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1 Introduction

Methods for solving sparse linear systems of equations can be categorized under two broad classes - direct
and iterative. Direct methods are methods based on gaussian elimination. This report discusses one such
direct method namely Nested dissection. Nested Dissection, originally proposed by Alan George, is a
technique for solving sparse linear systems efficiently. There is a lot of literature on subsequent work in
this area. This report is a survey of some of the work in the area of nested dissection and attempts to put
it together using a common framework. This report also highlights the fact that all the nested dissection
algorithms are variations of a single general algorithm, thereby answering the question that is the main goal
of this survey namely - Are the various nested dissection algorithms completely distinct? Minimization
algorithms for the solution of linear systems, which may be viewed equivalently as iterative methods, are
beyond the scope of this report but are discussed in [Joh87].

In section 2 we present the matrix approach to gaussian elimination and then show the equivalent graph
theoretic version. Band matrices are used as an example to explain some of the basic ideas involved in
gaussian elimination. Nested dissection is introduced in section 3. The various nested dissection methods
are also presented. The notion of separators and separator trees for graphs is explained. In section 3.6 the
idea of Euclidean norm and its connection to fill-in is described. Finally, the various versions of nested
dissection methods are shown to be different forms of tree traversal algorithms of a separator tree in section
3.7. Section 4 presents the parallel nested dissection algorithm and compares it with the sequential one.

2 An Overview of Gaussian Elimination

2.1 Gaussian elimination

We are given a system of equations Mx = b, where M is an n � n matrix, x is a vector of variables of
length n, and b is a constant vector of length n. In order to find x by Gaussian Elimination two steps need
to be performed

1. Reduce M to upper triangular form. (i.e., Find L such that LM is upper triangular)

2. Solve system LMx = Lb.
If M is an n�n symmetric positive definite matrix, the solution process consists of the following two steps

1. Factor M by means of row operations to M = LDLT
where L is lower triangular and D is diagonal.

2. Solve the systems Lz = b;Dy = z;LTx = y
The amount of time required to factor M using naive methods is O(n3) and the time required to solve the
systems of equations is O(n2) if M is dense. On the other hand, if M is sparse (i.e., M contains mostly
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zero elements) then by avoiding operating on and storing zeros, we may be able to save time and storage
space. However, the factorization of M may create non zero entries in L (and LT ) in positions where M
contains zeros. The new nonzeros so created are called fill-in.

The factorization of M intoLDLT can de described by the following steps. Setting A0 = B0 = M we can
write A0 =  d1 vT1v1 B 0

1

!=  
1 0v1=d1 In�1

! d1 00 B 0
1 � v1vT1 =d1

! 
1 vT1 =d10 In�1

!= L1

 d1 00 B 0
1 � v1vT1 =d1

!LT
1= L1A1LT

1A1 = 0BBB@ d1 0d2 vT20 v2 B 0
2

1CCCA= 0B@ 1 0
10 v2=d2 In�2

1CA0B@ d1 0d20 B0
2 � v2vT2 =d2

1CA0B@ 1 01 vT2 =d20 In�2

1CA= L2A2LT
2:::An�1 = D:

Here dk is a positive scalar, vk is a vector of length n�k, and B0k is an (n�k)� (n�k) symmetric positive
definite matrix. Also, Bk = B 0k � v2vT2 =d2. Hence, finallyM = L1L2 . . .Ln�1DLTn�1LTn�2 . . .LT

1

and L = L1L2 . . .Ln�1

It can be easily shown that L = n�1Xk=1

Lk � (n� 2)I
We refer to performing the kth step of factorization as eliminating variable xk. Un-eliminated variables xj
and xk are referred to as being connected if their corresponding off-diagonal components in Bi (i < j; k)
are nonzero. As was explained earlier, as the factorization proceeds unconnected variables can become
connected (zero elements becoming nonzero i.e., fill-in).

Lemma 2.1 ([Par61]) The elimination of variable xk pairwise connects all variables xi, i > k; to whichxk was connected at the point of its elimination.
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Proof: In the equations describing the factorization of M , note that eliminating xk modifies B 0k by
subtracting the rank-one matrix vkvTk from it, forming Bk. The matrix vkvTk has nonzeros in position (i; j)
for all i and j corresponding to nonzero components in vk . Assuming no cancellation in the subtraction, Bk
must have nonzeros in the same positions. The above treatment was taken from [Geo73].

2.2 The graph theoretic interpretation

In this section we will try to develop an understanding of gaussian elimination using graph theory. Let
Graph(M) = (V;E) be the graph associated with matrix M , such that each variable in the system of
equations is associated with a vertex vi; i = 1 . . .n, and that for each nonzero entry mij there is an edge(vi; vj) with head vj and tail vi. Such a graph represents the nonzero structure of the matrixM [Par61]. If M
is symmetric, Graph(M) will be an undirected graph. However, if M is not symmetric, (i:e:;mij 6= mji),
Graph(M) will have directed edges. We will ignore self loops created by the non zero elements along the
principal diagonal of the matrix.

The following definitions describe operations that will prove useful in later sections.

Definition 2.2 If G0 = (V 0;E 0) and G = (V;E) are graphs, then G0 � G if V 0 � V and E0 � E.

Lemma 2.3 Graph(A�B) = (V 0;E 0), where E0 � f(v; w)j9z(v; z) 2 Graph(A)^ (z;w) 2 Graph(B)g
Lemma 2.4 Graph(A�1) � (Graph(A))�, G� is the transitive closure of G.

The above lemma follows easily by using the series expansion of (I � A)�1 and noting that the transitive
closure of G is the summation of the integral powers of A.

The next section gives an example that explains the definitions and lemmas described in this section more
clearly.

Fill-in manifests itself on the graph G as additional edges during the elimination process. Pivoting along a
diagonal element in M is equivalent to removal of a vertex v from the graph.

