## NEET(UG)-2017 TEST PAPER WITH ANSWER \& SOLUTIONS (HELD ON SUNDAY 07 ${ }^{\text {th }}$ MAY, 2017)

136. Name the gas that can readily decolourise acidified $\mathrm{KMnO}_{4}$ solution :
(1) $\mathrm{SO}_{2}$
(2) $\mathrm{NO}_{2}$
(3) $\mathrm{P}_{2} \mathrm{O}_{5}$
(4) $\mathrm{CO}_{2}$

Ans. (1)
Sol. $\underset{\text { (O.A.) }}{\stackrel{+7}{\mathrm{KMnO}_{4}}+\stackrel{+4}{\mathrm{SO}_{2}}} \underset{\text { (R.A.) }}{ } \rightarrow \underset{\text { Colourless }}{\mathrm{MnSO}_{4}}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}$
137. Mechanism of a hypothetical reaction
$\mathrm{X}_{2}+\mathrm{Y}_{2} \rightarrow 2 \mathrm{XY}$ is given below :
(i) $\mathrm{X}_{2} \rightarrow \mathrm{X}+\mathrm{X}($ fast $)$
(ii) $\mathrm{X}+\mathrm{Y}_{2} \rightleftharpoons \mathrm{XY}+\mathrm{Y}$ (slow)
(iii) $\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{XY}$ (fast)

The overall order of the reaction will be :
(1) 2
(2) 0
(3) 1.5
(4) 1

Ans. (3)
Sol. According to law of mass action

$$
\begin{equation*}
\mathrm{r}=\mathrm{K}[\mathrm{X}]\left[\mathrm{Y}_{2}\right] \tag{1}
\end{equation*}
$$

From fast step-1

$$
\begin{align*}
& \mathrm{K}_{\text {eq }}=\frac{[\mathrm{X}]^{2}}{\left[\mathrm{X}_{2}\right]} \\
& {[\mathrm{X}]^{2}=\mathrm{K}_{\text {eq. }}\left[\mathrm{X}_{2}\right]} \\
& {[\mathrm{X}]=\sqrt{\mathrm{K}_{\text {eq. }}}\left[\mathrm{X}_{2}\right]^{1 / 2}} \tag{2}
\end{align*}
$$

From equation (1) \& (2)

$$
\begin{aligned}
& \mathrm{r}=\mathrm{K} \cdot \sqrt{\mathrm{~K}_{\text {eq }}}\left[\mathrm{X}_{2}\right]^{1 / 2}\left[\mathrm{Y}_{2}\right] \\
& \mathrm{r}=\mathrm{K}\left[\mathrm{X}_{2}\right]^{1 / 2}\left[\mathrm{Y}_{2}\right] .
\end{aligned}
$$

Overall order of reaction $=1+0.5=1.5$
Option (3)
138. The element $Z=114$ has been discovered recently. It will belong to which of the following family/group and electronic configuration ?
(1) Carbon family, [Rn] $5 f^{14} 6 d^{10} 7 s^{2} 7 p^{2}$
(2) Oxygen family, $[R n] 5 f^{14} 6 d^{10} 7 s^{2} 7 p^{4}$
(3) Nitrogen family, [Rn] $5 f^{14} 6 d^{10} 7 s^{2} 7 p^{6}$
(4) Halogen family, $[\mathrm{Rn}] 5 \mathrm{f}^{14} 6 \mathrm{~d}^{10} 7 \mathrm{~s}^{2} 7 \mathrm{p}^{5}$

Ans. (1)
Sol. $Z=114[R n]^{86} 7 s^{2} 5 f^{14} 6 d^{10} 7 p^{2}$ $14^{\text {th }} \mathrm{gp}$. (carbon family)
139. The heating of phenyl-methyl ethers with HI produces
(1) iodobenzene
(2) phenol
(3) benzene
(4) ethyl chlorides

Ans. (2)

Sol.

