

State of the art and future directions

Bandan Das

Yang Z Zhang

Jan Kiszka

Nested Virtualization

● Introduction
● Changes and Missing Features for AMD
● Changes and Missing Features for Intel
● Working hypervisors and performance evaluation
● Discussion on other ongoing work

– Migration Support
– VT-d emulation

● Wrap-up and Questions

Outline

2

● Nested Virtualization –

Hardware

Linux/KVM

Windows

Linux

Xen ESX

Windows

Introduction

3

● Uses
– Operating system hypervisors (Linux/KVM, WinXP mode

in newer versions of Windows)
– Cloud Computing – Give users the ability to run their own

hypervisors!
– Security – Mcafee DeepSafe
– Testing/debugging hypervisors
– Interoperability

Introduction

Use Me!

4

● How it works (on Intel)
– L0 runs L1 with VMCS01

– L1 wants to run L2 and executes vmlaunch
with VMCS12

– vmlaunch traps to L0

– L0 merges VMCS01 with VMCS12 to
create VMCS02 and run L2

– If L2 traps, we are back in L0

– L0 decides whether to handle trap itself or
forward to L1

– Eventually L0 resumes L1

–

Introduction

L
0

L
1

L
2

(Nested)

KVM

Linux

Xen

VMCS
01

VMCS
12

VMCS
02

Hardware

5

● Stable codebase
– “nested” is enabled by default

● AMD-v
– Advanced virtual Interrupt Controller (AVIC)
– Hardware yet to arrive!

● More Testing
– Hard to find bugs always exist!
– Newer releases of common and new hypervisors
– Nesting introduces I/O bottlenecks

● Are we spec compliant ?

Nested Virtualization - AMD

6

● Recent Changes
– Specification conformance

● Additional error checks on emulated vmx functions
● Corresponding tests in kvm-unit-tests

– Intel Memory Protection Extensions
● Bounds checking on memory references
● VMX support: “clear BNDCFGS” and “BNDCFGS” VMCS exit controls and

“BNDCFGS” VMCS field
● Nested Support: Let L1 hypervisor read and write the MPX controls(vmcs12-

>guest_bndcfgs)
– Tracing improvements

Nested Virtualization - Intel

7

● Recent Changes
– Interrupt Acknowledgement

Emulation
– Interrupt Injection Rework

● Inspired by Jailhouse
hypervisor

● Also speeds up Windows
execution (Complemented
by TPR Shadow support)

Nested Virtualization - Intel

L
2
 running

External Interrupt

Exit to L
0

Handle Interrupt

Interrupt
for L

1

Acknowledge ?
Inject Virtual
Interrupt

Yes

Yes

No

Write Vector
to VMCS

12

8

Resume L1

● Improve Stability
– More testing
– Nested vmx is still disabled by default!
– The test matrix is quite complicated with so many

configurations and hypervisors
● Are we specification compliant ?

– Also helps in identifying buggy hypervisors

Nested Virtualization - Intel

9

● Nested VPID
– Virtual Processor Identifier

● Tag address space and avoid a TLB
flush

– We don't advertise vpid to the L1
hypervisor

– L0 uses the same vpid to run L1
and all its guests

– KVM flushes vpid when switching
between L1 and L2

– Advertise vpid and maintain a
mapping for L1's vpids

Nested Virtualization - Intel

L
0

L
1

L
2

Add Translation 1 Add Translation 2

Run Run

VPID1

TLB Flush

10

VPID1

● MSR load/store
– Hypervisor loads/saves a MSR list during

VMENTER/VMEXIT
– Mandatory according to specification

● Nested APIC-v
– Reduce VMEXITS
– Motivation: performance gains

Nested Virtualization - Intel

11

● Test Environment
– Host (L0) – AMD Opteron(tm) Processor 6386 SE (16 cores), 32 GB RAM,

Fedora 20
– Qemu options to run L1 : -cpu host -m 20G -smp 10

– Qemu options L1 uses to run L2 : -cpu qemu64 -m 8G -smp 8

● Guest Status (L1 hypervisor)
– Linux (Fedora 20 64 bit)
– Xen 4.4.3 running in Ubuntu 12.04
– JailHouse
– ESX

AMD – Status

12

● Test Environment
– Host: AMD Opteron(tm) Processor 6386 SE / 32 GB RAM
– L0, L1 and L2: Fedora 20

– Kernel 3.17.0-rc1 (L0)

– SPECJBB (2013)
● Backend only, Controller/Transaction Injectors on a different host
● Qemu cmdline: -smp n (1, 2, 4 and 8) -m 16G -cpu qemu64
● Compare L1 and L2 performance numbers

