], Allievi and Calisal [10], and E¸ca [12] used a method in which the distor-
tion function is calculated in the entire domain during nonlinear iterations. The difference
between these approaches is the numerical methods—finite difference or finite element—
employed by the authors to solve the equation. As stated by E¸ca [12], for certain geometries
and for some boundary point distributions, the orthogonality constraint becomes too re-
strictive and one of the scale factors tends to zero. This leads to collapse of grid lines and
to an unacceptable grid. In this paper we overcome this deficiency. The distortion function
is adjusted automatically during the course of numerical solution to reflect the evolving
gradient of the grid coordinates. To prevent grid lines from approaching each other, new
functions in the form of pseudo-forces are introduced. They help to adjust the scale factors
and therefore control aspect ratios, in addition to the orthogonality constraint. Moreover,
prescribing values of the distortion function at the boundaries is explored as a useful tool
for resolving boundary layers. Both Dirichlet and Neumann–Dirichlet boundary conditions
on the generating system are examined.

The grid quality obtained through the new method is compared to the grid quality of
other methods. Conformal mapping produces grid aspect ratios near one, but with weaker
orthogonality. In addition, this method is not robust. E¸ca’s method is more robust and results
in better orthogonality. However, it leads to poorer aspect ratios. The examples demonstrate
that the new method is comparable to E¸ca’s with respect to orthogonality, and to conformal
mapping with respect to aspect ratio.

2. THE GRID GENERATING SYSTEM

The generating system used by Ryskin and Leal [8] is based on the simple observation
thatx andy as Cartesian coordinates in the physical space are linear functions of position.
Thus,grad(x) andgrad(y) are constant-valued vector fields, and it follows that

∇2x = 0, ∇2y = 0, (1)

for the two-dimensional case, where∇2 is the covariant Laplace operator.
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In the following we will assume summation on repeated indices. Letgi j be the elements of
the covariant metric tensor of a multidimensional coordinate systemξ1, ξ2, . . . , ξn, which
define the length of an arc according to the relation

ds2 = gi j dξ i dξ j . (2)

If g is the determinant of this tensor andgi j are elements of the corresponding contravari-
ant tensor, the Laplace operator in curvilinear coordinates can be written as [21]

1√
g

∂

∂ξ i

(√
ggi j ∂

∂ξ j

)
. (3)

The development of an appropriate coordinate system must begin by specifying the metric
tensor, and it is this specification that determines the properties of the resulting coordinate
system. For example by setting off-diagonal components to zero, the coordinate system
becomes orthogonal. There are alwaysm degrees of freedom (wherem = 2 in 2-D and
m = 3 in 3-D) in choosing the mapping functions [8].

For an orthogonal curvilinear coordinate system, off-diagonal elements of the metric
tensor must be zero. Also,gii (contravariant components of metric tensor) are equal to 1/gii

for orthogonal coordinates. Therefore, Eq. (1) for two dimensional orthogonal curvilinear
coordinatesξ andη becomes

∂
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(
f
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(
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= 0, (4a)
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(
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∂η

)
= 0. (4b)

In the above equations,f (x(ξ, η), y(ξ, η)) is the distortion function which is defined as
the ratio of scale factor in theη-direction to that in theξ -direction, i.e.,

f = hη

hξ

, (5)

where the scale factors are defined by

hη = √
g22 =

√(
∂x

∂η

)2

+
(

∂y

∂η

)2

, (6a)

hξ = √
g11 =

√(
∂x

∂ξ

)2

+
(

∂y

∂ξ

)2

. (6b)

Equations (4) have been used extensively for grid generation. The main problem with co-
variant Laplace operators is their highly nonlinear nature. To linearize (4), some approaches
prescribe the distortion function a priori, which causes problems. Since the only constraint
in Eqs. (4) is on orthogonality, and if the distortion functionf is restricted to unity, (4)
reduces to conformal mapping. For a 2-D problem, this second restriction is obviously
a major limitation on the class of possible mappings. Indeed, the lack of robustness or
“stiffness” of the conformal mapping, which makes it ill-suited for our purpose, is due to
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this unnecessary restriction. In general, prescribing the distortion function a priori leads to
robustness problems in the generating system.

