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● Uses
– Operating system hypervisors (Linux/KVM, WinXP mode 

in newer versions of Windows)
– Cloud Computing – Give users the ability to run their own 

hypervisors!
– Security – Mcafee DeepSafe
– Testing/debugging hypervisors
– Interoperability 

Introduction
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● How it works (on Intel)
– L0 runs L1 with VMCS01

– L1 wants to run L2 and executes vmlaunch 
with VMCS12

– vmlaunch traps to L0

– L0 merges VMCS01 with VMCS12 to 
create VMCS02 and run L2

– If L2 traps, we are back in L0

– L0 decides whether to handle trap itself or 
forward to L1 

– Eventually L0 resumes L1

– .....
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● Stable codebase
– “nested” is enabled by default

● AMD-v
– Advanced virtual Interrupt Controller (AVIC)
– Hardware yet to arrive!

● More Testing
– Hard to find bugs always exist!
– Newer releases of common and new hypervisors
– Nesting introduces I/O bottlenecks 

● Are we spec compliant ?

Nested Virtualization - AMD
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● Recent Changes
– Specification conformance

● Additional error checks on emulated vmx functions
● Corresponding tests in kvm-unit-tests

– Intel Memory Protection Extensions
● Bounds checking on memory references
● VMX support: “clear BNDCFGS” and “BNDCFGS” VMCS exit controls and 

“BNDCFGS” VMCS field 
● Nested Support: Let L1 hypervisor read and write the MPX controls(vmcs12-

>guest_bndcfgs)
– Tracing improvements

Nested Virtualization - Intel
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● Recent Changes
– Interrupt Acknowledgement 

Emulation
– Interrupt Injection Rework

● Inspired by Jailhouse 
hypervisor

● Also speeds up Windows 
execution (Complemented 
by TPR Shadow support)

Nested Virtualization - Intel
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● Improve Stability
– More testing
– Nested vmx is still disabled by default!
– The test matrix is quite complicated with so many 

configurations and hypervisors
● Are we specification compliant ?

– Also helps in identifying buggy hypervisors

Nested Virtualization - Intel
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● Nested VPID
– Virtual Processor Identifier

● Tag address space and avoid a TLB 
flush

– We don't advertise vpid to the L1 
hypervisor

– L0 uses the same vpid to run L1 
and all its guests 

– KVM flushes vpid when switching 
between L1 and L2

– Advertise vpid and maintain a 
mapping for L1's vpids

Nested Virtualization - Intel
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● MSR load/store
– Hypervisor loads/saves a MSR list during 

VMENTER/VMEXIT
– Mandatory according to specification

● Nested APIC-v
– Reduce VMEXITS 
– Motivation: performance gains

Nested Virtualization - Intel
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● Test Environment
– Host (L0) – AMD Opteron(tm) Processor 6386 SE (16 cores), 32 GB RAM, 

Fedora 20
–  Qemu options to run L1 : -cpu host -m 20G -smp 10

–  Qemu options L1 uses to run L2 : -cpu qemu64 -m 8G -smp 8

● Guest Status (L1 hypervisor)
– Linux (Fedora 20 64 bit)
– Xen 4.4.3 running in Ubuntu 12.04
– JailHouse
– ESX 

AMD – Status
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● Test Environment
– Host: AMD Opteron(tm) Processor 6386 SE / 32 GB RAM
– L0, L1 and L2: Fedora 20

– Kernel 3.17.0-rc1 (L0)

– SPECJBB (2013)
● Backend only, Controller/Transaction Injectors on a different host
● Qemu cmdline:  -smp n (1, 2, 4 and 8) -m 16G -cpu qemu64
● Compare L1 and L2 performance numbers

– Kernel Compilation
● Use “time” to measure compilation times under the same setup

AMD Performance Evaluation
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● Kernel Compilation
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● Kernel Compilation (Evaluation)
– Comparable times across the vCPU range
– “make” is CPU intensive
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● SPECJBB (Distributed with Backend in L2)

1 2 4 8
0

10
20
30
40
50
60
70
80
90

100

71

59 61 60

L1
L2

Number of  vCPUS

m
ax

-j
O

P
S

 (
%

)

16

AMD Performance Evaluation



 

● SPECJBB (Evaluation)
– L2 nearly at 50% of L1's performance

● TODO: Investigating bottlenecks in the nested setup
– Bottlenecks

● I/O Bottlenecks ? The test setup creates a qcow2 image inside L1

– File systems are nested
● Can APIC-v help ?
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● Test Environment
– Host (L0) – IvyTown_EP 16 Cores 128GB RAM

–  Qemu options to run L1 : -cpu host -m 20G -smp 10

–  Qemu options L1 uses to run L2 : -cpu qemu64 -m 8G -smp 
8

● Guest Status ... not so good news

Intel - Status
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● Some not yet impressive matrix
L2 Guest

L1 Guest
RHEL 6.5

64-bit
RHEL 6.5

32-bit 
Windows 7

64-bit
Windows 7

32-bit

Xen    

KVM    

VMware ESX    

VMware Player    

HAXM    

Win7 XP Mode N/A N/A  

Hyper-V    

VirtualBox    

Intel - Status
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Intel Performance Evaluation
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● Kernel Compilation
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● Kernel Compilation (Evaluation)
– CPU intensive workloads fare quite well
– But .... do they always ?

Intel Performance Evaluation
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● SPECJBB

Intel Performance Evaluation
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● SPECJBB (Evaluation)
– What went wrong ?
– Incorrect Test Setup ?
– Newer machines => newer processor features => how is 

Nested Virtualization affected ?
– Maturity: still needs “right setup” to work 

Intel Performance Evaluation
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● Nested VMs implies no migration ! ;-)

But in all seriousness:
● Challenge: Live migrate L1 with all its L2 guests

● Save all nested state: vmcs12, struct nested_vmx, etc 
but how ?

Nested Virtualization and Migration
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● One option: 
– Force an exit from L2 to L1 (if running in L2) – feasible with all L1 

setups?
– Save all current vmcs02 state to vmcs12

– L2 specific dirtied pages need to be copied

– Nested state metadata gets transferred to destination with L1's memory

– If running in L2 on source, need to do the same on destination

● Another option:
– Save/restore additional CPU states, just like additional registers

Nested Virtualization and Migration
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● Use cases
– Testing
– Device assignment to L2

● History
– AMD IOMMU emulation for QEMU

(Eduard-Gabriel Munteanu, 2011)
– Lacking memory layer abstractions
– Required many device model hooks

● SPARC QEMU model with own IOMMU layer

Nested IOMMU
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● IOMMU support in QEMU memory layer, used for
– POWER
– Alpha
– ...and Intel!

● VT-d emulation developed as GSoC project by Le Tan
– DMAR emulation, supports all PCI device models
– Error reporting
– Cache emulation

● VT-d interrupt remapping emulation
– Working prototype
– Lacks error reporting

Nested IOMMU - Today
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● Support for physical devices
– Full in-kernel IOMMU model?

=> ARM SMMU model by Will Deacon,
see Linux Plumber IOMMU track

– Use of VFIO from userspace model?
● IR emulation with in-kernel irqchips

– Requires extension to translate IOAPIC IRQs
● AMD IOMMU, reloaded?

Nested IOMMU – Open Topics
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Wrap-Up
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● AMD Nested Virtualization support in good shape
– Regular testing required nevertheless (autotest?)

● Intel Nested Virtualization
– Add missing mandatory features
– More testing (Intel integration tests , autotest?)

● Once stable, address migration
● IOMMU emulation & nesting approaching
● Non-x86...?
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