# NEONATAL PHARMACOLOGY

KELIANA O'MARA, PHARMD, BCPS NOVEMBER 17, 2016

#### **OBJECTIVES**

- Describe medication use in neonates and mothers (pre and postnatal)
- Identify characteristics of maternal drugs that may impact fetus/neonate
- Define the impact of pharmacokinetics on neonatal drug exposure
- Review examples of medication use in neonates where neonatal pharmacology is important

#### DRUG THERAPY

• Goal is to administer a given drug at a given dose to achieve a desired therapeutic effect while minimizing risk of toxicity

### MEDICATION USE IN NEONATES

- Nearly all medications used in the NICU are done so off-label
- Limited clinical data in neonates leads to extrapolation from more extensively studied patient populations
  - Clinical data from other patient populations with animal data and known developmental pharmacology of neonates to determine best guess for drug and dosing regimens
- Maturation of organ systems leads to differences in dosing needs throughout spectrum of NICU stay
  - Up to I-log value of variability seen intra- and interpatient weights (0.5 to 5 kg)

# HISTORY OF UNEXPECTED ADVERSE EFFECTS

- Kernicterus (sulfonamides, ceftriaxone, ibuprofen?)
- Gray baby syndrome (chloramphenicol)
- Gasping syndrome (benzyl alcohol—enoxaparin, midazolam)
- Apnea (promethazine)
- Metabolic acidosis (propylene glycol)

#### **NEONATAL PHARMACOLOGY**

- Prediction of drug-specific effects and adverse effects based on pharmacokinetics and pharmacodynamics
  - Pharmacokinetics:concentration/time profile
  - Pharmacodynamics: concentration/effect profile

#### MATERNAL DRUG EXPOSURE

- More than 90% of pregnant women self-report taking at least one medication during pregnancy
  - Average number of medications: 4.2
  - Half of all pregnant women take more than 4 medications

#### Exposure to teratogen during a specific developmental stage





Copyright © 2007 by Saunders, an imprint of Elsevier Inc. All rights reserved.

Figure 6-8 Schematic illustration of the sensitive or critical periods in prenatal development. *Dark boxes* denote highly sensitive periods; *light boxes* indicate states that are less sensitive to teratogens. (From Moore KL: *Before We Are Born:*Basic Embryology and Birth Defects, 2nd ed. Philadelphia, WB Saunders, 1977.)

## DRUG TRANSFER ACROSS THE PLACENTA

- Most drugs ingested by pregnant women cross the placenta
  - Most women expose fetus to I-8 drugs during pregnancy
- Human placenta unique from other species as organ of drug transfer
  - Higher permeability after 16 weeks gestation
  - Later in gestation, increases in uterine blood flow→ higher passage across the placenta

## DRUG TRANSFER ACROSS THE PLACENTA

- Most drugs cross via passive diffusion
- Characteristics of highly diffused drugs:
  - Low molecular weight (≤ 600 d), non-ionized, lipid soluble
- Strongly ionized compounds poorly diffuse
  - Exceptions: ampicillin, methicillin

## DRUG TRANSPORT ACROSS THE PLACENTA

- Facilitated diffusion: concentration gradient, requires no energy, inhibited by competitive analogues, saturable
- Occurs with drugs structurally similar to endogenous compounds
  - Cephalosporins, gancyclovir, and corticosterone

#### PLACENTAL PROTECTION FOR FETUS

- Placental function
  - Semipermeable barrier
  - Limited drug metabolism by placenta
- Drugs enter the fetus through the umbilical vein
  - 40-60% of the umbilical blood flow enter into the fetal liver

### FDA PREGNANCY CATEGORIES

| Category | Animal Data     | Human Data |
|----------|-----------------|------------|
| Α        | No risk         | No risk    |
| В        | No risk         | No data    |
|          | Risk            | No risk    |
| C*       | Risk            | No data    |
| D*       | Harmful Harmful |            |
| X        | Harmful Harmful |            |