Definition 2.5 The deficiency of v;Def (v), is the set of edges defined by:Def(v) = f(u;w)j(u;v) 2 E; (v;w) 2 E; (u;w) =2 Eg:
This represents the set of fill-in edges due to elimination of vertex v.

Definition 2.6 The graph: Gv = (V � fvg;E(V � fvg) [Def (v)):
is called the v-elimination graph of G. The v-elimination graph is the graph that results from the gaussian
elimination of vertex v from the original graph.

Definition 2.7 An elimination ordering is a bijection � : f1; 2; . . . ; ng ! V and G� = (V;E;�) is an
ordered graph. This graph may be used as an aid in selecting an elimination ordering that produces minimal
fill-in.
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Figure 1: Fill-in with different elimination orders

For an ordered graph, G�, the elimination processP (G�) = fG = G0;G1; . . . ;Gn�1g
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is the sequence of graphs that result from the elimination of the vertices in the order specified by �. The
total fill-in is given by F (G�) = n�1[i=1

Def(v�i)
The fill-in that occurs with the elimination of a particular vertex is a function of where that vertex occurs in
the elimination ordering �. However, finding an elimination ordering that produces minimum fill-in for a
given graph is a problem that has been demonstrated to be NP�complete [[GJ79]].

Hence, Reducing a graph G = G(M) to the null graph by successively eliminating vertices �(1), �(2),
. . ., �(n) is precisely analogous to performing gaussian elimination on matrix M choosing as pivots the
diagonal elements that correspond to �(1), �(2), . . ., �(n).
Definition 2.8 A system that may be solved with no fill-in, (i.e., F (G�) = �), is called a monotone transitive
graph or a perfect elimination graph

It can be observed that the fill-in edges added during gaussian elimination (i.e., F (G�)) on insertion into
the original graph G� will result in a perfect elimination graph G?�,G?� = (V; (E [ F (G�))):
Rose termed this the monotone transitive extension of a graph and also characterized these graphs as
triangulated graphs [Ros72]. A triangulated graph is one in which every cycle of length n � 4 contains
a chord. Figure 1 shows the fill-in resulting from two different elimination orders. Hence, finding a good
elimination ordering is essential in reducing the amount of fill-in that occurs during gaussian elimination.

2.3 Band matrices

One application of gaussian elimination that has special properties is that of band matrices. An example
where band matrices come up is in the solution of differential equations at discrete points.

Input: f(x).
Goal: u(x) such that � d2udx2 = f (x); 0 � x � 1.

Because we can add C +Dx (C and D being constants) to the function u and still have the same second
derivative, we add two boundary conditions:u(0) = 0; u(1) = 1:
To compute u(x), we break up the interval [0;1] into equally spaced points h; 2h; . . . ; nh and estimate u(x)
at these points using: d2udx2 � u(x+ h)� 2u(x) + u(x� h)h2 :
Example: We want to find u1; u2; . . . ; u6 where ui = u(ih) given f(x). Therefore, we need to solve
equations of the form: �uj+1 + 2uj � uj�1 = h2f(jh):
Thus, we get the following linear system:
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0BBBBBBB@ 2 �1 0 0 0 0�1 2 �1 0 0 0
0 �1 2 �1 0 0
0 0 �1 2 �1 0
0 0 0 �1 2 �1
0 0 0 0 �1 2

1CCCCCCCA0BBBBBBBBB@ u1u2
...

...u6

1CCCCCCCCCA = 0BBBBBBBB@ f(h)f(2h)f(3h)
...f(6h) 1CCCCCCCCA h2 (1)

The tridiagonal matrix in Equation 1 is very sparse, particularly when we take more points. Gaussian
elimination could be disastrous if variables are removed in an order that results in a lot of fill-in. Consider
the graph of the matrix in Equation 1. For the linear system in Equation 1 the tridiagonal matrix corresponds
to the graph in Figure 2. V1

�! V2
�! V3

�! V4
�! V5

�! V6

Figure 2: Graph for a band matrix

The problem with applying gaussian elimination on sparse matrices is that, if we are not careful, we can
introduce lots of fill (i.e., new nonzero entries). For example, in Figure 3, � represents nonzero entries, 

represents zero entries, and � represents zero or non-zero entries in a matrix M = mij ; i; j = 1 . . . 5 . If we
pivot on m11 in order to obtain a zero entry at m21 and m51, we may introduce nonzeros at 
 entries. That
is, in Graph(M) we had edges V2 ! V1, V1 ! V3, and V1 ! V5 and, after one row operation to eliminatem21, we may introduce edges V2 ! V3 and V2 ! V5. Similarly, we may introduced two edges when we
eliminate m51. 0BBBBB@ � � � � �� � 
 � 
� � � � �� � � � �� � 
 � 
 1CCCCCA

Figure 3: Fill introduced by Gaussian Elimination

Let M =  m11 bc D !
and let Graph(M) = (V;E). After pivoting on m11 we get a new matrix m11 0

0 D !
. Then

Graph(D) = (V 0;E0); V 0 = V � fV1gE0 � f(v; w)jv; w 6= V1 ^ ((v;w) 2 E _ (v; V1); (V1; w) 2 E)g
Can we reduce the fill-in by reordering the rows and columns of the band matrix in Equation 1?
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Consider: M = V1V3V5V2V4V6

V10BBBBBBB@ 2
0
0�1
0
0

V3

0
2
0�1�1
0

V5

0
0
2
0�1�1

V2�1�1
0
2
0
0

V4

0�1�1
0
2
0

V6

0
0�1
0
0
2

1CCCCCCCA ; A = 0B@ 2 0 0
0 2 0
0 0 2

1CA
In this way we are pivoting on the odd vertices and S = fV1; V3; V5g. Then, according to the Fill-in
Lemma, Graph(D), the fill-in graph, will be a smaller version of the original Graph(M). This can be seen
in Figures 5 and 4.

