
Neo4j.rb

Graph Database

The Natural Way to Persist Data ?

Andreas RongeAndreas Kollegge



NOSQL

The problem with SQL: not designed for
– Accelerating growth of data

– Huge clustered environments

– Complex and evolving data models

Choose the right tools - Not Only SQL



The CAP Theorem

Can't achieve all three, pick two

– Consistency – all readers will see the same write

– Availability – tolerant of node failures

– Partition tolerant – if lost interconnect between nodes

Many NOSQL databases choose
– Sacrifice consistency over availability

– Eventual consistency instead of ACID (but not Neo4j)





How can I talk to Neo4j ?

● Embedded with JRuby
● Ruby Gems: neo4j.rb, neo4jr-simple

● Ruby Gems: pacer
– friends.out_e(:friend).in_v(:type => 

'person').except(friends).except(person).most_frequent(0...10)

● Neo4j Server - HTTP/REST 
● Ruby Gems: neography



What is a Graph Database ?



Graph DB vs. SQL

name: andreas
id name

1 andreas

2 peter

id p1_id p2_id since

1234 1 2 2002

name: peter

People

Friends

friend
since: 2002



Graph DB vs SQL



Benefit 1
Domain Modeling



Benefit 2 
No O/R mismatch



Benefit 3
Semi-structured information





Benefit 4
No Schema



Does Thomas Andersson know someone [who knows]* called Agent Smith ?

thomas.outgoing(:knows).depth(:all).find{|node| node[:name] == 'Agent Smith'}

Benefit 5
Deep traversals



What does Neo4j.rb provide ?

The Embedded Java Neo4j 
– Nodes, Properties, Relationship, Traversals

– ACID Transactions

– Lucene Integration

– Graph Algorithms

– High Availability Clustering

Neo4j.rb
– Object Oriented Mapping

– “Drop in” replacement for Rails Active Model

– Improved/extended API (lucene, rules, migrations,...) 



Neo4j.rb Architecture

Active Model Compliant API 
Neo4j::Rails::Model
Neo4j::Rails::Relationship

Mapping Layer to Ruby Classes
Neo4j::NodeMixin
Neo4j::RelationshipMixin

Mapping to Java API
Neo4j::Node
Neo4j::Relationship



Embedded

Easier to install, deploy & test

Is running in same thread as your application

No network connection to DB needed

No Database Tier



Embedded DB = 
Direct Access to Data

With Neo4j::NodeMixin

Neo4j::Transaction.run do

 Person.new(:name => 'foo')

end

With Neo4j::Rails::Model

person = Person.new(:name => 'foo')

person.save # callbacks/validation



Transactions

ACID
– atomicity, consistency, isolation, durability

– only write locks, no read locks



Object Oriented Mapping

_class: Person
name: andreas

Ruby ClassA Neo4j Node



How do I find things ?

1. Start from Reference Node

2. Graph as an Index

3. Use Lucene



Reference Node

Find Thomas Andersson
Neo4j.ref_node.outgoing(:root).first

REF_NODE
Thomas 

Anderssonroot



Use the Graph as an Index

RefNode

name andreas name anders name bertil

A A
B

Neo4j.ref_node.outgoing('A').each {...}



Lucene

Full-featured text search engine 

Features
– Phrase queries, wildcard queries, proximity queries, 

range queries and more

– Ranked searching

– Sorting

– Date-range

– Sorting by any field



Lucene in Neo4j.rb



NodeMixin

Lucene Integration

Accessors for properties

Accessors for relationships

Migrations

Works with inheritance



Ruby Class Mapping:
Relationships 

name andreas

name peter name david

friend friend



Incoming Relationship

_class = Actor
   name  = 'keanu'

_class = Movie
   name  = 'matrix'acted_in

Same relationship different direction

Same



Ruby on Rails/Active Record
“drop in” replacement







Active Record like API
Examples:

Create Relationship
actor = Actor.new
matrix = actor.acted_in.build(:title => 'matrix')
actor.save

Find Relationships
rel = actor.acted_in.find(matix) # ret Neo4j::Rails::Relationship
rel[:role] = 'trinity' 
actor.save

Delete Relationship
actor.acted_in.delete(matrix)
actor.acted_in.destroy_all

Updated relationships in nested forms
using accepts_nested_attributes_for :acted_in
actor.update_attributes(:acted_in_attributes => {...})