<sup>\*</sup>Potential benefit may outweigh potential risk to fetus

### FDA PROPOSED CHANGES TO LABELING

- Elimination of the 5 categories
  - Misleading to providers and women
  - Risk for C, D, and X are based on risk and benefits to patient, not just risk
  - Categories do not distinguish differences in frequency, severity, and type of fetal toxicities
- Two subsections:pregnancy and lactation
  - Labor and delivery section eliminated
  - Three components: risk summary, clinical considerations, and data section

## BREASTFEEDING AND MEDICATION USE

- Rates of breastfeeding in the US per CDC 2013 report card:
  - 77% infants begin life breastfeeding;49% breastfeeding at 6 months, 27% at 12 months
- ~90% of women take some form of medication during the first week postpartum
  - In a study of 14,000 pregnant/breastfeeding women,79% used meds while breastfeeding, avg intake:
     3.9 drugs
- Maternal compliance with drug therapy can be erratic while breastfeeding secondary to infant concerns

#### DRUG TRANSFER INTO BREAST MILK

- Most drugs cross into breast milk but amount and concentration transferred are low and relatively safe for infant
- Maternal and infant characteristics influence amount of drug transferred into milk

#### MATERNAL FACTORS

- Dose and duration of therapy
  - Low dose, infrequent dosing, short duration
  - If drug contraindicated, may consider "pump and dump"
- Route of administration
  - Drugs given IV before of poor PO bioavailability are usually poorly absorbed by infant through milk
- Drug pharmacokinetics
  - Drugs with long half-life may result in cumulative exposure in infant

### INFANT FACTORS



- Total amount of drug exposure to infant:
  - Concentration in breast milk and volume of milk ingested per day
- Gestational age and postnatal age determine infants ability to absorb, metabolize, and excrete drug
  - Preterm infant less able to metabolize and excrete drugs because of less mature liver and kidneys

#### **PHARMACOKINETICS**

- What the body does to the drug
- Describes the movement of drug into, through, and out of the body
  - Absorption: translocation of drug from site of administration into blood
  - Distribution: space within the body that drug must fill to reach steady-state
  - Metabolism: biotransformation of drug to metabolites
  - Excretion: removal of drug from the body
- Must consider both maternal and neonatal pharmacokinetic profiles to predict fetal/neonatal outcomes of medication use

#### MATERNAL ABSORPTION

- Increased gastric emptying time
- Decreased intestinal motility
- Result: delayed absorption time, delayed peak effect, negligible effect on steady-state

#### MATERNAL DISTRIBUTION

- Body composition
  - Increase in maternal fat relatively constant with weight gain
  - Result: increased doses needed for fat-soluble drugs, accumulation may occur in adipose tissue (increased half-life, prolonged drug effects)
- Body volume
  - Increased total body water, extracellular water, and plasma volume
  - Increased cardiac output, heart rate, stroke volume
  - Result: decreased serum concentrations water-soluble drugs

#### MATERNAL DISTRIBUTION

- Serum proteins decreased
- Increased free fraction of highly bound drugs
- Result: increased exposure across placenta to protein-bound drugs

#### MATERNAL METABOLISM

- Increased hepatic enzyme activity
- Result: increased metabolism, clearance
  - Higher doses needed of drug to maintain effect

### NEONATAL PHARMACOKINETICS



- Important clinical features
  - Absorption
  - Distribution
  - Metabolism
  - Excretion

### **NEONATAL ABSORPTION**

- Enteral
- Percutaneous
- Subcutaneous
- Intramuscular
- Intrapulmonary
- Rectal

#### NEONATAL ABSORPTION-ENTERAL

- Most drugs absorbed in small intestine
- Gastrointestinal pH, transit time, and gastric emptying play important roles in total drug exposure time and absorption
- Gastric acidity
  - Does not reach adult levels until 2-3 years of age
  - Introduction of nutrition helps regulate GI function
  - Acid production function of postnatal age, not PCA
  - Length/frequency of feeding can impact pH
  - Drugs that are weak acids absorbed more slowly than weak bases