In matrix terms we reduce matrix M to A 0
0 D ! ; whereD = D � CA�1B

Recall that the Graph(A�1) is the transitive closure of Graph(A). Then for example, V2 ! V2 andV2 ! V4 are in Graph(D) because V3 2 S and, in the original graph, V2 ! (V3 ! V3)� ! V2 andV2 ! (V3 ! V3)� ! V4, respectively, where ( )� represents 1 or more iterations.V1
! V2

! V3
! V4

! V5
! V6

Figure 4: Original GraphV2
! V4

! V6

Figure 5: Graph(D)
Generalizing this result for an n = 2k + 1 element 3-band matrix, we can reduce the tridiagonal matrix
(shown in Figure 6) to the form:  A 0

0 D � CA�1B ! ; whereA = 0BBBB@ u1 0u3

0
. . . u2k+1

1CCCCA :
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Therefore, we can pivot on the odd elements and get a fill-in graph half the size of the original graph, as
shown in Figure 7. V1

! V2
! V3

! V4
! � � � ! V2k

Figure 6: Original tridiagonal matrix graphV2
! V4

! � � � ! V2k
Figure 7: Graph(D) for a tridiagonal matrix

The dashed lines in Figure 8 shows the edges created by pivoting. These edges are obtained by taking paths
starting at a vertex not in A (i.e. an even numbered vertex, Veven) to a vertex of A (Vodd), then onto vertices
of A, and finally to a ending vertex not in A (Veven), and replacing the entire path with an edge from the
starting vertex to the ending vertex. Veven ! Vodd ! Veven

Figure 8: Fill-in detail

Notice that this fill-in corresponds toD�CA�1B, whereA = �I. Thus this reduces to primarily computingCB, and we know computing products of matrices is very expensive. But from a graph theoretic point of
view, we are pivoting on a maximum independent set of vertices and, thus, add very little fill-in. That is,
when we take paths within vertices of A we are confined to paths using only one vertex. Therefore, finding
the elements of CB is equivalent to finding the transitive closure of paths of length 2 and removing the
pivot node. This requires a constant amount of work.

3 Nested Dissection

Nested Dissection is a method of finding an elimination ordering. The algorithm uses a divide and conquer
strategy on the graph. Removal of a set of vertices results in two new graphs on which Gaussian elimination
may be performed separately. The results for the two parts may then be combined to find the solution of
the entire graph. This method has been shown to result in good elimination orderings for certain classes of
graphs.
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3.1 Graph separators

A separator of a graph is a relatively small set of vertices whose removal causes the graph to fall apart into a
number of smaller pieces. Let S be a class of graphs closed under the subgraph relation (i.e., if G2 2 S andG1 is a subgraph ofG2 thenG1 2 S). The class S satisfies the f(n)-separator theorem if there are constants� < 1; � > 0 such that a separator set with at most �f(n) vertices separates the graph into components
with at most �n vertices each.

Most algorithms based on separators are recursive, first finding a separator for the whole graph and then
finding separators for the components. For these algorithms to work on a graph of class S, all subgraphs of
this graph must also be of class S. Hence, the requirement that S be closed under the subgraph relation.

Example: The class of binary trees is closed under the subgraph relation ( Why? Separation at any vertex
separates the graph into smaller binary trees).

Lemma 3.1 The class of binary trees satisfies a 1-separator theorem for � = 2
3 and � = 1.

A planar graph is one which can be drawn on a plane so that the edges of the graph only intersect at their
endpoints. For planar graphs, the following theorem is taken from Lipton and Tarjan [LT80].

Lemma 3.2 ([LT80]) The class of planar graphs satisfies a
pn-separator theorem for� = 2

3 and� = 2
p

2.

In more recent work, Djidjev proved that the theorem also holds for � = p6 [Dji81].

These theorems have been presented to provide examples of the types of separators that have been shown
to exist, and lead to algorithms for finding separators for limited classes of graphs (i.e., binary trees, planar
graphs). Except for the simplest cases, finding separators is a non-trivial problem and no good algorithms
exist for finding separators greater than two in size for arbitrary graphs.

3.2 Elimination ordering algorithms

Many variations of elimination ordering algorithms are based on nested dissection. These algorithms have
the following basis as a common starting point. The main differences involve the separators found for
different classes of graphs and the resulting complexity bounds.

Given a graph G with n vertices, partition G into parts C, A1, A2, etc., such that C is a separator of the
graph. Number the vertices inC from n down to (n�jCj+1) so that they are eliminated last from the graph.
Recursively number the elements of each of the remaining parts of G (A1; A2; . . .) from 1 to (n � jCj).
The procedure continues until all vertices are numbered. Typically, the recursion will cease when the size
of a set reaches some small threshold value, n0, in which case the vertices in the set are arbitrarily assigned
numbers in the given range.

3.2.1 Alan George’s Nested Dissection Method

The first nested dissection algorithm was proposed by Alan George [Geo73]. His method solves systems
whose graphs are n = k� k square grid graphs in O(n 3

2 ) time and O(n logn) space. George‘s scheme uses
the fact that removal of O(k) (2k � 1 precisely) vertices from a k � k square grid leaves four square grids,
each roughly k=2� k=2.
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Example: Figure 9 shows a square grid. Removal of the middle column and middle row (separator set)
separates the graph into four subgraphs as explained earlier.

A 7X7 GRID GRAPH WITH THE SEPARATOR SET INDICATED

Separator Set

Figure 9: Nested dissection of a grid

The algorithm is as follows. Assume that k is one less than a power of two.� For i = 1; . . . ; k define�(i) = p+ 1 if i = 2p(2q + 1)
i.e. �(i) = number of twos in the prime factorization of i +1
Also, �(0) = 1 and �(n) = 1� Let k = 2l � 1
For m = 1; . . . ; l define sets SmSm = fxij jmax(�(i); �(j)) = mg� Now, number the unknowns (verices) in S1, followed by those in S2 and so on, finally numbering the
unknowns in Sl (see Figure 10).

