SAMPLE CONTENT

Challenger

GHENISTTRY Val-II NEET-UG \& JEE (Main)

 Now with mare study techniques
2080 MCQs with Hints

For all Agricultural. Medisal, Pharmacy and Engineering Entrance Examinations held across India.

Challenger NEET - UG \& JEE (Main) Chemistry vol. II

Salient Features

Concise theory for every topic.
\& Eclectic coverage of MCQs under e h sub-topis
© '2080' questions including MCQs froı `revio' NEET and JEE examinations.
E Includes selective solved MCQs upto NEET Phase-I \& II 2020, JEE (Main) 2020.
E Includes NEET Phase-II JZU ad JEE (Main) 2020 2 $^{\text {nd }}$ September (Shift - II) Question Paper al. Ansı ar sy a ng with Hints.
σ Multiple Study Techı ues E_{-}ance Understanding and Problem Solving.
\& Hints provided ver emed necessary.
σ Includes $\mathrm{Nu}_{\text {. rical }} \mathrm{V}_{\mathrm{i}}$ ue Type Questions (NVT).

Printed at: Print to Print, Mumbai

[^0]
PREFACE

'Challenger Chemistry Vol - II' is a compact guidebook, extremely handy for preparation of various competitive exams like NEET, JEE (Main). This edition provides an unmatched comprehensive amalgamation of theory with MCQs. The chapters are aligned with the syllabus for NEET (UG) and JEE (MAIN) examinations and runs parallel to NCERT curriculum. The book provides the students with scientifically accurate context, several study techniques and skills required to excel in these examination
Each chapter in the book consists of:

- Consice theory covering concepts that form a vital part of preparation any competitive exar ion in the form of pointers, tables, charts and diagrams.
- Concept Building Problems section is designed to boost prerequisite understanding of conc. ' S .
- Practice Problems section contains questions crafted for thorough revision.
- Diagram Based Problems section contains questions that facilit. stu ts' r aceptual understanding and enhance their spatial thinking ability.
- Numerical Value Type section cater to newly added NVT questions : JEL Main,
- Problems to Ponder section offers MCQs of diverse pattern c_{1} ted to . still the attitude of concentrating on the problems and to understand the applicati_.ario concepts in Chemistry.
All the questions included in a chapter have been specially crea 1 and cc piled to enable students solve complex problems which require strenuous effort with .ume
All the features of this book pave the path of a stu ent to excel 1 examination.The features are designed keeping the following elements in mind: Time n nagement, ϵ; y memorization or revision and nonconventional yet simple methods for MCQ solving.

To keep students updated, selected questions from most recmu examinations of NEET (UG) 2020 and JEE (Main) 2020 are covered exclusively.
NEET-UG 2020 (Phase II) and JFE (Ma) 20 $\quad 2^{\text {nd }}$ SEPTEMBER (Shift - II) Question Papers and Answer Keys have been provided to ot stuc ng glin se of the complexity of questions asked in entrance examination. The paper has been $\mathrm{s}_{\mathrm{K}}{ }^{+}$un. . in to let the students know which of the units were more relevant in the latest examinatir

We hope the book benefits th earner 4 we have envisioned.
A book affects eternit ve ca, eve ell where its influence stops.
From,
Publisher
Edition: Fnurth
The j irner u reate a complete book is strewn with triumphs, failures and near misses. If you think we've 'early $\mathrm{m}^{\text {' }}$, ed s ...ething or want to applaud us for our triumphs, we'd love to hear from you.
Plence w. . . us on: mail@targetpublications.org

Disclaimer

[^1]
FEATURES

Strategy

'Strategy' illustrates a general step-by-step approach towards solving a problem.
This is our attempt to guide students to map out a strategy for solving the problem.
5. The vapour pressure of acetone at $20^{\circ} \mathrm{C}$ is 185 torr. When 1.2 g of a non-volatile substance was dissolved in 100 g of acetone at $20^{\circ} \mathrm{C}$, its vapour pressure was 183 torr. The molar mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$ of the substance :
(A) 32
(B) 64
(C) 128
(D) 488
5. (B)
5. Strategy

$$
\begin{aligned}
& \frac{\mathrm{p}_{\mathrm{A}}^{\circ}-\mathrm{p}_{\mathrm{A}}}{\mathrm{p}_{\mathrm{A}}^{\circ}}=\frac{\mathrm{W}_{\mathrm{B}} \mathrm{M}_{\mathrm{A}}}{\mathrm{M}_{\mathrm{B}} \mathrm{~W}_{\mathrm{A}}} \\
& \frac{18}{18} \frac{-183}{18}=\frac{1.2 \times 58}{\mathrm{M}_{\mathrm{B}} \times 100} \\
& \mathrm{M}_{\mathrm{B}}=\frac{1.2}{2} \times \frac{58}{100} \times 185=64.38 \approx 64 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

[2) ma ip-1

cor dilution, $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$ (Initial) (Final)
i. Resulting molarity of the two mixtures (solutions), $M=\frac{M_{1} V_{1}+M_{2} V_{2}}{V_{1}+V_{2}}$

'Smart tips' comprise important theoretical or formula based short tricks considering their usage in solving MCQ.
This is our attempt to highlight content that would come handy while solving questions.

SMART CODE - 2

For 3d series: $\mathrm{Sc}, \mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$.
Scary Tiny Vicious Creature May Fear Cows and Nice Cute Zebras.
For 4d series: $\mathrm{Y}, \mathrm{Zr}, \mathrm{Nb}, \mathrm{Mo}, \mathrm{Tc}, \mathrm{Ru}, \mathrm{Rh}, \mathrm{Pd}, \mathrm{Ag}, \mathrm{Cd}$.
Yes, Zebras can Never, but Most Technicians can Rond Rhymes Properly And Correctly.
For 5d series: La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Late Harry Took a Walk and
Reached Office In Pajamas After an Hour.

'Smar 1 ode'sh. cases simple and smart mı nonic cre.ted for selected

This is ८ attenpt to offer students a memory echnique that facilitates v rer lection.

Q.R. Codes

'Q.R. code' provides access to a video in order to boost under andin. of a concept or activity.
This is our attempt to $\jmath^{\text {i ilitate }}$ learning with visuc uı.

Sluments can scan the adjacent $Q R$ code to et further conceptual clarity on seven crystal systems.

BATHWIIN

Ensure to convert edge length from \AA to cm before substituting in the density formula.
3. A compound ' X ' upon reaction with $\mathrm{H}_{2} \mathrm{O}$ produces a (b) colourless gas ' Y ' with rotten fish smell. Gas ' Y ' is absorbed in a solution of CuSO_{4} to give $\mathrm{Cu}_{3} \mathrm{P}_{2}$ as one of the products. Predict the compound ' X '.
[NEET (Odisha) 2019]
(A) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(B) $\mathrm{Ca}_{3} \mathrm{P}_{2}$
(C) $\mathrm{NH}_{4} \mathrm{Cl}$
(D) $\quad \mathrm{As}_{2} \mathrm{O}_{3}$

Clock Symbol

'Clock Symbol’ instructs students that given MCQ can be solved apace by applying either smart tips, smar codes or thinking hatke.
This is our attempt to make students attentive towards their percepti 1 o, approaches possible for sol ? , an MCQ.

Miscellaneous MCQs covers concept of different sub-topics of same chapter or from different chapters.
This is our attempt to develop cognitive thinking in the students essential to solve questions involving fusion of multiple key concepts.

2. 0.44 mole of electrons were par through four electrolyte solutions for 1 secon conn .ed in series. If the solutions are $c \mathrm{AlCl}_{3} \mathrm{Zr}^{r} \delta_{4}, \mathrm{uCl}_{3}$ and AgNO_{3}, find the CORRE ${ }^{\top}$ de t sing der of the amount of each metal depo \quad d a a .ode of each cell. (M.W.: $\mathrm{Al}=27 \quad \ldots \quad$ 5.4.,\quad q $=108, \mathrm{Au}=197$)

Thinking Hatke

'Thinking Hatke' reveals quick witted approach to crack the specific question.
This is our attempt to develop skill of lateral thinking in students.

