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1 Introduction

Methods for solving sparse linear systems of equations can be categorized under two broad classes - direct
and iterative. Direct methods are methods based on gaussian eimination. This report discusses one such
direct method namely Nested dissection. Nested Dissection, originaly proposed by Alan George, is a
technique for solving sparse linear systems efficiently. There is alot of literature on subsequent work in
thisarea. Thisreport is a survey of some of the work in the area of nested dissection and attempts to put
it together using a common framework. This report aso highlights the fact that all the nested dissection
algorithms are variations of asingle general algorithm, thereby answering the question that isthe main goal
of this survey namely - Are the various nested dissection algorithms completely distinct? Minimization
algorithms for the solution of linear systems, which may be viewed equivaently as iterative methods, are
beyond the scope of thisreport but are discussed in [Joh87].

In section 2 we present the matrix approach to gaussian elimination and then show the equivaent graph
theoretic version. Band matrices are used as an example to explain some of the basic ideas involved in
gaussian elimination. Nested dissection isintroduced in section 3. The various nested dissection methods
are also presented. The notion of separators and separator trees for graphs is explained. In section 3.6 the
idea of Euclidean norm and its connection to fill-in is described. Finally, the various versions of nested
dissection methods are shown to be different forms of tree traversal a gorithms of a separator tree in section
3.7. Section 4 presents the parallel nested dissection algorithm and comparesit with the sequential one.

2 An Overview of Gaussian Elimination

2.1 Gaussian elimination

We are given a system of equations Ma = b, where M isan n x n matrix, = is a vector of variables of
length n, and b is a constant vector of length . In order to find = by Gaussian Elimination two steps need
to be performed

1. Reduce M to upper triangular form. (i.e., Find I, such that . M isupper triangular)
2. Solvesystem LM x = Lb.

If M isann x n symmetric positivedefinite matrix, the solution process consists of thefollowing two steps

1. Factor M by means of row operationsto
M=1rIDIT
where [ islower triangular and D isdiagonal.

2. Solvethe systems
Lz=bDy==z2L"z=y

The amount of time required to factor M using naive methodsis O(»%) and the time required to solve the
systems of equationsis O(n?) if M isdense. On the other hand, if M is sparse (i.e, M contains mostly
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zero elements) then by avoiding operating on and storing zeros, we may be able to save time and storage
space. However, the factorization of M may create non zero entriesin L (and L) in positions where M
contains zeros. The new nonzeros so created are called fill-in.

Thefactorization of M into LD L" can de described by the following steps. Setting A9 = Bo = M we can

write
dp of
A = l/

B 1 0 dq 0 1 of/d
o vl/dl 1,1 0 Bi—vlv{/dl 0 I,.1

. dl 0 T
o Ll( 0 Bll—vlvip/dl)Ll
= LA LT
dy 0
d vl
A= |, 2
) Bé
1 0 dy 0 1 0
= 1 do 1 vg/dz
0 vz/dz I, 2 0 BIZ — vzvg/d2 0 I,_2
= ILpALY
A,_1 = D.

Here dy isapositivescaar, vy, isavector of lengthn — k, and B, isan (n — k) x (n — k) symmetric positive
definite matrix. Also, By = B, — vpv3 /da. Hence, finaly

M=11Ly...L,_1DLT ;1T .. LT

and
L=10L1Ly...L,_1

It can be easily shown that
n—1
L=> Ly—(n—-2)1
k=1

We refer to performing the kth step of factorization as eliminating variable . Un-eliminated variables z ;
and z, are referred to as being connected if their corresponding off-diagonal componentsin B; (¢ < j, k)
are nonzero. As was explained earlier, as the factorization proceeds unconnected variables can become
connected (zero elements becoming nonzero i.e,, fill-in).

Lemma 2.1 ([Par61]) The eimination of variable x; pairwise connects all variables z;, ¢ > &, to which
x was connected at the point of its elimination.



Proof: In the equations describing the factorization of M, note that eliminating x; modifies B,; by
subtracting the rank-one matrix v;v{ from it, forming By.. The matrix v;v{ hasnonzerosin position (i, 5)
for all 7 and j corresponding to nonzero componentsin v;. Assuming no cancellation in the subtraction, By,
must have nonzeros in the same positions. The above treatment was taken from [Geo73].

2.2 Thegraph theoretic interpretation

In this section we will try to develop an understanding of gaussian elimination using graph theory. Let
Graph(M) = (V, E) be the graph associated with matrix M, such that each variable in the system of
equations is associated with a vertex »;,7 = 1...n, and that for each nonzero entry m; there is an edge
(v;,v;) withhead v; and tail »;. Such agraph represents the nonzero structure of the matrix A/ [Par61]. If M
issymmetric, Graph(M ) will be an undirected graph. However, if M isnot symmetric, (i.e.,m;; # m;;),
Graph( M ) will have directed edges. We will ignore self loops created by the non zero elements along the
principal diagona of the matrix.

The following definitions describe operations that will prove useful in later sections.

Definition 2.2 If ' = (V/, £')and G = (V, £) aregraphs,then ¢/ C Gif V! C V and £/ C L.
Lemma 2.3 Graph(A x B) = (V', E'), where £’ C {(v, w)|3z(v, z) € Graph(A) A (z,w) € Graph(B)}
Lemma 2.4 Graph(A~1) C (Graph(A))*, G* isthetransitive closure of G.

The above lemma follows easily by using the series expansion of (1 — A)~! and noting that the transitive
closure of &' isthe summation of the integral powers of A.

The next section gives an example that explains the definitions and lemmas described in this section more
clearly.

Fill-in manifestsitself on the graph ' as additional edges during the elimination process. Pivoting along a
diagonal element in M isequivaent to removal of avertex » from the graph.

