

.NET Design Patterns

Explore the world of .NET design patterns and bring the
benefits that the right patterns can offer to your toolkit today

Praseed Pai
Shine Xavier

BIRMINGHAM - MUMBAI

.NET Design Patterns

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2017

Production reference: 1250117

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-615-0

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Praseed Pai

Shine Xavier

Copy Editor

Sonia Mathur

Reviewers

Soumya Mukherjee

Vidya Vrat Agarwal

Project Coordinator

Izzat Contractor

Commissioning Editor

Kunal Parikh

Proofreader

Safis Editing

Acquisition Editor

Denim Pinto

Indexer

Francy Puthiry

Content Development Editor

Siddhi Chavan

Graphics

Jason Monteiro

Technical Editor

Sunith Shetty

Production Coordinator

Shraddha Falebhai

Foreword
We are living in an era where most of the things that we do are getting automated through
software. Even though, there is definite trend towards pre-packaged software modules and
platforms, there is always a place for custom software development and integration
projects. In the Enterprise world, .NET and Java EE are the natural platforms of choice for
custom software development and deployments. With Agile software development
methods, continuous delivery and Domain-Driven Design dominating the scene, there is a
need for standardization and communication about software artifacts in a “platform-
agnostic” manner. In this context, software design patterns becomes a primary tool for such
communications.

You have in your hands a book that encompasses more than four decades of collective
wisdom amassed by these two authors, as part of their continuous pursuit of knowledge
and excellence, in the software engineering and technology consulting arena. What is more
significant is the fact that these knowledge representations are a direct reflection of a
practitioner’s mindset; some of those have been undertaken for our organization under our
supervision! This is more than a reference book and should be looked at as a handbook for
developers who are aspiring to take their skills to the next level and design state-of-the-art
systems independently. This is undoubtedly a book that helps unfold many underlying
principles that further educate and help one appreciate the various programming
paradigms that are in vogue, as I write this foreword.

We have been continuously disrupting and pushing computing limits way beyond CPUs
and GPUs over the past five decades. It is quite amazing to see the ground the authors have
covered, in terms of contemplating the evolution of software design, patterns and idioms, to
help developers create scalable and consistent code. More than coverage, their focus has
been on certain aspects of design that help you create well structured (leveraging GoF
patterns), scalable (through concurrent and parallel programming) and reliable (through
functional and reactive programming) code with some of the .NET platform tools that
transcend conventional imperative programming techniques.

At the core, the book deals with how pattern-based software development helps one to
write better code. The authors have deliberately crafted the book to convey how various
development patterns that are part of different catalogues can be put to use in a coordinated
manner to write good quality code in .NET. The book covers how one can use GoF, POSA,
DDD, POEAA, and EIP catalogue in the C# programming language.

Praseed and Shine are part of UST Global’s Technology Consulting group and have been
collaborating professionally for the last ten years. They truly complement each other when
it comes to software design and development. Their command over computer science first
principles, ability to learn new technologies, appetite for challenges, and passion for
software design is truly commendable. This makes their technology leadership invaluable
to any professional organization.

Leveraging the core platform features (in this case, .NET) in tandem with industry-standard
best practices (in this case, proven design pattern catalogues and idioms) is the need of the
hour and becomes a clear differentiator when it comes to delivering high quality, scalable,
and consistent code. This clearly is any developer’s best hedge in the present day's highly
volatile technology landscape. I believe the authors have tried their best in articulating this
with anecdotes and detailed code samples, and I hope that, after reading this book, you will
feel the same way.

Arun Narayanan

COO, UST Global

About the Authors
Praseed Pai is a software engineering/re-engineering professional with good business
acumen, technical competency, and software engineering skills. He has presented on
various topics in more than two hundred technical events in the last decade and half. His
areas of interest include software architecture, design patterns, domain-specific languages,
engineering software development, computer graphics, and machine learning. Currently,
he is associated with the UST global as a senior solutions architect in their consulting
division. He is also the primary force behind the SLANGFORDOTNET compiler
infrastructure, which has been ported to VB.NET (CLR), Java (JVM), C++ (LLVM), Python,
JavaScript, and Ruby. He lives in the city of Kochi with his wife and two kids.

I would like to start off thanking my co-author Shine Xavier for undertaking this journey
along with me. An important acknowledgment goes to my longtime collaborator and friend
Shalvin PD, who introduced us to Denim Pinto of Packt. I would like to acknowledge the
contributions of Aneesh P Revi, Nikhil Nair, Sarath Soman, Vaisakh Babu, Haridas Nair,
John Thomas, Biju Alapat, Joseph Abraham, Shaji P Dayanandan, and members of the
Kerala Microsoft Users Group (KMUG) while working on the content of the book. I would
like to thank my parents, Mrs. Mohana T Pai and the late K.J. Thrivikrama Pai, who
taught me the value of continuous learning. I whole heartedly thank my wife, Sandhya L
Kammath, for giving encouragement and taking care of our domestic issues herself, while I
was writing this book. Being a developer herself, I could get different perspectives on the
content I was writing. Last, but not least, Sidharth Pai and Karthik Pai, my sons, for
allowing me to concentrate on the book, by not bothering much with their usual demands!
Finally, I thank the wonderful folks at Packt and the two reviewers who helped us to make
the book better.

Shine Xavier is a core software engineering practitioner with an extreme passion for
designing/building software solutions, application frameworks, and accelerators that help
maintain productivity, code quality, performance, and security. His areas of interest include
functional programming, interpreters, JavaScript library development, visual
programming, algorithms, performance engineering, automation, enterprise mobility, IoT
and machine learning. He is currently associated with UST Global as a senior architect,
where he continues to provide technical leadership in customer engagements, pre-sales,
practice development, product development, innovation, and technology adoption. He lives
with his wife and three kids in Thiruvananthapuram, Kerala, India.