### NEONATAL ABSORPTION-ENTERAL

**Table 1.** Comparative Intestinal Variables Affecting Gastrointestinal Drug Absorption

| Parameter               | Full-term<br>Newborn | 1-day to<br>1-month-old Infant | 1-month to<br>2-year-old Infant |
|-------------------------|----------------------|--------------------------------|---------------------------------|
| Gastric pH              | 1-3                  | >5                             | Adult                           |
| Gastric Emptying time   | Variable/reduced     | Variable/reduced               | Increased                       |
| Intestinal Transit Time | Reduced              | Reduced                        | Increased                       |
| Intestinal Surface Area | Reduced              | Reduced                        | ~Adult                          |
| Bacterial Flora         | Very limited         | Limited                        | Developing                      |
| Transporter Maturity    | Immature             | Immature                       | Developing                      |
| Rectal Absorption*      | Excellent            | Excellent                      | Adult                           |

# FACTORS AFFECTING GASTRIC EMPTYING

- Gestational and postnatal age
- Increased:
  - Extensively hydrolyzed formula compared to intact or partially hydrolyzed
- Decreased:
  - Increasing caloric density and medium-chain triglycerides
- Does not approach adult times until 6-8 months of life

### NEONATAL ABSORPTION-PERCUTANEOUS

- Degree of skin hydration and relative absorption surface area
  - Inversely related to thickness of stratum corneum
- Term infants
  - Intact skin barrier function
  - Ratio of surface area to body weight much higher than adults
  - 2.7 x greater amount drug exposure



### NEONATAL ABSORPTION-SUBCUTANEOUS

- Subcutaneous injection goes into the fatty layer of tissue under the skin
  - Little blood flow to fatty tissue
  - Injected medication absorbed more slowly
- Premature neonates generally lack the fatty tissue of the subcutaneous space that makes this dosing method effective



## NEONATAL ABSORPTION-INTRAMUSCULAR

- Physicochemical and physiologic factors affect rate
  - Drug pH, lipophilicity
  - Blood flow, total surface area of muscle at injection site
- Rate of absorption may be lower
  - Extent of absorption may be higher secondary to higher density of skeletal muscle capillaries compared to older children and adults



#### **NEONATAL ABSORPTION-OTHER**

#### Intrapulmonary

- Final stages of normal lung development interrupted in premature infants
  - Decreased lung volumes, gas exchange, capillary surface area
- Potentially altered patterns of drug disposition and absorption
  - Ventilatory type and settings (high-frequency vs. conventional)

#### Rectal

- Rapid, complete absorption
- Dosage formulations often problematic

#### **NEONATAL DISTRIBUTION**

- Occurs after reaching systemic circulation
- Factors affecting distribution:
  - Body compartment size and composition
  - Hemodynamics (cardiac output, regional blood flow)
  - Membrane permeability
  - Fat/water solubility of drugs
  - Plasma protein binding



# NEONATAL DISTRIBUTION-PROTEIN BINDING

- Affinity of albumin for acidic drugs increases from birth to early infancy
- Alpha I -acid glycoprotein binds basic drugs
  - Neonates have half the adult concentration
- Overall binding affinity lower
  - Increased free fraction of drug, increased availability of active compound
  - Increased adverse effects, increased drug clearance
- Free fatty acids and unconjugated bilirubin displace drugs from protein binding sites
  - Ampicillin, sulfonamides, phenytoin, diazepam

## NEONATAL DISTRIBUTION-BODY COMPOSITION

- Physiologic space for drug distribution displays changes early in neonatal life
  - Ratio of total body water to body weight is greater in newborns
  - Total body fat lower (1% premature vs. 15-20% term)
- Higher weight-based doses of hydrophilic drugs needed
  - Aminoglycosides
- Lower weight-based doses of lipophilic drugs needed
  - Propofol