- Why Challenger Series?

Gradually, every year the nature of competitive entrance exams is inching towards conceptual understanding of topics. Moreover, it is time to bid adieu to the stereotypical approach of solving a problem using a single conventional method.

To be able to successfully crack the NEET/JEE (Main) examinations, it is imperative , develop skills such as data interpretation, appropriate time management, knowing various method to solve a problem, etc. With Challenger Series, we are sure, you'd develop all the aforementioned skills and take a more holistic approach towards problem solving. The way you'd tackle ad ... level MCQs with the help of hints, Smart tips, Smart codes and Thinking Hatke would giv ou the necessary practice that would be a game changer in your preparation for the competitive t. ance examinations.

- What is the intention behind the launch of Challenger Series?

The sole objective behind the introduction of Challenger Series is to sev. ly te the r dent's preparedness to take competitive entrance examinations. With an eclectic $r_{\text {c }}$ re of critical and advanced level MCQs, we intend to test a student's MCQ solving s ${ }^{1} \ldots$ ithin pulated time period.
> What do I gain out of Challenger Series?
After using Challenger Series, students would be able to:
a. assimilate the given data and apply relevant $\cdots \cdots$ apts th utmos ease.
b. tackle MCQs of different pattern such match the 1 lum s, diagram based questions, multiple concepts and assertion-reason ϵ iciently.
c. garner the much needed confidence to at ear for comp itive exams.
d. easy and time saving methods to tackle trı $\quad \tau$ questir s will help ensure that time consuming questions do not occupy more time than you c.. . of per question.
> How to derive the best advantage • ... `ook?
To get the maximum benef; of the ook re commend :
a. Go through brief the giv, i the eginning of a chapter for a quick revision. Commit Smart Tips into memory , 'pa, alon to Caution.
b. Know all the Forr..$\cap m_{\perp} \quad$ d at the end of theory by heart.
c. Using subtopic । ise seg, yaticn as a leverage, complete the Concept Building Problems at your own pace. restions rom various competitive exams such as JEE (Main), NEET-UG,
 speciall to gat. - the nds of questions in various exams.
d. Be xtra eceptiv, to T...nking Hatke, Alternate Method and application of Smart Tips. A. milate - m into your thinking.
e. Afte masterng stimulating questions, take up Practice Problems as self-assessment and rify . wers as well as methods. Check if you could apply smart tips, alternate method, itc as mentioned in hint. Find out if you have invented ingenious solution mapping to thir ang hatke explicated in hints.
f. " atch the linked video for an efficient revision of chapter theory.

Ruminate over questions from Problems To Ponder and appreciate aesthetics of the concepts.
Lan the Questions presented in Problems to Ponder section be a part of the NEET Examination?
No, the questions would not appear as it is in the NEET Examination. However, there are fair chances that these questions could be covered in parts or with a novel question construction.

Best of luck to all the aspirants!

CONTENTS

No.	Topic Name	Page Ne
1	Solid state	1
2	Solution	3
3	Electrochemistry	8
4	Chemical Kinetics	
5	Surface Chemistry	10
6	General Principles and Processes of Isolation of Elements	204
7	p-Block Elements	239
8	d and f-Block Elements	310
9	Coordination Compounds	347
10	Haloalkanes and Haloarenes	386
11	Alcohols, Phenols and Ethers	447
12	Aldehydes, Ketones and Carboxylic Aciu	512
13	Organic Compounds Cont $\%$..... Vitrogen	599
14	Biomolecules	659
15	Polymers	698
16	Chemistry in E reryda, Life	726
17	Principle ${ }^{\text {P }}$ ela, ${ }^{1}$ to P actical Chemistry	749
		801
		804

Not. * marked subtopic in a chapter is listed only in the JEE syllabus and ** marked subtopic in a chapter is listed only in the NEET syllabus. However, since questions based on the same have appeared in the recent examinations, these subtopics are covered judiciously in the book.

Solid State

1.0 Introduction

1.1 Classification of solids
1.2 Classification of crystalline solids
1.3 Unit cells and crystal lattices
*1.4 Bragg's law and its applications
1.5 Seven crystal systems
1.6 Three types of cubic lattices

* marked section is only for JEE (Main)
1.7 Packing in solids
1.8 Packing efficiency
1.9 Calculation of density of unit cells
1.10 Imperfections in solids
1.11 Classification of F int det ts
1.12 Electrical properties c olids
**1.13 Band theory
1.14 Magnetic pı, arties of lids
** marked section is for N^{*} \&

1.0 INTRODUCTION

$>$ States of matter: Matter can exist in three physic: states.

> General characteristics of solic tate.

1.1 CLASSIF CAT N OF SOLIDS

$>$ Clas. \quad ratio f solids:
Sr ds a clas "ed into the following two types on the basis of the presence or absence of orderly a ang nel f the constituent particles:

1. Crys dline solids: A crystalline solid is a homogeneous solid in which the constituent particles, atoms, ions
nr m. n s are arranged in a definite repeating pattern in three dimensional space.
A orphous solids: The substances that appear like solids but do not have well developed perfectly ordered ar ngement of constituent particles are called amorphous (no form) solids.

Property	Crystalline solids	Amorphous solids	
a.	Shape	They have definite characteristic geometrical shape due to the orderly regular long range arrangement of constituent particles.	They have irregular shape i.e., lack characteristic geometrical shape due to the short ranged orderly arrangement of constituent particles.
b.	Melting point	They have sharp and characteristic melting point.	They do not have sharp melting point. They gradually soften over a range of temperature.

ii. The unit cells of 14 types of Bravais lattices are shown in the following figure:

Primitive (or simple)

Body-centred

Face-centred

Three Type of Cubic Cells $\left(\mathbf{a}=\mathbf{b}=\mathbf{c}, \alpha=\beta=\gamma=90^{\circ}\right)$

Primitive

Body-centred

Two Types of Tetragonal Unit Cells $(\mathbf{a}=\mathbf{b} \neq \mathbf{c}, \alpha=\beta=\gamma=\mathbf{9}$

Four Types of Orthorhombic Unit Ct. $\quad \omega \neq \mathbf{c}, \alpha=\beta=\gamma=90^{\circ}$)

T. vpes ol 'onoc ic Unit Cells ($\mathbf{a} \neq \mathbf{b} \neq \mathbf{c}, \alpha=\beta=\mathbf{9 0}, \gamma \neq 90^{\circ}$)

Triclinic Unit Cell
($\mathbf{a} \neq \mathrm{b} \neq \mathrm{c}, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$)

Hexagonal Unit Cell
$\left(a=b \neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}\right)$

Rhombohedral Unit Cell

$$
(\mathbf{a}=\mathbf{b}=\mathbf{c}
$$

$\alpha=\beta=\gamma \neq 90^{\circ}$)

Students can scan the adjacent QR code to get further conceptual clarity on seven crystal systems.

b. The following table gives the limiting values of radius ratio, the coordination number of the cation and the structural arrangement of anions around cations.

Radius ratio $\left(\frac{\mathbf{r}^{+}}{\mathbf{r}^{-}}\right)$	Coordination number of cation	Structural arrangement of anions around cations	Examples
0.155 to 0.225	3	Planar triangular	$\mathrm{B}_{2} \mathrm{O}_{3}$
0.225 to 0.414	4	Tetrahedral	ZnS
0.414 to 0.732	6	Octahedral	NaCl
0.732 to 1.0	8	Cubic	CsCl

ii. Structures of some ionic solids:

iii. Sizes of tetrahedral and octahedral voids:

Radius (r) of tetrahedral void $=0.225 \mathrm{R}$
Radius (r) of octahedral void $=0.414 \mathrm{R}$
$\mathrm{R}=$ radius of the spheres in the close packed a_{i} ngement.

