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Necessary and Sufficient Conditions for H-∞
Static Output-Feedback Control

Jyotirmay Gadewadikar,∗ Frank L. Lewis,† and Murad Abu-Khalaf‡

University of Texas at Arlington, Fort Worth, Texas 76118

Necessary and sufficient conditions are presented for static output-feedback control of linear time-invariant
systems using the H∞ approach. Simplified conditions are derived which only require the solution of two coupled
matrix design equations. It is shown that the static output-feedback H∞ solution does not generally yield a well-
defined saddle point for the zero-sum differential game; conditions are given under which it does. This paper
also proposes a numerically efficient solution algorithm for the coupled design equations to determine the output-
feedback gain. A major contribution is that an initial stabilizing gain is not needed. An F-16 normal acceleration
design example is solved to illustrate the power of the proposed approach.

Nomenclature
A = system or plant matrix
B = control input matrix
C = output or measurement matrix
D = disturbance matrix
d(t) = disturbance
H = hamiltonian
J (K , d) = value functional
K = static output feedback gain matrix
Q = state weighting matrix
R = control weighting matrix
u(t) = control input
x(t) = internal state
y(t) = measured output
z(t) = performance output
γ = system L2 gain

I. Introduction

T HE static output-feedback problem is one of the most re-
searched problems in systems and control theory. The use of

output feedback allows flexibility and simplicity of implementation.
Moreover, in practical applications full state measurements are not
usually possible. The restricted-measurement static output-feedback
(OPFB) problem is of extreme importance in practical controller de-
sign applications including flight control in Ref. 1, manufacturing
robotics in Ref. 2, and elsewhere where it is desired that the con-
troller have certain prespecified desirable structure, for example,
unity gain outer tracking loop and feedback only from certain avail-
able sensors. A survey of OPFB design results is presented in Ref. 3.
Finally, though many theoretical conditions have been offered for
the existence of OPFB, there are few good solution algorithms. Most
existing algorithms require the determination of an initial stabilizing
gain, which can be extremely difficult.

It is well known that the OPFB optimal control solution can be
prescribed in terms of three coupled matrix equations,4 namely, two
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associated Riccati equations and a spectral radius coupling equa-
tion. A sequential numerical algorithm to solve these equations is
presented in Ref. 5. OPFB stabilizability conditions that only re-
quire the solution of two coupled matrix equations are given in
Refs. 6–8. Some recent linear matrix inequalities (LMI) approaches
for OPFB design are presented in Refs. 9–11. These allow the design
of OPFB controllers using numerically efficient software, for exam-
ple, the MATLAB® LMI toolbox.12 However several problems are
still open. Most of the solution algorithms are hard to implement,
are difficult to solve for higher-order systems, can impose numerical
problems, and can have restricted solution procedures such as the
initial stabilizing gain requirements.

H∞ design has played an important role in the study and analysis
of control theory since its original formulation in an input-output
setting in Ref. 13. It is well known that, though conservative, they
provide better response in the presence of disturbance than H2 opti-
mal techniques. State-space H∞ solutions were rigorously derived
for the linear time-invariant case that required solving several as-
sociated Riccati equations in Ref. 14. Later, more insight into the
problem was given after the H∞ linear control problem was posed
as a zero-sum two-player differential game.15 A thorough treatment
of H∞ design is given in Ref. 16, which also considers the case of
OPFB using dynamic feedback. An excellent treatment of H2 and
H∞ is given in Ref. 17.

Static OPFB design, as opposed to dynamic output feedback with
a regulator, is suitable for the design of aircraft controllers of pre-
scribed structure. Recently H∞ design has been considered for static
OPFB; Hol and Scherer18 addressed the applicability of matrix-
valued sum-of-squares (sos) techniques for the computations of LMI
lower bounds. Prempain and Postlethwaite19 presented conditions
for a static output loop shaping controller in terms of two coupled
matrix inequalities.