I would like to start off thanking my colleague and mentor Praseed Pai for choosing me to
co-author this book. It has been a joy and privilege penning this book along with you, my
friend! There are others without whom I wouldn’t have been able to complete this book. In
particular, I would like to thank: the folks at Packt (Denim Pinto, Pooja Mhapsekar, Siddhi
Chavan, and Sunith Shetty) who were really patient and inspiring us throughout this
journey and the technical reviewers Soumya Mukherjee and Vidya Vrat Agarwal, who
really pushed us all along to get this book one knot better. This book has become a lot better
and taken its present shape because of you all! My teachers and friends in school and
college, mentors (Arun Narayanan and Sunil Balakrishnan), colleagues (Jeenu Mathew,
Viby Abraham, Renju Ramadevan, Nikhil Nair, John Thomas, Renjith Ramachandran,
Jenson Joseph, Ashok Nair, and Abhilash Ponnachan) and members of the computer
science fraternity (many whom I paid my respects to in the book). You all continue to
teach, motivate, and inspire me! My parents (Xavier and Grace) without whom I would
cease to exist. My wife (Kavitha Jose) and kids (Joel, Sera and Johaan) for their whole-
hearted love, support, and understanding in helping me realize this dream.

About the Reviewers
Soumya Mukherjee is very passionate about working on open source projects and has
extensive experience in architecting enterprise applications in .NET, JAVA, Ruby, and
Python.

He has expertise in implementation of Test Driven and Behavioural Driven development
and test automation for large teams. He has developed various tools, one of them is the
Quantinuous Agile Framework (QAF) for continuous mobile and web automation.

He is a certified MCAD.NET, Certified Scrum Master (CSM), Certified Professional
Selenium Agile Tester, a Trainer, and a seasoned author of couple of books on amazon. He
is also a speaker across multiple world renowned conferences, an Agile Practitioner, and
loves mentoring team's in Open Source Technologies.

He has extensive experience in Software Test Automation using professional tools, such as
QTP, QC, LoadRunner, Jmeter, and Neoload GreenHat, and with Open Source Tools, such
as Selenium RC & Web driver with Java, .Net, Python, Ruby, FitNess, JMeter, SoapUI,
TestNG, ReportNG, JUnit, Cucumber & Capybara, and Tosca & Perfecto.

An ex-employee of JP Morgan, Merill Lynch, he is currently the co-founder of QAAgility
Technologies and AppTestPro. He resides in Mumbai, India, with his wife, Garima.

Vidya Vrat Agarwal is passionate about .NET, a Microsoft MVP, a C# Corner MVP, a
TOGAF certified architect, a Certified Scrum Master (CSM), an author, a speaker, a certified
MCT, MCPD, MCTS, MCSD.NET, MCAD.NET, and MCSD. He is currently working as a
.NET Enterprise Architect and Consultant in USA. He is passionate about .NET technology
and loves to contribute to the .NET community. He blogs at h t t p ://w w w . M y P a s s i o n F o r . N E

T and can be followed on Twitter, @DotNetAuthor. He lives with his wife, Rupali, and two
daughters, Pearly and Arshika, in Redmond, WA.

http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET
http://www.MyPassionFor.NET

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thank you for purchasing this Packt book. We take our commitment to improving our
content and products to meet your needs seriously--that's why your feedback is so valuable.
Whatever your feelings about your purchase, please consider leaving a review on this
book's Amazon page. Not only will this help us, more importantly it will also help others in
the community to make an informed decision about the resources that they invest in to
learn.

You can also review for us on a regular basis by joining our reviewers' club. If you're
interested in joining, or would like to learn more about the benefits we offer, please
contact us: customerreviews@packtpub.com.

mailto:customerreviews@packtpub.com

Table of Contents
Preface 1

Chapter 1: An Introduction to Patterns and Pattern Catalogs 7

OOP – A short history 8
Patterns and pattern movement 9

Key pattern catalogs 12
GoF patterns 12
POSA catalog 13
POEAA catalog 14
EIP catalog 15
J2EE design patterns catalog 16
DDD-based patterns 17
Arlow/Nuestadt patterns 17

Should we use all of these? 19
The C# language and the .NET platform 20
C# language and the singleton pattern 25
Summary 26

Chapter 2: Why We Need Design Patterns? 27

Some principles of software development 28
Why are patterns required? 30
A quick foray into the .NET Reflection API 32
Personal income tax computation – A case study 33

Archetypes and business archetype patterns 34
Entity, value, and data transfer objects 34
A computation engine 35
The application to engine communication 38
The plugin system to make system extensible 38
Factory method pattern and plugins 39

Finalizing the solution 44
Design by contract and template method pattern 44
Using the Facade pattern to expose the computation API 46

Summary 48

Chapter 3: A Logging Library 49

Requirements for the library 50
Solutions approach 50

[ii]

Writing content to a media 50
Template method pattern and content writers 51
Writing a log entry to a file stream 53
Writing a log entry to a database 54
Writing a log entry to a network stream 56
Logging strategy atop the strategy pattern 57

The factory method pattern for instantiation 59
Writing a generic factory method implementation 60
Factory method, singleton, and prototype pattern for dynamic class
loading 61
Refactoring the code with the generic factory method 63

A log server for network logging 63
A simple client program to test the library 65
Summary 67

Chapter 4: Targeting Multiple Databases 68

Requirements for the library 68
Solutions approach 69

A quick primer on ADO.net 70
The abstract factory pattern and object instantiation 72
The SQL server implementation 73
The SQLite implementation 74
The Oracle and ODBC implementation 76
The adapter pattern powered API 76
The adapter class Implementation 77
The adapter configuration 80
The client program 81

Summary 84

Chapter 5: Producing Tabular Reports 85

Requirements for the library 85
Solutions approach 85
iTextSharp for the PDF output 87
Composite and visitor pattern – A quick primer 88
The composite pattern and document composition 94
Visitor pattern for document traversal 99