# NEONATAL DISTRIBUTION-BLOOD COMPONENTS

- Blood flow
- Organ perfusion
- Cell membrane permeability
  - BBB more permeable in premature infants, passive diffusion of drugs
- Acid-base balance
- Cardiac output

# DEVELOPMENTAL FLUID COMPARTMENTS

| Patient Age    | % of<br>Total Body<br>Water* | % of<br>Extra-<br>cellular<br>Fluid* | % of<br>Intra-<br>cellular<br>Fluid* |
|----------------|------------------------------|--------------------------------------|--------------------------------------|
| <3 month fetus | 92                           | 65                                   | 25                                   |
| Term gestation | 75                           | 35-44                                | 33                                   |
| 4-6 months     | 60                           | 23                                   | 37                                   |
| 12 months      | -                            | 26-30                                | -                                    |
| Puberty        | ~60                          | 20                                   | 40                                   |
| Adult          | 50-60                        | 20                                   | 40                                   |

# **VOLUME OF DISTRIBUTION**

|               | Volume of Distribution (L/kg) |          |  |
|---------------|-------------------------------|----------|--|
| Drug          | Neonate (1-30 days old)       | Adult    |  |
| Digoxin       | 8-10                          | 7        |  |
| Gentamicin    | 0.7-1.5                       | 0.2-0.45 |  |
| Ibuprofen     | 0.2-0.38                      | 0.15     |  |
| Indomethacin  | 2.5-4                         | 1-1.5    |  |
| Midazolam     | 1.2-2                         | 0.8-2    |  |
| Phenobarbital | 0.8-1.2                       | 0.5-0.6  |  |
| Phenytoin     | 1.2-1.4                       | 0.6-0.7  |  |

# **NEONATAL METABOLISM**

- Action:
  - Conversion of drugs to water soluble metabolite for easier excretion
  - Inactive drug into active metabolite, toxic metabolite
- Sites of metabolism:
  - Gl tract
  - Kidney
  - Liver
  - Lungs

### **NEONATAL METABOLISM**

- Expression of intestinal drug metabolizing enzymes markedly different in neonates
  - Duodenal and jejunal CYP450 enzymes age-dependent (3A4, IA1)
  - Other metabolic enzymes (epoxide hydrolase, glutathione peroxidase) demonstrate little dependence on age
  - Beta-glucuronidase in small intestine 7-fold higher in children
- Oral bioavailability impacted by GI enzyme expression

## **NEONATAL HEPATIC METABOLISM**

- Overall rate of biotransformation of drugs much slower
  - Rapid physiologic changes occur in first week of life that change capacity of hepatic drug metabolism and oral bioavailability
    - Changes in hepatic blood flow, increased portal venous flow, closure of ductus venosus
- Phase I:
  - Oxidation, reduction, and hydrolysis
  - Mediated by cytochrome enzymes
- Phase II:
  - Conjugation pathways
  - Acetylation, glucuronidation, sulfation, methylation

#### PHASE I REACTIONS

- Total hepatic cytochrome P450 concentration is 30% adult values
  - All isoenzymes display age-dependent maturation
- CYP3A7 is major isoform present in fetus and neonate
  - Disappears I-4 weeks after birth
  - CYP3A4 begins to overtake expression, reaching 30-50% adult levels at 3-12 months of age

# DEVELOPMENT OF METABOLIC ENZYME ACTIVITY

Table 7. Ontogenic Patterns of Pharmacologically Important Phase I/II Drug Metabolizing Enzymes

| Drug        | Fetal Liver*  | 1 month*         | Time to Adult Activity |
|-------------|---------------|------------------|------------------------|
| Phase I     |               |                  |                        |
| CYP 2D6     | Low to absent | ~20%             | 3-5 years              |
| CPP 2C9/C19 | Low to absent | Low              | 6 months               |
| CYP 1A2     | Low to absent | Low              | 4 months               |
| CYP 3A4     | Low to absent | 30%-40%          | 6 months               |
| Phase II    |               |                  |                        |
| NAT         | Poor          | Poor             |                        |
| TPMT        | ~30% Adult    | Highly variable† | 1-3 years              |
| UGT         | Limited       | Highly variable† | 6-24 months            |
| ST          | Developed     | Highly variable† | Isoform specific       |