Graphs where k is not equal to one less than a power of two may be handled by adding some number of
dummy vertices. This algorithm results in O(n logn) fill-in.
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S 3

S2S 2

S 2S 2

S 2

S 2

S 3

NESTED DISSECTION OF A MESH

S 1

S 1

S 1

S 2

S 2

S 2

Figure 10: Separator sets in the nested dissection of a grid

Why the method works:
Consider a mesh consistingofk2 squares called elements, formed by subdividingthe unit square (0; 1)�(0;1)
into k2 small squares of side 1=k, and having a vertex/node at each of the (k + 1)2 grid points. With this
mesh, we associate the N �N symmetric positive definite system Mx = b, where N = (k+ 1)2 and eachxi is associated with a node of M . Also,Mij 6= 0 iff xi and xj are associated with the nodes of the same element.

In other words, if xi and xj are the vertices of the same small square or element then the corresponding
matrix component i.e., Mij will be nonzero. However, if there is no element that has both xi and xj as
vertices then Mij is zero. As an example consider the nested dissection ordering of a 8 � 8 mesh. Using
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the algorithm described above the order in which the rows and columns get removed (note removal is not
elimination - it is the removal that the ordering algorithm performs) is indicated in the figure. The vertices
from sets marked S3 subdivide the mesh into 4 subsets which are mutually independent in the sense that ifxi and xj are in different subsets, thenMij = 0 i.e., xi is not connected to xj . In the same way vertices in the
figure from the S2 sets subdivide each of these subsets into 4 subsets which are also mutually independent.
As was mentioned in the algorithm, the vertices in the S3 sets get the highest elimination ordering numbers.
The vertices from S2 sets get lower ones and the S1 vertices get the lowest ordering numbers. Thus in
general the unknowns corresponding to vertices in S1 are numbered first (will get eliminated in the gaussian
elimination first), followed by those in S2 and so on. The way in which the unknowns from a particular set
are ordered does not affect the final result. Recall that fill-in will occur i.e., an edge will be inserted between
vertices xi and xj on removal of a vertex xk iff both xi and xj are connected to xk. So the elimination
of vertices can only cause fill-in within each subset of the set of mutually independent subsets mentioned
earlier. This results in a very limited amount of fill-in ( for proof refer to [Geo73] ).

3.2.2 Generalized Nested Dissection

This algorithm is Lipton, Rose and Tarjan’s original version of the generalized nested dissection algorithm
[LRT79] . Let S be a class of graphs closed under the subgraph relation on which the

pn-separator theorem
holds. Let �, � be the constants associated with the separator theorem, and let G = (V ,E) be an n-vertex
graph in S. The recursive algorithm numbers the vertices of G so that sparse Gaussian Elimination is
efficient. The algorithm assumes that l of the vertices of G are already assigned numbers, each of which is
greater than b (a constant explained later). The goal is to number the remaining vertices of G consecutively
from a to b.� IfG contains no more thann0 = (�=(1��))2 vertices, then number the unnumbered vertices arbitrarily

from a to b.� Otherwise, find sets A, B and C that satisfy the
pn-separator theorem where C is the separator set.

The removal of C divides the rest of G into two components A and B where A and B need not
neccessarily be connected components. Let A contain i unnumbered vertices, B contain j and C
contain k unnumbered vertices.� Number the unnumbered vertices in C arbitrarily from b-k+1 to b. In other words, we are assigning
the vertices of C the highest numbers.� Delete all edges whose endpoints are both in C. Apply the algorithm recursively to the subgraph
induced by B [ C to number the unnumbered vertices in B from a=b-k-j+1 to b=b-k. Apply the
algorithm recursively to the subgraph induced by A [ C to number the unnumbered vertices of A
from a= b-k-j-i+1 to b=b-k-j.

To begin, call the algorithm with all vertices unnumbered G with a=1, b=n, and l=0. This will number the
vertices in G from 1 to n. In this algorithm the vertices in the separator are included in the recursive call but
are not renumbered. For any graph all of whose subgraphs satisfy the

pn-separator theorem, the ordering

produced by this algorithm will result in O(n logn) fill-in and O(n 3
2 ) total operation count, although the

coefficients of actual fill-in and operation count are very large. However, the authors believe that their worst
case bounds are very pessimistic and that the algorithm would be useful for very large graphs.
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3.2.3 Gilbert’s modification to Generalized Nested Disection

A variation to the generalized nested dissection algorithm described previously has been proposed for
separators that divide the graph into more than two pieces [Gil80]. This algorithm assumes that the
separator C splits the graph into pieces A1;A2; . . . ;Ar. A separate recursive call is made for each part,Ai; 1 � i � r.� If there are no more than n0 vertices, then simply number the vertices arbitrarily in the range given.� Find a separator withk � �pn vertices that divides the graph into connected componentsA1;A2; . . . ;Ar,

where |Ai| � �n. Number the vertices of C arbitrarily from (n� jCj+ 1) to n.� Call the algorithm recursively r times for each component Ai, 1 � i � r to number the remaining
vertices from 1 to n � jCj.

This algorithm does not include the vertices of C in the recursive call (unlike the previous one). Also, the
previous version of the algorithm made exactly two recursive calls at each step while this algorithm does
one recursive call per connected component. Because this algorithm recurses on more than two subgraphs
at each level it does not, in general, result in the same bounds for fill-in and operation count. However,
the algorithm does give O(n logn) fill-in and O(n 3

2 ) total operation count for planar graphs, finite element
graphs, graphs of bounded genus and graphs of bounded degree with

pn separators [GT87]. The constants
in the fill bounds are smaller than in the previous version. For other classes of graphs with

pn-separator
theorems it may perform even better [Gil80].