1.8 PACKING EFFICIENCY

> Packing efficiency:
The packing efficiency is the, rcent re tota pace occupied by the particles.
i. Packing efficiency is given bv follo, g_{g} formula:

ii. The magnitude of $\quad \eta g e_{1} \quad y$ gives a measure of how tightly particles are packed together.
$>$ Packing effic v in dis ent it cells:

	Simple cubic unit cell	Body-centred cubic unit cell (bcc)	Face-centred cubic unit cell (fcc) or cubic close packing (ccp)
\lrcorner nit ce diagram			
Total number of spheres per unit cell	1	2	4
Relation between a (edge length of unit cell) and r (radius of sphere)	$r=\frac{\mathrm{a}}{2}$	$r=\frac{\sqrt{3}}{4} a$	$\mathrm{r}=\frac{\mathrm{a}}{2 \sqrt{2}}$

Volume of one sphere	$\frac{4}{3} \pi \times\left(\frac{\mathrm{a}}{2}\right)^{3}=\frac{\pi \mathrm{a}^{3}}{6}$	$\frac{4}{3} \pi \times\left(\frac{\sqrt{3}}{4} \mathrm{a}\right)^{3}=\frac{\sqrt{3} \pi \mathrm{a}^{3}}{16}$	$\frac{4}{3} \pi \times\left(\frac{\mathrm{a}}{2 \sqrt{2}}\right)^{3}=\frac{\pi \mathrm{a}^{3}}{12 \sqrt{2}}$
Total volume of spheres $=$ Number of spheres per unit cell \times volume of sphere	$1 \times \frac{\pi \mathrm{a}^{3}}{6}=\frac{\pi \mathrm{a}^{3}}{6}$	$2 \times \frac{\sqrt{3} \pi \mathrm{a}^{3}}{16}=\frac{\sqrt{3} \pi \mathrm{a}^{3}}{8}$	$4 \times \frac{\pi \mathrm{a}^{3}}{12 \sqrt{2}}=\frac{\pi \mathrm{a}^{3}}{3 \sqrt{2}}$
$\begin{aligned} & \text { Packing efficiency }= \\ & \frac{\text { Total volume of spheres }}{\text { Volume of unit cell }} \times 100 \end{aligned}$	$\frac{\pi a^{3} / 6}{a^{3}} \times 100=52.4 \%$	$\frac{\sqrt{3} \pi \mathrm{a}^{3}}{8 \mathrm{a}^{3}} \times 100=68 \%$	$\frac{\pi a^{3}}{3 \sqrt{2} \mathrm{a}^{3}} \times 100$
Empty space	47.6\%	32\%	\%
Coordination number of sphere	6 : four in the same layer, one directly above and one directly below	8 : four in the layer below and one in the laye above	12 : six : its c.n laye th $\sim \mathrm{ab}$ e and rree ${ }^{\text {s }}$ ow

Smart tip - 1

From the above derivations, we can deduce the following relations between t, e length (a) of the unit cell and radius of particle, volume of one particle and total volume occ., pa. 'res in a unit cell:

	Simple cubic unit cell		bce unit $\quad 1$		fce/cep unit cell
i.	$\begin{aligned} & \text { Radius of particle (r) } \\ & =0.5000 \mathrm{a} \end{aligned}$	ii.	$\begin{aligned} & \text { Radius of aticle (r) } \\ & =0 . \quad 330 \mathrm{a} \end{aligned}$		$\begin{aligned} & \text { Radius of particle (r) } \\ & =0.3535 \mathrm{a} \end{aligned}$
iv.	Volume of one particle $=0.524 \mathrm{a}^{3}$	v.	Volume oi re particle $=0.3$.	vi.	Volume of one particle $=0.185 \mathrm{a}^{3}$
vii.	Total volume occupied by particles in unit cell $=0.524 \mathrm{a}^{3}$	viii.	Total volume occupicu by - les in unit cell $=0.68 \mathrm{a}^{3}$	ix.	Total volume occupied by particles in unit cell $=0.74 \mathrm{a}^{3}$

Relationship between the neare veig nur stance (D) and the edge length (a) of a cubic unit cell:

No.	Type of un' cen.	Relation between D and a
i.	Simple cubic	$\mathrm{D}=$ edge length $=\mathrm{a}$
ii.	Body-centr ${ }^{-1}$ cubic	$\mathrm{D}=\frac{1}{2} \times \text { body diagonal }=\frac{1}{2} \times \sqrt{3} \mathrm{a}$
iii.	Face .un d cubic	$\mathrm{D}=\frac{1}{2} \times \text { face diagonal }=\frac{1}{2} \times \sqrt{2} \mathrm{a}=\frac{\mathrm{a}}{\sqrt{2}}$

Note: Pa, \quad fficl, y in hexagonal close packing (hep) arrangement:
i. f acp it 11 contains 12 corner spheres, 2 face-centred spheres and 3 body-centred spheres.

Num er of ${ }^{f}$, pheres per unit cell $=\left(12 \times \frac{1}{6}\right)+\left(2 \times \frac{1}{2}\right)+3=2+1+3=6$
Lє ' r ' represent the radius of the sphere

$$
\text { .eight of unit cell }=4 r \cdot \sqrt{\frac{2}{3}}
$$

Base area of regular hexagon $=6 \times \frac{\sqrt{3}}{4}(2 r)^{2}=6 \times \sqrt{3} r^{2}$
iii. Volume of unit cell $=$ Base area \times height $(h)=6 \sqrt{3} \mathrm{r}^{2} \times 4 \mathrm{r} . \sqrt{\frac{2}{3}}$

$$
=24 \sqrt{2} \mathrm{r}^{3}
$$

Section view of hcp type unit cell

Ferrimagnetic materials

- The domains align in such a way that there is a small net magnetic moment.
- The number of domains that are aligned in parallel direction is not equal to the number of domains that are aligned in anti-parallel direction.

- Weakly attracted by a magnetic field.
- Change to paramagnetic solid when heated.

$\mathrm{Fe}_{3} \mathrm{O}_{4}$	
(magnetite),	
Ferrites like	
$\mathrm{MgFe}_{2} \mathrm{O}_{4}$,	
$\mathrm{ZnFe}_{2} \mathrm{O}_{4}$,	
etc.	

1. Packing efficiency
$=\frac{\text { Volumeoccupied by spheresin unit cell }}{\text { Volume of unit cell }} \times 100$
2. Relationship between radius of atom (r) and edge length (a):

Simple cubic unit cell	Body-centred cubic unit cell	Face-centred cubic unit cell
$\mathrm{r}=\frac{\mathrm{a}}{2}$	$\mathrm{r}=\frac{\sqrt{3}}{4} \mathrm{a}$	$\mathrm{r}=\frac{\mathrm{a}}{2 \sqrt{2}}$

3. Volume of one particle in unit cell:

Simple cubic unit cell	Body-centred cubic unit cell	Face-centred cubic up :
$\frac{\pi \mathrm{a}^{3}}{6}$	$\frac{\sqrt{3} \pi \mathrm{a}^{3}}{16}$	$\frac{\tau}{1} \overline{5}$

4. Total volume occupied by parth s init cell:

Simple cubic unit cell	Body-cent. I cubic ${ }^{-\cdots i t}$ ce.	Fa -centred cul $^{\prime}$: unit cell
$\frac{\pi \mathrm{a}^{3}}{6}$	$\frac{\sqrt{3} \pi \mathrm{a}}{8}$	$\frac{\pi \mathrm{a}^{3}}{3 \sqrt{2}}$