– Kernel Compilation
● Use “time” to measure compilation times under the same setup

AMD Performance Evaluation

13

● Kernel Compilation

1 2 4 8
0

10

20

30

40

50

60

70

80

90

100

78

42

22

12

95

52

29

20

L1
L2

Number of vCPUS

A
p
p
ro

xi
m

at
e

T
im

e

14

AMD Performance Evaluation

● Kernel Compilation (Evaluation)
– Comparable times across the vCPU range
– “make” is CPU intensive

15

AMD Performance Evaluation

● SPECJBB (Distributed with Backend in L2)

1 2 4 8
0

10
20
30
40
50
60
70
80
90

100

71

59 61 60

L1
L2

Number of vCPUS

m
ax

-j
O

P
S

 (
%

)

16

AMD Performance Evaluation

● SPECJBB (Evaluation)
– L2 nearly at 50% of L1's performance

● TODO: Investigating bottlenecks in the nested setup
– Bottlenecks

● I/O Bottlenecks ? The test setup creates a qcow2 image inside L1

– File systems are nested
● Can APIC-v help ?

17

AMD Performance Evaluation

● Test Environment
– Host (L0) – IvyTown_EP 16 Cores 128GB RAM

– Qemu options to run L1 : -cpu host -m 20G -smp 10

– Qemu options L1 uses to run L2 : -cpu qemu64 -m 8G -smp
8

● Guest Status ... not so good news

Intel - Status

18

● Some not yet impressive matrix
L2 Guest

L1 Guest
RHEL 6.5

64-bit
RHEL 6.5

32-bit
Windows 7

64-bit
Windows 7

32-bit

Xen    

KVM    

VMware ESX    

VMware Player    

HAXM    

Win7 XP Mode N/A N/A  

Hyper-V    

VirtualBox    

Intel - Status

19

Intel Performance Evaluation

20

● Kernel Compilation

1 2 4 8
0

10

20

30

40

50

60

41

31

24

14

48

39

32

19
L1
L2

Number of vCPUS

A
p
p
ro

xi
m

at
e

T
im

e

● Kernel Compilation (Evaluation)
– CPU intensive workloads fare quite well
– But do they always ?

Intel Performance Evaluation
21

● SPECJBB

Intel Performance Evaluation

22

1 2 4 8
0

10

20

30

40

50

60

70

80

90

100

9%
6% 5% 6%

L1
L2

Number of vCPUS

m
ax

-j
O

P
S

 (
%

)

● SPECJBB (Evaluation)
– What went wrong ?
– Incorrect Test Setup ?
– Newer machines => newer processor features => how is

Nested Virtualization affected ?
– Maturity: still needs “right setup” to work

Intel Performance Evaluation

23

I wish I was better :(

● Nested VMs implies no migration ! ;-)

But in all seriousness:
● Challenge: Live migrate L1 with all its L2 guests

● Save all nested state: vmcs12, struct nested_vmx, etc
but how ?

Nested Virtualization and Migration

24

● One option:
– Force an exit from L2 to L1 (if running in L2) – feasible with all L1

setups?
– Save all current vmcs02 state to vmcs12

– L2 specific dirtied pages need to be copied

– Nested state metadata gets transferred to destination with L1's memory

– If running in L2 on source, need to do the same on destination

● Another option:
– Save/restore additional CPU states, just like additional registers

Nested Virtualization and Migration

25

● Use cases
– Testing
– Device assignment to L2

● History
– AMD IOMMU emulation for QEMU

(Eduard-Gabriel Munteanu, 2011)
– Lacking memory layer abstractions
– Required many device model hooks

● SPARC QEMU model with own IOMMU layer

Nested IOMMU
26

● IOMMU support in QEMU memory layer, used for
– POWER
– Alpha
– ...and Intel!

● VT-d emulation developed as GSoC project by Le Tan
– DMAR emulation, supports all PCI device models
– Error reporting
– Cache emulation

● VT-d interrupt remapping emulation
– Working prototype
– Lacks error reporting

Nested IOMMU - Today
27

● Support for physical devices
– Full in-kernel IOMMU model?

=> ARM SMMU model by Will Deacon,
see Linux Plumber IOMMU track

– Use of VFIO from userspace model?
● IR emulation with in-kernel irqchips

– Requires extension to translate IOAPIC IRQs
● AMD IOMMU, reloaded?

Nested IOMMU – Open Topics
28

Wrap-Up

29

● AMD Nested Virtualization support in good shape
– Regular testing required nevertheless (autotest?)

● Intel Nested Virtualization
– Add missing mandatory features
– More testing (Intel integration tests , autotest?)

● Once stable, address migration
● IOMMU emulation & nesting approaching
● Non-x86...?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