In this paper, we show that the H∞ approach can be used for
static OPFB design to yield a simplified solution procedure that
only requires the solution of one associated Riccati equation and
a coupled gain matrix condition. This explains and illuminates the
results in Ref. 7. That is, H∞ design provides more straightforward
design equations than optimal control, which requires solving three
coupled equations. We have two objectives. First, we give necessary
and sufficient conditions for OPFB with H∞ design. Second, we
suggest a less restrictive numerical solution algorithm with no initial
stabilizing gain requirement. An F-16 design example is included.

II. Necessary and Sufficient Condition for H-∞
OPFB Control

Consider the linear time-invariant system of Fig. 1 with control
input u(t) output y(t) and disturbance d(t) given by

ẋ = Ax + Bu + Dd, y = Cx (1)
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Fig. 1 System descrip-
tion.

and a performance output z(t) that satisfies

‖z(t)‖2 = x T Qx + uT Ru, y = Cx

for some positive matrices Q ≥ 0 and R > 0. It is assumed that
C has full row rank, a standard assumption to avoid redundant
measurements.

By definition the pair (A, B) is said to be stabilizable if there
exists a real matrix K such that A − BK is (asymptotically) stable.
The pair (A, C) is said to be detectable if there exists a real matrix L
such that A − LC is stable. System (1) is said to be output feedback
stabilizable if there exists a real matrix K such that A − BK C is
stable. The system L2 gain is said to be bounded or attenuated by
γ if ∫ ∞

0
‖z(t)‖2 dt∫ ∞

0
‖d(t)‖2 dt

=
∫ ∞

0
(x T Qx + uT Ru) dt∫ ∞

0
(dT d) dt

≤ γ 2 (2)

Bounded L2 Gain Design Problem:
Defining a constant output-feedback control as

u = −K y = −K Cx (3)

it is desired to find a constant output-feedback gain K such that the
system is stable and the L2 gain is bounded by a prescribed value
γ .

To achieve this, one can define the value functional

J (K , d) =
∫ ∞

0

(x T Qx + uT Ru − γ 2dT d) dt

=
∫ ∞

0

[x T (Q + CT K T RK C)x − γ 2dT d] dt (4)

and the corresponding Hamiltonian is defined as

H(x, Vx , K , d) = ∂V T

∂x
[(A − BK C)x + Dd]

+ x T (Q + CT K T RK C)x − γ 2dT d (5)

with costate ∂V /∂x . It is known that for linear systems the
value functional V (x) is quadratic and can be taken in the form
V = x T Px > 0 without loss of generality. We shall do so throughout
the paper.

Two lemmas simplify the presentation of our main theorem 1,
which solves this OPFB control problem. Lemma 1 is a mathe-
matical description of Hamiltonian H , Eq. (5) at given predefined
disturbance d∗, Eq. (6) and gain K ∗, Eq. (7). It shows that if the gain
K ∗ exists the Hamiltonian takes on a special form.

Lemma 1: For the disturbance defined as

d∗(t) = (1/γ 2)DT Px (6)

if there exists K ∗ satisfying

K ∗C = R−1(BT P + L) (7)

for some matrix L , then one can write

H(x, Vx , K ∗, d∗) = x T [P A + AT P + Q + (1/γ 2)P DDT P

− P B R−1 BT P + LT R−1 L]x (8)

Remark: The meaning of d∗ and K ∗ and the special Hamiltonian
H(x, Vx , K ∗, d∗) will be discussed later. The existence of K ∗ sat-
isfying Eq. (7) is addressed in theorem 1.

Proof: Introduce a quadratic form V (x)

V = x T Px > 0 (9)

Then ∂V /∂x = 2Px , and substitution in Eq. (5) will give

H(x, Vx , K , d) = 2x T P[(A − BK C)x + Dd]

+ x T (Q + CT K T RK C)x − γ 2dT d (10)

Note that H(x, Vx K , d) is globally concave in d. To find a maxi-
mizing disturbance set, 0 = ∂ H/∂d = 2DT Px − 2γ 2d. This defines
the maximizing or worst-case disturbance (6). Substitute Eq. (6) into
Eq. (10) to get