5. Distance, ween $t_{\text {, }}$ nearest neighbours (D) in a \cdots. celh.

$$
\operatorname{Simp} \text { cub }
$$

un. ce'
hec unit cell
fcc unit cell
$n=\mathrm{a}$
$\mathrm{D}=\frac{\sqrt{3} \mathrm{a}}{2}$
$\mathrm{D}=\frac{\mathrm{a}}{\sqrt{2}}$
6. D isity of unit cell (d):
$\mathrm{d}=\frac{\text { Mass of unit cell }}{\text { Volume of unit cell }}=\frac{\mathrm{Z} \times \mathrm{M}}{\mathrm{a}^{3} \times \mathrm{N}_{\mathrm{A}}} \mathrm{g} \mathrm{cm}^{-3}$
where, a is the edge length of unit cell in cm
Z is the number of atoms per unit cell
M is the molar mass $(\mathrm{g} / \mathrm{mol})$
N_{A} is Avogadro number ($6.022 \times 10^{23} \mathrm{~mol}^{-1}$)
For fcc, $Z=4$, for bcc, $Z=2$ and for simple cubic, $Z=1$
7. Number of atoms in x of ctal $=\frac{x \leftharpoonup}{d a^{3}}$
8. Number of unit celle. got. $\frac{x}{\mathrm{~d} \times \mathrm{a}^{3}}$
9. Number of ur ces in vo. .e (V) of metal
$=\frac{\mathrm{V}}{\mathrm{a}^{3}}$
10. Som anit ce ers as:
$1 \mathrm{pn}=1 \times 10^{-} \quad \mathrm{m}=1 \times 10^{-10} \mathrm{~cm}$
$1 \AA=\times 10^{-8} \mathrm{~m}=100 \mathrm{pm}$

Cor

ept Building Problems

n IF RODUCTION

1. The properties that are characteristics of solid state are:
i. Easily compressible as compared to liquids and gases
ii. Definite volume
iii. Definite mass
iv. High rate of diffusion as compared to liquids and gases
v. Stronger intermolecular forces as compared to liquids and gases
vi. Smaller intermolecular distance between the particles as compared to liquids and gases
(A) (i), (ii), (iii)
(B) (ii), (iii), (iv) and (vi)
(C) (ii), (iii), (v) and (vi)
(D) (i), (ii), (iii), (v) and (vi)

1.1 CLASSIFICATION OF SOLIDS

1. Which of the following is NOT true about crystalline solids?
(A) They have long range order.
(B) They have sharp and characteristic melting points.
(C) Their measured electrical conductance changes with the change in direction of measurement.
(D) They are also known as super cooled liquids.
2. Which is the INCORRECT statement?
[NEET (UG) 2017]
(A) Density decreases in case of crystals with Schottky's defect.
(B) $\mathrm{NaCl}(\mathrm{s})$ is insulator, silicon is semiconductor, silver is conductor, quartz is piezoelectric crystal.
(C) Frenkel defect is favoured in those ionic compounds in which sizes of cation and anions are almost equal.
(D) $\mathrm{Fe}_{0.98} \mathrm{O}$ has stoichiometric metal deficiency defect.
3. For a compound the expected structure was fcc lattice, in which 'A' occupies all corner positions and ' B ' occupies all face center positions. The molecular formula of such a compound must be AB_{3}. However, the formula is found to be $\mathrm{A}_{2} \mathrm{~B}_{5}$. This is because \qquad -.
(A) One atom of A is missing in the lattice
(B) One atom of B is missing in the lattice
(C) One atom of A is replaced with one atom of B in the lattice
(D) One atom of B is replaced with one atom of A in the lattice

Practice Problems

1.1 CLASSIFICATION OF SOLIDS

1. Which of the following is TRUE abor y" ' 7 and quartz glass?
(A) Quartz is an amorphous. 'id wi 'e ,uartz glass is a crystalline solid
(B) Both quartz and mortz lass are amorphous solids.
(C) Both quartz a quartz glass are crystalline solids.
(D) Quartz is : ry. lline while quartz glass is an morph asol.

1.2 CLASSIE CAT, N OF CRYSTALLINE SOLIDS

1. ' y is insuı. or as a solid but conducts e. ctr' .y 'ts fused state. ' X ' is hard and brittl in n ? are. Identify ' X '.
(c) Diamond
(B) Calcium fluoride
(C) Diamond
(D) Sulphur dioxide
2. tch the following solids in column I with the major bonding/attractive force between the constituent particles in column II.

	Column I		Column II
i.	Dry ice	a.	Covalent bonding
ii.	Magnesium	b.	London forces
iii.	Graphite	c.	Electrostatic forces
iv.	Common salt	d.	Metallic bonding

(A) $\mathrm{i}-\mathrm{a}$, ii -c, iii -b , iv -d
(B) $\mathrm{i}-\mathrm{b}$, ii -d, iii -a , iv -c
(C) $\mathrm{i}-\mathrm{a}$, ii -d, iii -b, iv -c
(D) $\mathrm{i}-\mathrm{c}$, ii -d , iii -a, iv -b

1.4 BRAGG'S LAW AND ITS APPLICATIONS

1. At what value of angle of incidence would the second order diffraction occur, when ar has $\lambda=\mathrm{d}=160 \mathrm{pm}$?
(A) 30°
(B) 45°
(C) 60°
(D)

1.5 SEVEN CRYSTAL SYs EN

1. A dice represents \qquad crys. .em.
(A) cubic
(. tetragonal
(C) orthorho oic
(D) nonoclinic
2. For which o_{1} he follo ing pairs of crystal sytems latu hip $\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$ is CORRECT?
(A) Hexagc 1 an retragonal
(B) Tetragon and rhombohedral
(C) thorb nbic and triclinic
(D) Monucinic and cubic
3. Matc the following:

	Crystal system		Example
i.	Triclinic	a.	TiO_{2}
ii.	Orthorhombic	b.	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
iii.	Hexagonal	c.	BaSO_{4}
iv.	Tetragonal	d.	ZnO

(A) $\mathrm{i}-\mathrm{b}, \mathrm{ii}-\mathrm{c}$, iii -d, iv -a
(B) $\mathrm{i}-\mathrm{c}, \mathrm{ii}-\mathrm{b}$, iii -a, iv -d
(C) $\mathrm{i}-\mathrm{b}$, ii -a, iii -d , iv -c
(D) $\mathrm{i}-\mathrm{c}$, ii -d, iii -b , iv - a

1.7 Packing in solids

1. Which of the following is INCORRECT regarding the ABAB type, two-dimensional arrangement?
(A) The coordination number of each sphere is 6 .
(B) This arrangement forms hexagonal close packed structure.
(C) A regular hexagon is formed when the centres of six neighbouring spheres, surrounding a central sphere, are joined.
(D) The spheres of successive layers have horizontal and vertical alignment.
2. A sample of metal has $5 \times 10^{3} \mathrm{fcc}$ unit cells. Calculate the number of tetrahedral voids present.
(A) 2×10^{3}
(B) 5×10^{3}
(C) 2×10^{4}
(D) 4×10^{4}
3. A mixed oxide has oxide ions arranged in ccp array. One-fifth of tetrahedral voids are occupied by X ions, while one-half of the octahedral voids are occupied by Y ions. The formula of this oxide is
(A) $\mathrm{X}_{4} \mathrm{Y}_{5} \mathrm{O}_{10}$
(B) $\mathrm{X}_{8} \mathrm{Y}_{5} \mathrm{O}_{13}$
(C) $\mathrm{X}_{4} \mathrm{Y}_{5} \mathrm{O}$
(D) $\mathrm{X}_{5} \mathrm{Y}_{4} \mathrm{O}_{10}$
4. Identify the CORRECT increasing order of coordination number of the cations in the crystals of $\mathrm{MgS}, \mathrm{MgO}$ and CsCl on the basis of data given below:
Radius in $\AA: \mathrm{Mg}^{2+}=0.65, \mathrm{Cs}^{+}=1.69$,
$\mathrm{O}^{2-}=1.40, \mathrm{~S}^{2-}=1.84, \mathrm{Cl}^{-}=1.81$
(A) $\mathrm{MgS}<\mathrm{MgO}<\mathrm{CsCl}$
(B) $\mathrm{MgO}<\mathrm{MgS}<\mathrm{CsCl}$
(C) $\mathrm{CsCl}<\mathrm{MgO}<\mathrm{MgS}$
(D) $\mathrm{MgS}<\mathrm{CsCl}<\mathrm{MgO}$

1.8 Packing EFFICIENCY

1. Three different metal atoms crystallize in simple (L) cubic, bcc and fcc lattice structures. If the edge length is 88 pm for all the three unit cells what is the ratio of the radii r_{1} in simple cubic lattice, r_{2} in bcc lattice, r_{3} in fcc lattice?
(A) $1.41: 1.22: 1$
(B) $1.87: 2.24: 1$
(C) $1.24: 1.87: 1$
(D) $1.41: 1: 1.22$
2. CsI crystallizes in body-centred cubic lattice. Which of the following expressions is CORRECT for CsI?

