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Abstract— Particle systems are a representation, computation, for real-time games and simulations; in the future it will
and rendering method for special effects such as fire, smoke, pe extended other applications as well. NEAT Particles can
explosions, electricity, water, magic, and many other phenomena. g4y hehavior such as the wizard’s spell without the need

This paper presents NEAT Particles, a new design, represen- . . .
tation, and animation method for particle systems tailored to for knowledge of physics or programming. NEAT Particles

real-time effects in video games and simulations. In NEAT IS @ step toward the long-term goal of automated graphics
Particles, the NeuroEvolution of Augmenting Topologies (NEAT) content generation for games, simulations, and movies.
method evolves artificial neural networks (ANN) that control the

appearance and motion of particles. NEAT Particles affords three Il. BACKGROUND

primary advantages over traditional particle effect development . . . .
methods. First, it decouples the creation of new particle effects 1 NiS Section reviews particle systems, IEC, and NEAT,

from mathematics and programming, enabling users with litle ~ Which are all components of the NEAT Particles system

knowledge of either to produce complex effects. Second, it allows presented in Section IIl.
content designers to evolve a broader range of effects than typical
development tools through a form of Interactive Evolutionary  A. Particle System Background

Computation (IEC). And finally, it acts as a concept generator, Particl t ften imol t ial effects i .
allowing users to interactively explore the space of possible ariicle systems oiten implément special elfects In movies

effects. In the future such a system may allow content to be [3] and games [1] [2]. Particle systems can also model
evolved in the game itself, as it is played. more tangible objects such as unique trees in a forest [4],

Keywords: particle systems, NeuroEvolution of Augment-folded cloth and fabric [5] [6], and simulate fluid motion
ing Topologies, NEAT, interactive evolutionary computation[7] [8]. Realistic particle movement is often achieved by
IEC simulating real-world physics [9]. At a more abstract level,
particle systems have simulated animal and insect flocking
and swarming behavior as well [10]. The diversity of particle

Particle systems are ubiquitous in computer graphics, preystem applications demonstrates their importance to modern
ducing animated effects including fire, smoke, clouds, gunfirénteractive media and games.
water, cloth, explosions, magic, lighting, electricity, atoms, ] ] )
flocking, and many others [1] [2]. Particle Systems are defindg Interactive Evolutionary Computation (IEC) Background
by (1) a set of points in space, and (2) a setrafes IEC is an approach to evolutionary computation (EC) in
guiding their behavior and appearance, e.g. velocity, colomhich human evaluation partially or wholly replaces the fit-
size, shape, transparency, rotation, etc. Since particle systemess function [11]. IEC has enabled a broad range of graphical
follow complex rules, creating new or unique particle effectsontent generation. An early implementation of IEC was
requires considerable mathematical and technical skill. F&omorphs, which aimed to illustrate theories about natural
example, consider designing a particle effect for a magicavolution [12]. Biomorphs are simple patterns encoded as
spell that originates from the wizard’s hand, swirls in a Lindenmayer Systems (L-systems) [13], which are grammars
spiral toward a target, and changes color and sirecurrent used to specify the order in which a set of replacement rules
practice the precise mechanics for this scenario must be hasié carried out. Figures that resemble animals or plants can
coded by a programmer as a new particle effect be interactively evolved in this way. IEC digital art systems

This paper presents NEAT Particles, a new design approakhve also utilized representations such as linear or non-linear
for particle systems based on the NeuroEvolution of Augmentunctions, fractals, and automata. Notable examples include
ing Topologies (NEAT) method Mutator [14], a cartoon and facial animation system, and

NEAT Particles aims to (1) enable users with little pro-SBART [15], a two-dimensional art system.
gramming or artistic skill to evolve unique particle system Figure 1 illustrates IEC’s capabilities with Mattias Fager-
effects through Interactive Evolutionary Computation (IEC)lund’s Delphi-NEAT Genetic Art application [16]. The figure
(2) broaden the range of possible effects, and (3) providesihows four champions in the evolution of a spaceship [17]. In
way for developers to explore the range of possible effectthis example, the user starts by selecting a simple image that
This paper describes how NEAT Particles creates effectdmewhat resembles what they wish to create and continues

I. INTRODUCTION



to evolve more complex images through selection until satisolution in a high-dimensional space by searching in that space

fied with the output. The series of images demonstrates th@ectly, it may be possible to find it by first searching in lower

potential of IEC art tools. dimensional spaces and complexifying the best solutions into
i , ) the high-dimensional space.