H(x, Vx , K , d∗) = 2x T P[(A − BK C)x + D(1/γ 2)DT Px]

+ x T (Q + CT K T RK C)x − γ 2[(1/γ 2)DT Px]T (1/γ 2)DT Px

= x T [P A + AT P + Q + (1/γ 2)P DDT P − P BK C

− CT K T BT P + CT K T RK C]x

Completing the squares yields

H(x, Vx , K , d∗) = x T [P A + AT P + Q + (1/γ 2)P DDT P

− P B R−1 BT P + (K C − R−1 BT P)T R(K C − R−1 BT P)]x

(11)

Substituting the gain defined by Eq. (7) into Eq. (11) yields Eq. (8)

H(x, Vx , K ∗, d∗) = x T [P A + AT P + Q + (1/γ 2)P DDT P

− P B R−1 BT P + (R−1 BT P + R−1 L − R−1 BT P)T

× R(R−1 BT P + R−1 L − R−1 BT P)]x

or

H(x, Vx , K ∗, d∗) = x T [P A + AT P + Q + (1/γ 2)P DDT P

− P B R−1 BT P + LT R−1 L]x �

The next lemma expresses the Hamiltonian for any K and d(t) in
terms of the Hamiltonian for K ∗ and d∗(t).

Lemma 2: Suppose there exists K ∗ so that lemma 1 holds, then
for any x(t), K , and d(t), one can write

H(x, Vx , K , d) = H(x, Vx , K ∗, d∗) + x T [L + R(K − K ∗)C]T

× R−1[L + R(K − K ∗)C]x − x T [LT R−1 L]x − γ 2‖d − d∗‖2

(12)

for K ∗ satisfying Eq. (7) and d∗ satisfying Eq. (6).
Proof: Now one has for any x(t), K , d(t), and a quadratic form

V (x) defined by Eq. (9)

H(x, Vx , K , d) = 2x T P[(A − BK C)x + Dd]

+ x T (Q + CT K T RK C)x − γ 2dT d (13)

whence, one can derive

H(x, Vx , K , d) = x T [P A + AT P + Q + (1/γ 2)P DDT P

− P B R−1 BT P + LT R−1 L]x + x T [−P BK C

− CT K T BT P + CT K T RK C − (1/γ 2)P DDT P

+ P B R−1 BT P − LT R−1 L]x + x T 2P Dd − γ 2dT d

or

H(x, Vx , K , d) = H(x, Vx K ∗, d∗) + x T [−P B(K C − R−1 BT P)

− CT K T (BT P − RK C) − LT R−1 L]x

+ x T [−(1/γ 2)P DDT P]x + x T 2P Dd − γ 2dT d (14)
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Substituting R−1(BT P + L) = K ∗C , R−1 BT P = K ∗C − R−1 L ,
BT P = RK ∗C − L , and P B = CT (K ∗)T R − LT into the first term
in square brackets yields, after some manipulations

x T [−P B(K C − R−1 BT P) − CT K T (BT P − RK C) − LT R−1 L]x

= x T [CT (K − K ∗)T R(K − K ∗)C]x + x T [LT R−1 L

+ CT (K − K ∗)T L + LT (K − K ∗)C − LT R−1 L]x

The result contains nonsquare terms. One must change these into
square form and study the contribution in order to reach any con-
clusion; therefore, complete the square to see that

x T [LT R−1 L + CT (K − K ∗)T L + LT (K − K ∗)C − LT R−1 L]x

= x T {[LT + CT (K − K ∗)T R]R−1[L + R(K − K ∗)C]

− CT (K − K ∗)T R R−1 R(K − K ∗)C − LT R−1 L}x

Therefore one has

x T [−P B(K C − R−1 BT P) − CT K T (BT P − RK C) − LT R−1 L]x

= x T {[LT + CT (K − K ∗)T R]R−1[L + R(K − K ∗)C]

− LT R−1 L}x (15)

Consider now the remaining three terms on the right-hand side of
Eq. (14). One has d∗ = (1/γ 2)DT Px , so that

(d∗)T = (1/γ 2)x T P D, x T P D = γ 2(d∗)T

and γ 4d∗(d∗)T = x T (P DDT P)x

Therefore one can show

x T [−(1/γ 2)P DDT P]x + x T 2P Dd − γ 2dT d = −γ 2‖d − d∗‖2

(16)
Substituting now Eqs. (16) and (15) into Eq. (14) yields Eq. (12). �

Remarks:
1) According to the proof and the form of the Hamiltonian in

Eq. (12), d∗(t) given by Eq. (6) can be interpreted as a worst-case
disturbance because the equation is negative definite in ‖d − d∗‖.