(B) $\mathrm{r}_{\mathrm{Cs}^{+}}+\mathrm{r}_{\mathrm{r}}=\frac{3}{2} \times$ edge length
(C) $\mathrm{r}_{\mathrm{Cs}^{+}}+\mathrm{r}_{\mathrm{r}}=\frac{\sqrt{3}}{2} \times$ edge ength
(D)

$$
\mathrm{r}_{\mathrm{cs}^{+}}+\mathrm{r}_{\mathrm{r}^{-}}=\frac{\sqrt{3}}{\mathrm{~d}} \quad \mathrm{dy} \text { a. }
$$

1.9 CALCUL IN OF DEI SITY OF UNIT C. LS

1. A - tia, ${ }^{+} \mathrm{om}$ C sallises in a cubic system with a racki g 〒ciency of 74%. If the edge length is $10^{\prime} \mathrm{\rho m}$ a a the atomic mass is M , the density of th. .o. cell is given by \qquad $\mathrm{g} \mathrm{cm}^{-3}$.
(2 $\quad 1.66 \times \mathrm{M}$
(B) $2.40 \times \mathrm{M}$
(C) $3.32 \times \mathrm{M}$
(D) $6.64 \times \mathrm{M}$
crystallizes in fcc lattice. Suppose the atomic radius of ' X ' is 130 pm and molar mass is $63.5 \mathrm{~g} / \mathrm{mol}$. The volume of its unit cell and density of ' X ' are \qquad respectively.
(A) $5.68 \times 10^{-23} \mathrm{~cm}^{3}, 4.9 \mathrm{~g} / \mathrm{cm}^{3}$
(B) $5.68 \times 10^{-23} \mathrm{~cm}^{3}, 2.9 \mathrm{~g} / \mathrm{cm}^{3}$
(C) $4.97 \times 10^{-23} \mathrm{~cm}^{3}, 8.5 \mathrm{~g} / \mathrm{cm}^{3}$
(D) $4.97 \times 10^{-23} \mathrm{~cm}^{3}, 5.6 \mathrm{~g} / \mathrm{cm}^{3}$
2. A metal ' X ' has fcc structure with atomic radius 140 pm . If the density is $12.69 \mathrm{~g} / \mathrm{cm}^{3}$, metal ' X ' is \qquad -
(A) Ag
(B) Zn
(C) Sn
(D) Fe
3. An unknown element ' X ' crystallizes ir fcc lattice. If radius of the atom is 70.7 pm density is $41.6 \mathrm{~g} \mathrm{~cm}^{-3}$, how many atoms of ' X are contained in 200 g sample of the el
(A) 6.0×10^{23} atoms
(B) 1.7×11^{24} atol
(C) 2.4×10^{24} atoms
(D) $3.5 \times{ }^{25}$ atoms
4. Calcium crystallizes in a facf entı cubı nit cell with $\mathrm{a}=0.556 \mathrm{~nm}$. Cal latr ne ensity if it contained $0.2 \% \mathrm{Sc} .+\mathrm{yd}$ is.
(A) $1.475 \mathrm{~g} \mathrm{~cm}^{-3}$
B) $\quad \mathrm{g} \mathrm{cm}^{-3}$
(C) $1.718 \mathrm{~g} \mathrm{cr}^{-2}$
(L $\quad 1903 \mathrm{~g} \mathrm{~cm}^{-3}$
5. AB crystalli in a bc -centred cubic lattice, with unit cell e. length, $8.12 \times 10^{-8} \mathrm{~cm}$. If the radius \ldots ion ${ }^{2} 03 \mathrm{pm}$, radius of B^{2-} ion is _-
(A) $1.9 \times 10^{-} \mathrm{cm}$
(B) 400 pm
(C) $1 . \quad \mathrm{J}^{-8} \mathrm{~cm}$
(D) $1100 \AA$

1.11 CI ISSIFICATION OF POINT D' FECTS

1. Which of the following statements are CORRECT?
I. Frenkel defect is a point defect that do not disturb the stoichiometry of the solid.
II. Non-stoichiometric defects are also called intrinsic defects.
III. Schottky defect is found in ionic compounds with high degree of ionic character.
IV. Metal excess defect is a point defect that do not disturb the stoichiometry of the solid.
V. Metal deficiency defect imparts colour to the colourless crystal due to formation of F-centres.
(A) I and III
(B) III and V
(C) II, IV and V
(D) I, III and IV

Miscellaneous

1. A halide ion forms a close packed structure. If radius of X^{-}ion is 221 pm , what is the maximum radius of the cation that can just fit into the tetrahedral hole and octahedral hole respectively?
(A) 36.5 pm and 73 pm
(B) 43.8 pm and 80.7 pm
(C) 49.7 pm and 91.5 pm
(D) 58.6 pm and 100.4 pm
2. Which of the following statements are CORRECT about cubic close packed (ccp) 3-D structure?
I. The unit cell edge length is $2 \sqrt{2}$ times the radius of the atom.
II. The number of octahedral and tetrahedral voids per atom are 1 and 2 respectively.
III. The number of the nearest neighbours of an atom present in the topmost layer is 12 .
IV. The packing efficiency of the arrangement is 74%.
(A) I, IV
(B) II, IV
(C) II, III, IV
(D) I, II, IV

Diagram Bascd Problems

1. The following figure represents a unit cell belonging to crystal system.

(A) tetragonal
(B) cubic
(C) triclinic
(D) orthorl mbic
2. Identify the CORRECT optio vith st to the following unit cell diagram.

	C•dinat h. nber	Total number of atoms per unit cell
(\uparrow		4
3)	6	9
(C)	\checkmark	9
(D)	8	2

I_{1} unit cell of a metal having atomic radius of $r n$ is shown in the given diagram. If edge agth is a cm, then the total volume occupied by the particles in the unit cell is:
(A) $0.34 \mathrm{a}^{3}$
(B) $0.68 \mathrm{a}^{3}$
(C) $0.74 \mathrm{a}^{3}$
(D) $0.185 \mathrm{a}^{3}$

4. The following diagram shows the three layers of fcc unit cell. Each sphere represents an atom.

A face diagonal passing thr agh 1 cen. of atom 1 will also pass thr igh ae intre of atoms \qquad .
(A) 3 and 5
'B) and 11
(C) 2, 4 and 10
(. $3,5,6,7,11$ and 13
5. Which of the follow. r is TRUE about the following crys defect?

(A) Density of the solid decreases.
(B) Compounds having high coordination number show this defect.
(C) The substance is not electrically neutral.
(D) KCl does not exhibit this defect.
6. Unit cell structure of a certain compound is shown in the given diagram. The empirical formula of the compound is
(A) $\quad \mathrm{MX}_{2}$
(B) $\quad \mathrm{M}_{2} \mathrm{X}$
(C) $\mathrm{M}_{4} \mathrm{X}$
(D) MX_{4}

7. Find the INCORRECT equation for the given diagram.
(A) Edge length of the unit cell $=\frac{4}{\sqrt{2}} r$
(B) Volume of unit cell
$=\frac{32}{\sqrt{2}} \mathrm{r}^{3}$

(C) Volume of four spheres $=\frac{16}{3} \pi \mathrm{r}^{3}$
(D) Fraction occupied $=\frac{\pi \sqrt{3}}{8}$
8.