Definition 2.5 The deficiency of v, De f(v), is the set of edges defined by:
Def(v) = {(uw,w)|(u.v) € E, (v,0) € E, (u,w) ¢ E}.
This represents the set of fill-in edges due to elimination of vertex v.

Definition 2.6 The graph:
Gy = (V= {o}, E(V = {v}) U Def(v)).

is called the v-elimination graph of G. The v-elimination graph is the graph that results from the gaussian
elimination of vertex v fromthe original graph.

Definition 2.7 An elimination ordering is a bijection o : {1,2,...,n} — V and G, = (V, F,«a) isan
ordered graph. Thisgraph may be used asan aid in selecting an elimination ordering that produces minimal
fill-in.
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Figure 1. Fill-in with different elimination orders

For an ordered graph, ¢, the elimination process
P(G,) ={G = Go,G1,...,G o1}
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is the sequence of graphs that result from the elimination of the verticesin the order specified by «. The
totd fill-inisgiven by

n—1
F(G,) = U Def(v,,)
=1

Thefill-in that occurs with the elimination of a particular vertex isafunction of where that vertex occursin
the elimination ordering a. However, finding an eimination ordering that produces minimum fill-in for a
given graph is a problem that has been demonstrated to be N P—complete [[GJ79]].

Hence, Reducing a graph ¢ = G/(M) to the null graph by successively eliminating vertices a(1), a(2),
.., a(n) is precisely analogous to performing gaussian elimination on matrix M choosing as pivots the
diagonal elementsthat correspond to a(1), a(2), ..., a(n).

Definition 2.8 Asystemthat may be solvedwith nofill-in, (i.e., }'(G,) = ¢), iscalledamonotonetransitive
graph or a perfect elimination graph

It can be observed that the fill-in edges added during gaussian elimination (i.e., /(G )) on insertion into
the original graph ¢, will result in a perfect elimination graph G'7;,

G = (V,(FU F(G,))).

Rose termed this the monotone transitive extension of a graph and also characterized these graphs as
triangulated graphs [Ros72]. A triangulated graph is one in which every cycle of length » > 4 contains
achord. Figure 1 shows the fill-in resulting from two different elimination orders. Hence, finding a good
elimination ordering is essential in reducing the amount of fill-in that occurs during gaussian elimination.

2.3 Band matrices

One application of gaussian eimination that has specia properties is that of band matrices. An example
where band matrices come up isin the solution of differential equations at discrete points.

Input: f(z).
Goal: u(z) such that _ 2y f(=), 0<z<1

w =
Because we can add €' + Dz (C' and D being constants) to the function « and still have the same second
derivative, we add two boundary conditions:

u(0) =0, u(l) =1

To compute u( ), we break up the interval [0, 1] into equally spaced pointsh, 2k, ..., nh and estimate u(x)
at these pointsusing:

‘ =9
N
=

w(z + h) —2u(z)+ u(z —h)
h? '

~
~

N

dz

Example: We want to find w1, up, ..., us Where u; = u(ih) given f(x). Therefore, we need to solve
equations of the form:
—Ujp1+ 2u; —uj_1 = hZf(]h)

Thus, we get the following linear system:



2 -1 0 0 0 O u1 f(h)
1 2 -1 0 0 O 2 f(2h)
0 -1 2 -1 0 0 ' f3h) |,
0 0 -1 2 -1 0 - h (1)
0 0 0 -1 2 -1 : :
O 0 O 0 -1 2 . f(6h)

The tridiagonal matrix in Equation 1 is very sparse, particularly when we take more points. Gaussian
elimination could be disastrousiif variables are removed in an order that resultsin alot of fill-in. Consider
the graph of thematrix in Equation 1. For thelinear systemin Equation 1 thetridiagona matrix corresponds
to the graph in Figure 2.

Vi = Vo &E Vae= Vg = Vs < Vg

Figure 2: Graph for a band matrix

The problem with applying gaussian elimination on sparse matrices is that, if we are not careful, we can
introduce lots of fill (i.e., new nonzero entries). For example, in Figure 3, * represents nonzero entries, @
represents zero entries, and - represents zero or non-zero entriesinamatrix M = m;;,1,7 =1...5. If we
pivot on m11 in order to obtain azero entry at mo1 and ms;, we may introduce nonzeros at @ entries. That
is, in Graph(M ) we had edges V, — Vi, Vi1 — V3, and Vi — Vi and, after one row operation to eliminate
ma1, We may introduce edges Vo, — Vi and V, — Vs. Similarly, we may introduced two edges when we
eliminate ms;.

* * *
* ® ®
* ® ®

Figure 3: Fill introduced by Gaussian Elimination

Let M = ( mcu b ) and let Graph(M) = (V, E). After pivoting on mj; we get a new matrix

Graph(D) = (V', E'), VI =V —{V1}
E' CH{(v,w)|lv,w # V1A ((v,w) € EV (v,V1),(Vi,w) € E)}

Can we reduce thefill-in by reordering the rows and columns of the band matrix in Equation 1?



Consider:

W1 2 0 0-1 o0 O

Va o 2 0 -1 -1 O 2 00
M= Vs o o 2 0 -1 -1/, A=]10 2 0

V-1 -1 0 2 0 O 0 0 2

Va 0O -1 -1 0 2 O

Ve 0o 0-1 0 0 2

In this way we are pivoting on the odd vertices and S = {V1,V3,Vs}. Then, according to the Fill-in
Lemma, Graph( D), thefill-in graph, will be asmaller version of the original Graph( M ). This can be seen
in Figures5 and 4.

In matrix terms we reduce matrix M to
A O — 1
(0 E),whereD_D—CA B

Recall that the Graph(A~1) is the transitive closure of Graph(A). Then for example, V> — V5, and
Vo — Vy are in Graph(D) because V3 € S and, in the origina graph, V, — (V3 — V3)* — V, and
Vo — (V3 — V3)* — Vi, respectively, where ()" represents 1 or more iterations.