PDFVisitor for PDF generation 100
HTMLVisitor for HTML generation 103

The client program 104
Summary 105

[iii]

Chapter 6: Plotting Mathematical Expressions 106

Requirements for the expressions library and app 107
Solutions approach 107
The graph plotter application 108
The observer pattern for UI events 109
The expression evaluator and interpreter pattern 112
The abstract syntax tree (AST) 112
The grammar of expressions 117
Lexical analysis 117
The parser module 118
The builder, facade, and expression APIs 123
Summary 125

Chapter 7: Patterns in the .NET Base Class Library 126

Adapter pattern in the .NET BCL 127
Strategy pattern in the .NET BCL 128
Builder pattern in the .NET BCL 130
Decorator pattern in the .NET BCL 130
Chain of responsibility pattern in ASP.net 131
Bridge pattern in the .NET RCW 133
Factory pattern in the .NET BCL 133
Observer pattern in the WPF 134
Composite pattern in the .NET Framework 135
Facade pattern in the .NET BCL 135
Iterator pattern in the .NET BCL 136
Summary 137

Chapter 8: Concurrent and Parallel Programming under .NET 138

Days of Free Lunch 139
Days of Sponsored Lunch 139
Concurrent versus parallel 140
Some common patterns of parallel programming 142

Embarrassingly or conveniently parallel 143
Problem statement 143
Solutions approach 144

Step 1 144
Step 2 145
Step 3 145

Fork/join or master/worker 152
Speculative execution 156

Producer/consumer 159

[iv]

Summary 163

Chapter 9: Functional Programming Techniques for Better State
Management 164

Being functional 164
Referential transparency 165
First-class and higher-order functions 166

Function type 166
Lambda (λ) calculus 168

Anonymous functions 169
Closures 170
Currying and partial application 171

Currying 171
Partial application 173
Applying currying and partial application 174

Expression trees 177
Recursion 178
Sample programs 180

Spell checker 180
Subset generation 185

How does LINQ work? 189
Summary 191

Chapter 10: Pattern Implementation Using Object/Functional
Programming 192

A strategy pattern implementation using FP/OOP 193
Using FP constructs to make the code better 194

A fresh look at the iterator pattern using FP/OOP 195
MapReduce programming idiom 197
A new spin on the template method pattern using FP/OOP 199

Using FP for the template method pattern implementation 202
A quick note on the observer pattern 203
Does FP replace GoF patterns? 203

Summary 204

Chapter 11: What is Reactive Programming? 205

Being reactive 206
Electronic spread sheets – A quintessential example 207
Reactive programming model 208
Functional reactive programming 209

Reactive programming principles 210

[v]

Rx from Microsoft 211
Key data structures of Rx 211
IEnumberable/IObservable duality 211

Converting entities to streams (IObservable) 214
Converting events into stream 215
Reduction of streams (sequences) 216
Inspection of streams (sequences) 217
Aggregation of streams (sequences) 217
Transformation of streams (sequences) 217
Combining streams (sequences) 218

A philosophy for reactive programming 219
Summary 220

Chapter 12: Reactive Programming Using .NET Rx Extensions 221

Streams as a way of life 221
Spell checker using events composition 223
MVVM on Rx 227
An asynchronous logger 232
Near real-time visualizer/dashboard 235
Summary 240

Chapter 13: Reactive Programming Using RxJS 241

The JS world 242
Rx foundations 244
RxJS formalism 250

Observables and observers 250
Observables from arrays 250
Observables from events 251
Observables from callbacks 252
Observable pipeline 253
Subject et al. 254
Schedulers 256

RxJS samples 256
Real-time file watcher 261
Change galore 262

Summary 266

Chapter 14: A Road Ahead 267

Polyglot programming and design 268
Polyglot programming with C/C++ 269
The polyglot web programming 271

[vi]

The JavaScript evolution 272
Dynamic/scripting languages 272
Emergence of functional programming 273
Mobile revolution 273

A quick note on polyglot persistence 274
How to become a polyglot programmer? 274

Domain-specific languages 275
Ontology 278
AntiPatterns 280
Summary 283

Index 284

Preface
Writing modern Enterprise software requires large teams that need close co-ordination
to deliver quality products and services. The teams require a common language for
communication when dealing with technical solutions and artifacts, in order to work as a
cohesive unit for meeting the set objective. The GOF design pattern catalog was a major step
in this direction. This was followed by other similar catalogs to empower software
engineering teams with a common pool of shared idioms and practices. For all practical
purpose, GOF patterns became sine qua non for patterns. But there are other equally
important catalogs that you would want to leverage.

There have been attempts to map the pattern catalogs to platforms such as JEE and .NET.
The J2EE --design patterns and Microsoft--patterns and practices catalogs were attempts in
this direction. The emergence and adoption of functional programming and reactive
programming models mandates a fresh look at the patterns, applied to modern .NET
software development. That is where this book comes into the picture. This book provides
detailed examples written using C#/.NET, which will help developers map different
constructs from various pattern catalogs to executable code.

The book you have got in your hand outlines author's perspectives about how design,
architecture, and domain patterns can be applied in practice by leveraging the .NET
platform. The topics covered deals with various patterns and pattern catalogs, including
GOF patterns, concurrent programming, object/functional programming, and functional
reactive programming. The final chapter talks about materials which we could not cover in
this book, but, which a modern programmer should master to become an effective
developer.

Learning, as we all know, is a continuous process. We have made to the best of our ability
to impart our learnings on the job so that it benefits any one who is interested. We have
leveraged code extensively for illustrating this with very detailed examples. Design
illustration in the form of UML and context diagrams accompany the concepts and code.
The views and perspectives we have outlined mostly align with the industry references and
standards.