The difference between the various available methods is the way in which the distortion
function f is obtained. Three types of procedures have been proposed:

Method 1: Calculatef from its definition (5) at the boundaries and obtain its values in
the domain by interpolation or by solving a Laplace equation.

Method 2: Specify a class of admissible functions forf that guarantees the existence of
a unique solution.

Method 3: Calculatef from its definition (5) in the entire domain.

The first method corresponds to the “weak constraint” method of Ryskin and Leal [8].
Using this method Chikhliwala and Yortsos [13] calculatedf at the boundaries and obtained
values off in the interior using the algebraic interpolation suggested by Ryskin and Leal [8].
They found that the success of this method in producing orthogonal grids in this case was
primarily attributed to symmetry of the region. Tamamidis and Assanis [18] used Poisson’s
equation instead of algebraic interpolation in the entire domain, in order to try to control
grid spacing.

In the second method, used by Duraiswami and Prosperetti [16], Kang and Leal [14],
and Oh and Kang [15], the main problem is to define an admissible function forf . Ascoli
et al. [11] showed that iff is a special product of the formf (ξ, η) = 8(ξ)2(η), and ifhξ

is specified at one of the boundaries, then an orthogonal mapping does exist between (ξ, η)
and (x, y). However, robustness problems can still arise.

The last method was used by Albert [9], Alievi and Calisal [10], and E¸ca [12]. Albert
used finite difference discretization to solve (4). Alievi and Calisal used a Bubnov–Galerkin
procedure to solve (4) and found that it is possible to obtain orthogonal meshes using both
symmetrical and unsymmetrical domains. They stated that the success of the approach was
due to the Bubnov–Galerkin procedure rather than calculating the distortion functionf from
its definition (5). Eça also calculated the distortion function directly from its definition, but
used finite difference discretization to solve (4). Although he obtained good results, the
method appears to have some problems. In some geometries and for certain boundary point
distributions, the orthogonality constraint in the domain may cause the collapse of several
grid lines into one, creating convergence difficulties in the algorithm for solving (4). Locally,
these regions are characterized by one of the scale factors tending to zero. In addition to the
difficulties in obtaining a solution to the generating system, the poor cell aspect ratios of the
resulting grid lead to poor quality approximations and ill-conditioning for many numerical
methods for PDE.

To prevent scale factors approaching zero in some part of the domain, E¸ca’s method is
improved in this study by introducing functions that control the scale factors in bothξ - and
η-directions. The two-dimensional grid generation system then takes the following form:

∂

∂ξ

(
f
∂x

∂ξ

)
+ ∂

∂η

(
1
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)
+ Px(hξ ) + Qx(hη) = 0, (7a)
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(
1

f

∂y

∂η

)
+ Py(hξ ) + Qy(hη) = 0. (7b)

HereP(hξ ) andQ(hη) are inhomogeneous source terms that alter the solution(x, y) in
such a way as to control favorably the scale factorshξ andhη, and hence the aspect ratio of
the resulting grid.
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FIG. 1. P(hξ ) as a function ofhξ . Force between grid points becomes repulsive when local scale factor is less
than mean scale factor, and attractive when it is greater.

The functionsP andQ are defined by

P(hξ ) = c

(
hξ − h̄2

ξ

hξ

)
, (8a)

Q(hη) = c

(
hη − h̄2

η

hη

)
, (8b)

wherec is a positive so-called force constant. By changing its magnitude, it is possible to
change the intensities ofP andQ. The mean scale factors̄hξ andh̄η are defined as

h̄ξ (η) =
∫

hξ dξ∫
dξ

∣∣∣∣
η=const.

, (9a)

h̄η(ξ) =
∫

hη dη∫
dη

∣∣∣∣
ξ=const.

. (9b)

The functionsP andQ act like distributed forces proportional to the deviation of the
local scale factors from the mean scale factors. As shown in Fig. 1 the pseudo-force is zero
when the local scale factorhξ is equal to the mean scale factorh̄ξ . It becomes increasingly
negative ashξ approaches zero, and increasingly positive ashξ increases beyond̄hξ .