Vi Voo Va e Vg = Vg — Vg

Figure 4: Origina Graph

Vo= Vg — Vg
Figure 5: Graph(D)

Generalizing this result for an n = 2k 4+ 1 element 3-band matrix, we can reduce the tridiagonal matrix
(shown in Figure 6) to the form:

A 0
0 p-caip | Where

u3

U2k+1



Therefore, we can pivot on the odd elements and get a fill-in graph half the size of the original graph, as
shown in Figure7.

Figure 6: Original tridiagonal matrix graph

Figure 7: Graph(D) for atridiagona matrix

The dashed linesin Figure 8 shows the edges created by pivoting. These edges are obtained by taking paths
starting at avertex notin A (i.e. an even numbered vertex, V.,.,,) to avertex of A (V,44), then onto vertices
of A, and finally to a ending vertex not in A (V.,.), and replacing the entire path with an edge from the
starting vertex to the ending vertex.

— —
Veven — Vodd < Veven

Figure 8: Fill-in detail

Noticethat thisfill-in correspondsto D — C' A~ B, where A = aI. Thusthisreducesto primarily computing
C'B, and we know computing products of matrices is very expensive. But from a graph theoretic point of
view, we are pivoting on a maximum independent set of vertices and, thus, add very little fill-in. That is,
when we take paths within vertices of A we are confined to paths using only one vertex. Therefore, finding
the elements of C'B is eguivalent to finding the transitive closure of paths of length 2 and removing the
pivot node. This requires a constant amount of work.

3 Nested Dissection

Nested Dissection isamethod of finding an elimination ordering. The agorithm uses a divide and conquer
strategy on the graph. Removal of aset of vertices resultsin two new graphs on which Gaussian elimination
may be performed separately. The results for the two parts may then be combined to find the solution of
the entire graph. This method has been shown to result in good elimination orderings for certain classes of

graphs.



3.1 Graph separators

A separator of agraph isarelatively small set of verticeswhoseremoval causesthe graphtofall apart into a
number of smaller pieces. Let 5 beaclass of graphs closed under the subgraph relation (i.e., if G2 € 5 and
(/1 isasubgraph of Gy then'y € ). Theclass S satisfiesthe f(n )-separator theoremif there are constants
a < 1,8 > 0 such that a separator set with at most 5 f(n) vertices separates the graph into components
with at most an vertices each.

Most algorithms based on separators are recursive, first finding a separator for the whole graph and then
finding separators for the components. For these a gorithmsto work on agraph of class .5, al subgraphs of
this graph must a'so be of class 5. Hence, the requirement that .5 be closed under the subgraph relation.

Example: The class of binary treesis closed under the subgraph relation ( Why? Separation at any vertex
separates the graph into smaller binary trees).

Lemma 3.1 The class of binary trees satisfies a 1-separator theoremfor o = % and 5 = 1.

A planar graph is one which can be drawn on a plane so that the edges of the graph only intersect at their
endpoints. For planar graphs, the following theorem is taken from Lipton and Tarjan [LT80].

Lemma 3.2 ([LT80]) Theclassof planar graphssatisfiesa /n-separator theoremfor o = % and§ = 2V/2.

In more recent work, Djidjev proved that the theorem also holdsfor 3 = /6 [D]i81].

These theorems have been presented to provide examples of the types of separators that have been shown
to exist, and lead to algorithms for finding separators for limited classes of graphs (i.e., binary trees, planar
graphs). Except for the simplest cases, finding separators is a non-trivial problem and no good algorithms
exist for finding separators greater than two in size for arbitrary graphs.

3.2 Elimination ordering algorithms

Many variations of elimination ordering a gorithms are based on nested dissection. These agorithms have
the following basis as a common starting point. The main differences involve the separators found for
different classes of graphs and the resulting complexity bounds.

Given agraph G with n vertices, partition G into parts €', A1, Ay, etc., such that C' is a separator of the
graph. Number the verticesin C' from n downto (n — |C'|+ 1) so that they are eliminated | ast from the graph.
Recursively number the elements of each of the remaining parts of ¢ (A1, Ay, ...) from 1 to (n — |C]).
The procedure continues until al vertices are numbered. Typically, the recursion will cease when the size
of aset reaches some small threshold value, ng, in which case the verticesin the set are arbitrarily assigned
numbersin the given range.

3.21 Alan George's Nested Dissection Method

The first nested dissection algorithm was proposed by Alan George [Geo73]. His method solves systems
whose graphsaren = k x k square grid graphsin O(n%) timeand O(n logn) space. George's scheme uses
thefact that removal of O (k) (2k — 1 precisely) verticesfrom ak x k square grid leaves four square grids,
each roughly k/2 x k/2.
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Example: Figure 9 shows a square grid. Remova of the middle column and middle row (separator set)
separates the graph into four subgraphs as explained earlier.

Separator Set

A 7X7 GRID GRAPH WITH THE SEPARATOR SET INDICATED

Figure 9: Nested dissection of agrid

Theagorithmisas follows. Assumethat £ isone less than a power of two.

e Fori=1,...,k define
(i) =p+1lifi=2°(2¢+ 1)
i.e. 7(¢) = number of twosin the prime factorization of ¢ +1
Also, 7(0) = land 7(n) = 1

o Letkh=2 -1
Form = 1,....] definesets 5,
Sm = {wijlmax(n(i),x(j)) = m}

¢ Now, number the unknowns (verices) in 51, followed by thosein 52 and so on, finally numbering the
unknownsin S; (see Figure 10).