In summary, Alan George’s nested dissection algorithm solves a system of linear equations defined on ann = k �k square grid. The generalized nested dissection algorithm, as its name suggests, is a generalization
of this method to any system of equations defined on a planar or almost-planar graphs. Gilbert’s algorithm
as explained earlier is a minor modification of the generalized nested dissection algorithm.

3.3 Separator trees

The nested dissection algorithms are based on finding separators. The recursion of these algorithms suggests
a natural decomposition of graphs in terms of their separators. At the highest level is a separator that divides
the graph into components. These components themselves have separators, and so on. At the lowest levels
are components that may not be divided any further (possibly singleton vertex sets). This decomposition
can be described in terms of a structure called a separator tree. A separator tree for a graph is shown in
Figure 11.

A separator tree for a graph G, hence, is a tree whose internal nodes are separators and whose leaves are
the components of the graph G that may not be divided any further. Hence each node in the separator tree
is a subgraph of the original graph G and may contain many vertices of G. In the original generalized
nested dissection algorithm the separator trees are binary trees (2-ary). For Gilbert’s modified algorithm the
separator trees are k-ary (k � 2) while those in Alan George’s method are 4-ary. The root of a separator
tree is at level 0. The level of any node in the tree is the length of the path from the root to that node.

Lemma 3.3 Let G = (V ,E,�) ba an ordered graph. Then (v,w) is an edge of G?� (defined earlier) if and
only if there exists a path � = [v=v1; v2; . . . ; vk+1=w] in G� such that��1(vi) < min(��1(v);��1(w)) for 2 � i � k
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This lemma states that an edge (v;w) fills in if and only if there is a path from v to w containing only
vertices deleted before either v or w. The lemma may be used to calculate bounds on fill-in due to nested
dissection. Consider a node of the separator tree C, and its subtrees C1; C2; . . . ; Cn. There are no paths
between Ci and Cj initially for i 6= j. The elements of C are given higher elimination numbers than those
in Ci and Cj . Hence, there can not be a fill-in edge between any member of Ci and Cj. Thus, the separator
tree shows that the only possible fill-in that may occur is along the edges of the tree, or between the vertices
of an individual node of the tree. This fact may be used to calculate bounds on the total amount of fill-in
using a nested dissection ordering algorithm for some classes of graphs.

4
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2 3

7 8

7 8

9
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1

1

THE GRAPH SEPARATOR TREE OF THE GRAPH

Figure 11: A graph and its family of separators

3.4 A bound on the fill for Gilbert’s algorithm

In this section we will prove that Gilbert’s algorithm causes O(n logn) fill in a planar graph. We actually
prove this bound for a class of graphs that satisfies the

pn-separator theorem and is closed under subgraph
and contraction.

Lemma 3.4 ([GT87]) Let S be a class of graphs that satisfies the
pn-separator theorem with constants� < 1 and � > 0 and is closed under subgraph and contraction. Suppose no n vertex graph in S has more

than �n + c edges. When Gilbert’s nested dissection algorithm is applied to a graph in S with n > n0

vertices, the number of fill edges with at least one endpoint in the top level separator C (the root of the
separator tree) is O(�n).
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Proof:

We shall refer to the nodes of the separator tree for G as nodes and to the vertices of graph G as vertices.
Hence a node in the separator tree can have several graph vertices in it. Let N be the set of nodes of the
separator tree for G, and let Nk be the set of nodes on level k of the tree. Thus, N0 = fCg andN = N0 [ N1 [ . . .

For any given node N , let sN be the number of vertices in N .

Consider level k of the separator tree. We will count fill to the root of the separator tree (say C) from
nodes of the tree at level k. Every subtree rooted at level k is connected, since in Gilbert’s algorithm every
separator splits up the graph into a number of connected components. Contract each of these subtrees into a
single vertex. Remove all the vertices of this graph except contracted vertices and vertices in C. Throw out
edges between vertices in C. Let the resulting graph be Gk. Since Gk is obtained from G by contraction
and removal of vertices and edges, Gk is in S and hence has at most �jGkj+ c edges.

From the discussions in section 3.3, it is clear that there will be fill to a vertex v in C from a level k node N
only if there is an edge in Gk from v to a contracted vertex corresponding to N . Each such edge accounts
for at most one fill edge from each vertex of G in N , or sN fill edges in all. Let fk be the size of fill to C
from level k nodes and eN be the degree in Gk of the contracted vertex corresponding to node N . Hence,fk � XN2Nk eNsN
Let Mk be the set of level k nodes with degree greater than � in the contracted graph. Then,fk � XN2Nk �sN +XMk(eN � �)sN� � XN2Nk sN + ŝkXMk(eN � �) where ŝk = maxN2Mk sN (2)

Consider the subgraph of Gk that is induced by the vertices of C and the contracted vertices ofMk. By thepn-separator theorem, it has at most �n 1
2 + jMkj vertices. The subgraph is in S soXMk eN < �(�n 1

2 + jMkj+ cXMk(eN � �) < ��n 1
2 + c (3)

Equations (2) and (3) imply fk < � XN2Nk sN + (��n 1
2 + c)ŝk

Hence the total fill to C isXk�0

fk < fk <  jCj
2

!+ � XN2N sN + (��n 1
2 + c)Xk>0

ŝk
16



Now XN2N sN = n and  jCj
2

! < �2n
2

Also, it is easy to show that Xk>0

ŝk = O(n 1
2 )

Hence the total fill is O(�n).
The fill when eliminating G is the union over every internal separator tree node of the fill edges whose
higher-numbered vertex is in that node plus the fill edges within the external nodes (leaves) of the tree. A
fill edge whose higher numbered endpoint is in a given internal node has its other endpoint in a descendant
of that node. Thus if a given internal node is the root of a subtree containing m vertices then by the lemma
just proved the number of fill edges with higher numbered endpoints in that node is O(�m). If we sum
this over all the internal nodes of the separator tree we get O(�n logn). The fill within an external node is

atmost

 n0

2

!
edges, for a total over the whole graph of O(n) edges. Thus the bound for fill for the entire

graph is O(�n logn).
Now a planar graph with n vertices has at most 3n � 6 edges. Planar graphs are closed under contraction
because any edge in an embedding of the graph in a plane can be shrunk without disturbing the embedding.
Planar graphs are also closed under subgraph. Hence, by the above analysis the fill that occurs in a planar
graph due to Gilbert’s algorithm is O(n logn). This analysis has been taken from [GT87].