Preface

[2]

What this book covers
Chapter 1, An Introduction to Patterns and Pattern Catalogs, deals with the summary of key
pattern catalogs and also deals with the evolution of the C# programming language. The
chapter deals with the gist of GOF, POSA, DDD, EIP, J2EE, POEAA, and the Arlow and
Neustadt pattern catalog.

Chapter 2, Why We Need Design Patterns?, provides the rationale for applying patterns in
the context of software engineering. The chapter deals with some foundational principles
such as SOLID, KISS, YAGNI, DRY/WET and so on, that lay the foundation for pattern
oriented software development. A tax computation engine that uses the factory method
pattern, the template method pattern, and design by contract is given as a running example.

Chapter 3, A Logging Library, implements a logging library which can be used in a
multithreaded environment. The implementation leverages the template method pattern,
the strategy pattern, and the factory method pattern. A custom Dependency Injection
framework loads the classes on the fly.

Chapter 4, Targeting Multiple Databases, shows how one can use different persistent
technologies (Oracle, SQL Server, SQLite, and so on) without changing a single line of
application code. The library leverages ADO.net and uses the abstract factory pattern, the
factory pattern, and the adapter pattern.

Chapter 5, Producing Tabular Reports, shows how one can create a canonical object model
based on the composite pattern and traverse the object model through visitor pattern to
generate HTML and PDF documents.

Chapter 6, Plotting Mathematical Expressions, deals with a library that uses composite,
interpreter, observer, builder, and facade patterns to plot arbitrary mathematical expression
on the fly using Windows Presentation Foundation.

Chapter 7, Patterns in the .NET Base Class Library, demonstrates how the designers of .NET
base class library has leveraged various GOF patterns to give developers a good
programing model.

Chapter 8, Concurrent and Parallel Programming under .NET, steps into the very important
topic of concurrent and parallel programming by leveraging constructs provided by the
.NET platform. Topics such as concurrency versus parallelism, fork/join parallelism,
producer-consumer model, and so on are dealt at depth.

Chapter 9, Functional Programming Techniques for Better State Management, deals with the
very important topic of managing state by leveraging closures, lambda, immutability, LINQ
and other functional programming techniques.

Preface

[3]

Chapter 10, Pattern Implementation Using Object/Functional Programming, illustrates
Map/Reduce, the template method pattern, the iterator pattern, and the strategy pattern by
a judicious mix of functional and object-oriented programming constructs.

Chapter 11, What is Reactive Programming?, gives you the gist of Functional Reactive
programming model and its realization on the .NET platform.

Chapter 12, Reactive Programming Using .NET Rx Extensions, carries forward from the
previous chapter and shows some concrete examples where Functional Reactive
Programming techniques can be put for real world use.

Chapter 13, Reactive Programming Using RxJS, gives a very good introduction to the
techniques and internals of RxJS for writing web-based responsive UI.

Chapter 14, A Road Ahead, sheds light on a learning progression path highlighting the
importance of polyglot programming, domain-specific languages, ontology, and
antipatterns.

What you need for this book
The reader is supposed to have worked with at least a project with the .NET platform using
C# as the primary programming language. A good understanding of basic object oriented
programming will help you navigate the territory faster. From a software perspective, a
laptop, desktop or a virtual machine with Visual Studio 2012 (or above) to test and play
around with the source code.

Who this book is for
The book is useful for any C#/.NET developer to understand how enterprise class
applications are designed, developed, and deployed. Rather than studying various patterns
in isolation, the book deals with scenarios where patterns are often combined to engineer
state of the art applications. Developers who work with Java can also follow the book
without much difficulty, as both platforms have lot of things in common.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Preface

[4]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "An
instance of this class needs to be passed to the Sort routine of the List<T> instance."

A block of code is set as follows:

 class Employee
 {
 public String name {get;set;}
 public int age {get;set;}
 public double salary { get; set; }
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 return function () {
 try {
 return fn.apply(null, args.slice(1));
 }

Any command-line input or output is written as follows:

npm install rx

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "You could simply do this in
JSbin by using the Add library option shown in the web editor."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /. N E T - D e s i g n - P a t t e r n s . We also have other code bundles from our rich catalog of
books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/.NET-Design-Patterns
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
An Introduction to Patterns and

Pattern Catalogs
Design patterns have always fascinated software developers, yet true knowledge of their
applicability and consequences has eluded many. The various solutions that have been
created and applied to solve similar problems have been studied over time by experienced
developers and architects. A movement slowly began to catalog such time-tested and
successful solutions, which served as a blueprint for software design. The applicability of
design patterns exhibited maturity (even though over-engineering was a perceived risk) in
solution architecture (in terms of stability, consistency, maintainability, and extensibility),
and became a core skill for serious developers and architects. In this introduction to
patterns and pattern catalogs, the authors wish to provide a detailed illustration of the
movement in the software development industry that led to the discovery and
consolidation of the various patterns and pattern catalogs. It is equally important to
understand the evolution of patterns, idioms, programming languages, and standards that
led to standardization of these technology-agnostic blueprints, which form the basis of
enterprise application development today. We will cover the following topics in this regard:

History of object-oriented programming (OOP) techniques, idioms, and patterns
Patterns and pattern movement
Key patterns and pattern catalogs
Key C# language features that facilitate implementation of OOP techniques,
idioms, and patterns

An Introduction to Patterns and Pattern Catalogs

[8]

OOP – A short history
OOP is a programming model that is supposed to combine structure (data) and behavior
(methods) to deliver software functionality. This was a marked contrast from the
procedural programming model, which was mostly in vogue when the OOP model gained
prominence. The primary unit of composition in a procedural programming model is a
procedure (mostly a function with side-effects). Data is fed into a series of procedures that
constitutes the process or algorithm in a solution context. In the case of OOP, the data and
related functions are represented together as a class, which acts as a fundamental unit in the
programming model. Schematically it is as follows:

 Class Test
 {
 <------ Static (Class Level) Variables --------------->
 <------ Instance (Object Level) Variables ------------>
 <------ Private Methods ------------------------------>
 <------ Public Methods ------------------------------->
 }

As a programmer, one can create many instances of a class during the execution of a
program. Since class encapsulates data and its associated operations to provide a coherent
entity, the problems (or rather side-effects) associated with global variables/data (being
used as payload for the procedures) went away all of a sudden. This helped to manage the
complexity of developing large software.