140. Which one is the correct order of acidity?
(1) $\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>$ $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
(2) $\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>$ $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
(3) $\mathrm{CH}_{3}-\mathrm{CH}_{3}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>$ $\mathrm{CH} \equiv \mathrm{CH}$
(4) $\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv$ $\mathrm{CH}>\mathrm{CH} \equiv \mathrm{CH}$

Ans. (1)
Sol. Correct order of acidic strength $\Rightarrow$
$\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}$ $-\mathrm{CH}_{3}$
acc. to EN and Inductive effect.
141. Predict the correct intermediate and product in the following reaction :
$\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{CH} \frac{\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{H}_{2} \mathrm{SO}_{2}}{\mathrm{HgSO}_{4}} \underset{\text { (A) }}{\text { Intermediate }} \longrightarrow \underset{\text { (B) }}{\text { product }}$
(1) A

B: $\begin{gathered}\mathrm{H}_{3} \mathrm{C}-\mathrm{C}=\mathrm{CH}_{2} \\ \mathrm{~S} \\ \mathrm{SO}_{4}\end{gathered}$
(2) A


B : $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
(3) A

B :

(4) A

B :


Ans. (3)
Sol.

142. The equilibrium constant of the following are : $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} \quad \mathrm{~K}_{1}$
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} \mathrm{K}_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
$\mathrm{K}_{3}$
The equilibrium constant $(\mathrm{K})$ of the reaction : $2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \stackrel{\mathrm{~K}}{\rightleftharpoons} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$, will be :
(1) $\mathrm{K}_{2} \mathrm{~K}_{3}^{3} / \mathrm{K}_{1}$
(2) $\mathrm{K}_{2} \mathrm{~K}_{3} / \mathrm{K}_{1}$
(3) $\mathrm{K}_{2}^{3} \mathrm{~K}_{3} / \mathrm{K}_{1}$
(4) $K_{1} K_{3}^{3} / K_{2}$

Ans. (1)
Sol. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} \quad \mathrm{~K}_{1} \rightarrow(1)$
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} \quad \mathrm{K}_{2} \rightarrow(2)$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O} \quad \mathrm{K}_{3} \rightarrow(3)$

For reaction $2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \stackrel{\mathrm{~K}}{\rightleftharpoons} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow$
(4)
equation (4)
$=$ equation(2) $+3 \times$ equation(3) - equation(1)
$\Rightarrow \mathrm{K}=\frac{\mathrm{K}_{2} \cdot \mathrm{~K}_{3}^{3}}{\mathrm{~K}_{1}}$, Option(1)
143. Which one is the most acidic compound ?
(1)

(2)

(3)

(4)


Ans. (3)
Sol.


More - I, - M, more acidic
144. The correct increasing order of basic strength for the following compounds is :
(I)

(II)

(III)

(1) III $<$ I $<$ II
(2) III $<$ II $<$ I
(3) II $<$ I $<$ III
(4) II $<$ III $<$ I

Ans. (3)
Sol. Order of Basic Strength :-

145. Ionic mobility of which of the following alkali metal ions is lowest when aqueous solution of their salts are put under an electric field?
(1) K
(2) Rb
(3) Li
(4) Na

Ans. (3)
Sol. Ionic mobility $\propto \frac{1}{\text { size of hydrated ion }}$
Smaller size hydrated ion in aq. sol $^{\mathrm{n}}-\mathrm{Rb}^{+}(\mathrm{aq})$
Larger size hydrated ion in aq. sol ${ }^{\mathrm{n}}-\mathrm{Li}^{+}(\mathrm{aq})$
Lowest ionic mobility in aq. sol ${ }^{\mathrm{n}} \rightarrow \mathrm{L}^{+}(\mathrm{aq})$ due to high hydration
146. The most suitable method of separation of $1: 1$ mixture of ortho and para-nitrophenols is :
(1) Chromatography
(2) Crystallisation
(3) Steam distillation
(4) Sublimation

Ans. (3)
Sol. The ortho and para isomers can be separated by steam distillation o-Nitrophenol is steam volatile due to intramolecular hydrogen bonding while p-nitro phenol is less volatile due to intermolecular hydrogen bonding which cause association of molecule.
147. $\mathrm{HgCl}_{2}$ and $\mathrm{I}_{2}$ both when dissolved in water containing $\mathrm{I}^{-}$ions the pair of species formed is :
(1) $\mathrm{HgI}_{2}, \mathrm{I}^{-}$
(2) $\mathrm{HgI}_{4}^{2-}, \mathrm{I}_{3}^{-}$
(3) $\mathrm{Hg}_{2} \mathrm{I}_{2}, \mathrm{I}^{-}$
(4) $\mathrm{HgI}_{2}, \mathrm{I}_{3}^{-}$

