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Fusion – The energy source of the sun

15 mill. C 1.4 mill. km

4H  …  4He + … + 26.7 MeV

Deuterium Tritium

from water

20 l  0.1 ml

0.015%
from lithium

6Li + n  4He + T

D + T  4He + n + 17.6 MeV

Helium

Neutron

Energy !

b+ decay

Hydrogen  Helium on Earth: Hydrogen isotopes  Helium

Fusion on Earth needs 10 times higher temperature as in the sun! 
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The fusion experiment ITER

To demonstrate the scientific and 
technological feasibility of fusion 
power for peaceful purposes.

To produce a burning plasma.

Q>10 for 400 s (Q > 5 for 3600 s)

Output (fusion power): 500 MW

Input (heating power): 50 MW 

Largest multinational scientific 
mission.

1985: Project starts

2006: ITER Agreement officially signed

2019: > 65% ready

Weight: 23 000 tons (3 x Eiffel tower)

Size: 24 m diameter, 30 m height
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Neutral beam systems for ITER

NBI Functions

Heating   Current drive   Plasma rotation  Diagnostics

2 + 1 HNB beam lines
1 DNB beam line sharing port with HNB-1

Installed power
ECRH: 20 MW
ICRH:  20 MW
NBI: 33 MW 

Electron     Ion cyclotron resonance heating

HNB: heating
DNB: diagnostic 
neutral beam

NBI: Neutral Beam Injection of energetic neutral atoms (H or D)

To achieve with ECRH and ICRH the plasma temperatures and profiles for DT phase
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ITER NBI systems and their requirements 

Heating beams  (50% EU, 50% JA) :  33 MW (2 injectors) for 3600 s, 1 MeV Deuterium, 870 keV Hydrogen

Diagnostic beam (100% IN): 2.2 MW, 100 keV Hydrogen, 3s ON/20s OFF 5Hz

HNB

GenerationAccelerationNeutralizationTransport

with accelerator Source area:  1 m × 2 m

Transport with 7 mrad beam divergenceInjection

RF-driven ion source
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Why negative hydrogen ions? 

Neutralisation efficiency at a beam energy of 1 MeV D
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increase of 
source size

Negative ion based systems 
make high energy range accessible

JT-60U / JT-60SA, LHD

Uacc> 150 kV, j = 20 mA/cm2

Positive ion based systems
are routinely operating world wide

JET, AUG, TFTR, DIII-D, JT-60U, …

Uacc< 100 kV, j  200 mA/cm2
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Concept of ion sources – Arc sources and RF-driven sources

High-current

tungsten filaments

RF

coils

Faraday shield

 Inductively driven source

 RF power supply ( 100 kW)

 RF frequency 1 MHz

Long lifetime 

Arc sources RF sources

 Hot cathodes (2000 – 3000 K)

 DC voltage ( 100 V)

 Arc current (1000 A)

Filaments require regular maintenance

Multi-aperture grid system (AUG)

774 apertures, 8 mm in diameter 
3 grids for acceleration & focussing

RF concept chosen
by ITER in 2006

, routine operation for positive ions at AUG



Ursel Fantz | Tutorial on Ion Sources for Fusion | NIBS’20September 1, 2020 8/28

NBI systems at LHD at NIFS, Japan

Large
Helical
Device

negative positive

Beam energy [keV] 190 80 & 90

Injection power [MW] 5.5 - 6.9 9

Pulse length [sec] 10 (max) 10 (max)

Beam divergence [mrad] 5 11

K. Tsumori, Fusion Sci. Tech. 58, (2011) pp.489
Arc sources, operation mostly in hydrogen
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NNBI systems at JT-60U / JT-60SA at QST, Japan

Towards 100 s of H⁻/D⁻ beams with 500 keV, 22A (130 A/m2)

Large ion source & 
accelerator 

is combined, and 
starts from 2023.