2) The form (12) of the Hamiltonian does not allow the interpre-
tation of K ∗ defined by Eq. (7) as a minimizing control. More shall
be said about this subsequently.

The following main theorem shows necessary and sufficient
conditions for output feedback stabilizability with prescribed
attenuation γ .

Theorem 1—necessary and sufficient conditions for H -∞ static
OPFB control:

Assume that Q ≥ 0 and (A,
√

Q) is detectable. Then the sys-
tem defined by Eq. (1) is output-feedback stabilizable with L2 gain
bounded by γ , if and only if 1) (A, B) is stabilizable, and (A, C) is
detectable and 2) there exist matrices K ∗ and L such that

K ∗C = R−1(BT P + L) (17)

where P > 0, PT = P is a solution of

P A+ AT P + Q + (1/γ 2)P DDT P − P B R−1 BT P + LT R−1 L = 0
(18)

Proof:
To prove sufficiency first, note that lemma 1 shows that

H(x, Vx , K ∗, d∗) = 0 if 2 holds. It is next required to show bounded
L2 gain if 2 holds. From lemma 1 and lemma 2, one has for any K ,
x(t), and d(t)

H(x, Vx , K , d) = x T[L + R(K − K ∗)C]TR−1[L + R(K − K ∗)C]x

− x T [LT R−1 L]x − γ 2‖d − d∗‖2 (19)

Note that one has, along the system trajectories, for u = −K y =
−K Cx
dV

dt
= ∂V

∂t
+ ∂V T

∂x
ẋ = ∂V T

∂x
(Ax + Bu + Dd)

= ∂V

∂x

T

[(A − BK C)x + Dd]

so that from Eq. (5)

H(x, Vx , K , d) = dV

dt
+ x T (Q + CT K T RK C)x − γ 2dT d (20)

With Eqs. (19) and (20)

x T [L + R(K − K ∗)C]T R−1[L + R(K − K ∗)C]x

− x T [LT R−1 L]x − γ 2‖d − d∗‖2

= dV

dt
+ x T (Q + CT K T RK C)x − γ 2dT d

Selecting K = K ∗, for all d(t) and x(t)

dV

dt
+ x T (Q + CT K T RK C)x − γ 2dT d

= −x T [LT R−1 L]x − γ 2‖d − d∗‖2 ≤ 0 (21)

Integrating this equation yields

V [x(T )]−V [x(0)]+
∫ T

0

[x T (Q+CT K T RK C)x −γ 2dT d] dt ≤ 0

(22)
Selecting x(0) = 0 and noting that nonnegativity implies
V [x(T )] ≥ 0 ∀T , one obtains∫ T

0

x T (Q + CT K T RK C)x dt ≤ γ 2

∫ T

0

dT d dt (23)

for all T > 0, so that the L2 gain is less than γ .
Finally, to prove the stability of the closed-loop system, letting

d(t) = 0 in Eq. (21) one has

dV

dt
≤ −x T (Q + CT K T RK C)x ≤ −x T Qx (24)

Now detectability of (A,
√

Q) shows that the system is locally
asymptotically stable with Lyapunov function V (x).

To prove necessity, suppose that there exists an output feedback
gain K that stabilizes the system and satisfies L2 gain <γ . It follows
that Ac ≡ A − BK C is stable. Because A − BK C = A + L̄C =
A + BK̄ , then 1 follows.