3.5 A bound on operation count for Gilbert’s algorithm

It can be shown that in a graph G, eliminating vertex v takes arithmetic operations propotional to the square
of the degree of v ([GL81]). Let G� be a perfect elimination graph corresponding to G. G� contains not
only the edges in G, but also the fill edges produced as a result of eliminating vertices in the order obtained
by the application of the nested dissection algorithm to G. We will make G� a directed graph by orienting
each edge in G� from the endpoint with lower ordering number to the endpoint with the higher one. Let
the out-degree of v be d(v). Then the cost of eliminating v is O(d(v)2). Hence, the operation count for the
entire elimination is O(Pv d(v)2).
Let N be the set of nodes of the separator tree of G. Let Nk be the set of nodes on level k of the tree. Letpk = Xv2N2Nk d(v)2 (4)
be the sum over all vertices of the square of the out-degree.

Now, every subtree rooted at level k is connected. Let Gk be the graph obtained by contracting each subtree
into a single vertex and deleting all edges in G that are not incident on contracted vertices. Let v be a vertex
of G in node N on level k of the separator tree, and let (v;w) be an edge of G�. Now, the edges of G� are
directed edges from the lower-numbered endpoint to the higher-numbered endpoint. Also, because lower
numbered vertices are at the same or higher level than higher numbered vertices in the separator tree, eitherv and w are both in node N , or there is an edge in Gk joining w and the contracted vertex corresponding toN . If sN is the number of vertices in node N and eN is the number of edges incident on contracted vertex
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N in Gk, then d(v) is at most sN + eN , sopk � XN2Nk sN(sN + eN)2 (5)
Lemma 3.5 ([GT87]) Let G be a planar bipartite graph with n vertices ( and hence at most 2n� 4 edges).
There is a function � from the edges of G to the vertices of G such that for all edges e, �(e) is an endpoint
of e; and for all vertices v, �(e) = v for at most two different edges e.Gk is planar and bipartite. Hence by the lemma stated above we can associate each edge of Gk with one of
its endpoints in such a way that at most two edges are associated with each vertex. Gilbert calls the edges
associated with contracted vertices red vertices and those associated with vertices of G on levels 0 throughk � 1 of the separator tree blue edges. Of the eN edges incident on contracted vertex N , let rN be red andbN be blue. By the lemma at most two edges are associated with N in Gk. So, rN � 2 and eN = rN + bN .
So Equation 5 becomes pk � XN2Nk sN(sN + rN + bN)2 (6)
The following mathematical inequality if well know: If a, b and c are real numbers then(a+ b+ c)2 � 3(a2 + b2 + c2)
So, pk � XN2Nk sN (3(s2N + r2N + b2N))� 3

XN2Nk s3N + 3
XN2Nk sNr2N + 3

XN2Nk sNb2N� 3
XN2Nk s3N + 12

XN2Nk sN + 3ŝk XN2Nk b2N where ŝk = maxN2Nk sN (7)

The bound on the first two terms of Equation 7 is easy to calculate. We examine the bound toXN2Nk b2N (8)
Consider some node M on level r < k of the separator tree. The vertices in M are vertices of Gk. Each
vertex has at most two blue edges incident on it (since Gk is planar and bipartite and by lemma 3.5 ). SinceGk has only those edges of G� that are incident on the contracted vertices at level k, the other endpoints
of the blue edges mentioned earlier are contracted vertices. Now, the blue edges out of M may be incident
on different contracted vertices. But by examining Equation 8 it is clear that if all the blue edges out of M
are incident on the same contracted vertex then the sum will be larger. Hence, we can assume that all blue
edges coming from the vertices in the same node go to the same contracted vertex.

Now let N be a contracted vertex. Blue edges incident on N may come from many different levels. LetM be the node closest to the root such that a blue edge (v;N) exists for v 2 M . Then, all the blue edges
incident on N come from nodes on the tree path from M to N . If the number of vertices of G in the subtree
rooted at M is nM , the number of vertices of G on this tree path is at most�n1=2M + �(�nM )1=2 + �(�2nM)1=2 + . . . = O(n1=2M )
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So, bN , the number of edges incident on N , is also O(n1=2M ). Hence,XN2Nk b2N � XM2Nr ;0�r<k cnM for some c > 0 (9)
Hence, XN2Nk b2N � X

0�r<k XM2Nr cnM (10)
The subtrees rooted at level r are disjoint. So the inner sum is at most cn. Therefore the whole sum is ckn.XN2Nk b2N � ckn (11)
Substituting Equation 11 in Equation 7 and summing over all levels k yieldsXv2G� d(v)2 � XN2N s3N + 12

XN2N sN + 3ŝk XN2Nk ckn (12)
Now sN � �n1=2N and ŝk � �k=2�n1=2, this is at most

3�3
XN2N n3=2N + 12� XN2N n1=2N + 3�cn3=2

Xk�0

k�k=2

The first sum is O(n3=2) and the second is O(n). The third sum converges to a constant, so the entire
expression is O(n3=2).
3.6 Euclidean norm and fill-in

The Euclidean norm of a graph G and its relation to the fill-in that gaussian elimination may cause is
discussed in this section. Without loss of generality, assume that G = G(M) is an embedded triangulated
planar graph. In such graphs, the separators must be cycles.