Achievement of 
H⁻ ion production

15 A for 100 s 
 under progress

Achievement of 
beam acceleration 
500 keV, 156A/m2, 

118 s
By using 1/8 scale 

ion source 

Based on 
arc sources



Ursel Fantz | Tutorial on Ion Sources for Fusion | NIBS’20September 1, 2020 10/28

R&D for the ITER ion source – a size scaling route

Prototype source

BATMAN Upgrade

@ IPP

ELISE @ IPP

ITER beam lines: HNB, DNB

NBTF: SPIDER, MITICA

Source area of 1 × 2 m2

Cs evaporation

H-

20 A
40 A

 2 A

800 kW RF power

coupled by 8 drivers

to illuminate 

1280 apertures

arranged in 

16 beamlet groups
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The test facility for                NBI at Consorzio RFX, Italy

4 m

SPIDER @ 100 keV
started in June 2018

MITICA @ 1 MeV
starts in 2023

Full ITER beam line

Critical challenges:

 Extraction of 40 A negative ion beam from a large-size RF source

 Acceleration 1 MeV with accurate beam optics

 Development of high-voltage, gas-insulated transmission lines

 Voltage holding (1 MV) over pulses of 3600 seconds

NBTF
Neutral Beam Test Facility
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The test facility for                NBI at Consorzio RFX, Italy

The beam source of MITICA (full size HNB prototype) 

1 MV
10 kV for 
extraction

Acceleration Grids 
Plasma Grid

Extraction Grid

200 kV each
800 kV

Grounded Grid

0 kV
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The 1 MeV acceleration R&D at QST, Japan

Vacuum-insulated 
beam source for ITER

D⁻ beam

Vacuum vessel

Proof-of-Principle beam acceleration test to support 
MITICA/NBTF and the final design for ITER

Vacuum insulation design by 
using meter-class large grid By using 5-stage accelerator, 

long pulse MeV-class beam acceleration 
tests over 100 s – 1000 s
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ELISE – A half size ITER source

ELISE is dedicated to

 Provide input for design, commissioning and operation
of ITER NBI systems

 Demonstrate ITER parameters in large sources
 Extracted currents (ions and electrons)
 Beam homogeneity

 Develop most efficient source operation scenarios

Isotope D- (H-)

RF power = 2 x 150 kW in 4 drivers

Aex = 1000 cm2, uniformity > 90%

Iion,ex = 29 (33) A,   Ie/Iion < 1 at 0.3 Pa

Utot = 60 kV,    Uex < 12 kV

Plasma: 3600 s 
Beam: 10 s every 150 s (HV supply)

Parameter and targets

First plasma and beam: Feb. / Mar. 2013

Plasma

Cs inlet
Oven temp. 
 280°C
Reservoir 
 100°C

RF driver
~100 kW at 1 MHz

Expansion chamber, 1  1 m2 area

Current up to 5 kA to produce
horizontal magnetic field

3 grids 
for extraction and

acceleration

Beam is formed
by 640 apertures

Beamlet group
Bias plate
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ELISE – A half size ITER source

ELISE is dedicated to

 Provide input for design, commissioning and operation
of ITER NBI systems

 Demonstrate ITER parameters in large sources
 Extracted currents (ions and electrons)
 Beam homogeneity

 Develop most efficient source operation scenarios

Diagnostic

calorimeter

Beam

Gate Valve 

Ø1.25m

Main insulator

Ion source

Extraction

system

Tank

Cryo pumps

1 m

Isotope D- (H-)

RF power = 2 x 150 kW in 4 drivers

Aex = 1000 cm2, uniformity > 90%

Iion,ex = 29 (33) A,   Ie/Iion < 1 at 0.3 Pa

Utot = 60 kV,    Uex < 12 kV

Plasma: 3600 s 
Beam: 10 s every 150 s (HV supply)

≈ 600 000 ℓ/s

< 60 kV

Parameter and targets

First plasma and beam: Feb. / Mar. 2013
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The grid system

grooves for electron deflecting magnets

1-2 mm wall between  vacuum and 16 bar water

BPPGEGGG
Bias Plate

Plasma

Grounded Grid
Extraction

EG

PG

EG

Power density of
32 MW/m2 by 
co-extracted electrons

Three grids Two segments Extraction grid

altering direction from row to row

PG and inner surfaces of the ion source are coated with 
molybdenum to avoid Cs interaction with Cu.
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Present status – Source performance

Initial
experiments

Moderate
RF power Solving

technical
issues

High
RF power

Long pulses
in D2

for 1000 s 

for 3600 s 

Long pulses
(> 400 s)

Short pulses
(20 s)

Main challenges

 Cs management

 Long pulses

 Co-extracted electrons

Record pulses in H2

Long pulses
in H2

Focus on D2
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Typical long pulse behaviour
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Source performance is probed by short pulse extraction of 10 s every 3 min

 Stable negative ion current density (within 10%)