3. THE DISCRETIZED GRID GENERATING SYSTEM

The PDEs in Eq. (7) are discretized by the finite difference method. For a typical grid
point (Fig. 2), setting1ξ = 1 and1η = 1, we obtain [12]

fi +1/2, j

(
∂x

∂ξ

)
i +1/2, j

− fi −1/2, j

(
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)
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(
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)
i, j +1/2

− 1

fi, j −1/2

(
∂x

∂η

)
i, j −1/2

+ (Px)i, j + (Qx)i, j = 0 (10a)
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FIG. 2. A typical grid point (i, j ).
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∂ξ

)
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∂ξ
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The indices(i, j ) refer to the directionsξ andη, respectively. The partial derivative ofx
with respect toξ is given by(

∂x

∂ξ

)
i, j

= xi +1/2, j − xi −1/2, j , (11)

and similar expressions apply for∂x
∂η

,
∂y
∂ξ

and ∂y
∂η

. Expressions forfi j can be found in [12].
Discretized forms of the pseudo-forceP(hξ ) andQ(hη) can be derived as follows. First,

h̄ξ j for a grid line j in theξ direction, and̄hηi for a grid linei in theη direction (Fig. 2) are
defined in discretized form as

h̄ξ j = 1

M

M∑
i =1

hi,i +1
ξi, j

, (12a)

h̄ηi = 1

N

N∑
j =1

h j, j +1
ξi, j

, (12b)

where M and N are number of grid lines inξ - andη-directions, respectively. Scale factors
hξi, j andhηi, j are discretized as

hi,i +1
ξi, j

= [(xi +1, j − xi, j )
2 + (yi +1, j − yi, j )

2]
1
2 , (13a)

h j, j +1
ηi, j

= [(xi, j +1 − xi, j )
2 + (yi, j +1 − yi, j )

2]
1
2 , (13b)

where subscriptsi , j and superscriptsi, i + 1, and so forth, represent node numbers and
discretized directions, respectively. The discretized form ofP andQ corresponding to each
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line segment will be

Pi,i +1
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P andQ are defined inξ - andη-directions. To find their corresponding components in
x- andy-directions, the following formulas are used:

(Px)i, j + (Qx)i, j = Pi,i +1
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4. ITERATIVE ALGORITHM

Because the system of equations defined in (7) is nonlinear, a Picard-like iterative algo-
rithm is used to solve it numerically:

1. Choose four corner points of the physical domain that serve as the corner points of the
grid in computational domain. Calculatex andy values of the other boundary grid points
by dividing physical boundaries into equal segments.

2. Determine an initial approximation for the interior grid points by bilinear interpolation.
3. Calculate the distortion functionf from Eqs. (5) and (6).
4. Solve the system of Eqs. (7) with fixedf values calculated in Step 3 using a few

iterations of the SOR method. CalculateP andQ from Eqs. (15).
5. Adjust boundary conditions. If Dirichlet boundaries are applied nothing is done. For

sliding (Neumann–Dirichlet) boundaries, relocate boundary nodes to satisfy orthogonality.
6. Go to Step 3, if convergence criteria on orthogonality and aspect ratios are not satisfied.

5. APPLICATION AND COMPARISON

The main purpose of the proposed method is to increase the robustness and flexibility of
existing orthogonal grid generation methods. It is preferable that a robust method be one
in which the distortion function is not prescribed, but rather determined by the domain.
However, using this method without pseudo-forces (P andQ) may result in the collapse of
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several grid lines onto each other for some domains and for some boundary point distribu-
tions. This may also cause convergence difficulties and deviations from orthogonality [12].
The main impetus for introducing pseudo-forces is to prevent this behavior and to impose
some control on grid spacing.

In this section, some characteristics of the new method are explored, and it is compared
with existing ones. Several domains commonly used in the literature are selected as grid
generation examples. Maximum deviation from orthogonality (MDO), mean deviation from
orthogonality (ADO), maximum grid aspect ratio (MAR), and mean grid aspect ratio (AAR)
defined below, are used to study quality of the resulting grids.

MDO and ADO are calculated from

MDO = max
i, j

(|90◦ − θi, j |), (16a)

ADO = 1

(nx − 2)

1

(ny − 2)

nx−1∑
i =2

ny−1∑
j =2

(|90◦ − θi, j |), (16b)

wherenx andny are the number of grid points in x- and y-directions, respectively, and

θ = arc cos

(
g12

hξ hη

)
. (17)

MAR and AAR are calculated from

MAR = max
i, j

(
max

(
hi,i +1

ξi, j

h j, j +1
ηi, j

,
h j, j +1

ηi, j

hi,i +1
ξi, j
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, (18a)

AAR = 1
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ξi, j

h j, j +1
ηi, j

,
h j, j +1

ηi, j

hi,i +1
ξi, j

)
. (18b)

The optimal values of MDO and ADO are 0◦, and for MAR and AAR, 1 (for isotropic
PDEs).