C. NeuroEvolution of Augmenting Topologies (NEAT) Back- gjince its inception, NEAT has been applied to a broad array
ground of research areas, most notably NERO, a real-time war game
The NEAT method was originally developed to solve diffi-with ANN-controlled soldiers [33]. Because NEAT is a strong
cult control and sequential decision tasks. The ANNs evolvemslethod for evolving controllers for dynamic physical systems,
with NEAT control agents that select actions based on theitrcan naturally be extended to evolve the motion of particles in
sensory inputs. While previous methods that evolved ANNgarticle effects as well. The next section explains how NEAT

i.e. neuroevolutiormethods, evolved either fixed topology net-is combined with IEC to produce NEAT Particles.

works [18], [19], [20], or arbitrary random-topology networks

[21], [22], [23], [24], [25], [26], [27], NEAT is the first to . APPROACH NEAT PARTICLES

begin evolution with a population of small, simple networks NEAT Particles consists of five major components: 1)

andcomplexifythe network topology over generations, leadingarticle systems, 2) ANNs, 3) physics, 4) rendering, and 5)

to increasingly sophisticated behavior. Compared to traditionavolution.

reinforcement learning techniques, which predict the long: . .

term reward for taking actions in different states [28], théA - Particle System Representation

recurrent networks that evolve in NEAT are robust in contin- A particle systenis specified by aystem positioin space

uous domains and in domains that require memory, makir@fld a set of particles. Each individymrticle is specified by a

many applications possible. This section briefly reviews thBOsition in space and its velocity, color, transparency, and size.

NEAT method; Stanley and Miikkulainen [29], [30] provide Particle lifespan proceeds in three phases. At birth particles

complete introductions. are introduced into the scene based the system’s position and
NEAT is based on three key princip|esl First, in orde}ts genel’ation ShapaNhiCh defines the volume within which

to allow ANN structures to increase in complexity overParticles spawn. During a particle’s lifetime it changes and

generations, a method is needed to keep track of which gef®ves according to the systemipdate function Finally, a

is which. Otherwise, it is not clear in later generations whiclparticle is removed from the system whéme to live has

individual is compatible with which, or how their genes shouldXpired.

be combined to produce offspring. NEAT solves this problem Four classes of particle system are implemented in NEAT

by assigning a uniqukistorical markingto every new piece of Particles (figure 2), each designed to model type of effect

network structure that appears through a structural mutatigf2mMmon in games:

The historical marking is a number assigned to each genel) Thegeneric particle systenffigure 2a) models effects

corresponding to its order of appearance over the course such as fire, smoke, and explosions. Each particle has a

of evolution. The numbers are inherited during crossover position, velocity, color, and size.

unchanged, and allow NEAT to perform crossover without the 2) Thebeam systenffigure 2b) models beam or laser-like

need for expensive topological analysis. That way, genomes of  effects using Bezier curves. Each particle in the beam

different organizations and sizes stay compatible throughout system is a control point for the Bezier curve and has

evolution, solving the previously open problem of matching position, velocity, and color attributes.

different topologies [31] in an evolving population. 3) Theplane systentfigure 2c) warps individual particles
Second, NEAT speciates the population so that individuals  into different shapes. A single particle in the plane
compete primarily within their own niches instead of with system is represented by four points, each of which has

the population at large. This way, topological innovations are position, velocity, and color.

protected and have time to optimize their structure before 4) Finally, in the trail system (figure 2d), each particle
competing with other niches in the population. NEAT uses drops a trail of particles behind it. It behaves similarly
the historical markings on genes to determine to which species  to a generic particle system but additionally has an array
different individuals belong. of trail particles.

Third, unlike other systems that evolve network topolo- By evolving within classes, game designers can create a

gies and weights [32], [24], [27], [25], [24], [27] NEAT wide variety of effects for different situations.
begins with a uniform population of simple networks with no

hidden nodes. New structure is introduced incrementally & ANN Implementation

structural mutations occur, and only those structures survive The ANN for each particle effect dictates the characteristics
that are found to be useful through fitness evaluations. Thasmd behavior of the system. Therefore each patrticle effect class
way, NEAT searches through a minimal number of weighihas its own ANN input and output configuration. In NEAT
dimensions and finds the appropriate complexity level foParticles, the ANN replaces the math and physics rules that
the problem. This process of complexification has importamhust be programmed in traditional particle systems. Every
implications for search. While it may not be practical to find garticle in a single system is guided by the same ANN.
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Fig. 1. IEC Example. Using Delphi-NEAT Genetic Art (DGNA) [16], a spaceship is evolved [17]. The initial spaceship-like image (a) is evolved from an
initial population of random images. An intermediate stage of evolution (b) suggests a tail section, wing section, and nose section. (c) Evolution proceeds
and the components become more defined as interesting details become apparent. By the final stage (d), a spaceship model evolves with elegant lines, a nc
section, and tail stabilizers.