Mapping Relationships

class Role < Neo4j::Rails::Relationship
  property :role_name
  index :role_name
end

class Actor < Neo4j::Rails::Model
  has_n(:acted_in).relationship(Role)
end

actor = Actor.new

# create a node but return the relationship - 
#   use the “_rels” accessor
role = actor.acted_in_rels.build(:title => 'matrix')
role.role_name = 'trinity'
role.save!

role = Role.find_by_role_name('trinity')
role.start_node #=> actor
role.end_node #=> the created matrix node



A Common Problem 

I have a
– System already in production

– Huge database

I need to
– Change the structure of the database

Solution:
– Migrations



Migrations: Direct

  



Migrations: Lazy
(Neo4j::LazyMigrationMixin)



Migrations is NOT needed
 when developing 

unlike Active Record migrations



Inheritance



Recommendation Engine

1 2 43 5

Bertil Caesar

Adam

Likes

LikesLikes

Recommend This



Example, Recommendation

42 531

likes

other_people



Aggregation/Rules

● How to make a flat structure into a graph ?
– Use the Graph DB as an index

a.outgoing(:friends).find_all{|f| f.age > 20}
class Person < Neo4j::Rails::Model
  property :age
  rule(:old) {age > 20)}
end

Person.old



Included Graph Algorithms

Shortest paths, Simple paths, Graph measures ... 

node1

node2



High Availability

Online Backup - hot spare

Read-slave replication 

Write master election



Neo4j – An Object DB ?

Neo4j has very fast traversals
– Avoids loading properties

No need to declare two way relationships
– A relationship has a start and end node

Does have two ways of finding objects
– Traversals

– Lucene

Optimized for Graph Algorithms



Conclusions: Benefits

Express your domain as a Graph
– Domain Modeling

– No O/R mismatch

– Efficient storage of Semi Structured Information

– Schema Less

Express Queries as Traversals
– Fast deep traversal instead of slow SQL queries that 

span many table joins 



When NOT use Graph DB

Don't have a graph related problem ?

Not too much changing requirements ?

Easy to organized data into: 
– Tables, Documents or Key-Value models ?

Few & well defined relationships in the domain ?

Don't have SQL queries that span many table joins ?

Many YES => maybe Graph DB not a good choice



When should I use a Graph DB ?

Need to solve a graph related problem ?
– Recommendations, Shortest path, Social Networks

Have a complex and evolving data model ?

Few mandatory and many optional attributes ?

Big part of domain is expressed as relationships ?

Have SQL queries that span many table joins ?

Many YES => maybe a Graph DB is a good choice





Neo4j Spatial.rb

git clone git@github.com:craigtaverner/neo4j-spatial.rb.git
cd neo4j-spatial.rb/examples
jruby osm_import.rb map2.osm
jruby osm_layer.rb map2.osm highway highway-residential waterway 
natural natural-water
  jruby osm_layer.rb -l
  jruby export_layer.rb highway-residential
  jruby export_layer.rb -F shp highway-residential natural

A wrapper around Java Neo4j Spatial using Neo4j.rb



Neo4j Spatial Queries

AbstractSearchIntersection
SearchAll
SearchClosest
SearchContain
SearchCover
SearchCoveredBy
SearchCross
SearchDisjoint
SearchEmpty
SearchEqual
SearchInRelation
SearchIntersect
SearchIntersectWindow
SearchInvalid
SearchOverlap
SearchPointsWithinOrthodromicDistance
SearchTouch
SearchWithin
SearchWithinDistance



Spatial Graph



GeoServer

GeoServer is an open source 
software server written in Java 
that allows users to share and 
edit geospatial data. Designed for 
interoperability, it publishes data 
from any major spatial data 
source using open standards.

Neo4j Spatial includes built-in support for a GeoTools data store



GraphDatabaseService database = new EmbeddedGraphDatabase(storeDir);
try {
    SpatialDatabaseService s = new SpatialDatabaseService(database);
    Layer layer = s.getLayer("layer_roads");
    SpatialIndexReader index = layer.getIndex();

    Search q = new SearchIntersectWindow(new Envelope(xmin, xmax, ymin, ymax));
    index.executeSearch(searchQuery);
    List<SpatialDatabaseRecord> results = q.getResults();
} finally {
    database.shutdown();
}


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	End
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