Definition 3.6 A simple cycle C is a simple cycle separator of G if the vertices interior to C are less than
or equal to 2

3n in number and those exterior to C are also bounded by the same fraction.

Lemma 3.7 ([Mil86]) If G is a triangulated planar graph then there exists a simple cycle separator of sizep
8n (for (1=3; 2=3)�separator).

For the sake of simplicity, we will take 1
2n to be the bounding figure instead of 2

3n.

Definition 3.8 The element graph corresponding to G, El(G) = (V;E0) whereE0
= f(v;w)j v and w share a face in Gg

Example: For a triangulated graph G, El(G) = G. If G is a simple cycle then El(G) = KjGj. Recall that
pivoting caused cliques to form. So the element graph gives an idea of the amount of fill-in.

Given the matrix M , we will start with G(M) and triangulate it. We will rip out vertices from G(M) and
replace them by a clique whose size is determined by the face created due to removal of the respective
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vertices. We will argue that the amount of fill-in created as a result of the removal of the vertices is bounded
by the number of edges in the element graph corresponding to G. Thus, Total fill-in � number of edges
in the element graph of G. In the following discussion we will denote the number of edges in the element
graph corresponding to G by Edges(El(G)).
Definition 3.9 The Euclidean Norm [GM90] of a graph G, jjGjj =

qPd2i , where di is the size of the ith
face.

Note that the size of a face is the number of vertices or edges in that face.

Lemma 3.10 Edges(El(G)) = O(jjGjj2).
Proof: Let the ith face have size di. There are two kinds of edges in an element graph corresponding to a
graph G - edges already in G and cross face edges that are added. In the element graph each vertex in theith face is connected to (di � 3) other vertices in the face by cross face edges (no edges will be added for
the two adjacent vertices and the vertex itself). But since the edges are not directed we have to divide the
total by a factor of 2. This gives us the first term in the equation below. The second term comes from the
edges forming the boundary of the face. Here too to compensate for the double counting of these edges in
adjacent faces we divide by a factor of 2 giving usEdges(El(G)) =X(di(di � 3)

2
+ di

2
)Edges(El(G)) =X(d2i � 2di

2
)Edges(El(G)) = jjGjj2

2
�X diEdges(El(G)) = O(jjGjj2)

So if we can show that jjGjj is small, then we can conclude that fill-in will be small too.

3.7 Elimination ordering algorithms as tree traversals

The separator tree can be used as a framework for describing all the elimination ordering algorithms for
sequential nested dissection. Alan George’s nested dissection algorithm numbers the vertices in a separator
tree in the order obtained by a reverse level order traversal of the separator tree. This ordering is the one
obtained by numbering the vertices at the highest level in the graph and then moving to vertices at lower
levels. The Generalized Nested Dissection algorithms use a postorder traversal of the separator tree to
obtain the elimination order. Note that in Gilbert’s modified version the separator tree may not be a binary
tree. In conclusion, all the elimination ordering algorithms are different forms of tree traversals of the
separator tree. In fact, any tree traversal algorithm that visits a vertex before any of the vertex’s parents,
when applied on a separator tree would result in an ordering that would produce a fill-in within (section
2.2) the required bound. Hence, Alan George’s mesh nested dissection algorithm can also be described as a
recursive algorithm as follows:

Assume that k is one less than a power of two.
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� Remove row (k + 1)=2 and column (k + 1)=2. Give the highest numbers to these 2k � 1 vertices
(i.e., these vertices will be eliminated last).� There are now four components of the original graph. If their sizes are greater than one, recursively
number the components. Otherwise number the four vertices in the range specified.

Another way of looking at the elimination ordering algorithms is as follows: Let rake [GMT88] be an
operation that removes all leaves from a tree. The elimination ordering can be obtained by iteratively raking
the separator tree. If T is the separator tree the following algorithm defines elimination ordering by the
sequential algorithms discussed earlier. Let Leaves(T ) denote the set of leaves of the tree T , obtained as a
result of the rake operation and T 0

, the resulting tree after the operation.� Rake T .� If N denotes the largest elimination ordering number of the nodes numbered so far, then number the
vertices in Leaves(T ) from (N + 1) to (N+ cardinality of the set of leaves).� If T 0

is not empty then Repeat the above steps with T = T 0
.

Note that though rake is an operation usually discussed in a parallel context, here it is to be looked upon as
a sequential operation with the same end result as in the parallel case i.e., removing all the leaves from the
tree.

Thus in general all the sequential algorithms for determining the elimination ordering of a graph G can be
described by the following general algorithm:

1. Generate the tree of separators for G.

2. Perform a tree traversal on the separator tree to order the vertices. This traversal must visit a node
before any of its parents.

4 Parallel Nested Dissection

4.1 The basic parallel algorithm

The Parallel Algorithm devised by Pan and Reif [PR85a] [PR85b] is discussed here in graph theoretic terms.

Once again, we are trying to solve the system Mx = b, where M is a symmetric positive definite n � n
matrix. The Pan-Reif parallel algorithm is based on computing a special recursive factorization of M .
Assume that G(M) belongs to a class of graphs that satisfy the s(n)-separator theorem for constants � and� = 1.

Definition 4.1 A recursive s(n)-factorization of a matrix M with respect to �, 0 < � < 1, is a sequence
of matrices M0;M1; . . . ;Md such that M0 = PMPT ; P is an n � n permutation matrix and for h =
0; 1; . . . ; d� 1 Mh =  Ah BThBh Ch ! ; Ch =Mh+1 + BhA�1h BTh
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and Ah is a block-diagonal matrix consisting of square blocks of sizes at most s(�d�hn)� s(�d�hn) wheren0 � �dn; n0 is a constant.