a) Generic System b) Beam System

(c) Plane System (d) Trail System

Fig. 2. Particle System ClassesEach particle system class models a different kind of effect. (a) The generic particle system models effects such as fire,
smoke, and explosions. (b) The beam system simulates beam and laser-like effects. (c) In the plane system individual particles are warped or stretched. (o
Finally, in the trail system, each particle drops a trail of smaller particles.

However, the ANN is activated separately for each particlgplemented with mobile control points directed by the ANN.
During every frame of animation in NEAT Particles apdate The inputs are the position of each Bezier control point
functionis executed during which inputs are loaded into eactiPx, Py, Pz) and distance of the control point from some
particle’s ANN and each ANN is activated. The outputs ofarget (Dr). In NEAT Particles the target is set at a fixed
the ANN determine particle behavior for the next frame oposition away from the system position. In a game however,
animation. An appropriate set of inputs and outputs is assigndte target could be the position of an enemy player, or the
uniquely to each effect class. point at which a weapon is pointed. The outputs are the
Figure 3 depicts the ANNs for several NEAT Particlesvelocity (Vx,Vy,Vz) and color (R,G, B) of the control
classes. The generic particle system ANN (figure 3a) tak@oint for the next frame of animation. Beam systems produce
the current position of the particlePx, Py, P7) and distance curving, multi-colored beams typically found in futuristic
from the center of the systemiD¢) as inputs. Distance Weapons, magic spells, lightning, and energy effects aimed
from center introduces additional variety into the behavior ot specific targets.
particles by allowing them to move in relation to the system Each particle in a plane system consists of four points that
center. The outputs are the velocityx, Vy,Vz) and color form a plane that may be warped into different shapes. Since
(R,G, B) of the particle for the next frame of animation.the corners must be coplanar for rendering purposesy the
The generic particle system produces behaviors suitable feésmponent of velocity for each corner is fixed. Thus, the
explosion, fire, and smoke effects. inputs to the plane system ANN (figure 3c) are the position of
The beam system ANN (figure 3b) controls directed beamach corne( Px, Pz) and the distance from the center of the
effects. To produce twisting beams a Bezier curve is imguad(D¢). The warped quads of plane systems are commonly



used in explosions, engine thrust, and magical weapon gld& Evolution

effects. , _ Evolution in NEAT Particles proceeds similarly to other IEC
Because the differences between the trail system andgjications. The user is initially presented with nine simple,
generic particle system are cosmetic, the trail system ANNhqomized particle systems (figure 4a). Each individual sys-

(figure 3d) uses the same inputs and outputs as the gengdf, and its ANN may be inspected poming in(figure

part|cl_e system. _ i . _4b). If the initial population of nine systems is unsatisfactory,
While ANN topology largely dictates particle behavior, acti-; yew batch can be generated with thset functionWhen a
vation functions play a significant role as well. For simplicity.gjitapje starting system is found, the user may begin evolution
in this NEAT Particles implementation, all hidden nodes ofy spawning a new generation based on the selected system. In
each ANN have the same activation function; however, thgfie new generation functigra population of nine new systems
activation function is selected from a set of pOSSIbI|ItIeS(OﬁSpring) is generated from the ANN of the selected system
Activation functions with a smooth curve (e.g. sigmoid or, arent). Offspring ANNs are based on the parent ANN, but
sine) generally produce fluid movement patterns and smoq&v th modified connection weights and possibly new nodes
color transitions. The sine and cosine functions produce pafnq connections, that is, thepmplexifyfollowing the NEAT
terns with cyclic motion, while the tangent function tendsyeihoq. Evolution proceeds with repeated rounds of selection

to produce patterns with disjoint motion such as teleportingyng offspring production until the user is satisfied with the
Functions with linear sections of output range, such as ramggjts.