Ans. (2)
Sol. $\mathrm{HgCl}_{2}+2 \mathrm{I}^{-} \longrightarrow \mathrm{HgI}_{2}+2 \mathrm{C} \ell^{-}$

$$
\downarrow+2 \mathrm{I}^{-}
$$

$\left[\mathrm{HgI}_{4}\right]^{-2}$
Soluble complex
$\mathrm{I}_{2}+\mathrm{I}^{-} \longrightarrow \mathrm{I}_{3}^{-}$ water soluble
148. Mixture of chloroxylenol and terpineol acts as:
(1) antiseptic
(2) antipyretic
(3) antibiotic
(4) analgesic

Ans. (1)
Sol. Antiseptic (dettol)
149. An example of a sigma bonded organometallic compound is :
(1) Grignard's reagent
(2) Ferrocene
(3) Cobaltocene
(4) Ruthenocene

Ans. (1)
150. A first order reaction has a specific reaction rate of $10^{-2} \mathrm{sec}^{-1}$. How much time will it take for 20 g of the reactant to reduce to 5 g ?
(1) 138.6 sec
(2) 346.5 sec
(3) 693.0 sec
(4) 238.6 sec

Ans. (1)
Sol. Half life of first order reaction $\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{~K}}$

$$
=\frac{0.693}{10^{-2}}=69.3 \mathrm{sec}
$$

## Method-1



Total time $=2 \mathrm{t}_{1 / 2}=2 \times 69.3=138.6 \mathrm{sec}$

## Method-2

$\mathrm{t}=\frac{2.303}{\mathrm{~K}} \log \frac{[\mathrm{~A}]_{\mathrm{o}}}{[\mathrm{A}]_{\mathrm{t}}}$
$\mathrm{t}=\frac{2.303}{10^{-2}} \log \frac{20}{5} \Rightarrow \mathrm{t}=138.6 \sec$ (Option 2 )
151. Match the interhalogen compounds of column-I with the geometry in column II and assign the correct. code.

| Column-I |  | Column-II |  |
| :--- | :--- | :--- | :--- |
| (a) | $\mathrm{XX}^{\prime}$ | (i) | T-shape |
| (b) | $\mathrm{XX}_{3}^{\prime}$ | (ii) | Pentagonal <br> bipyramidal |
| (c) | $\mathrm{XX}_{5}^{\prime}$ | (iii) | Linear |
| (d) | $\mathrm{XX}_{7}^{\prime}$ | (iv) | Square-pyramidal |
|  |  | (v) | Tetrahedral |

Code :

|  | (a) | (b) | (c) | (d) |
| :--- | :--- | :--- | :--- | :--- |
| (1) | (iii) | (i) | (iv) | (ii) |
| (2) | (v) | (iv) | (iii) | (ii) |
| (3) | (iv) | (iii) | (ii) | (i) |
| (4) | (iii) | (iv) | (i) | (ii) |

Ans. (1)
Sol. $X X \quad \Rightarrow$ Linear
$\mathrm{XX}_{3}{ }^{\prime} \Rightarrow$ T-shape $\mathrm{sp}^{3} \mathrm{~d}$
$\mathrm{XX}_{5}{ }^{\prime} \Rightarrow$ Square pyramidal $\mathrm{sp}^{3} \mathrm{~d}^{2}$
$\mathrm{XX}_{7}{ }^{\prime} \Rightarrow$ Pentagonal bipyramidal $\left(\mathrm{sp}^{3} \mathrm{~d}^{3}\right)$
152. Concentration of the $\mathrm{Ag}^{+}$ions in a saturated solution of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is $2.2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ Solubility product of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is :-
(1) $2.66 \times 10^{-12}$
(2) $4.5 \times 10^{-11}$
(3) $5.3 \times 10^{-12}$
(4) $2.42 \times 10^{-8}$