Graphs where k is not equal to one less than a power of two may be handled by adding some number of
dummy vertices. Thisagorithm resultsin O(n log») fill-in.
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Figure 10: Separator sets in the nested dissection of agrid

Why the method works:

Consider amesh consistingof 42 squarescalled elements, formed by subdividingtheunitsquare (0, 1) x (0, 1)
into k2 small squares of side 1/k, and having a vertex/node at each of the (k 4 1) grid points. With this
mesh, we associate the N x N symmetric positive definite system M« = b, where N = (k + 1)? and each
x,; isassociated with anode of M. Also,

M;; # 0iff z; and z; are associated with the nodes of the same element.

In other words, if z; and z; are the vertices of the same small square or element then the corresponding
matrix component i.e., M;; will be nonzero. However, if there is no element that has both z; and z; as
vertices then M;; is zero. Asan example consider the nested dissection ordering of a8 x 8 mesh. Using
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the algorithm described above the order in which the rows and columns get removed (note removal is not
elimination - it is the removal that the ordering algorithm performs) is indicated in the figure. The vertices
from sets marked 53 subdivide the mesh into 4 subsets which are mutually independent in the sense that if
x; and z; arein different subsets, then M;; = Oi.e, z; isnot connected to = ;. Inthesameway verticesinthe
figure from the 52 sets subdivide each of these subsetsinto 4 subsets which are also mutually independent.
Aswas mentioned in the algorithm, the verticesin the S'3 sets get the highest elimination ordering numbers.
The vertices from 52 sets get lower ones and the 51 vertices get the lowest ordering numbers. Thusin
general the unknowns corresponding to verticesin 51 are numbered first (will get eliminated in the gaussian
eliminationfirst), followed by thosein 52 and so on. The way in which the unknowns from a particular set
are ordered does not affect thefinal result. Recall that fill-in will occur i.e., an edge will beinserted between
vertices z; and x; on removal of a vertex z;, iff both 2; and z; are connected to ;. So the elimination
of vertices can only cause fill-in within each subset of the set of mutually independent subsets mentioned
earlier. Thisresultsin avery limited amount of fill-in ( for proof refer to [Geo73] ).

3.2.2 Generalized Nested Dissection

Thisagorithmis Lipton, Rose and Tarjan’s original version of the generalized nested dissection algorithm
[LRT79] . Let S beaclassof graphs closed under the subgraph relation on which the |/»-separator theorem
holds. Let «, § be the constants associated with the separator theorem, and let G = (V',F) be an n-vertex
graph in S. The recursive algorithm numbers the vertices of (¢ so that sparse Gaussian Elimination is
efficient. The algorithm assumesthat / of the vertices of &' are aready assigned numbers, each of which is
greater than b (a constant explained later). The goa isto number the remaining vertices of G consecutively
from a to b.

e If G containsno morethanng = (3/(1— «))? vertices, then number the unnumbered verticesarbitrarily
froma tob.

¢ Otherwise, find sets A, B and C' that satisfy the \/n-separator theorem where C' is the separator set.
The removal of ' divides the rest of ¢ into two components A and B where A and B need not
neccessarily be connected components. Let A contain : unnumbered vertices, B contain j and C'
contain £ unnumbered vertices.

¢ Number the unnumbered verticesin C' arbitrarily from b-k+1 to b. In other words, we are assigning
the vertices of C' the highest numbers.

¢ Delete all edges whose endpoints are both in C'. Apply the algorithm recursively to the subgraph
induced by B U C' to number the unnumbered verticesin B from a=b-k-j+1 to b=b-k. Apply the
algorithm recursively to the subgraph induced by A U ' to number the unnumbered vertices of A
from a= b-k-j-i+1to b=b-k-j.

To begin, call the algorithm with al vertices unnumbered ' with a=1, b=n, and [=0. Thiswill nhumber the
verticesin G from 1 to . Inthisagorithm the verticesin the separator are included in the recursive call but
are not renumbered. For any graph all of whose subgraphs satisfy the /n-separator theorem, the ordering
produced by this algorithm will result in O(n logn) fill-in and O(n%) total operation count, although the
coefficients of actua fill-in and operation count are very large. However, the authors believe that their worst
case bounds are very pessimistic and that the a gorithm would be useful for very large graphs.
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3.2.3 Gilbert’smodification to Generalized Nested Disection

A variation to the generalized nested dissection algorithm described previously has been proposed for
separators that divide the graph into more than two pieces [Gil80]. This algorithm assumes that the
separator C' splits the graph into pieces Aj, Aa, ..., A,. A separate recursive call is made for each part,
A, 1<i<r,

¢ If there are no more than ng vertices, then simply number the vertices arbitrarily in the range given.

e Findaseparator withx < 3./n verticesthat dividesthegraphinto connected components A1, Az, ..., A,,
where |4;| < an. Number the vertices of C arbitrarily from (n — |C| + 1) ton.

o Cal the algorithm recursively r times for each component 4;, 1 < ¢ < r to number the remaining
verticesfrom1ton — |C].

This agorithm does not include the vertices of C' in the recursive call (unlike the previous one). Also, the
previous version of the algorithm made exactly two recursive cals at each step while this algorithm does
one recursive call per connected component. Because this agorithm recurses on more than two subgraphs
a each level it does not, in general, result in the same bounds for fill-in and operation count. However,
the algorithm does give O (n log n) fill-in and O(n%) total operation count for planar graphs, finite element
graphs, graphs of bounded genus and graphs of bounded degree with /n separators [GT87]. The constants
in the fill bounds are smaller than in the previous version. For other classes of graphs with /n-separator
theorems it may perform even better [Gil80].

In summary, Alan George's nested dissection agorithm solves a system of linear equations defined on an
n = k * k square grid. The generalized nested dissection algorithm, asits name suggests, isageneralization
of thismethod to any system of equations defined on a planar or almost-planar graphs. Gilbert’s algorithm
as explained earlier is aminor modification of the generalized nested dissection algorithm.