### PHASE II REACTIONS

- Lack of data for impact of neonatal development on phase II enzymes
  - Appears to be age-dependent
- Clinical importance
  - Bilirubin UGT is immature in almost all neonates
  - Gray baby syndrome with chloramphenicol
  - Morphine metabolism
  - Paracetamol metabolism

### ACETAMINOPHEN METABOLISM



# ACETAMINOPHEN OVERDOSE IN PREMATURE NEONATES

- Eur J Clin Pharmacol 2012
  - 25.5 week GA infant (DOL 12) given 446 mg/kg
- Pediatric Anesthesia 2010
  - 28 week GA (35 weeks corrected) given 146 mg/kg
- Arch Dis Child Fetal Neonatal Ed 2001
  - 29 week GA (DOL 55) given 136 mg/kg
- NO hepatic toxicity seen in any patient
  - Due to slow oxidative metabolism and rapid glutathione synthesis



#### **NEONATAL EXCRETION**

- Renal excretion primary route for most drugs
  - Nonvolatile, water soluble, low molecular weight
- Three processes
  - Glomerular filtration
  - Tubular secretion
  - Active or passive tubular reabsorption
- Nephrogenesis
  - Begins at 9 weeks gestation, complete at 34 weeks gestation
  - May be impacted in utero by fetal growth retardation, maternal nephrotoxic medications, renal/urologic malformations

# NEONATAL GLOMERULAR FILTRATION RATE

- GFR in first week of life
  - Preterm: 0.6 to 0.8 mL/min/1.73 m2
  - Term: 2 to 4 mL/min/1.73 m2
- Rapid increases in GFR over first 2 weeks of life
  - Drop in renal vascular resistance
  - Increase in renal blood flow
- Other factors influencing GFR
  - Vasoactive systems (RAAS)
  - Plasma protein concentration
  - Arteriolar resistance
  - Surface area of glomerular membrane

# GENTAMICIN PHARMACOKINETICS

| Baseline Demographics |                    |        |  |  |
|-----------------------|--------------------|--------|--|--|
| GA (wk)               | Number of Patients | BW (g) |  |  |
| 23                    | 9                  | 571.2  |  |  |
| 24                    | 23                 | 646.5  |  |  |
| 25                    | 29                 | 722.2  |  |  |
| 26                    | 27                 | 796.3  |  |  |
| 27                    | 41                 | 944.6  |  |  |
| 28                    | 33                 | 1014.4 |  |  |
| 29                    | 41                 | 1202.7 |  |  |

# GENTAMICIN PHARMACOKINETICS

| GA<br>(wk) | ke<br>(hr-1) | Vd<br>(L/kg) | CI<br>(mL/kg/min) | T ½<br>(hr) |
|------------|--------------|--------------|-------------------|-------------|
| 23         | 0.069        | 0.53         | 0.036             | 12.9        |
| 24         | 0.058        | 0.58         | 0.035             | 12.5        |
| 25         | 0.056        | 0.60         | 0.033             | 13.2        |
| 26         | 0.061        | 0.58         | 0.038             | 11.8        |
| 27         | 0.069        | 0.56         | 0.040             | 10.3        |
| 28         | 0.076        | 0.54         | 0.045             | 9.6         |
| 29         | 0.073        | 0.58         | 0.043             | 9.7         |

### GENTAMICIN PHARMACOKINETICS



### NEONATAL TUBULAR SECRETION

- Immature at birth, approaches adult values at 7-12 months
- Limited tubular function in premature neonates
  - Renal elimination of pencillins, cephalosporins
- Active transport process dependent on:
  - Blood flow
  - Affinity of drug carrier proteins in proximal tubule
  - Rate of transport across tubular membranes
  - Rate of delivery of drug to the site of secretion