Consider the equation

AT
c P + P Ac + (1/γ 2)P DDT P + Q + CT K T RK C = 0 (25)

From Knobloch et al.,16 theorem 2.3.1, closed-loop stability, and
L2 gain boundedness implies that Eq. (25) has a unique symmetric
solution such that P ≥ 0. Rearranging Eq. (25) and completing the
square will yield

P A + AT P + Q + (1/γ 2)P DDT P − P B R−1 BT P

+ (K C − R−1 BT P)T R(K C − R−1 BT P) = 0 (26)

Equation (18) is obtained from Eq. (26) for the gain defined by
Eq. (17) and 2 is verified. �

Note that Eq. (25) is a Lyapunov equation referred to the output
z(t) because ‖z(t)‖2 = x T Qx + uT Ru. Moreover, this theorem re-
veals the importance of the Hamiltonian H(x, Vx , K ∗, d∗) because
the equation H(x, Vx , K ∗, d∗) = 0 must hold for a stabilizing OPFB
with bounded H -∞ gain. Note further that if C = I , L = 0, this
theorem reduces to known results for full state variable feedback.

III. Existence of Output-Feedback Game
Theoretic Solution

The form of Eq. (12) does not allow the interpretation of (K ∗, d∗)
as a well-defined saddle point. The purpose of this section is to
study when the two policies are in saddle point equilibrium for static
output-feedback H∞ . This means one has a Nash equilibrium in the
game theoretic sense as discussed in Ref. 15, so that the H∞ OPFB
problem has a unique solution for the resulting L . In fact, this is the
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case when theorem 1 is satisfied with L = 0, as we now show using
notions from two-player, zero-sum differential game theory.15,16 The
minimizing player controls u(t), and the maximizing player controls
d(t).

Theorem 2—existence of well-defined game theory solution:
(K ∗, d∗) is a well-defined game theoretic saddle point correspond-
ing to a zero-sum differential game if and only if L is such that

M ≡ LT (K − K ∗)C + CT (K − K ∗)T L

+ CT (K − K ∗)T R(K − K ∗)C ≥ 0 (27)

when K �= K ∗.
Note that this is always true if L = 0.
Proof: Equation (12) becomes

H(x, Vx , K , d) = H(x, Vx , K ∗, d∗) + x T [L + R(K − K ∗)C]T

× R−1[L + R(K − K ∗)C]x − x T [LT R−1 L]x − γ 2 ‖d − d∗‖2

H(x, Vx , K , d) = H(x, Vx , K ∗, d∗) + x T [L + R(K − K ∗)C]T

× R−1[L + R(K − K ∗)C]x − x T [LT R−1 L]x − γ 2‖d − d∗‖2

= H(x, Vx , K ∗, d∗) + x T LT R−1 Lx + x T LT (K − K ∗)Cx

+ x T [R(K − K ∗)C]T R−1 Lx + x T [R(K − K ∗)C]T

× R−1[R(K − K ∗)C]x − x T [LT R−1 L]x − γ 2‖d − d∗‖2

H(x, Vx , K , d) = H(x, Vx , K ∗, d∗) + x T Mx − γ 2‖d − d∗‖2 (28)

under the condition defined by Eq. (27), one has

H(x, Vx , K ∗, d) ≤ H(x, Vx , K ∗, d∗) ≤ H(x, Vx , K , d∗) (29)

or

∂2 H

∂u2
> 0,

∂2 H

∂d2
< 0 (30)

at (K ∗, d∗). It is known that a saddle point at the Hamiltonian im-
plies a saddle point at the value function J when considering finite-
horizon zero-sum games. For the infinite horizon case, the same
strategies remain in saddle point equilibrium when sought among
the class of stabilizing nonanticipative strategies.20 Therefore, this
implies that

∂2 J

∂u2
> 0,

∂2 J

∂d2
< 0 (31)

which guarantees a game theoretic saddle point. �
Remarks:
1) To complete the discussion in the remarks following lemma 2,

note that theorem 2 allows the interpretation of K ∗ defined by
Eq. (7), when L = 0, as a minimizing control in a game theoretic
sense. It is important to understand that introducing L in theorem 1
provides the extra design freedom needed to provide necessary and
sufficient conditions for the existence of the H -∞ OPFB solution.