OOP revolutionized the way programmers modeled the problem domain, with class
compositions leveraging encapsulation, association, inheritance, and polymorphism.
Additionally, with the flexibility to model hierarchies (that closely represent the problem
domain) with ease, it became natural for developers to think in terms of objects.

The origin of OOP can be traced back to the Simula programming
language created by Kristen Nygaard and Ole-Johan Dahl, released in the
year 1965. The advent of the Smalltalk system helped the ideas of OOP to
percolate to the academia and some consulting circles. Smalltalk was a
dynamically typed language, and primarily designed as a message
passing system. Later, they added Simula's class-based Object model. Alan
Kay, Dan Inaglis, and Adele Goldberg at Xerox PARC designed the
language.

An Introduction to Patterns and Pattern Catalogs

[9]

The OOP model reached a critical mass in the early 1990s, with the popularity of the C++
programming language. Even though Smalltalk and C++ were OOP languages, Smalltalk
was a dynamically typed programming language, and C++ was a statically typed (though
weakly enforced) programming language. The C++ programming language was created by
Bjarne Stroustrup at the AT&T Bell Laboratories, as an extension of C (for wider adoption).
In this regard, C++, as a programming language, has issues in terms of usage because of the
compulsion to make it C-compatible. The story of evolution of the language is well
chronicled in, The Design and Evolution of C++, a book written by Bjarne himself. The book
deals with the rationale of designing the language and the design choices available for him
to incorporate features such as single inheritance, multiple inheritance, virtual methods,
exception handling, templates (Generics), I/O streams, and so on. Any serious C++
developer should not miss this particular book, as it helps to understand the reason why the
C++ programming language is the way it is!

There were attempts to make protocol-based development using middleware technologies
like Microsoft's Component Object Model (COM) and OMG's Common Object Request
Broker Architecture (CORBA). Both CORBA and COM were very similar, and both
facilitated object interoperability at the binary level. Each protocol had its own binary
encoding format, and interoperability between these two standards became a problem.
Some enterprising companies made a living by writing COM/CORBA bridge to rectify this
problem. Also, COM was mostly available only on Microsoft Windows, making it a
platform-specific solution.

Then, in 1996, Sun Microsystems came up with a language which was marketed as a
programming language to write applications that are hosted in a browser (Applets). They
named it Java. However, due to performance and political reasons, applet development did
not took off. The language, along with its associated platform, was soon projected as a
server-side programming system. This was a tremendous success, and the Java language
made a strong comeback, further popularizing the OOP programming model. The primary
architect of the Java language was James Gosling.

In the year 2001, Microsoft released C#, a brand new OOP language for their new virtual
machine development platform, known as .NET. Later, Microsoft did add support for
generics, lambda, dynamic typing, and LINQ, among others, to make C# one of the most
powerful programming languages in the world. The primary architect of the language was
Anders Hejlsberg.

Meanwhile, languages such as Ruby and Python made an appearance, and are still relevant
in certain areas. Then, there were object-functional languages such as F#, Scala, Groovy,
Clojure, and so on. However, the OOP model is symbolized by C++, C#, and Java.

An Introduction to Patterns and Pattern Catalogs

[10]

Patterns and pattern movement
Programmers of the early 1990s struggled a lot to understand OOP, and how to effectively
use them in large projects. Without a viral medium such as the Internet, it was quite a
struggle for them. Early adopters published technical reports, wrote in periodicals/journals,
and conducted seminars to popularize OOP techniques. Magazines such as Dr. Dobbs
Journal and C++ Report carried columns featuring OOP.

A need was felt to transfer the wisdom of the experts to the ever-increasing programming
community, but this knowledge propagation was not happening. The legendary German
mathematician Carl Friedrich Gauss once remarked, “Always learn from the masters”. Even
though Gauss had mathematics in mind, it is true for any non-trivial human endeavor.
However, there were very few masters of the OOP techniques, and the apprenticeship
model was not scaling well.

James Coplien published an influential book titled Advanced C++
Programming Styles and Idioms, which dealt with low-level patterns
(idioms) associated with the usage of the C++ programming language.
Despite being not widely cited, authors consider this a notable book
towards cataloguing the best practices and techniques of OOP.

It was during this time that Erich Gamma began his work on a pattern catalog as
part of his PhD thesis, inspired by an architect named Christopher Alexander.
Christopher Alexander's A Pattern Language – Towns, Buildings, Construction was a
source of inspiration for Erich Gamma. Then, people with similar ideas, namely
Ralph Johnson, John Vlissides, and Richard Helm, joined hands with Erich
Gamma to create a catalog of 23 patterns, now popularly known as the Gang of
Four (GoF) design patterns. Addison Wesley published the book Design Patterns:
Elements of Reusable Object-Oriented Software in the year 1994. This soon became a
great reference for the programmer, and fueled software development based on
patterns. The GoF catalog was mostly focused on software design.
In the year 1996, a group of engineers from Siemens published a book titled
Pattern-Oriented Software Architecture, which focused mostly on the architectural
aspects of building a system. The entire Pattern-Oriented Software Architecture
(POSA) pattern catalog was documented in five books published by John Wiley
and Sons. The group was joined by Douglas Schmidt, the creator of the Adaptive
Communication Environment (ACE) network programming library and TAO
(The ACE ORB). He later became the chair of Object Management Group
(OMG), which develops, adopts, and maintains standards such as CORBA and
UML.