# PHARMACOKINETICS OF AMPICILLIN IN NEONATES

| TABLE 1 Demographic characteristics <sup>a</sup>      |                                                             |                   |                   |                   |                   |
|-------------------------------------------------------|-------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|
|                                                       | Value for the indicated gestational age (wk) and PNA (days) |                   |                   |                   |                   |
|                                                       | ≤34                                                         |                   | >34               |                   |                   |
| Parameter                                             | ≤7                                                          | 8–28              | ≤7                | 8–28              | Total             |
| Group no.                                             | 1                                                           | 2                 | 3                 | 4                 |                   |
| n                                                     | 21                                                          | 7                 | 27                | 18                | 73                |
| Postnatal age (days) at day of first plasma PK sample |                                                             |                   |                   |                   |                   |
| Mean (SD)                                             | 2.6 (2.3)                                                   | 15.4 (4.0)        | 2.9 (2.6)         | 13.4 (5.4)        | 6.6 (6.4)         |
| Median (minimum, maximum)                             | 1.0 (0.0, 7.0)                                              | 16.0 (9.0, 21.0)  | 2.0 (0.0, 7.0)    | 12.5 (8.0, 25.0)  | 5.0 (0.0, 25.0)   |
| Gestational age (wk)                                  |                                                             |                   |                   |                   |                   |
| Mean (SD)                                             | 30.3 (3.4)                                                  | 26.9 (2.5)        | 38.2 (2.0)        | 38.4 (1.8)        | 34.9 (5.0)        |
| Median (minimum, maximum)                             | 32.3 (24.0, 34.0)                                           | 26.1 (25.0, 32.0) | 38.0 (34.0, 41.0) | 38.8 (35.0, 41.0) | 36.1 (24.0, 41.0) |
| No. (%) male                                          | 9 (43)                                                      | 3 (43)            | 18 (67)           | 8 (44)            | 38 (52)           |
| Ethnicity, no. (%)                                    |                                                             |                   |                   |                   |                   |
| Hispanic or Latino                                    | 3 (14)                                                      | 1 (14)            | 6 (22)            | 3 (16)            | 13 (18)           |
| Not Hispanic or Latino                                | 18 (86)                                                     | 5 (71)            | 19 (70)           | 14 (78)           | 56 (77)           |
| Not reported                                          | 0                                                           | 1 (14)            | 2 (7)             | 1 (6)             | 4 (6)             |
| Race, no. (%)                                         |                                                             |                   |                   |                   |                   |
| Black                                                 | 4 (19)                                                      | 3 (43)            | 3 (11)            | 2 (11)            | 12 (16)           |
| White                                                 | 16 (76)                                                     | 3 (43)            | 23 (85)           | 14 (78)           | 56 (77)           |
| Not reported                                          | 0                                                           | 0                 | 0                 | 1 (6)             | 1(1)              |
| Other                                                 | 1 (5)                                                       | 1 (14)            | 0                 | 1 (6)             | 3 (4)             |

<sup>&</sup>lt;sup>a</sup> PK, pharmacokinetic; PNA, postnatal age.

# PHARMACOKINETICS OF AMPICILLIN IN NEONATES

TABLE 5 Individual empirical Bayesian post hoc parameter estimates<sup>a</sup>

|         |    |                         |                    |               |             | Steady-state concn (µg/ml) |  |  |
|---------|----|-------------------------|--------------------|---------------|-------------|----------------------------|--|--|
| Group   | n  | Clearance (liters/h/kg) | Volume (liters/kg) | Half-life (h) | Minimum     | Maximum                    |  |  |
| 1       | 21 | 0.055 (0.03-0.07)       | 0.40 (0.40-0.40)   | 5.0 (3.9-9.4) | 77 (36-320) | 318 (244-563)              |  |  |
| 2       | 7  | 0.070 (0.03-0.07)       | 0.40 (0.40-0.41)   | 4.0 (3.8-8.3) | 33 (21-145) | 266 (159-368)              |  |  |
| 3       | 27 | 0.086 (0.04-0.13)       | 0.40 (0.40-0.40)   | 3.2 (2.2-6.2) | 48 (5-173)  | 274 (127-413)              |  |  |
| 4       | 18 | 0.11 (0.06-0.13)        | 0.40 (0.40-0.41)   | 2.4 (2.1–4.7) | 28 (5–129)  | 246 (138–203)              |  |  |
| Overall | 73 | 0.072 (0.03-0.13)       | 0.40 (0.40-0.41)   | 3.3 (2.1–9.4) | 47 (5–320)  | 281 (127–563)              |  |  |