Ans. (3)
Sol. $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{Ag}^{+}+\quad \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$

$$
2.2 \times 10^{-4} \mathrm{M} \quad 1.1 \times 10^{-4} \mathrm{M}
$$

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]
$$

$$
=\left[2.2 \times 10^{-4}\right]^{2} .\left[1.1 \times 10^{-4}\right]
$$

$$
\mathrm{K}_{\mathrm{sp}}=5.3 \times 10^{-12}
$$

153. In the electrochemical cell :-
$\mathrm{Zn}\left|\mathrm{ZnSO}_{4}(0.01 \mathrm{M})\right|\left|\mathrm{CuSO}_{4}(1.0 \mathrm{M})\right| \mathrm{Cu}$, the emf of this Daniel cell is $\mathrm{E}_{1}$. When the concentration of $\mathrm{ZnSO}_{4}$ is changed to 1.0 M and that of $\mathrm{CuSO}_{4}$ changed to 0.01 M , the emf changes to $\mathrm{E}_{2}$. From the followings, which one is the relationship between $\mathrm{E}_{1}$ and $\mathrm{E}_{2}$ ? (Given, $\frac{\mathrm{RT}}{\mathrm{F}}=0.059$ )
(1) $\mathrm{E}_{1}<\mathrm{E}_{2}$
(2) $\mathrm{E}_{1}>\mathrm{E}_{2}$
(3) $\mathrm{E}_{2}=0 \neq \mathrm{E}_{1}$
(4) $\mathrm{E}_{1}=\mathrm{E}_{2}$

Ans. (2)
Sol. For cell

$$
\mathrm{Zn}\left|\mathrm{ZnSO}_{4}(0.01 \mathrm{M})\right|\left|\mathrm{CuSO}_{4}(1 \mathrm{M})\right| \mathrm{Cu}
$$

Cell reaction $\rightarrow \mathrm{Zn}+\mathrm{Cu}^{+2} \longrightarrow \mathrm{Zn}^{+2}+\mathrm{Cu}$

$$
\begin{align*}
& \mathrm{E}_{1}=\mathrm{E}^{\circ}-\frac{0.059}{2} \log \frac{\mathrm{Zn}^{+2}}{\mathrm{Cu}^{+2}} \\
& \mathrm{E}_{1}=\mathrm{E}^{\circ}-\frac{0.059}{2} \log \frac{0.01}{1} \\
& =\mathrm{E}^{\circ}-\frac{0.059}{2} \log \frac{1}{100} \ldots(1) \tag{1}
\end{align*}
$$

For cell

$$
\begin{aligned}
& \mathrm{Zn}\left|\mathrm{ZnSO}_{4}(1 \mathrm{M})\right|\left|\mathrm{CuSO}_{4}(0.01 \mathrm{M})\right| \mathrm{Cu} \\
& \mathrm{E}_{2}=\mathrm{E}^{\circ}-\frac{0.059}{2} \log \frac{1}{0.01} \\
& =\mathrm{E}^{\circ}-\frac{0.059}{2} \log 100 \ldots(2) \quad \mathrm{E}_{1}>\mathrm{E}_{2}
\end{aligned}
$$

Option (2)
154. Which of the following pairs of compounds is isoelectronic and isostructural?
(1) $\mathrm{TeI}_{2}, \mathrm{XeF}_{2}$
(2) $\mathrm{IBr}_{2}^{-}, \mathrm{XeF}_{2}$
(3) $\mathrm{IF}_{3}, \mathrm{XeF}_{2}$
(4) $\mathrm{BeCl}_{2}, \mathrm{XeF}_{2}$

Ans. (2)
Sol. $\mathrm{IBr}_{2}^{-1} \& \mathrm{Xef}_{2}$ are iso-structural

(Linear shape) and Both C.A. consist of same no. of valence $e^{-s}$
155. The IUPAC name of the compound

(1) 5-formylhex-2-en-3-one
(2) 5-methyl-4-oxohex-2-en-5-al
(3) 3-keto-2-methylhex-5-enal
(4) 3-keto-2-methylhex-4-enal

Ans. (4)
Sol.