An Introduction to Patterns and Pattern Catalogs

[11]

Another influential catalog was published by Martin Fowler in a book titled
Patterns of Enterprise Application Architecture in the year 2001. The book mostly
focused on patterns that come up while developing enterprise applications using
the JEE and .NET frameworks. Incidentally, most of the code snippets were in
Java and C#.
Gregor Hohpe and Bobby Woolf published a pattern catalog to document the
patterns that arise in the enterprise integration scenario. Their catalog titled
Enterprise Integration Patterns, published as part of the Martin Fowler signature
book series, is widely recognized as a source of ideas regarding enterprise
integration techniques. The Apache Camel integration library is inspired by this
book.
Core J2EE Patterns: Best Practices and Design Strategies (by Deepak Alur et al.),
although a platform-specific catalog, is a rich source of ideas regarding the
structuring of an enterprise application. The book includes patterns for
presentation, data, and service tiers in web application development.
Domain-Driven Design, published by Eric Evans in the year 2003, deals with a
technique called domain-driven design (DDD). The book uses GoF and Patterns
of Enterprise Application Architecture (POEAA) patterns to put forward a
design methodology that focuses on building a persistent ignorant domain
model. The book also introduces some patterns and idioms for structuring
domain logic.
Jim Arlow and Ila Nuestadt published a book entitled Enterprise Patterns and
MDA, which catalogued a set of patterns based on the Jungian Archetypes. This
catalog contains nine top-level archetypes and 168 business archetypes for
developing applications.

The following figure illustrates the evolution of design methodologies, programming
languages, and pattern catalogs:

An Introduction to Patterns and Pattern Catalogs

[12]

Key pattern catalogs
Patterns are most often catalogued in some kind of pattern repository. Some of them are
published as books. The most popular and widely used pattern catalog is GoF, named after
the four collaborators that produced them. They are Eric Gama, Ralph Johnson, John
Vlissides, and Richard Helm.

GoF patterns
The GoF catalog, named after the four creators of the catalog, started the pattern movement.
The creators mostly focused on designing and architecting object-oriented software. The
ideas of Christopher Alexander were borrowed to the software engineering discipline, and
applied to application architecture, concurrency, security, and so on. The GoF divided the
catalog into structural, creational, and behavioral patterns. The original book used C++ and
Smalltalk to explain the concepts. These patterns have been ported and leveraged in most of
the programming languages that exist today.

Sr.
no

Pattern type Patterns

1 Creational patterns Abstract factory, builder, factory method, prototype, singleton.

2 Structural patterns Adapter, bridge, composite, decorator, facade, flyweight, proxy.

3 Behavioral patterns Chain of responsibility, command, interpreter, iterator, mediator,
memento, observer, state, strategy, template method, visitor.

We believe that a good understanding of the GoF patterns is necessary for any programmer.
These patterns occur everywhere, regardless of the application domain. GoF patterns help
us to communicate and reason about systems in a language-agnostic manner. They are
widely implemented in the .NET and Java world.

An Introduction to Patterns and Pattern Catalogs

[13]

POSA catalog
POSA Volume 5 is an influential book series, which covers most of the applicable patterns
while developing mission-critical systems. An element of bias is seen towards native code
programming; perhaps C++ was the prevalent OOP language during the time of research.
The catalog, which spanned five published volumes, is listed as follows:

Sr.
no

Pattern type Patterns

1 Architectural Layers, pipes and filters, blackboard, broker, MVC,
presentation-abstraction-control, microkernel, reflection.

2 Design Whole-part, mater-slave, proxy, command processor, view
handler, forwarder-receiver, client-dispatcher-server,
publisher-subscriber.

3 Service access and
configuration patterns

Wrapper façade, component configurator, interceptor,
extension interface.

4 Event handling patterns Reactor, proactor, asynchronous completion token, acceptor-
connector.

5 Synchronization patterns Scoped locking, strategized locking, thread-safe interface,
double-checked locking optimization.

6 Concurrency patterns Active object, monitor object, half-sync/half-async,
leader/followers, thread-specific storage.

7 Resource acquisition
patterns

Lookup, lazy acquisition, eager acquisition, partial
acquisition.

8 Resource lifecycle Caching, pooling, coordinator, resource lifecycle manager.

9 Resource release patterns Leasing, evictor.

10 A pattern language for
distributive computing

Consolidation of patterns from different catalogs in the
context of distributed programming.

11 On patterns and pattern
languages

This last volume gives some meta information about patterns,
pattern languages, and their usage.

We believe the POSA catalog is very important (to the extent, one of the author feels, that if
someone has not heard about the POSA catalog, he or she does not understand patterns) if
one is writing middleware servers and scalable web infrastructure. For some reason, it has
not got the kind of traction that it deserves. They are very useful for writing server-class
software infrastructure such as web containers, application containers, and other
middleware components.

An Introduction to Patterns and Pattern Catalogs

[14]

POEAA catalog
Martin Fowler, along with some co-authors, published a book entitled Patterns of Enterprise
Application Architecture. The book is a treasure trove of patterns, that helps one to structure
and organize the design of enterprise applications using .NET and Java. Some of Fowler's
pattern has been leveraged in the context of distributed computing by POSA-Volume 4
authors.

Sr.
no

Pattern type Patterns

1 Domain logic Transaction script, domain model, table module,
service layer.

2 Data source architectural
patterns

Table data gateway, row data gateway, active record,
data mapper.

3 Object-relational behavioral
patterns

Unit of work, identity map, lazy load.

4 Object-relational structural
patterns

Identity field, foreign key mapping, association table
mapping, dependent mapping, embedded value,
serialized LOB, single table inheritance, class table
inheritance, concrete table inheritance, inheritance
mappers.

5 Object-relational metadata
mapping patterns

Metadata mapping, query object, repository.

6 Web presentation patterns Model view controller, page controller, front controller,
template view, transform view, two-step view,
application controller.