3.3 Separator trees

The nested dissection a gorithmsare based on finding separators. The recursion of these al gorithmssuggests
anatural decomposition of graphsin terms of their separators. At thehighest level isaseparator that divides
the graph into components. These components themselves have separators, and so on. At the lowest levels
are components that may not be divided any further (possibly singleton vertex sets). This decomposition
can be described in terms of a structure called a separator tree. A separator tree for a graph is shown in
Figure 11.

A separator tree for a graph &/, hence, is a tree whose internal nodes are separators and whose |eaves are
the components of the graph ' that may not be divided any further. Hence each node in the separator tree
is a subgraph of the original graph G and may contain many vertices of . In the original generalized
nested dissection algorithm the separator trees are binary trees (2-ary). For Gilbert's modified algorithm the
separator trees are k-ary (K > 2) while those in Alan George's method are 4-ary. The root of a separator
treeisat level 0. Thelevel of any node in the tree is the length of the path from the root to that node.

Lemma 3.3 Let G = (V,E,«) ba an ordered graph. Then (v,w) is an edge of G, (defined earlier) if and
onlyif thereexistsa path px = [v=v1,v2, ..., vp+1=w] in G, such that

a”Y(v;) < min(a=(v),a Y w)) for 2 <i < k

14



This lemma states that an edge (v, w) fills in if and only if there is a path from v to w containing only
vertices deleted before either » or w. The lemma may be used to calculate bounds on fill-in due to nested
dissection. Consider a node of the separator tree €', and its subtrees €'y, C,...,C,. There are no paths
between C; and C; initidly for « # 5. The elementsof ' are given higher elimination numbers than those
inC; and C';. Hence, there can not be afill-in edge between any member of C'; and C';. Thus, the separator
tree showsthat the only possiblefill-in that may occur is aong the edges of thetree, or between the vertices
of an individua node of the tree. Thisfact may be used to calculate bounds on the total amount of fill-in
using a nested dissection ordering algorithm for some classes of graphs.

o
A<
v

THE GRAPH SEPARATOR TREE OF THE GRAPH

Figure 11: A graph and its family of separators

34 A bound on thefill for Gilbert’salgorithm

In this section we will prove that Gilbert’s agorithm causes O(n logn) fill in a planar graph. We actually
prove this bound for aclass of graphs that satisfies the /n-separator theorem and is closed under subgraph
and contraction.

Lemma 3.4 ([GT87]) Let 5 be a class of graphs that satisfies the \/n-separator theorem with constants
a < land g > 0andisclosed under subgraph and contraction. Suppose no » vertex graphin S has more
than én + ¢ edges. When Gilbert’s nested dissection algorithmis applied to a graph in 5 with » > ng
vertices, the number of fill edges with at least one endpoint in the top level separator ' (the root of the
separator tree) isO(6n).
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Proof:

We shall refer to the nodes of the separator tree for ¢ as nodes and to the vertices of graph ¢ as vertices.
Hence a node in the separator tree can have severa graph verticesinit. Let A be the set of nodes of the
separator tree for G, and let A, be the set of nodes on level k of thetree. Thus, A, = {C} and

N =ANyUANU...

For any given node VV, let s bethe number of verticesin V.

Consider level k of the separator tree. We will count fill to the root of the separator tree (say ') from
nodes of thetree at level k. Every subtree rooted at level % is connected, since in Gilbert’s algorithm every
separator splitsup the graph into anumber of connected components. Contract each of these subtreesinto a
single vertex. Remove al the vertices of this graph except contracted vertices and verticesin C'. Throw out
edges between verticesin C'. Let the resulting graph be ;.. Since i, is obtained from ' by contraction
and removal of vertices and edges, G, isin S and hence has at most §|G';| + ¢ edges.

From the discussionsin section 3.3, it is clear that there will befill to avertex » in C from alevel k node N
only if thereisan edge in GG, from v to a contracted vertex corresponding to V. Each such edge accounts
for at most onefill edge from each vertex of G in N, or sy fill edgesinal. Let fi bethe size of fill to C'
from level £ nodes and ey be the degree in G, of the contracted vertex corresponding to node N. Hence,

fr <Y ensy

NEN;
Let M, bethe set of level £ nodes with degree greater than 6 in the contracted graph. Then,

i <00 bsn+ D (en — 8)sn

NeN; My
< 48 s S en — 0) where s, = max s 2
< 6> sn+ S (en—0) =X sy @)
NeN; My

Consider the subgraph of 7, that isinduced by the vertices of C' and the contracted vertices of M,,. By the
\/n-separator theorem, it has at most ﬁn% + | M| vertices. The subgraphisin S so
ZeN < 6(ﬁn% + | M|+ ¢
My
Sen—8) < 86n3 +e 3)
My
Equations (2) and (3) imply

fr<é Z SN + (6ﬁn% + ¢)Sk
NEeN

Hence thetotal fill to C is

ka<fk< ( |g| ) + 6 Z 5N‘|‘(6ﬁn%‘|‘c)2§k

k>0 NeN k>0
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Now

Also, it is easy to show that
Z S = O(n%)

k>0
Hence thetotal fill isO(én).

The fill when eliminating ' is the union over every internal separator tree node of the fill edges whose
higher-numbered vertex isin that node plus the fill edges within the external nodes (leaves) of thetree. A
fill edge whose higher numbered endpoint isin a given internal node has its other endpoint in a descendant
of that node. Thusif agiven internal nodeisthe root of a subtree containing m vertices then by the lemma
just proved the number of fill edges with higher numbered endpoints in that node is O(ém). If we sum
this over all the internal nodes of the separator tree we get O(én logn). Thefill within an external nodeis

atmost nzo edges, for atotal over the whole graph of O(n) edges. Thusthe bound for fill for the entire

graphisO(énlogn).
Now a planar graph with n vertices has at most 3n — 6 edges. Planar graphs are closed under contraction
because any edge in an embedding of the graph in a plane can be shrunk without disturbing the embedding.