or step, generally contribute to angular, mechanical motion.
To illustrate, suppose an ANN generates a particle system IV. EXPERIMENTAL RESULTS

with an upward velocity and a color change from red to Thijs section shows how NEAT Particles works in practice to
blue. If the ANN activation function is hyperbolic, the upwardproduce an appropriate effect with several systems. All particle
motion would |I|(E|y be fluid and the color transition gradua'.systems reported were evolved in approximate|y ten minutes
In contrast, a cosine activation might produce wavy, risingh petween 20 and 30 generations..

pattern. Ramp or step functions might produce upward motion Figure 5 illustrates NEAT Particles interactively evolving an
and color change that is abrupt or disjoint. In general, differerfifect for a hypothetical video game. Suppose a particle effect
activation functions provide (1) greater variety and (2) patterng needed for the wizard spe@olor Spraythat should (1)
within patterns. The effects of different activation functions Or_dmit mu|t|p|e beams in all directions from the wizard’s hands
particle motion and color are summarized in Table |. that (2) change color as they move and (3) spiral in an orbit
C. Physics pattern as they move away from the wizard. To generate this

This initial implementation of NEAT Particles is tailored to effect in NEAT Particles, random populations were generated

explosions, beams, and magical effects not generally subjé"(ﬁtII Iaswt?ble ?tartlngS particle rs]ystembwas fou.r:d. Tlhe |n|rt]|al
to the effects gravity or collision. Therefore, a linear motiorp MP'€ System (igure 5a) was chosen because its color scheme

model calculates the position of a particle at timbeased on IS S|m|_lar_ fo the (_jesw_ed o_utput and_ Its movemen t alqng
time elapsedr since the last frame of animation: the axis in both directions is suggestive of potential spiral

motion. After some generations of complexification a rough
P, =P, + SVT, (1)  orbital pattern emerged (figure 5b); however, there was not yet
where P, is the particle’s new position?;_; is the particle’s sufficient (_:olor variation. Several generatk_)ns !atgr_ an almost
position in the previous animation fram¥, is the particle’s Perfect spiral pattern was evolved along with significant color
velocity, and S is a scaling value to adjust the speed ofransitions (figure 5c). Finally, a particle system with a wider

animation. spiral pattern and brightgr colors was achieved (.figure 5d),
) producing a remarkably vibrant rendition of the desired effect.
D. Rendering Similar results were achieved with other systems described

NEAT Particles uses théillboarding technique [34] to in Section Ill. Figure 6 shows animation frames from addi-
render particles to the screen in generic systems, trail systemsnal evolved effects. The top row, 6a though 6d, depicts an
and rotator systems. In billboarding, a texture is mapped onéyolvedPsychic Screaneffect, in which an imperfect ring of
a simple plane with four corners (i.e. a quad) that facesoncentric waves radiate from the player. The bottom row,
perpendicular to the camera. The corners of the quad are bagedthough 6h, illustrates Warding Whipeffect, in which a
upon the center of the particle. Thus, only the position of theeam-like energy whip lashes out from the player.
particle needs to be stored rather than all four corners of theThese results demonstrate how NEAT Particles can be
quad. The textured quads in beam systems and plane systersed to evolve pleasing effects without user knowledge of
are not billboarded since they need not face the camera. programming or mathematics.

There are many ways to optimize particle system rendering
including point sprites, level of detail (LOD), batch rendering, V. PERFORMANCE
and GPU acceleration. NEAT Patrticles is compatible with all NEAT Particles’ computational requirements scal®ét ),
such methods, however they are not explored in this initiathere n is the number of particles. The position of each
implementation. particle is input to the ANN once per frame. Similarly, in
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Hidden Nodes - - Hidden Nodes
(a) Generic System ANN (b) Beam System ANN
!‘! ,ﬁ Inputs !‘ ﬁ Inputs
- Hidden Nodes - Hidden Nodes e
(c) Plane System ANN (d) Trail System ANN

Fig. 3. Particle System ANNs To produce a specific range of effects, each particle class ANN uses different inputs and outputs. (a) The generic particle
system ANN inputs are the current position of the particle, the distance from the system center, and a bias. The outputs are the particle velocity and color.
(b) The beam system ANN inputs are the current position of a Bezier control point, the distance of the control point from the target, and a bias. The outputs
are the control point velocity and color. (c) Since the four corners of a plane system particle must remain coplgnasnthenent of each corner’s velocity

is fixed. Therefore the plane system ANN inputs include the position of each corner, the distance of each corner from the center of the plane, and a bias.
Outputs are the velocity and color of each corner. (d) The trail system ANN has inputs and outputs similar to the generic system.