How many among the following crystalline solids show the above illustrated metal defect? $\mathrm{NaCl}, \mathrm{AgCl}, \mathrm{KCl}, \mathrm{CsCl}, \mathrm{KBr}, \mathrm{AgBr}, \mathrm{AgI}, \mathrm{ZnS}$
(A) 2
(B) 4
(C) 5
(D) 6

2_{4}^{13} Numerical Value Type Questions

1. A metal crystallizes in face-centred cubic lattice with edge length of 400 pm . If the density of the metal is $8 \mathrm{~g} \mathrm{~cm}^{-3}$, then the number of atoms present in 256 g of the metal sample is $\mathrm{N} \times 10^{24}$. Value of N is \qquad -.
[Ans: 2]
2. How many total spheres of constituent particles are present in bcc type of unit cell?
[Ans: 2]
3. A metal sample has $5 \times 10^{4} \mathrm{fcc}$ unit cells. The total number of tetrahedral voids prer re 4×10^{x}. The value of x is:
if $\mathrm{s}: 5]$
4. If a metal crystallizes in face-c. red ... lattice with metallic rar $\quad 25 \mathrm{~m}$, the number of unit cells in .00 cm of lattice is 2.8×10^{x}. Value of x is \qquad -.
[Ans: 24]
5. The edge of unit cell of Xe crystal having fcc structure is 620 pm . The radius of Xe atom is
\qquad pm.
[Ans: 219.17]
6. How many of the following compounds show ferrimagnetism?
$\mathrm{Fe}_{3} \mathrm{O}_{4} ; \mathrm{MgFe}_{2} \mathrm{O}_{4} ; \mathrm{CrO}_{2} ; \mathrm{ZnFe}_{2} \mathrm{O}_{4} ; \mathrm{MnO} ; \mathrm{H}_{2} \mathrm{C}$
[Ans. 3 ,
7. In a face centred cubic lattice, atom A cu. es the corner positions and atom $B \subset$ upies t_{1}. face centre positions. If one atom $f B$ is missing from one of the face $\quad{ }^{1}$ por $_{\perp}$ the formula of the compound is ${ }_{1 x} B_{y}$ ne valu of ' y ' is \qquad -.
[Ans: 5]

Problems ${ }^{\text {N }}$ Ona 2

1. It was observe that in a tain crystal of NaCl , $1.2 \% \mathrm{~N}^{+}+{ }^{+} \mathrm{C}$. 'ons were found missing. The edge ength Na is 564 pm . How is the obse ed densi different from the calculated densil. of NaC
(A) Ou d density is greater than the alculated density by $0.03 \mathrm{~g} \mathrm{~cm}^{-3}$
(B) Jbserved density is smaller than the calculated density by $0.03 \mathrm{~g} \mathrm{~cm}^{-3}$
(~) Observed density is smaller than the calculated density by $0.09 \mathrm{~g} \mathrm{~cm}^{-3}$
(D) Observed density is greater than the calculated density by $0.09 \mathrm{~g} \mathrm{~cm}^{-3}$
2. If the edge length of fcc crystal lattice is 500 pm then what is the diameter of the greatest sphere which can be fitted into interstitial void without distortion of the lattice?
(A) 87 pm
(B) 117.6 pm
(C) 139 pm
(D) 146.4 pm

C nct $⺊$ Building Problems

```
1.0: 1. (C
```

\cdots. (D)
2. (C)
3. (A)
4. (B)
5. (D)
1.2 :
2. (A)
3. (D)
4. (C)
5. (D)
1.... 1. (B)
1.5:

1. (D)
2. (C)
3. (C)
4. (C)
1.6:
5. (D)
6. (A)
7. (B)
1.7:
8. (C)
9. (D)
10. (C)
11. (B)
12. (C)
13. (A)
14. (B)
15. (B)
16. (C)
17. (D)
1.8 :
(D)
18. (A)
19. (D)
20. (D)
21. (B)
22. (B)
23. (D)
24. (B)
25. (D)
1.9 :
26. (B) 2. (C)
27. (B)
28. (D)
29. (A)
30. (C)
31. (A)
32. (D)
33. (C)
1.11:
34. (A)
35. (C)
36. (C)
37. (B)
38. (A)
39. (B)
40. (C)
41. (B)
1.12: 1. (B) 2. (C)
1.13: 1. (B)
42. (D)
43. (C)
44. (C)
45. (B)
1.14: 1. (A)
46. (D)
47. (B)
48. (C)
49. (C)
50. (A)
Misc.:
51. (A)
52. (B)
53. (B)
54. (C)
55. (B)

Practice Problems

1.1: 1. (D)
1.2: 1. (B)
2. (B)
1.4: 1. (D)
1.5

1. (A)
2. (C)
3. (A)
1.7 :
4. (D)
5. (D)
6. (A)
7. (A)
1.8 :
8. (A) 2. (C)
1.9 :
9. (D)
10. (C)
11. (C)
12. (C)
13. (B)
1.11: 1. (A)

Misc.: 1. (C) 2. (D)

Diagram Based Problems

1. (A)
2. (D)
3. (B)
4.
5. (D)
6. (B)
7. (D)
8. (C)

Problems To Ponder

1. (B) 2. (D)

Amo hous solids exhibit isotropy. Among the rivet - 'n' ons, quartz glass is an amorphous se 1 and thus, it exhibits isotropy.

$1.2 r$ _ASSIFICATION OF CRYSTALLINE sOLIDS

3. Metals contain free electrons which absorb light at one angle and transmit at a different angle. Hence, metals have lustre.
4. Diamond is a covalent or network solid and is a poor conductor of electricity.

1.4 BRAGG'S LAW AND ITS APPLICATIONS

1. $\mathrm{n}=1, \mathrm{~d}=3 \AA, \theta=9^{\circ}$

According to the Bragg's equation,
$\mathrm{n} \lambda=2 \mathrm{~d} \sin \theta$
$\lambda=\frac{2 \mathrm{~d} \sin \theta}{\mathrm{n}}=\frac{2 \times 3 \times \sin 9^{\circ}}{1}$
$=6 \times 0.1564=0.94 \AA$

1.5 SEVEN CRYSTAL SYSTEMS

1. A rhombohedral unit cell has all the sides of equal length.
2. The triclinic system has all the three sides different ($a \neq b \neq c$) and all the three angles different $\left(\alpha \neq \beta \neq \gamma \neq 90^{\circ}\right)$. Hence, it is the most unsymmetrical crystal system. Example is $\mathrm{H}_{3} \mathrm{BO}_{3}$.
3. For bcc,
$\sqrt{3} \mathrm{a}=4 \mathrm{r}$
Hence, $r=\frac{\sqrt{3}}{4} \times 288 \mathrm{pm}$
4. Since, there are four metal atoms in one unit cell, the given metal crystallizes in fcc lattice.
Using Smart Tip - 1 (iii),
$\mathrm{r}=0.3535 \mathrm{a}$
Where $\mathrm{r}=$ radius of the sphere
$\mathrm{a}=$ edge length of the unit cell $=361 \mathrm{pm}$
$\mathrm{r}=0.3535 \times 361=127.6 \mathrm{pm} \approx 127 \mathrm{pm}$
5. The packing efficiency in bcc unit cell $=68 \%$.
$\therefore \quad$ The percentage of vacant space of bcc unit cell $=100-68=32 \%$.
6. packing efficiency in fcc unit cell $=74 \%$ packing efficiency in bcc unit cell $=68 \%$ packing efficiency in sc unit cell $=52.4 \%$

Thinking Hatke - Q. 6

Among crystal structures, fcc type has the most efficient packing. Hence, only option (B) is valid.
8. For an fcc lattice, the nearest neighbour distance (D) $=\frac{1}{2} \times$ face diagonal $=\frac{a}{\sqrt{2}}=\frac{640}{\sqrt{2}}=45 \cap \sim m$
9. For a bcc unit cell,

$$
\begin{aligned}
& \mathrm{r}^{+}+\mathrm{r}^{-}=\frac{\sqrt{3}}{2} \mathrm{a} \\
\therefore \quad & \mathrm{a}=\frac{275 \times 2}{\sqrt{3}} \\
& =317.5 \times 10^{-10} \\
& \left(\text { since, } \mathrm{r}^{+}+\mathrm{r}^{-}, 15 \mathrm{pm}\right)
\end{aligned}
$$