Planar graphs are also closed under subgraph. Hence, by the above analysis thefill that occurs in a planar
graph dueto Gilbert'salgorithmis O(n logn). Thisanalysis has been taken from [GT87].

3.5 A bound on operation count for Gilbert’salgorithm

It can be shown that in agraph ¢, eliminating vertex » takes arithmetic operations propotional to the square
of the degree of » ([GL81]). Let G* be a perfect elimination graph corresponding to &G. G* contains not
only theedgesin , but aso thefill edges produced as aresult of eliminating verticesin the order obtained
by the application of the nested dissection algorithm to . We will make * a directed graph by orienting
each edge in G* from the endpoint with lower ordering number to the endpoint with the higher one. Let
the out-degree of v be d(v). Then the cost of eliminating v is O(d(v)?). Hence, the operation count for the
entireeliminationis O(3", d(v)?).

Let A/ be the set of nodes of the separator tree of . Let A, bethe set of nodes on level k of thetree. Let

pe= Y, dv)? (4)

veENEN

be the sum over all vertices of the square of the out-degree.

Now, every subtreerooted at level k isconnected. Let (¢, be the graph obtained by contracting each subtree
into asinglevertex and deleting al edgesin ¢' that are not incident on contracted vertices. Let v beavertex
of Ginnode N onleve £ of the separator tree, and let (v, w) be an edge of *. Now, the edges of * are
directed edges from the lower-numbered endpoint to the higher-numbered endpoint. Also, because lower
numbered vertices are at the same or higher level than higher numbered vertices in the separator tree, either
v and w are both in node IV, or thereis an edgein (-, joining w and the contracted vertex corresponding to
N. If sy isthe number of verticesin node N and ey isthe number of edgesincident on contracted vertex
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N inGy, thend(v) isat most sy 4 en, SO

pe< Y sn(sn +en)? (5)
NeN;

Lemma 3.5 ([GT87]) Let (G beaplanar bipartitegraph with » vertices (and hence at most 2 — 4 edges).
Thereisa function ¢ from the edges of &' to the vertices of G such that for all edges e, ¢(e) isan endpoint
of e; and for all vertices v, ¢(e) = v for at most two different edges e.

G, is planar and bipartite. Hence by the lemma stated above we can associate each edge of (7, with one of
its endpointsin such away that at most two edges are associated with each vertex. Gilbert callsthe edges
associated with contracted vertices red vertices and those associated with vertices of G on levels 0 through
k — 1 of the separator tree blue edges. Of the ey edgesincident on contracted vertex N, let rx bered and
bn beblue. By thelemmaat most two edges are associated with N in G.. So, ry < 2and ey = vy + by
So Equation 5 becomes

e < Y sn(sy +ry 4 by)? (6)
NeN;

The following mathematical inequality if well know: If «, b and ¢ are real numbers then

(a—l—b—l—c)2§3(a2—|—b2—|—c2)

So,
pe <Y sk +rk + %)

NeN;

< 3 Z 5?\7—|—3 Z SNTJZV—I-g Z sNb]2V
NeN NeN NeN

3 ~ 2 N

< 3 Z sy + 12 Z sy + 3sy Z by where Sk:J\I;T;a/ef(ksN @)

NeN; NeN NeN;

The bound on thefirst two terms of Equation 7 iseasy to calculate. We examine the bound to

S 0% (8)

NeN;

Consider some node M on level » < k of the separator tree. The verticesin M are vertices of G.. Each
vertex has at most two blue edgesincident on it (since &, is planar and bipartiteand by lemma3.5). Since
(i, has only those edges of G that are incident on the contracted vertices at level &, the other endpoints
of the blue edges mentioned earlier are contracted vertices. Now, the blue edges out of M may be incident
on different contracted vertices. But by examining Equation 8 it is clear that if al the blue edges out of M
are incident on the same contracted vertex then the sum will be larger. Hence, we can assumethat all blue
edges coming from the vertices in the same node go to the same contracted vertex.

Now let N be a contracted vertex. Blue edges incident on N may come from many different levels. Let
M be the node closest to the root such that ablue edge (v, V) existsfor v € M. Then, al the blue edges
incident on N' come from nodes on the tree path from M to N. If the number of vertices of & in the subtree
rooted at M isnas, the number of vertices of G on thistree path isat most

Buy? + Blana) M2+ Bla?man) Y2 + ... = O(n3})
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S0, by, the number of edgesincident on V, isaso O(n]l\f). Hence,

Z b3, < Z enpyr for some ¢ >0 (9)
NeN; MeN;,0<r<k

Hence,

YR > Y enn (10)

NeN; 0<r<k MeN,

The subtrees rooted at level » are disoint. So theinner sumis at most ¢n. Therefore the whole sumis ckn.

Z b3 < ckn (11)
NeN,

Substituting Equation 11 in Equation 7 and summing over al levels k yields

Z d(v)? < Z 53 +12 Z sn + 3y, Z ckn (12)

vEGH Ne~N NeN NeN;
Now sy < ﬁn]lv/z and s < o*/23n1/2, thisisat most

38 3 n¥24+ 125 S n¥? +38en%2Y " kak/?
NeN NeN k>0

The first sum is O(»%2?) and the second is O(n). The third sum converges to a constant, so the entire

expression is O(n/?).

3.6 Euclidean norm and fill-in

The Euclidean norm of a graph ' and its relation to the fill-in that gaussian elimination may cause is
discussed in this section. Without loss of generality, assumethat ¢ = G/(M ) is an embedded triangulated
planar graph. In such graphs, the separators must be cycles.

Definition 3.6 A simplecycle C' isa simple cycle separator of ¢ if the vertices interior to C' are less than
or equal to %n in number and those exterior to C' are also bounded by the same fraction.