Three criteria for convergence are used,

| f n − f n−1|
f n

< 10−5, (19a)

max
(∣∣xn

i, j − xn−1
i, j

∣∣, ∣∣yn
i, j − yn−1

i, j

∣∣) < 10−6, (19b)

|ADOn − ADOn−1| < 10−8, (19c)

where superscriptn refers to iteration number.
The following are chosen as examples:

1. A circular region (Domain A) is used to study grid characteristics as a function of grid
point density (Fig. 3). Different force constants are used.

2. A concave region (Domain B) is used as the second test case (Fig. 4). The effects of
the force constant on grid properties are compared. The effects of specifying the distance
of the first grid point from the boundary are also studied.
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FIG. 3. Domain A. Force constants are 0 and 0.1 in Grids a and b, respectively. Specified boundary conditions
on all boundaries. Grid points on all boundaries are equidistant.

FIG. 4. Domain B, limited byx = 0, x = 1, y = 0 andy = 0.85+ 0.15 cos(πy). Force constants are 0 in
Grid a, 0.01 in Grid b, and 0.11 in Grids c and d. Specified boundary conditions in all boundaries. In Grid c,
distances to first grid points are specified on all the boundaries. Grid points on the boundariesx = 0, y = 0, and
y = 1 are equidistant; on the topx = ξ .
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FIG. 5. Domain C limited by linesx = 0, x = 1, y = 0, y = 0.8 + 0.2 cos(πy). In Grid a, specified bound-
aries are used on all boundaries. In Grid b, sliding boundaries are used on the bottom. Distances between grid
points are equal alongx = 0, y = 0, andy = 1. On the topx = ξ . Force constants are 0.01.

3. A concave region (Domain C) similar to domain B but with higher curvature is used
as the third test case (Figs. 5 and 6). Both the effects of the force constant and different
boundary conditions are examined.

4. A region between two half circles (Domain D) is used as the fourth test case (Figs. 7
and 8). As in the third test case, the effects of using different boundary conditions and force
constants are compared.

5. Domain E (Fig. 9) is a region limited by the coordinate axes and linesy = 1 and
x = 1/2 + 1/6 cos(πy). As in the third test case, the effects of using different boundary
conditions and force constants are compared.

FIG. 6. Domain C. In Grid a, sliding boundaries are used on the bottom; in Grid b sliding boundaries are used
both at the bottom and top. Equidistant distribution of grid points on the boundariesx = 0, y = 0 andy = 1. At
the top sidex = ξ . Force constants are 0.11.
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FIG. 7. Domain D, force constants are 0.001 for Grid a and 0.1 for Grid b. Specified boundaries on all sides.
Grid points on all boundaries are equidistant.

FIG. 8. Domain D, for both grids, force constants are 0.1. In Grid a, specified boundary conditions are used.
In Grid b, sliding boundaries are used for circular sides, specified boundaries are used on the other sides. Distances
between grid points are equal along all specified boundaries.

FIG. 9. Domain E, limited by linesx = 0, x = 1, y = 0 andx = 1/2 + 1/6 cos(πy). Sliding boundaries are
used for the three straight sides in Grid a and c, while specified boundaries are used on the other sides. Force
constants are 0 for Grid a, 0.01 for Grid b and c. Along the specified boundaries, grid points are equidistant, while
at the left sidey = ξ .
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FIG. 10. Domain F, limited by four half-circles on the edges of a unit square. Specified boundaries on all sides.
Force constants are 0 and 0.01 in Grids a and b, respectively. Distances between grid points along the boundaries
are equal.

6. Domain F (Fig. 10) is constructed by four half-circles around a unit square. Grids are
generated with and without force constants and results are compared.