1.9 CALCU ITION OF DENSITY OF UNIT CEL S

1. Stry is

For bcc unit cell, $Z=2$
Edge length, $\mathrm{a}=400 \mathrm{pm}=400 \times 10^{-10} \mathrm{~cm}$
Density of unit cell, $d=\frac{Z \times M}{a^{3} \times N_{A}} \mathrm{gcm}^{-3}$

$$
=\frac{2 \times 100}{(400)^{3} \times\left(6.022 \times 10^{23}\right) \times 10^{-30}}=5.189 \mathrm{~g} / \mathrm{cm}^{3}
$$

2. For fcc unit cell, $\mathrm{Z}=4$

Edge length $=\mathrm{a}=x \AA=10^{-8} x \mathrm{~cm}$, $\mathrm{M}=63.5 \mathrm{~g} \mathrm{~mol}^{-1}$
Density $=\frac{Z \text { M }}{a^{3} N_{A}} \mathrm{~g} \mathrm{~cm}^{-3}$

$$
\begin{aligned}
& =\frac{4 \times}{\left(10^{-8} x \mathrm{~cm}\right)} 53.5 \frac{\mathrm{~g} \mathrm{~m}}{1.0 \times 1}{ }^{-1} \frac{4 \mathrm{~mol}^{-1}}{x^{3}} \\
& =\frac{423}{}
\end{aligned}
$$

$\therefore \quad$ Density of co, r at $T\left(K,=\frac{423}{x^{3}} \mathrm{~g} \mathrm{~cm}^{-3}\right.$.

G 114 15

Ensure torrt edge length from \AA to cm befores stituting in the density formula.
3. $\quad \pi \AA=3.14 \AA=3.14 \times 10^{-8} \mathrm{~cm}$
$\therefore \quad \mathrm{V}=(\mathrm{a})^{3}=3.09 \times 10^{-23} \mathrm{~cm}^{3}$
$\mathrm{M}=128 \mathrm{~g} / \mathrm{mol}$
$\therefore \quad \mathrm{d}=\frac{\mathrm{ZM}}{\mathrm{V} \cdot \mathrm{N}_{\mathrm{A}}}=\frac{1 \times 128}{3.09 \times 10^{-23} \times 6.022 \times 10^{23}}$
$\mathrm{d}=6.9 \mathrm{~g} / \mathrm{cm}^{3}$
4. For bcc structure, $Z=2$

Density of unit cell, $d=\frac{Z \times M}{a^{3} \times N_{A}} \mathrm{gcm}^{-3}$
$\therefore \quad a=\left(\frac{Z \times M}{d \times N_{A}}\right)^{\frac{1}{3}}$
$\therefore \quad \mathrm{a}=\left(\frac{2 \times 6.94 \mathrm{~g} \mathrm{~mol}^{-1}}{0.530 \mathrm{~g} \mathrm{~cm}^{-3} \times 6.02 \times 10^{23} \mathrm{~mol}^{-1}}\right)^{\frac{1}{3}}$
$=\left(43.5 \times 10^{-24}\right)^{\frac{1}{3}}=3.517 \times 10^{-}{ }^{8} \mathrm{~cm}$
$=351.7 \mathrm{pm} \approx 352 \mathrm{pm}$

Thinking Hatke - Q. 4

We know that $\sqrt[3]{27}=3$ and $\sqrt[3]{64}=4$.
Therefore, $\sqrt[3]{43.5 \times 10^{-24}}$ will lie between 3×10^{-8} and 4×10^{-8} (i.e., between 300 pm and 400 pm).
So, only option (D) is valid.
2. 12 atoms are present at 12 corners. Each one contributes $\frac{1}{6}$ to each unit cell.
2 atoms are present at each face. Each one contributes $\frac{1}{2}$ to each unit cell.
3 atoms are completely enclosed within the unit cell.
$\therefore \quad 12 \times \frac{1}{6}+2 \times \frac{1}{2}+3=2+1+3=6$
3. For fcc lattice,

Density $=\frac{Z \times M}{a^{3} \times N_{A}}$
$Z=4, a=361 \times 10^{-10} \mathrm{~cm}$
$\mathrm{d}=\frac{4 \times 63.5}{\left(361 \times 10^{-10}\right)^{3} \times 6.022 \times 10^{23}}=8.96 \mathrm{~g} \mathrm{~cm}^{-3}$
The observed density of crystal is $9.2 \mathrm{~g} \mathrm{~cm}^{-3}$ which is higher than the calculated density. Hence, crystal has interstitial defect.

Practice Problems

1.2 CLASSIFICATION OF CRYSTALLINE SOLIDS

1. ' X ' is calcium fluoride $\left(\mathrm{CaF}_{2}\right)$ which is an ionic solid. It is an insulator in solid state but conducts electricity in its fused state. is a hard and brittle in nature.
1.4 BRAGG'S LAW
APPLICATIONS

IT ${ }^{\circ}$

1. According to Bragg's la $\mathrm{n} \lambda=2 \mathrm{c}$ in θ

Given: $\mathrm{n}=2, \mathrm{~d}=160 \mathrm{pm}, \quad=160 \mathrm{r}$ ।
$2 \times 160=2 \times 160 \ldots$
$\sin \theta=1$
$\therefore \quad \theta=90^{\circ}$
1.7 PACKIN IN SO. DS
2. In cc uı ell, number of tetrahedral voids is e lal t.w. the number of atoms per unit cell.
The , mbe or atoms in an fcc unit cell $=4$
$\mathrm{s}_{\mathrm{O}}, \mathrm{t}_{\mathrm{C}} \quad$ n aber of tetrahedral voids per unit cell $=$
Tł refore, 5×10^{3} unit cells have $8 \times 5 \times 10^{3}$ $+\times 10^{4}$ voids
3. Number of oxide ions in cep array, $\mathrm{n}=4$

Number of X ions occupying tetrahedral voids $=\frac{1}{5} \times 2 \mathrm{n}=\frac{1}{5} \times 2 \times 2=\frac{8}{5}$
Number of Y ions occupying octahedral voids $=\frac{1}{2} \times \mathrm{n}=\frac{1}{2} \times 4=2$

Ratio of X: Y: O
$=\frac{8}{5}: 2: 4=8: 10: 20=4: 5: 10$
$\therefore \quad$ Formula of the compound is $\mathrm{X}_{4} \mathrm{Y}_{5} \mathrm{O}_{10}$.
4. From radius ratio rule:

For $\mathrm{MgS}, \frac{\mathrm{r}_{\mathrm{Mg}^{2+}}}{\mathrm{r}_{\mathrm{s}^{2-}}}=\frac{0.65}{1.84}=0.353$
\Rightarrow tetrahedral structure with coordinatior number of cation $=4$.
For $\mathrm{MgO}, \frac{\mathrm{r}_{\mathrm{Mg}^{2+}}}{\mathrm{r}_{\mathrm{o}^{2-}}}=\frac{0.65}{1.40}=0.464$
\Rightarrow octahedral structure with sord ati
number of cation $=c$
For $\mathrm{CsCl}, \frac{\mathrm{C}_{\mathrm{Cs}^{+}}}{\mathrm{r}_{\mathrm{Cl}^{-}}}=\frac{1.6 \mathrm{~S}}{1}=334$
\Rightarrow Cubic strr \times re witı. ordination number of cation $=8$.