TABLE |
EFFECTS OF ACTIVATION FUNCTIONS ON PARTICLE SYSTEM BEHAVIOR
| Function | Movement Patterns | Color Transitions | Applications |
bipolar sigmoid,| fluid, organic motion | smooth color transitions explosions, magic spells
hyperbolic
sine, cosine fluid, cyclic motion smooth, cyclic color transitions fire, smoke, water
tangent disjoint motion flashing colors, no transitions | sparks, fireworks
teleportation
ramp, step angular, linear motion flashing colors, no transitions | robotic movement,
seeking missiles

(b) Zoom Mode

(a) Main Interface

Fig. 4. NEAT Particles Interface. In the main interface (a), the user is presented with 9 particle systems. Variables such as activation function, generation
shape, and inputs are displayed on the bottom. In zoom mode (b), a single particle system and its ANN may be inspected. The top row of nodes are inputs
and the bottom row are outputs.



Fig. 5. Evolution Example. This series of images shows the evolution dE@lor Sprayeffect using a trail system. (a) An initial particle system is selected
to start evolution. (b) After some generations a spiral pattern emerges. (c) Soon a full spiral pattern develops along with prominent color transitions. (d) A
wider spiral pattern and brighter color scheme is selected as the final spell effect.

- - - -
(€) (f) (9) (h)

Fig. 6. Example Evolved SystemsEach series shows consecutive frames in animations from two evolved effects. Images (a) through (d) show the expanding
rings from aPsychic Screaneffect evolved with the plane system. Images (e) though (h) are frames fidfarding Whipeffect, evolved with the beam
system.

traditional particle systems each particle passes through aseful results, yet not so large that producing useful output is
update functioronce per frame. While the complexity of thetoo time-consuming. The class system implemented in NEAT
ANN increases with the complexity of the effect, the same iParticles provides such constraint.

||ke|y true for traditional formulations. Thus NEAT Particles Besides intentiona”y evo|ving Specific partide Systems that
can be expected to perform comparably to traditional particige user has in mind, the IEC approach of NEAT Particles acts
systems. also as a concept generation tool. While evolving a specific
effect, the user often generates novel, useful effects that were
not initially planned. Thus an additional advantage of NEAT

The purpose of many IEC systems is simply to interactiveli?aftides over traditional particle system implementations is
explore a search space. In contrast, the objective of NEARNat it may act as an idea or concept generator.
Particles is to generate useful content. Therefore, NEAT Future research will focus on the continued exploration
Particles constrains the search space for the user. The seasthnputs, outputs, activation functions, and other variables
space should be large enough to explore many interesting alodevolve new types of particle systems. Fire, smoke, water,

V1. DIScUsSION ANDFUTURE WORK



electricity, and other realistic effects will require specialize@i2] R. Dawkins, The Blind Watchmaker. Essex, U.K.: Longman, 1986.

sets of ANN input and outputs.

(13]

In addition to acting as a design and rendering system
for effects, NEAT Particles potentially applies to other gamefi4]
related applications. For example, novel content is coveted in
games. With an in-game NEAT Particles system, each spell 2
character could be associated with a unique ANN. A playgte]
might indirectly affect the attributes of his or her ANN in
various ways. For example, by gaining levels or researchh%n
new spells the player might gain or encounter new effects. In
this manner players could potentially acquire signature spél
effects, like wizards in popular fantasy novels, and thereby
implicitly and collectively search the space of effects. Spells
could also be combined through crossover, generating néty!
effects. Content can potentially be evolved in real time in thigg
way with the real-time NEAT (rtNEAT) method [33], which
has proven effective in video games in the past. Automatic
content generation is a Holy Grail in the game industry, angl]
evolutionary content generation is an intriguing and untested
solution.

[22]
VIl. CONCLUSIONS

NEAT Particles is a design, representation, and animation

method for particle systems that allows particle effects t

3]

be evolved with NEAT and IEC rather than hand coded.
The advantages provided by NEAT Particles over traditional
particle system implementations are that (1) it allows users
to produce complex effects without mathematical or program-
ming knowledge, (2) a wider range of effects can be producei@4l
and (3) it can generate novel concepts. NEAT Particles is
designed to produce effects appropriate for real-time games
and simulations; however its most significant implication ma:
be the generation of novel content during game play itself. 25]
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