2) If L �= 0, then there can exist a saddle point in some cases.
However counterexamples are easy to find.

IV. Proposed Solution Algorithm
Most existing iterative algorithms for OPFB design require the

determination of an initial stabilizing gain, which can be very dif-
ficult for practical aerospace systems. The following algorithm is
proposed to solve the two coupled design equations in theorem 1.
Note that it does not require an initial stabilizing gain because, in
contrast to Kleinman’s algorithm21 and the algorithm of Moerder
and Calise,5 it uses a Riccati equation solution, not a Lyapunov
equation, at each step.

1) Initialize:
Set n = 0, L0 = 0, and select γ , Q, and R.
2) nth iteration:

Solve for Pn in

Pn A + AT Pn + Q + (1/γ 2)Pn DDT Pn − Pn B R−1 BT Pn

+ LT
n R−1 Ln = 0 (32)

Evaluate gain and update L

Kn + 1 = R−1
(

BT Pn + Ln

)
CT (CCT )−1 (33)

Ln + 1 = RKn + 1C − BT Pn (34)

If Kn + 1 and Kn are close enough to each other, go to 3, otherwise,
set n = n + 1 and go to 2.

3) Terminate:
Set K = Kn + 1. �
Note that this algorithm uses well-developed techniques for solv-

ing Riccati equations available, for instance, in MATLAB. It gen-
eralizes the algorithm in Ref. 8 to the case of nonzero initial gain.

Lemma 3: If this algorithm converges, it provides the solution to
Eqs. (17) and (18).

Proof: Clearly at convergence Eq. (18) holds for Pn . Note that
substitution of Eq. (33) into Eq. (34) yields

Ln + 1 = R
[

R−1
(

BT Pn + Ln

)
CT (CCT )−1

]
C − BT Pn

Defining C+ = CT (CCT )−1 as the right inverse of C , one has

Ln + 1 = (
BT Pn + Ln

)
C+C − BT Pn

Ln + 1 = −BT Pn(I − C+C) + LnC+C

At convergence Ln + 1 = Ln ≡ L , Pn ≡ P so that

0 = L(I − C+C) + BT P(I − C+C)

0 = (BT P + L)(I − C+C)

BT P + L = (BT P + L)C+C (35)

This guarantees that there exists a solution K ∗ to Eq. (17) given by
K = R−1(BT P + L)C+.

This algorithm has been applied to several aircraft design ex-
amples of reasonable complexity (e.g., the F-16 lateral regulator in
example 8.1-1 of Ref. 4). It has excellent performance and converges
quickly.

V. F-16 Normal Acceleration Regulator Design
In aircraft control design, it is very important to design feed-

back control regulators of prescribed structure for both stability
augmentation systems and control augmentation systems (CAS).1

Therefore, static OPFB design is required. This example shows the
power of the proposed static H∞ OPFB design technique because
it is easy to include model dynamics, sensor processing dynamics,
and actuator dynamics, but no additional dynamics (e.g., regulator)
are needed.

The OPFB design algorithm presented is applied to the problem
of designing an output-feedback normal acceleration regulator for
the F-16 aircraft Ref. 1 (Sec. 5.4). The control system is shown in
Fig. 2, where nz is the normal acceleration, r is the reference input
in g, and the control input u(t) is the elevator actuator angle. To
ensure zero steady-state error, an integrator has been added in the
feed-forward path; this corresponds to the compensator dynamics.
The integrator output is ε. The short-period approximation is used so
that the aircraft states are pitch rate q and angle of attack α. Because
alpha measurements are quite noisy, a low-pass filter with the cutoff
frequency of 10 rad/s is used to provide filtered measurements αF

of the angle of attack. An additional state δe is introduced by the
elevator actuator.

The state vector is as follows: x(1) = α: angle of attack; x(2) = q:
pitch rate; x(3) = δe: elevator actuator; x(4) = αF : filtered measure-
ment of angle of attack; and x(5) = ε: integral controller.
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Fig. 2 G command system.