7 Distribution patterns Remote facade, data transfer object.

8 Offline concurrency patterns Optimistic offline lock, pessimistic offline lock, coarse
grained lock, implicit lock.

9 Session state patterns Client session state, server session state, database
session state.

10 Base patterns Gateway, mapper, layer supertype, separated interface,
registry, value object, money, special case, plugin,
service stub, record set.

An Introduction to Patterns and Pattern Catalogs

[15]

The POEAA catalog is a rich source of ideas when it comes to enterprise application
software development. Some of these patterns are implemented by frameworks such as
Spring (including Spring.NET), Nhibernate/Entity Framework, Windows Communication
Foundation (WCF), and Windows Presentation Foundation (WPF). Awareness about the
POEAA catalog helps one to reason about the architecture of pretty much everything
happening in the .NET platform.

EIP catalog
A modern day enterprise requires information to flow from one application to another, in
real time or while offline. Since applications use different implementation technologies, we
require message passing systems to transfer the data. Most often, these communications
happen in an asynchronous manner. The Enterprise Integration Patterns (EIP) catalog
deals with time-tested solutions by professionals, who have cut their teeth on integration
issues for recurring problems.

Sr.
no

Pattern type Patterns

1 Messaging systems Message channel, message, pipes and filters, message router,
message translator, message endpoint.

2 Messaging channels Point-to-point channel, publish-subscribe channel, datatype
channel, invalid message channel, dead letter channel,
guaranteed delivery, channel adapter, messaging bridge,
message bus.

3 Message construction Command message, document message, event message, request-
reply, return address, correlation identifier, message sequence,
message expiration, format indicator.

4 Message routing Content-based router, message filter, dynamic router, recipient
list, splitter, aggregator, resequencer, composed message
processor, scatter-gather, routing slip, process manager, message
broker.

5 Message
transformation

Envelope wrapper, content enricher, content filter, claim check,
normalizer, canonical data model.

6 Messaging endpoints Messaging gateway, messaging mapper, transactional client,
polling consumer, event-driven consumer, competing consumers,
message dispatcher, selective consumer, durable subscriber,
idempotent receiver, service activator.

An Introduction to Patterns and Pattern Catalogs

[16]

7 System management Control bus, detour, wire tap, message history, message store,
smart proxy, test message, channel purger.

The EIP catalog is a very influential one in transferring knowledge about strategies for
asynchronous messaging and point-to-point synchronous communication between
applications. The Apache Camel library implements most of the commonly occurring
patterns, while doing Enterprise Application Integration (EAI). The authors feel that this
catalog is worth studying should one embark on a project that requires information/data
flow from one system to another, including mobile device communication with backend
services (MBAAS) that involves data synchronization and queuing mechanisms.

J2EE design patterns catalog
This is a catalog that captures design experience in the form of a book entitled Core J2EE
Patterns: Best Practices and Design Strategies by Deepak Alur, John Crupi, and Dan Malks.
The book and the associated website deals with common solutions that can be leveraged
while writing enterprise web applications. Even though conceived for the J2EE platform,
the patterns outlined in the catalog can be used in any context where there is a
programming model similar to the J2EE platform. Fortunately, the .NET server-side model
is very similar to J2EE.

Sr.
no

Pattern class Patterns

1 Business tier pattern Business delegate, session facade, service locator, transfer
object, composite entity, transfer object, assembler, value list
handler, business object, application service.

2 Presentation tier
patterns

Intercepting filter, front controller, composite view, view
helper, service to worker, dispatcher view, context object,
application controller.

3 Integration patterns Data access object, service activator, domain store, web service
broker.

The authors believe that the J2EE catalog has been used extensively in the .NET platform,
especially after Microsoft released the ASP.Net MVC programming model. The catalog is a
rich source of ideas to structure your enterprise web application.

An Introduction to Patterns and Pattern Catalogs

[17]

DDD-based patterns
The book entitled Domain-Driven Design by Eric J. Evans, released in the year 2003, is not a
book on patterns in itself. The primary goal of the book is to outline a method by which one
can create persistent ignorant domain models by leveraging the ubiquitous language used
by the stakeholders in a business scenario. The book contains a lot of patterns and idioms
for architecture, design, and application integration, in a model-driven manner.

Sr.
no

Pattern type Patterns

1 Patterns for supple design Intention-revealing interfaces, side-effect-free functions,
assertions, conceptual contours, standalone classes, closure
of operations, declarative design.

2 Patterns for domain
model expression

Associations, entities (reference objects), value objects,
services, modules (packages).

3 Patterns for domain
model integrity

Bounded context, context map, shared kernel, anticorruption
layer, open host service, published language.

4 Patterns for domain
model distillation

Core domain, generic subdomains, segregated core, abstract
core.

This is one of the most influential books in terms of thought leadership towards creating a
methodology that goes along with the Agile development models. The ideas from this book
have percolated deep into building the present day software systems.

Arlow/Nuestadt patterns
Jim Arlow and Ila Nuestadt published a book entitled Enterprise Patterns and MDA. The
book is based on the concept of an archetype borrowed from the works of Carl Gustav Jung.
Archetypes are primordial entities that occur time and again in the sociocultural context
across cultures. Business archetypes are entities that occur in a business context (where
business is a socio-economic activity). The business archetypes covered in the book include
party, CRM, product, business rules, order, inventory, units, and so on. Archetypes help
model the business problem, and this gives a clear indication of the expected composition
and behavior of the solution. Archetypes are a powerful meme that provide direct mapping
between the business and solution models, thereby avoiding mismatch during business
analysis, design, and implementation. The ideas and schema from the book can be used to
write better enterprise software products.