The effects of different force constants and grid point density are investigated using
domain A. Results are shown in Figs 11, 12 and 13. Changes of ADO and MDO are shown
as functions of grid density (grid points per direction) in Fig. 11. Both MDO and ADO
decrease with increasing grid density. In Fig. 12, ADO of grids with different node numbers
and force constants are plotted. As expected, with increasing force constant ADO increases.
However, the best grid in terms of orthogonality is obtained with a force constant of 0.01,
instead of zero. Another characteristic of the method is that, as the force constant increases,
the mean aspect ratio AAR decreases, as shown in Fig. 13. The method starts to resemble
conformal mapping. This can be seen in terms of mean deviation from orthogonality ADO

FIG. 11. Maximum and mean deviations from orthogonality (MDO and ADO) with force constantc = 0.01
for Domain A.
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FIG. 12. Mean deviation from orthogonality (ADO) with different force constants for Domain A.

and mean aspect ratio AAR in Figs. 12 and 13. Overall, the number of convergence iterations
decreases as the force constant increases.

Domain B is tested for four different situations (Figs. 4a, 4b, 4c, and 4d). In Grid 4a,
specified (Dirichlet) boundary conditions are used with zero force constant. Grids 4b and
4d are similar to Grid 4a, but with force constants of 0.01 and 0.11, respectively. In Grid
4c, the force constant is 0.11 and the distance of the first grid point from the boundary is
specified on all the boundaries. Grids are 41× 41 for these four test cases. Results are given
in Table I. Similar observations as for domain A can be deduced.

Domain C is used by Oh and Kang [15]. Grids obtained with both specified boundaries
and with sliding (Neumann–Dirichlet) boundaries on the bottom are shown in Figs. 5a and
5b. The force constants are 0.01 for both cases. The effects of using sliding boundaries
only on the bottom (Grid 6a) are compared with sliding boundaries both on the bottom
and top (Grid 6b). Force constants are taken as 0.11 for both these cases. Results can be
seen in Table I. For this domain, grid properties (MDO, ADO, MAR, AAR) as functions

FIG. 13. Mean aspect ratio (AAR) with different force constants for Domain A.
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TABLE I

Results for Selected Domain

Domain Figure Grid Force constant c MDO ADO MAR AAR

A 3a 17× 17 0.00 6.94 0.57 3.34 2.18
3b 17× 17 0.10 6.94 1.5 2.92 1.69

B 4a 41× 41 0.00 2.26 0.07 N.A. N.A.
4b 41× 41 0.01 0.34 0.08 7.3 1.88
4c 41× 41 0.11 19.28 0.74 5.48 1.78
4d 41× 41 0.11 1.1 0.49 4.84 1.75

C 5a 21× 21 0.01 1.68 0.42 12.43 2.73
5b 21× 21 0.01 1.81 0.31 10.29 2.64
6a 21× 21 0.11 3.32 1.21 6.71 2.25
6b 21× 21 0.11 11.65 1.09 9.12 1.72

D 7a 11× 11 0.001 30.18 6.96 127.64 21.74
7b 11× 11 0.1 39.09 12.88 9.01 3.6
8a 41× 41 0.1 33.00 2.64 34.52 5.05
8b 41× 41 0.1 1.02 0.35 7.66 3.44

E 9b 41× 41 0.01 3.62 0.92 22.3 3.4
9c 41× 41 0.01 0.5 0.04 6.13 2.26

F 10b 41× 41 0.01 23.96 0.62 14.82 4.2

of force constant are also plotted. Figures 14a and 15a display the case with specified
boundaries on all sides. Figures 14b and 15b show grids with specified boundaries at three
sides and a sliding boundary on the bottom. For this domain, introducing a small force
constant decreases maximum and mean deviation from orthogonality. Another observation
from Figs. 14 and 15 is that, although the type of boundary condition does not affect MDO

FIG. 14. Maximum deviation from orthogonality (MDO) and mean deviation from orthogonality (ADO)
as functions of the force constant for domain C with 21× 21 grid. In Fig. 14a, specified boundary grid point
distribution on all boundaries; in Fig. 14b, sliding boundaries used alongy = 0.
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FIG. 15. Maximum aspect ratio (MAR) and mean aspect ratio (AAR) as functions of the force constant for
domain C with 21× 21 grid. Same boundary conditions as in Fig. 14.

and ADO, maximum and mean aspect ratios decrease when a moving boundary is used.
Therefore, for this domain, using moving boundaries improves grid quality in terms of
aspect ratios.