Lemma 3.7 ([Mil86]) If (G isatriangulated planar graph then there exists a simple cycle separator of size
V/8n (for (1/3,2/3)—separator).

For the sake of simplicity, we will take 2n to be the bounding figure instead of 2.

Definition 3.8 The éement graph corresponding to G, EI(G) = (V, E') where

E' = {(v,w)| v and w shareafacein G}

Example: For atriangulated graph G, EI(G) = G. If G isasimplecyclethen EI(G) = K. Recal that
pivoting caused cliquesto form. So the element graph gives an idea of the amount of fill-in.

Given the matrix M, we will start with G( A ) and triangulate it. We will rip out vertices from G/(M ) and
replace them by a clique whose size is determined by the face created due to removal of the respective
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vertices. We will argue that the amount of fill-in created as aresult of the remova of the verticesis bounded
by the number of edges in the element graph corresponding to ¢¢. Thus, Tota fill-in < number of edges
in the element graph of . In the following discussion we will denote the number of edgesin the element
graph corresponding to ¢ by Edges(~1(()).

Definition 3.9 The Euclidean Norm[GM90] of a graph &, ||G|| = /3 d2, where d; isthe size of the i*
face.

Note that the size of aface isthe number of vertices or edgesin that face.
Lemma 3.10 Edges(E{(G)) = O(||G]|?).

Proof: Let the i* face have size d;. There are two kinds of edgesin an element graph corresponding to a
graph & - edges already in G and cross face edges that are added. In the element graph each vertex in the
it face is connected to (d; — 3) other verticesin the face by cross face edges (no edges will be added for
the two adjacent vertices and the vertex itself). But since the edges are not directed we have to divide the
total by afactor of 2. This gives us the first term in the equation below. The second term comes from the
edges forming the boundary of the face. Here too to compensate for the double counting of these edgesin
adjacent faces we divide by afactor of 2 giving us

Edges(El(G)) = Z(w + %)
2 _ .
Edges(FI(G)) = (T2 20)

Edges(El(G)) 5>~ Zdi
Edges(El(G)) = O(]|G]|*)

So if we can show that ||G|| is small, then we can conclude that fill-in will be small too.

3.7 Elimination ordering algorithmsastreetraversals

The separator tree can be used as a framework for describing all the elimination ordering a gorithms for
sequential nested dissection. Alan George's nested dissection a gorithm numbers the vertices in a separator
tree in the order obtained by a reverse level order traversal of the separator tree. This ordering is the one
obtained by numbering the vertices at the highest level in the graph and then moving to vertices at lower
levels. The Generalized Nested Dissection algorithms use a postorder traversal of the separator tree to
obtain the elimination order. Note that in Gilbert’s modified version the separator tree may not be a binary
tree. In conclusion, al the elimination ordering agorithms are different forms of tree traversals of the
separator tree. In fact, any tree traversal algorithm that visits a vertex before any of the vertex’s parents,
when applied on a separator tree would result in an ordering that would produce a fill-in within (section
2.2) therequired bound. Hence, Alan George's mesh nested dissection agorithm can also be described as a
recursive algorithm as follows:

Assumethat % is one less than a power of two.
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¢ Removerow (k + 1)/2 and column (k£ + 1)/2. Give the highest numbers to these 2k — 1 vertices
(i.e., these verticeswill be eliminated | ast).

e There are now four components of the origina graph. If their sizes are greater than one, recursively
number the components. Otherwise number the four vertices in the range specified.

Another way of looking at the elimination ordering algorithms is as follows: Let rake [GMT88] be an
operation that removesall leaves from atree. The elimination ordering can be abtained by iteratively raking
the separator tree. If T' is the separator tree the following agorithm defines eimination ordering by the
sequential algorithms discussed earlier. Let Leaves(1') denote the set of leaves of thetree 7', obtained as a
result of the rake operation and 7", the resulting tree after the operation.

o RakeT.

¢ If V denotesthe largest elimination ordering number of the nodes numbered so far, then number the
verticesin Leaves(T') from (N + 1) to (N4 cardinality of the set of |eaves).

e If 7" isnot empty then Repeat the above stepswith 7 = 7"

Note that though rake isan operation usually discussed in a paralel context, hereit isto be looked upon as
a sequentia operation with the same end result as in the paralel casei.e., removing all the leaves from the
tree.

Thusin genera al the sequentia algorithms for determining the elimination ordering of a graph G can be
described by the following general agorithm:
1. Generate thetree of separators for G.

2. Perform atree traversal on the separator tree to order the vertices. This traversal must visit a node
before any of its parents.

4 Parallel Nested Dissection

41 Thebasic parallel algorithm

TheParallel Algorithm devised by Pan and Reif [PR85a] [PR85b] is discussed herein graph theoretic terms.

Once again, we are trying to solve the system Ma = b, where M is a symmetric positive definite n x n
matrix. The Pan-Reif parallel agorithm is based on computing a specia recursive factorization of M.
Assumethat G'( M) belongsto aclass of graphs that satisfy the s(n )-separator theorem for constants o and

5=1

Definition 4.1 A recursive s(n)-factorization of a matrix M with respect to o, 0 < a < 1, is a sequence
of matrices Mo, M1, ..., M, such that My = PM P, P isan n x n permutation matrix and for h =
0,1,....,d -1

T
M, = An Bh Cyp = Mpe1+ BhA_lBT
Bh Ch ’ h h
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and A, isablock-diagonal matrix consisting of square blocks of sizesat most s(a?~"n) x s(a®""n) where
ng > a’n, ng isa constant.