3-keto-2-methylhex-4-en-1-al
156. Which one is the wrong statement?
(1) The uncertainty principle is $\Delta \mathrm{E} \times \Delta \mathrm{t} \geq \mathrm{h} / 4 \pi$
(2) Half filled and fully filled orbitals have greater stability due to greater exchange energy, greater symmetry and more balanced arrangement.
(3) The energy of 2 s orbital is less than the energy of 2 p orbital in case of Hydrogen like atoms
(4) de-Broglies's wavelength is given by $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$, where $\mathrm{m}=$ mass of the particle, $v=$ group velocity of the particle
Ans. (3)
Sol. In H-like atom energy of $2 \mathrm{~s}=2 \mathrm{p}$. orbital Incorrect statement is (3)
157. Which is the incorrect statement?
(1) Density decreases in case of crystals with Schottky's defect
(2) $\mathrm{NaCl}(\mathrm{s})$ is insulator, silicon is semiconductor, silver is conductor, quartz is piezo electric crystal
(3) Frenkel defect is favoured in those ionic compounds in which sizes of cation and anions are almost equal
(4) $\mathrm{FeO}_{0.98}$ has non stoichiometric metal deficiency defect

Ans. (3)
Sol. In frenkel defect the radius of cation must be very less than anion.

Incorrect statement is (3)
158. The species, having bond angles of $120^{\circ}$ is :-
(1) $\mathrm{CIF}_{3}$
(2) $\mathrm{NCl}_{3}$
(3) $\mathrm{BCl}_{3}$
(4) $\mathrm{PH}_{3}$

## Ans. (3)

Sol. $\mathrm{BCl}_{3} \Rightarrow \underbrace{\text { Cl }}_{\text {Cl }} \begin{aligned} & 120^{\circ} \\ & \text { Regular geometry } \\ & \text { Hybridysation } \Rightarrow \mathrm{sp}^{2}\end{aligned}$
159. For a given reaction, $\Delta \mathrm{H}=35.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S=83.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The reaction is spontaneous at : (Assume that $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ do not vary with tempearature)
(1) $\mathrm{T}>425 \mathrm{~K}$
(2) All temperatures
(3) $\mathrm{T}>298 \mathrm{~K}$
(4) $\mathrm{T}<425 \mathrm{~K}$

Ans. (1)
Sol. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
for equilibrium $\Delta G=0$
$\Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S}$
$\mathrm{T}_{\text {eq. }}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}=\frac{35.5 \times 1000}{83.6}=425 \mathrm{~K}$
Since the reaction is endothemic it will be spontaneous at $\mathrm{T}>425 \mathrm{~K}$. Option (1)
160. Which of the following is a sink for CO ?
(1) Micro organism present in the soil
(2) Oceans
(3) Plants
(4) Haemoglobin

Ans. (1)
Sol. Microorganism present in the soil.
161. If molality of the dilute solutions is doubled, the value of molal depression constant $\left(\mathrm{K}_{\mathrm{f}}\right)$ will be :-
(1) halved
(2) tripled
(3) unchanged
(4) doubled

Ans. (3)
Sol. $\mathrm{K}_{\mathrm{f}}$ does not depend on concentration of solution. It only depends on nature of solvent so it will be unchanged. option (3)
162. Which of the following is dependent on temperature?
(1) Molarity
(2) Mole fraction
(3) Weight percentage
(4) Molality

## Ans. (1)

Sol. Temperature dependent unit is molarity.
163. Which one of the following statements is not correct?
(1) The value of equilibrium constant is changed in the presence of a catalyst in the reaction at equilibrium
(2) Enzymes catalyse mainly bio-chemical reactions
(3) Coenzymes increase the catalytic activity of enzyme
(4) Catalyst does not initiate any reaction

Ans. (1)
Sol. Equilibrium constant is not affected by presence of catalyst hence statement (1) is incorrect.
164. Identify $A$ and predict the type of reaction

(1)
 and elimination addition reaction
(2)
 and cine substitution reaction
(3)
 and cine substituion reaction
(4)
 and substitution reaction

Ans. (4)
Sol.