Test cases using Domain D are illustrated in Figs. 7 and 8. In 7a and 7b, 11× 11 grids are
used. In 8a and 8b, 41× 41 grids are used. Force constants are 0.001 for Grid 7a, and 0.1
for Grids 7b, 8a and 8b. In Grids 7a, 7b, and 8a, specified boundaries are used on all sides.
In Grid 8b, sliding boundaries are used for circular sides and specified at all other sides.
Results are shown in Table I. Although mean deviation from orthogonality increases with
the force constant, maximum and mean aspect ratios decrease. This is shown in Grids 7a and
7b. MAR and AAR tend to infinity as the force constant approaches zero. Figure 8 illustrates
that introduction of Neumann–Dirichlet boundary conditions improves grid quality for this
domain.

For Domain E, three different test cases are considered. In Grid 9b specified boundaries
are imposed while for Grids 9a and 9c sliding boundaries are used. Force constants are 0
for Grid 9a and 0.01 for Grids 9b and 9c. Grid 9a does not satisfy the convergence criteria.
Results are shown in Table I. Figure 9a shows that although the use of sliding boundaries
improves grid quality without the use of a force constant, grid lines still collapse onto each
other.

Domain F involves two cases. In Grid 10a, the force constant is taken as 0. It is observed
that grid lines collapse onto each other. This causes convergence difficulties as well as an
unacceptable grid, MAR and AAR approach infinity. In Fig. 10b, a grid is generated for the
same domain but with a force constant of 0.01. This eliminates problems with aspect ratios
and convergence. Results can be seen in Table I.

Finally, the total number of iterations for convergence is examined as a function of force
constant. The number of iterations for convergence decreases with increasing force factor in
all grid generation examples. By increasing force constant, the generating system becomes
better posed. Numerical evidence is shown in Fig. 16 for domain A. Here, a 41× 41 grid
is used with specified boundary conditions.
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FIG. 16. Number of iterations as a function of force constant for domain A with 41× 41 grid. Specified
boundary grid point distribution on all the boundaries.

6. DISCUSSION AND CONCLUSION

The covariant Laplace operator is frequently used in orthogonal grid generation, with the
aim of producing a robust and efficient grid generation algorithm. The method proposed and
studied here also uses the covariant Laplace operator. It has several advantages compared
to previous methods. Since specification of the distortion function is not required, and the
distortion function is instead determined by the domain, the method is more effective and
robust. Moreover, it does not suffer the problem of grid lines collapsing onto each other.

The proposed method generates grids having properties between conformal mapping and
Eça’s method. As the force constant increases, the method resembles conformal mapping.
For zero force constant, the method is identical to E¸ca’s method. The latter and similar
methods can, for certain domains, produce grids in which the grid lines collapse onto each
other, especially when sliding (Neumann–Dirichlet) boundary conditions are used. This
was seen in several of the examples. In the proposed method, this problem is eliminated
by the introduction of repulsive/attractive force between grid points. Conformal mapping
suffers from insufficient robustness and adaptability to boundary conditions. The proposed
method generates a grid that incorporates advantages of both approaches. Selection of the
force constant allows tuning the grid properties and choosing the relative importance of grid
orthogonality and aspect ratio. By preventing the collapse of grid lines onto one another,
convergence problems exhibited by previous methods are avoided. It is found that the
number of iterations for convergence decreases as the force factor increases. Moreover, as
the force constant increases, the mean deviation from orthogonality increases also. In some
cases, introducing a small amount of force decreases mean deviation from orthogonality. On
the other hand, the mean aspect ratio decreases with increasing force. In the implementation
of the method, the force constant can be interactively changed, so that grid properties can
be adjusted according to the domain. In this study, the force constant is fixed to the same
value throughout the domain. There are no restrictions on its distribution, however, and the
force constant can be tailored to specific domains by varying it over the grid.
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The application of the method to certain difficult domains showed that using sliding
boundaries increases the method’s adaptability to boundary conditions considerably. How-
ever, using such boundaries in some domains may cause accumulation of grid points on
portions of the boundary. For this reason it may not be possible to use sliding boundaries
for some domains. To prevent accumulation on the boundaries, controlling forces similar to
those applied to the interior grid points can be applied to the boundary nodes. Using sliding
boundaries enables boundary grid points to arrange themselves according to orthogonality
characteristics of the domain.
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