Now, given the recursive factorization of M , M�1b can be computed recursively. This comes from the
following observation. By the definition of recursive factorizationMh =  I 0ChA�1h I ! Ah 00 Mh+1

! I A�1h BTh0 I !
Hence , M�1h =  I �A�1h BTh0 I ! A�1h 00 M�1h+1

! I 0�A�1h BTh I !
The Algorithm

Let us assume that we are given a family of separators forG(M). We will construct a separator tree. Let the
separator tree have k levels. Let Vj be the set of vertices (corresponding to variables in M ) in the nodes of
the separator tree at any level j. The following procedure computes the inverse of a matrix N recursively.

compute inverse( matrix N , level j)

Begin
If (j equals 0) return N�1

Else
Begin

write N so that the variables of Vk are in the top right hand corner of N i.e.,N =  A BTB C !
, where A are variables from Vk.D = C � BA�1BTD�1 = compute inverse(D;k � 1)

inverse =

 I �A�1BT
0 I ! A�1 0

0 D�1

! I 0�BA�1 I !
return inverse

End
End

The procedure is initially called with N =M (matrix) and j = k (level).

The following lemma is taken from [PR85a].

Lemma 4.2 ([PR85a]) Given an n� n positive definite symmetric matrix M such that G(M) satisfies thes(n)-separator theorem and s(n) is of the formn� for a constant�, then the Pan-Reif algorithm can compute
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the special recursive factorization of M in O((logn)(log(s(n)))2) time using |E| + M(s(n)) processors.
Then, given this recursive factorization, the solution of Mx = b for any given b requires only O(log n log
s(n)) time and |E| + (s(n))2 processors.

4.2 An example with lots of fill-in

In this section we consider an example of nested dissection that results in a lot of fill and find an upper bound
on the amount of fill that results. Let us consider the figure below which shows a family of separators. In
this tree each vertex at a particular level is connected to all its ancestors by edges.

The number of vertices in the separator at the root is
pn. The separator splits the graph into two subgraphs

of size n
2 each, so separator sets C1 and C2 are each of size

qn
2 . Thus, in general the size of a separator at

level i is
q n

2i and there are 2i such separators. Hence we can write the vertex count jV j as,jV j =
pn + 2

qn
2 + 4

qn
4 + . . . + 2iq n

2i .

and the edge count jEj can be written as,jEj = 2
qn

2

pn + 4(qn
4

qn
2 +qn

4

pn) + . . . + 2iP0k=i�1

q n
2iq n

2k .

C C
1 2

C
0

LEVEL i

LEVEL 1

AN EXAMPLE WITH LOTS OF FILL-IN

Now that we have a fair idea about the graph, let us calculate the fill-in. Consider the blocks of vertices
at level i. At level i there are 2i blocks of size

q n
2i each. We will eliminate these blocks of vertices first.

Recall that for each block ( call the corresponding matrix A) we have to find the inverse (A�1). For the
sake of convenience let p = r n

2i
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The calculation of inverse takes O(p3) time for a matrix of size p. Hence the total time to find inverses

is 2ip3, since there are 2i such matrices. We can simplify this expression to n 3
2=p2i. Now we need to

calculate D = D � CA�1B. We calculate C = CA�1 first and then CB to get CA�1B. Recall that the
taking the inverse of a matrix is equivalent to finding the Transitive Closure of the corresponding graph.

So in graph theoretic terms finding CA�1 is equivalent to finding all possible paths from ancestral vertices
to a vertex in a block of separators (A) at the ith level and then onto another vertex in the same block. There
are O(pnr n

2ir n
2i 2i) = O(n 3

2 )
such paths. Note that this term is obtained by taking the dominant term from a geometric series obtained
by considering all possible paths. The dominant term comes from finding all possible paths from C0 (

pn
vertices) to a vertex in a separator at level i (

q n
2i ) and then onto another vertex in the same separator.

Similarily, evaluatingCB is finding all paths starting at levels less than i to a block of vertices at level i and
then back to the original level. There are O(pnr n

2ipnp2i)
such paths. This is atmost (O(n2)) since

p
2i � n.

4.3 A comparison with the sequential algorithm

Both the algorithms, parallel and sequential are based on finding separators. However, the process of
factorization of the given matrix is different. The parallel case uses a recursive factorization as described
in section 4:1. In the case of the Pan-Reif algorithm, the length of the factorization is 
(logn). Sequential
algorithms use the LDLT factorization described in section 2:1 which is O(n) in length. In the sequential
case elimination ordering was described in section 2:4 using separator trees and the rake operation. In the
parallel version the idea is similar. A separator tree can be drawn again and it will be identical to that
obtained in the sequential case. The rake operation can be used again to understand the elimination ordering
of the vertices. This ordering is similar to that in the sequential case, except that after every rake operation,
all the vertices in Leaves(T ) are eliminated in parallel (the vertices in matrix A0 mentioned earlier). This
means that all the vertices in Leaves(T ) will get the same elimination ordering number.

The algorithm is given below for the sake of completeness:

level = height of separator tree

1. Rake T . Let T 0
be the resulting tree.

2. Number the vertices in Leaves(T ) by the same number i.e. (height - level). level = level �1

3. If T 0
is not empty then Repeat the above steps with T = T 0

.

The parallel nested dissection algorithm eliminates all vertices with the same level simultaneously as was
indicated in section 3:1. and in increasing elimination ordering numbers.

Thus the algorithms for determining the elimination ordering of a graph G can be described by the following
algorithm:
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1. Generate the tree of separators for G.

2. Label the vertices as explained earlier (using the rake operation).

3. Eliminate the vertices in the ordering obtained by step 2.

5 Conclusion

In this survey, we have tried to explain nested dissection in graph theoretic terms. A common framework of
separator trees has been used to compare some of the popular nested dissection algorithms. The sequential
nested dissection algorithms have been shown to involve different kinds of tree traversals of the separator
tree for the given graph. Bounds for the fill-in and operation count for Gilbert’s nested dissection algorithm
have been calculated. The parallel algorithm is shown to be a modification of the sequential one and has
been explained using the framework of separator tree.
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