<sup>&</sup>lt;sup>a</sup> All values are medians and ranges.

# PHARMACOKINETICS OF AMPICILLIN IN NEONATES

TABLE 7 Optimal dosing regimen based on Monte Carlo simulations using the final pharmacokinetic model

| Gestational age<br>(wk) | Postnatal age<br>(days) | Maintenance dose<br>(mg/kg) | Dosing interval (h) |
|-------------------------|-------------------------|-----------------------------|---------------------|
| ≤34                     | ≤7                      | 50                          | 12                  |
| ≤34                     | $\geq$ 8 and $\leq$ 28  | 75                          | 12                  |
| >34                     | ≤28                     | 50                          | 8                   |
|                         |                         |                             |                     |

### NEONATAL TUBULAR REABSORPTION

- Immature at birth, especially in preterm infants
  - Development and maturation of glomerular permeability functions and renal tubular reabsorption are gradual process
  - Peak maturation at I-3 years
- Depends on physiochemical characteristics of drugs
  - Lipophilicity
  - Water solubility
  - Acidic vs. basic pH
  - pH of fluids in proximal and distal tubules

# DISEASE STATES THAT IMPACT DRUG BEHAVIOR

- Extremely premature birth
- Peripartum asphyxia
- Therapeutic hypothermia
- Extracorporeal membrane oxygenation
- Sepsis
- Patent ductus arteriosus
- Necrotizing enterocolitis

#### PDA IMPACT ON PK

• PK differences between neonates with significant PDA vs. no PDA

| X7 1.1.        | Control           | Patent Ductus Arteriosus | 77.1    |
|----------------|-------------------|--------------------------|---------|
| Variable<br>   | (n = 216)         | (n = 106)                | p Value |
| Ke (hr)        | $0.8 \pm 0.02$    | $0.06 \pm 0.03$          | .0001   |
| $T_{1/2}$ (hr) | $8.98 \pm 2.86$   | $12.24 \pm 7.43$         | .0001   |
| Vd (L/kg)      | $0.54 \pm 0.13$   | $0.61 \pm 0.15$          | .0002   |
| CL (mL/kg/hr)  | $44.73 \pm 14.74$ | $40.02 \pm 16.85$        | .0108   |

Ke, elimination constant; T<sub>1/2</sub>, half-life; Vd, volume of distribution; CL, clearance.

Williams et al. Crit Care Med 1997 arteriosus

PDA: Patent ductus

### **VOLUME OF DISTRIBUTION WITH PDA**

| Vd (L/kg) | Sensitivity<br>(%) | Specificity (%) | PPV (%) | NPV (%) |
|-----------|--------------------|-----------------|---------|---------|
| 0.6       | 48                 | 75              | 48      | 75      |
| 0.65      | 32                 | 86              | 53      | 72      |
| 0.7       | 24                 | 92              | 60      | 71      |
| 0.75      | 17                 | 95              | 62      | 70      |
| 0.8       | 10                 | 96              | 58      | 69      |

Vd: volume of distribution

PPV: positive predictive value NPV: negative predictive value

### CONCLUSIONS

- Neonatal response to drug therapy is multi-factorial
  - Maternal factors
  - Gestational age
  - Postnatal age
- Maturational differences in pharmacokinetic profiles leads to different efficacy and toxicity profiles compared to other patient populations
  - Importance of understanding timeline of development of metabolic enzymes and clearance pathways