Now, given the recursive factorization of A, M ~1b can be computed recursively. This comes from the
following observation. By the definition of recursive factorization

-1nT
M, = I B 0 Ay, 0 I A, "B
ChAh I 0 Mpy1 0 I

_4-lpT -1
Mh‘lz I —-A, "B; A (11 _Il . 0
0 I 0 M, —-A°By 1
The Algorithm

Let usassumethat we are given afamily of separatorsfor G( M ). Wewill construct a separator tree. Letthe
separator tree have k levels. Let V; be the set of vertices (corresponding to variablesin M) in the nodes of
the separator tree at any level j. The following procedure computes the inverse of amatrix N recursively.

Hence,

conput e_i nver se( matrix N, level 7)

Begin
If (j equals 0) return N 1
Else

Begin
write N so that the variables of V}, are in the top right hand corner of N i.e,

A BT .
N = B C , where A are variables from V.

D=C-BA BT

D~Y=conput e_i nverse(D,k — 1)

inverse= [ 1 —ABT A=t 0 I 0
10 T o p1 —-BA Y T

return inverse

End
End

The procedureisinitialy called with N = M (matrix) and j = & (level).
Thefollowing lemmais taken from [PR85a].

Lemma 4.2 ([PR85a]) Givenann x n positive definite symmetric matrix M such that G/( M) satisfiesthe
s(n)-separator theoremand s(n ) isof theformn? for a constant o, then the Pan-Reif algorithmcan compute
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the special recursive factorization of M in O((logn)(log(s(n)))?) timeusing |E| + M (s(n)) processors.
Then, given this recursive factorization, the solution of M« = b for any given b requires only O(log n log
s(n)) timeand |E| + (s(n))? processors.

4.2 An examplewith lotsof fill-in

In this section we consider an exampl e of nested dissection that resultsin alot of fill and find an upper bound
on the amount of fill that results. Let us consider the figure below which shows a family of separators. In
thistree each vertex at a particular level is connected to al its ancestors by edges.

The number of verticesin the separator at theroot is /n. The separator splitsthe graph into two subgraphs
of size 5 each, so separator sets C'; and C; are each of size \/g Thus, in genera the size of a separator at

level i is /5 and there are 2' such separators. Hence we can write the vertex count |V'| as,

Vi=vi+2 /5445 +..+2, /5.

and the edge count | £/| can be written as,

El=2/5vm+a /5 /5 + iV + o+ 200 5 5

LEVEL 1

LEVEL i

AN EXAMPLEWITH LOTS OF FILL-IN

Now that we have a fair idea about the graph, let us calculate the fill-in. Consider the blocks of vertices
at level i. At level i there are 2 blocks of size - €ach. We will eliminate these blocks of vertices first.

Recall that for each block ( call the corresponding matrix A) we have to find the inverse (A~1). For the
sake of convenience let
n
Py
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The calculation of inverse takes O(p®) time for a matrix of size p. Hence the total time to find inverses
is 2p3, since there are 2' such matrices. We can simplify this expression to n2 /v/2. Now we need to
cdculae D = D — CA~'B. Wecaculate C = C' A~ first and then C'B to get C A~1B. Recall that the
taking the inverse of amatrix is equivalent to finding the Transitive Closure of the corresponding graph.

So in graph theoretic terms finding ' A~ is equivalent to finding all possible paths from ancestral vertices
to avertex in ablock of separators (A) at theith level and then onto another vertex in the same block. There

are
O(ﬁggzi) = O(n2)

such paths. Note that this term is obtained by taking the dominant term from a geometric series obtained
by considering al possible paths. The dominant term comes from finding all possible paths from Cy (y/n

vertices) to avertex in aseparator at level 7 (, /) and then onto another vertex in the same separator.
sep > sep

Similarily, evaluating C' B isfinding all paths starting at levelslessthan i to ablock of vertices at level i and
then back to the origina level. There are

O(v/ny| ViV 2)

such paths. Thisisamost (O(n?)) since V2! < n.

4.3 A comparison with the sequential algorithm

Both the algorithms, parallel and sequential are based on finding separators. However, the process of
factorization of the given matrix is different. The parallel case uses a recursive factorization as described
in section 4.1. In the case of the Pan-Reif algorithm, the length of the factorization is ©2(logn). Sequential
agorithmsusethe I, D L factorization described in section 2.1 which is O(n) in length. In the sequential
case elimination ordering was described in section 2.4 using separator trees and the rake operation. In the
parallel version the idea is similar. A separator tree can be drawn again and it will be identical to that
obtained in the sequential case. The rake operation can be used again to understand the elimination ordering
of the vertices. Thisordering issimilar to that in the sequential case, except that after every rake operation,
al theverticesin Leaves(T') are eliminated in parallel (the vertices in matrix Ao mentioned earlier). This
means that al theverticesin Leaves(T') will get the same elimination ordering number.

The agorithm is given below for the sake of completeness:
level = height of separator tree
1. RakeT. Let T’ betheresulting tree.
2. Number theverticesin Leaves(T') by the same number i.e. (height - level). level = level —1

3. If T’ isnot empty then Repeat the above stepswith 7' = 7.

The parale nested dissection algorithm eliminates all vertices with the same level simultaneously as was
indicated in section 3.1. and in increasing elimination ordering numbers.

Thusthe algorithmsfor determining the elimination ordering of agraph G can be described by thefollowing
algorithm:
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1. Generate thetree of separators for G.
2. Labd thevertices as explained earlier (using the rake operation).

3. Eliminate the verticesin the ordering obtained by step 2.

5 Conclusion

In thissurvey, we havetried to explain nested dissection in graph theoretic terms. A common framework of
separator trees has been used to compare some of the popular nested dissection algorithms. The sequential
nested dissection a gorithms have been shown to involve different kinds of tree traversals of the separator
tree for the given graph. Boundsfor the fill-in and operation count for Gilbert’s nested dissection algorithm
have been calculated. The parale algorithm is shown to be a modification of the sequential one and has
been explained using the framework of separator tree.
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