The measurement outputs are y = [αF q e ε]T .
We use the short-period approximation to the F-16 dynamics

linearized about the nominal flight condition described in Ref. 1,
Table 3.6-3 (502 ft/s, level flight, dynamic pressure of 300 psf,
xcg = 0.35c̄), and the dynamics are augmented to include the el-
evator actuator, angle-of-attack filter, and compensator dynamics.
The result is

ẋ = Ax + Bu + Dd, y = Cx (36)

with

A =

⎡⎢⎢⎢⎢⎣
−1.01887 0.90506 −0.00215 0 0

0.82225 −1.07741 −0.17555 0 0

0 0 −20.2 0 0

10 0 0 −10 0

−16.26 −0.9788 0.4852 0 0

⎤⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎣
0

0

20.2

0

0

⎤⎥⎥⎥⎥⎦ , D =

⎡⎢⎢⎢⎢⎣
0

0

1

0

0

⎤⎥⎥⎥⎥⎦

C =

⎡⎢⎢⎣
0 0 0 57.2958 0

0 57.2958 0 0 0

−16.26 −0.9788 0.4852 0 0

0 0 0 0 1

⎤⎥⎥⎦
The factor of 57.2958 is added to convert angles from radians to
degrees.

The control input is u = −K y = −[kα kq ke kI ]y. It is required
to select the output-feedback gains to yield stability with good
closed-loop response. Note that kα and kq are feedback gains, while
ke and kI are feed-forward gains. This approach allows the adjust-
ment of both for the best bounded L2 gain performance. The algo-
rithm just presented was used to design an H∞ pitch-rate regulator
for a prescribed value of γ .

For the computation of the output feedback gain K , it is necessary
to select Q and R. Using the algorithm just described for the given
γ , Q, and R, the control gain K is easily found using MATLAB in
a few seconds. If this gain is not suitable in terms of time responses
and closed-loop poles, the elements of Q and R can be changed and
the design repeated. After repeating the design several times, we
selected the design matrices as

Q =

⎡⎢⎢⎢⎢⎣
264 16 1 0 0

16 60 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 100

⎤⎥⎥⎥⎥⎦ , R = [0.1]

Fig. 3 Angle of attack.

Fig. 4 Pitch rate.

which yields the feedback matrix

K = [0 −0.1778 12.4336 31.7201]

The resulting closed-loop poles are at

s = −28.3061, −1.4974 ± 1.2148i, −3.1809, −10

The resulting gains are applied to the system, and a unit step dis-
turbance d(t) is introduced in simulations to verify robustness of
the design. The resulting time responses shown in Figs. 3 and 4
are very good. Note that, though we designed an H∞ regulator, the
structure of the static OPFB controller with the prescribed loops
also guarantees good tracking.

The gain parameter γ defines the L2 bound for a given distur-
bance. One can quickly perform the design using the preceding al-
gorithm for a prescribed value ofγ in a few seconds using MATLAB.
If the algorithm converges, the parameter γ can be reduced. If γ is
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taken too small, the algorithm will not converge because the ARE
has no positive definite solution. This provides an efficient and fast
trial-and-error method for determining the smallest allowable γ , for
given Q and R design matrices, which solves the H∞ problem. For
this example, the H∞ value of γ is found to be equal to 0.2, for
which the preceding results were obtained.

VI. Conclusions
The problem of disturbance attenuation with stability using static

output feedback for linear time-invariant systems has been studied.
Necessary and sufficient conditions were developed, which yield
two coupled matrix design equations to be solved for the OPFB
gain. A computational algorithm to solve for the output-feedback
gain that achieves a prespecified disturbance attenuation was devel-
oped. The algorithm requires no initial stabilizing gain, in contrast to
other existing recursive OPFB solution algorithms. This procedure
allows output-feedback control design with prespecified controller
structures and guaranteed performance. A G-command control aug-
mentation system CAS for the F-16 aircraft was designed using this
algorithm.
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