Example of substitution reaction.
165. The correct order of the stoichiometries of AgCl formed when $\mathrm{AgNO}_{3}$ in excess is treated with the complexs : $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$, $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ respectively is :-
(1) $3 \mathrm{AgCl}, 1 \mathrm{AgCl}, 2 \mathrm{AgCl}$
(2) $3 \mathrm{AgCl}, 2 \mathrm{AgCl}, 1 \mathrm{AgCl}$
(3) $2 \mathrm{AgCl}, 3 \mathrm{AgCl}, 1 \mathrm{AgCl}$
(4) $1 \mathrm{AgCl}, 3 \mathrm{AgCl}, 2 \mathrm{AgCl}$

Ans. (2)
Sol. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \xrightarrow{\mathrm{AgNO}_{3}} 3 \mathrm{~mol} \mathrm{AgCl}$
$\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{\mathrm{Cl}} \mathrm{Cl}_{2} \xrightarrow{\mathrm{AgNO}_{3}} 2 \mathrm{~mol} \mathrm{AgCl}\right.$
$\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \xrightarrow{\mathrm{AgNO}_{3}} 1 \mathrm{~mol} \mathrm{AgCl}$
166. The correct statement regarding electrophile is :-
(1) Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from another electrophile
(2) Electrophiles are generally neutral species and can form a bond by accepting a pair of electrons from a nucleophile
(3) Electrophile can be either neutral or positively charged species and can form a bond by accepting a pair of electrons from a nucleophile
(4) Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from a nucleophile
Ans. (3)
Sol. Electrophile can be either neutral or positively charged species and can form a bond by accepting a pair of electron from a nucleophile.
167. A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L . The change in internal energy $\Delta \mathrm{U}$ of the gas in joules will be:-
(1) -500 J
(2) -505 J
(3) +505 J
(4) 1136.25 J

Ans. (2)
Sol. Work done in irreversible process

$$
\begin{aligned}
& \mathrm{W}=-\mathrm{P}_{\text {ext }} \Delta \mathrm{V} \\
& =-2.5[4.5-2.5]=-5 \mathrm{~L} \text { atm } \\
& =-5 \times 101.3 \mathrm{~J}=-505 \mathrm{~J}
\end{aligned}
$$

Since system is well insulated $\mathrm{q}=0$
By FLOT $\quad \Delta \mathrm{E}=\mathrm{q}+\mathrm{W}$

$$
\Delta \mathrm{E}=\mathrm{W}=-505 \mathrm{~J} \quad \text { Option(2) }
$$

168. Which of the following reactions is appropriate for converting acetamide to methanamine?
(1) Hoffmarnn hypobromamide reaction
(2) Stephens reaction
(3) Gabriels phthalimide synthesis
(4) Carbylamine reaction

Ans. (1)
Sol.


This reaction is known as hoffmann hypobromamide reaction.
169. With respect to the conformers of ethane, which of the following statements is true ?
(1) Bond angle changes but bond length remains same
(2) Both bond angle and bond length change
(3) Both bond angles and bond length remains same
(4) Bond angle remains same but bond length changes
Ans. (3)
Sol. In conformation bond angle and bond length remain same.
170. In which pair of ions both the species contain S-S bond?
(1) $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
(2) $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}, \mathrm{S}_{2} \mathrm{O}_{8}^{2-}$
(3) $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}, \mathrm{S}_{2} \mathrm{O}_{7}^{2-}$
(4) $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}$

Ans. (1)

Sol.

171. It is because of inability of $n s^{2}$ electrons of the valence shell to participate in bonding that:-
(1) $\mathrm{Sn}^{2+}$ is oxidising while $\mathrm{Pb}^{4+}$ is reducing
(2) $\mathrm{Sn}^{2+}$ and $\mathrm{Pb}^{2+}$ are both oxidising and reducing
(3) $\mathrm{Sn}^{4+}$ is reducing while $\mathrm{Pb}^{4+}$ is oxidising
(4) $\mathrm{Sn}^{2+}$ is reducing while $\mathrm{Pb}^{4+}$ is oxidising