 Strong temporal dynamics of co-extracted electrons

Zoom 
@ 600s

H-

e-

Interlock of extraction grid is set to 125 kW/segment although 
designed for 200 kW (ITER: 600 kW for all 4 segments)  

Requires careful Cs conditioning and measures to suppress co-extracted electrons
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Achievements of ELISE in 2018 – Towards ITER targets

Parameter for hydrogen (almost*) achieved in consecutive pulses
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* due to technical limitations

(HV power supply & 
RF generators)

Demonstration of first operational phase
at ITER (up to 2035)

Footprint of beam at calorimeter
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Deuterium operation – Achievement so far: 200 A/m2 (67%) for almost 1 h

Strong isotope effect in terms of co-extracted electrons

Transition from hydrogen to deuterium
at identical source parameters 

 Drastic increase of co-extracted electrons

 Strong increase of Cs density 
close to plasma grid 

at almost the same ion current density

In general: co-extracted electrons  

 are factor 2 – 4 higher in D

 limit the source performance

 require more Cs ( factor 2)
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One of the key elements – The Cs dynamics 

 Back streaming pos. ions sputter Cs and provide additional Cs
 Continuous extraction  still not sufficient to stabilize Cs flux
 Unlimited Cs reservoirs in the back-plate: higher and stable flux
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Simulation Measurement

Simulation of the average Cs flux
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only RF

Insights by CW extraction
at SPIDER (soon at ELISE)

Three phases: vacuum, plasma, extraction
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Beam characterisation

Diagnostics for beam divergence and homogeneity

3.5 m2.7 mGrid system
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IR calorimetry
2D fit on IR footprint

Arrangements of apertures
640 apertures, 8 beamlet groups

Beam emission spectroscopy
20 lines of sight

Hˉ BEAM
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Simulation

ELISE grid system: simulation give a divergence of 0.6 -0.8° (3 grids with max. 60 kV acceleration)

BATMAN UpgradeELISE

Horizontal LoS sees zig-zag deflection
caused by deflection field (EG magnets)

Single beamlet lower than group of beamlets
Agreement with simulation

ITER requires a divergence of < 7 mrad (0.4°) in the core of a single beamlet

BES
Single beamlet

BES
group of beamlets

Dedicated studies
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ITER R&D at dedicated test facility at NIFS, Japan

Plasma Grid

Driver Region

(Plasma generator)
Extraction Region

(Target of diagnostics)

5 x 3 beamlet pattern
on a CFC tile 

monitored with infrared camera

Ha image of 
H⁻ extracted distribution

K. Ikeda et. al., New J. Phys. 15 (2013) 103026
S. Geng et. al., Fusion Eng. Des. 121 (2017) 481

Versatile diagnostics of plasma and beam
for fundamental understanding

Arc source
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ITER R&D at IPR, India

Roadmap : Beam (operational experience) and technology development in parallel
Learning curve on 3 test beds : ROBIN, TWIN, INTF

 27 mA/cm2 H- beams @ 25 keV
 High Cs consumption (impurity control) 
 e-/H- > 1 
 Experiments restarted after cesiated

source cleaning

ROBIN TEST BED

 Plasma production exp. 
initiated (50 kW two drivers)

 RF generator problems
 Accelerator system under proc.

TWIN TEST BED

before and 
after Cs cleaning
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ITER diagnostic beam developed at IPR, India

 Several technologies developed enroute
 Components (DNB) under fabrication 

Integration and commissioning : Q3 2021

INTF @ ITER-India lab
Protoype DNB beam line
Unique 21.6 m path length to establish
beam parameters and transport
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Ion sources for fusion – Take-Home message

 Strong activities for ITER 
to make it a success!

 International coordination, only 
feasible with high commitment 
of participating institutes to ITER.

 Cutting edge physics and technology.

 We are on a good path with many contributions
with distributed responsibilities and know-how.

 ITER is prepared with the NBI R&D activities worldwide.
In fact, NBTF is the first ITER facility in operation.

 Still huge challenges in front of us
 Achievement of Deuterium target values
 Co-extracted electrons limiting the source performance
 Cs management for large sources
 1 MeV holding and beam acceleration with accurate optics
 Reproducibility and reliability

Fact Sheet

40 A, 1 MeV D⁻ for 1 h
46 A, 0.87 MeV H⁻
60 A, 100 keV H⁻ for DNB

800 kW RF (8 drivers), 0.3 Pa

7 Electrodes
15 beamlet groups
1280 beamlets
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