$\underline{\underline{1.8 ~ P A C}} \xlongequal{\text { INL FF IENCY }}$

Usin Smart T - 1 (i),
Radius catn- forming simple cubic lattice $\left(\mathrm{r}_{1}\right)$
$=0 .{ }^{\circ} 00 \mathrm{a}$
Usin Smart Tip-1 (ii),
Rad; of atom forming bcc lattice
r. $\quad=0.4330 \mathrm{a}$

Using Smart Tip - 1 (iii),
Radius of atom forming fcc lattice
$\left(\mathrm{r}_{3}\right)=0.3535 \mathrm{a}$
Ratio $=r_{1}: r_{2}: r_{3}=0.5000: 0.4330: 0.3535$

$$
\begin{aligned}
& =\frac{0.5000}{0.3535}: \frac{0.4330}{0.3535}: \frac{0.3535}{0.3535} \\
& =1.41: 1.22: 1
\end{aligned}
$$

Thinking Hatke - Q. 1

Since edge length (a) is same, the relation between $r_{1}(s c), r_{2}$ (bcc) and r_{3} (fcc) lattice will be: $r_{1}>r_{2}>r_{3}$
Therefore, only option (A) is valid.
2. For a body-centred cubic lattice of CsI with edge length ' a ', the length of body diagonal $=\sqrt{3} \mathrm{a}$.
But the length of the body diagonal is also equal to $2\left(\mathrm{r}_{\mathrm{Cs}^{+}}+\mathrm{r}_{\mathrm{r}^{-}}\right)$
$\therefore \quad 2\left(\mathrm{r}_{\mathrm{Cs}^{+}}+\mathrm{r}_{\mathrm{r}^{-}}\right)=\sqrt{3} \mathrm{a}$
or $\mathrm{r}_{\mathrm{Cs}^{+}}+\mathrm{r}_{\mathrm{r}^{-}}=\frac{\sqrt{3}}{2} \mathrm{a}$

Body-centred unit cell of CsI crystal
8. Diagram shown is that of Schottky defect. Among the given options, $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{CsCl}$, KBr and AgBr show Schottky defect.

Numerical Value Type Questions

1. For fcc unit cell, $Z=4$.

Number of particles in ' x ' $g=\frac{x Z}{\mathrm{da}^{3}}$
Number of atoms in 256 g
$=\frac{256 \times 4}{8 \times\left(400 \times 10^{-10}\right)^{3}}=2 \times 10^{24}$
$\therefore \quad$ Value of $\mathrm{N}=2$
3. In fcc unit cell, the number of tetrahedral voids is equal to twice the number of atoms per unit cell.
The number of atoms in fcc unit cell $=4$
$\therefore \quad$ No. of tetrahedral voids per unit cell $=8$
$\therefore \quad 5 \times 10^{4}$ unit cells have $8 \times 5 \times 10^{4}$
$=4 \times 10^{5}$ tetrahedral voids
Therefore, value of x is 5 .
4. For fcc unit cell, $r=\frac{a}{2 \sqrt{2}}$
$\therefore \quad$ Edge length $(a)=2 \sqrt{2} \times r=2 \sqrt{2} \times 25 \mathrm{pm}$

Number of unit cells in volume (V) of metn 1
$=\frac{\mathrm{V}}{\mathrm{a}^{3}}$
$\therefore \quad$ Number of unit cells in $1.00 \mathrm{~cm} \quad$ mel.
$=\frac{1.00}{\left(2 \sqrt{2} \times 25 \times 10^{-10}\right)^{3}}=\frac{1.00 \times 10^{30}}{(\sqrt{2} \cdot 50)}$
$=\frac{100 \times 100 \times 100 \times 10^{24}}{(\sqrt{2})^{3} \times 50 \times 50,}=\frac{2}{\sqrt{2} \times} \times 2 \times 10^{2}$
$=2.8 \times 10^{24}$
Therefors lue of $\quad 24$.
5. The of u^{*} cell is fcc.
$\mathrm{U} \operatorname{ng} S \quad{ }^{\circ} \mathrm{Ti}$, 1 (iii),
$\begin{array}{lll}\mathrm{r} & 0 .{ }^{2} \quad 35 \text { : }\end{array}$
Whe $r=1$ dius of the sphere
$=\mathrm{ec}_{\text {c }} \quad$ ngth of the unit cell $=620 \mathrm{pm}$
$\mathrm{r}=1.3535 \times 620=219.17 \mathrm{pm}$
6.

Substance	Magnetic property
$\mathrm{Fe}_{3} \mathrm{O}_{4}$	Ferrimagnetic
$\mathrm{MgFe}_{2} \mathrm{O}_{4}$	Ferrimagnetic
CrO_{2}	Ferromagnetic
$\mathrm{ZnFe}_{2} \mathrm{O}_{4}$	Ferrimagnetic
MnO	Antiferromagnetic
$\mathrm{H}_{2} \mathrm{O}$	Diamagnetic

7.

Atom/ion	Location	Contribution to a unit cell
A	Corners of cube	$1 / 8 \times 8=1$
B	Centres of 5 faces (since one atom is missing)	$1 / 2 \times 5=5 / 2$
Ratio	$\mathrm{A}: \mathrm{B}=1: 5 / 2=2: 5$	
Formula	$\mathrm{A}_{2} \mathrm{~B}_{5}$	

Therefore, value of y is 5 .

Problems To Ponde

1. Number of formula L s in nit ce' of NaCl $=4$
Number of form \quad its n_{1} in per unit cell
$=4 \times \frac{1.2}{100}=0$
Therefor numb of formula units in a unit cell of $\mathrm{N}_{\boldsymbol{r}} \quad$ hav. $\mathrm{hal}_{1} \quad$ de $=4-0.048=3.952$
Obst ed densi $=d=\frac{Z M}{a^{3} \times N_{A}}$
$=\frac{3.9 コ 2 \times 58.5}{1.8} \frac{10^{-22} \times 6.022 \times 10^{23}}{1.13 \mathrm{~g} \mathrm{~cm}^{-3}}$
C. ulated density $=\mathrm{d}=\frac{\mathrm{ZM}}{\mathrm{a}^{3} \times \mathrm{N}_{\mathrm{A}}}$
$=\frac{4 \times 58.5}{1.8 \times 10^{-22} \times 6.022 \times 10^{23}}=2.16 \mathrm{~g} \mathrm{~cm}^{-3}$
The difference in densities $=2.16-2.13$

$$
=0.03 \mathrm{~g} \mathrm{~cm}^{-3}
$$

2. For fcc unit cell, radius of atom (r)
$=\frac{\mathrm{a}}{2 \sqrt{2}}=\frac{500}{2 \times 1.414}=176.8 \mathrm{pm}$
As octahedral void is bigger in size than tetrahedral void, the greatest sphere will fit into octahedral void.
Radius of octahedral void
$=0.414 \times$ radius of the atom
$=0.414 \times 176.8=73.2 \mathrm{pm}$
$\therefore \quad$ Diameter of the greatest sphere fitting into the void $=2 \times 73.2=146.4 \mathrm{pm}$ Our Product Offarings for Nh:Tr 8 Jht

Absolute Series
For an exhaustive coverage of Theoretical Concepts \& MCQs

Challenger Series
For a quick coverage of Concepts \& Challenging MCQs

For the Integer Type Questions in JEE Exams.

For one point reference of all Previously Solved Question Papers

Online Test Series

For a simulated experience of the examination

BUY NOW

Target publications Prut Lld.
 Transforming lives through leaming

Address:
$2^{\text {nes }}$ floor, Aroto Industrial Premises CHS,
Above Surya Eye Hospital, 63-A, P. K. Road,
Mulund (W), Mumbai 400080
Tel: 8879939712 / 13 / 14 / 15
Website: www.targetpublications.org
Email: mail@targetpublications.org

Subscribe to our channel

Like our page

[^0]: (C) Target Publications Pvt. Ltd.

 No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

[^1]: This retercuce book is based on the NEET-UG and JEE (Main) syllabus prescribed by National Testing Agency (NTA). We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.
 This work is purely inspired upon the course work as prescribed by the National Council of Educational Research and Training (NCERT). Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
 © reserved with the Publisher for all the contents created by our Authors.