Ans. (In English-4, In Hindi-1)
Sol. $\mathrm{Sn}^{+2} \longrightarrow \mathrm{Sn}^{+4}$
(R.A) $\quad \mathrm{Sn}^{+2}<\mathrm{Sn}^{+4}$ Stability order
$\mathrm{Pb}^{+4} \longrightarrow \mathrm{~Pb}^{+2}$
(O.A) $\quad \mathrm{Pb}^{+2}>\mathrm{Pb}^{+4}$ Stability order (Inert pair effect)
172. Correct increasing order for the wavelengths of absorption in the visible region the complexes of $\mathrm{Co}^{3+}$ is :-
(1) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(2) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
(3) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\text { en })_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(4) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

## Ans. (4)

Sol. $\left[\varepsilon_{\mathrm{a}} \propto \frac{1}{\lambda_{\mathrm{a}}}\right]$
where $\varepsilon_{\mathrm{a}} \Rightarrow$ absorbed energy (splitting energy)
$\lambda_{\mathrm{a}} \Rightarrow$ absorbed wavelength
Presence of SFL $\Rightarrow \varepsilon_{a}(\uparrow) \lambda_{a}(\downarrow)$
$\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<$ en ligand strength $\uparrow$ splitting energy $\uparrow$ so absorbed $\lambda \downarrow$
173. Consider the reactions :-


Identify $\mathrm{A}, \mathrm{X}, \mathrm{Y}$ and Z
(1) A-Methoxymethane, X-Ethanol, Y-Ethanoic acid, Z-Semicarbazide.
(2) A-Ethanal, X-Ethanol,

Y-But-2-enal, Z-Semicarbazone
(3) A-Ethanol, X-Acetaldehyde,

Y-Butanone, Z-Hydrazone
(4) A-Methoxymethane, X-Ethanoic acid,

Y-Acetate ion, Z-hydrazine
Ans. (2)

## Sol.


$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{N} \mathrm{NH}-\mathrm{C}-\mathrm{NH}_{2}$
(Z)

174. Of the following, which is the product formed when cyclohexanone undergoes aldol condensation followed by heating ?:-
(1)

(2)

(3)

(4)


Ans. (1)

Sol.


Mechanism



175. Which of the following pairs of species have the same bond order ?
(1) $\mathrm{O}_{2}, \mathrm{NO}^{+}$
(2) $\mathrm{CN}^{-}, \mathrm{CO}$
(3) $\mathrm{N}_{2}, \mathrm{O}_{2}^{-}$
(4) $\mathrm{CO}, \mathrm{NO}$

Ans. (2)
Sol. Total no. of electrons in $\mathrm{CN}^{-}$is 14
Total no. of electrons in CO is also 14 hence B.O. of both $\mathrm{CN}^{-} \& \mathrm{CO}$ is 3
176. Extraction of gold and silver involes leaching with $\mathrm{CN}^{-}$ion. Silver is later recovered by :-
(1) distillation
(2) zone refining
(3) displacement with Zn
(4) liquation

Ans. (3)
Sol. Mac arther forest process/cyanide process

$$
\begin{aligned}
& \mathrm{Ag}_{2} \mathrm{~S}+4 \mathrm{NaCN} \xrightarrow{\mathrm{O}_{2}} 2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Na}_{2} \mathrm{SO}_{4} \\
& 2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right] \xrightarrow{\mathrm{Zn}} \mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]+\mathrm{Ag}(\downarrow) \\
& \text { Soluble complex }
\end{aligned}
$$

177. A 20 litre container at 400 K contains $\mathrm{CO}_{2}(\mathrm{~g})$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO ). The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of $\mathrm{CO}_{2}$ attains its maximum value, will be :-
(Given that : $\mathrm{SrCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{SrO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$, $\mathrm{Kp}=1.6 \mathrm{~atm})$
(1) 10 litre
(2) 4 litre
(3) 2 litre
(4) 5 litre

Ans. (4)
Sol. $\quad \mathrm{SrCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{SrO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

$$
\mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{CO}_{2}}
$$

maximum pressure of $\mathrm{CO}_{2}=1.6 \mathrm{~atm}$

$$
\begin{gathered}
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\
0.4 \times 20=1.6 \mathrm{~V}_{2} \\
\mathrm{~V} 2=5 \mathrm{~L} \quad \text { option (4) }
\end{gathered}
$$

178. Pick out the correct statement with respect to $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$ :-
(1) It is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised and tetrahedral
(2) It is $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridised and octahedral
(3) It is $\mathrm{dsp}^{2}$ hybridised and square planar
(4) It is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised and octahedral

Ans. (2)
Sol. $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-} \rightarrow$ O.S. of Mn is $(+3)$

$$
\text { C.N. }=6
$$



Presence of SFL (Pairing is possible)

179. The reason for greater range of oxidation states in actinoids is attributed to :-
(1) actinoid contraction
(2) 5f, 6d and 7 s levels having comparable energies
(3) 4 f and 5 d levels being close in energies
(4) the redioactive nature of actinoids

Ans. (2)
Sol. Minimum energy gap between
$5 f, 6 \mathrm{~d} \& 7 \mathrm{~s}$ subshell. Thats why $\mathrm{e}^{-}$exitation will be easeir.
180. Which of the following statements is not correct :-
(1) Ovalbumin is a simple food reserve in egg-white
(2) Blood proteins thrombin and fibrinogen are involved in blood clotting
(3) Denaturation makes the proteins more active
(4) Insulin maintanis sugar level in the blodd of a human body

Ans. (3)
Sol. Denaturation makes the protein more active.

# tarcet : Allus 2017 COMPUTER BASED TEST (CBT) 



# APPEAR IN ONLINE REAL TIME PRE-AIIMS'17 CBT EXAM 

| $14^{\text {th }}$ May \& $21^{\text {st }}$ May 2017 |  |  |  |
| :---: | :---: | :---: | :---: |
| Eligibility | Fee | Syllabus | Test Center |
| All AllMS Applicants (12"I Undergoing / Passed Students) | ₹ 600/- (For New Student) <br> ₹ 300/- (For ALLEN CCP) DLP/ OLTS students of session 2016-17 ) | AllIMS Full Syllabus With G.K. | $90+$ <br> centers across India |

## Salient <br> Features

Practice in Actual Exam Environment $>$ Ranking \& Analysis on national level
$>$ Confidence Booster (Identify Weak Areas) > Time Management

- Easy Online Exam
- Test in Well Equipped Lab
- Topic-Wise Assessment
- Model Test Papers in Hindi \& English
- Quick Revision for AllIMS
- Get access to Answer Key \& Solutions

Limited Seats KOTA (RAJASTHAN)

# NABEA 8 AMMS 2017 COMPUTER BASED TEST (CBT) 

## Features

## $\square=$ <br> リー <br> $\square$

## Practice in Actual Exam Environment

Students will get similar interface for grand mock AllMS CBT exam to familiarize them with the computer based testing tools and the type of questions they are likely to face in actual
 entrance examinations

## Confidence Booster <br> (Identify Weak Areas)

These test papers provide a sound examination temperament which not only enhance the student's scoring ability and test taking capability, also enhances the confidence.


## Easy Online Exam

AllMS aspirants can easily avoid their fear factor by giving exam in similar examination settings before appearing to the AlIMS 2017.

## คio Topic-Wise Assessment

Student will get a multidimensional performance analysis subject-wise/topic-wise/question-wise, which has been designed to bring forth the learning gaps and guiding student
 at a time.

Dynamically researched Question Bank designed by the most experienced faculties of ALLEN


## Quick Revision for AllMS

It will cover complete syllabus of AlIMS and the set of questions will follow the actual exam pattern. Also, fully colored image based questions similar to AIIMS, NEET and other exams.


Ranking \& Analysis on national level

Get All India Rank on AllMS mock exam and comparative analysis with topper that helps students to know their preparation and identify where they are lagging behind.


Student will get a time management report that will help them not only in mastering the art of Time Management by pointing out their most and least time consuming areas, but also helps to improve the overall speed of answering questions in an exam
 like environment.

## Test in Well Equipped Lab

Students are able to take their examination at conveniently located test centers well furnished with computers.

## Get access to

 Answer Key \& SolutionsPre-AlIMS' 17 ALLEN CBT aspirants will get access to answer key and solutions after exam.