An Introduction to Patterns and Pattern Catalogs

[18]

Sr.
no

Pattern type Patterns

1 Party archetype
pattern

PartyIdentifier, RegisteredIdentifier, PartySignature,
PartyAuthentication, address, person, ISOGender, ethnicity,
BodyMetrics, PersonName, organization, company, company names,
identifiers for companies, company organizational units, partnerships
and sole proprietors, preferences, PartyManager.

2 Party relationship
archetype pattern

PartyRole, PartyRoleType, PartyRelationshipType, responsibilities,
capabilities.

3 Customer
relationship
management
archetype pattern

Customer, CustomerCommunicationManager, customer
communication, CustomerServiceCase.

4 Product
archetype pattern

ProductType, ProductInstance, SerialNumber, batch, product
specification, ProductCatalog, CatalogEntry, packages, PackageType,
package instance, combining ProductTypes, rule-driven package
specification, ProductRelationships, price, package pricing, measured
products, services, ServiceType and ServiceInstance, product
pleomorphs.

5 Inventory
archetype pattern

The inventory archetype, ProductInventoryEntry,
ServiceInventoryEntry, inventory capacity planning, inventory
management, availability, reservations.

6 Order archetype
pattern

The order archetype, PurchaseOrder, SalesOrder, OrderLine,
PartySummaryRoleInOrder, DeliveryReceiver, ChargeLine,
OrderManager, OrderEvents, order status, LifeCycleEvents,
AmendEvents, AmendOrderLineEvent, AmendPartySummaryEvent,
AmendTermsAndConditionsEvent, DiscountEvent, DespatchEvent,
ReceiptEvent, OrderPayment, PaymentEvents, payment strategy,
PurchaseOrder process, PurchaseOrder cancellation, process
PurchaseOrder, SalesOrder process archetype, SalesOrder process,
process SalesOrder, OrderProcess documentation.

7 Quantity
archetype pattern

Quantity archetype pattern, metric, units/SystemOfUnits, SIBaseUnit,
DerivedUnit, ManHour, quantity,
StandardConversion/UnitConverter.

8 Money archetype
pattern

Money archetype pattern, currency, locale, ISOCountryCode,
ExchangeRate/CurrencyConverter, payment.

9 Rule archetype
pattern

Rule archetype pattern, business rules/system rules, RuleElement,
RuleContext, rule evaluation, ActivityRule, RuleSet, RuleOverride.

An Introduction to Patterns and Pattern Catalogs

[19]

The authors have borrowed ideas from the book, while creating an ontology for realizing a
domain-specific language (DSL) on a mobile-based healthcare application. If one is
embarking on creating a DSL-based system architecture, this book can be a good starting
point for rich domain models based on business archetypes.

Should we use all of these?
Pattern catalogs are available to deal with various concerns of software development, be it
design, architecture, security, data, and so on. Most applications, or even frameworks,
leverage only a fraction of the patterns listed earlier. Understanding the pattern catalogs
and their applicability is a rich source of design ideas for any software developer. A
developer should be careful to avoid the malady of so-called pattern diarrhoea.

Sr.
no

Pattern catalog Primary use-case

1 GoF patterns These are fundamental patterns which occur time and again,
regardless of the domain. These are used in a context agnostic
manner.

2 POSA catalog The areas where these patterns are relevant include concurrency
management, distributed programming, middleware software,
and so on.

3 POEAA catalog Enterprise web application development using .NET and JEE
platforms.

4 EIP Application integration in modern enterprises.

5 J2EE design patterns Writing web applications using .NET and Java.

6 DDD In fact, this book is a framework for developing rich domain
models in a persistent ignorant manner.

7 Arlow/Nuestadt Very useful when we are writing enterprise applications, and no
need to break one's head to create the database schema. Most of
the entities are available here as a business archetype.

An Introduction to Patterns and Pattern Catalogs

[20]

The C# language and the .NET platform
Microsoft (MS) initially placed their bets on an enterprise architecture strategy called
Windows DNA, centered on the Distributed Component Object Model (DCOM). The
advent and traction of the Java programming model forced Microsoft to rework their
strategy, so they decided to create a virtual machine platform called .NET. The .NET
platform was released in 2002, and it was monikered Microsoft's Java. The old adage
imitation is the sincerest form of flattery was echoed by industry pundits. Web development is
done using the ASP.Net Web Forms programming model, and desktop development is
based on Windows forms. They also created a new language for the new platform, named
C#. For platform interoperability, they created .NET remoting architecture, which became
the gateway for communication between homogeneous systems (including CLR-managed
and unmanaged) via TCP and DCOM protocols. For communication with heterogeneous
systems, open standards such as SOAP and WSDL were leveraged by remoting objects,
either self-hosted or hosted, within an IIS context.

In 2003, Microsoft released .NET v1.1, which fixed many of the bugs in .NET v1.0. The
release of Microsoft .NET 1.1 encouraged people to bet their future on this platform. There
was no application server in its offering. This led to some delay in the adoption of the
platform. A code snippet in C#, which computes the average of a series of numbers through
the command line, is shown as follows:

 // Chap1_01.cs
 using System;
 using System.Collections;
 class Temp
 {
 public static void Main(String [] args) {
 //---- accumulate command line arguments to
 //---- to a list
 ArrayList a = new ArrayList();
 for(int i=0; i< args.Length; ++i)
 a.Add(Convert.ToDouble(args[i]));
 //----- aggregate value to a variable (sum)
 double sum = 0.0;
 foreach(double at in a)
 sum = sum + at;
 //------------ Compute the Average
 double ar = sum/a.Count;
 //------------ Spit value to the console
 //------------ Wait for a Key
 Console.WriteLine(ar);
 Console.Read();
 }
 }

An Introduction to Patterns and Pattern Catalogs

[21]

In 2005, Microsoft added a lot of features to their platform, which included generics and
anonymous delegates. With C# 2.0, we can rewrite the average computation program by
using generics and anonymous delegates as follows:

 // -- Chap1_02.cs
 using System;
 using System.Collections;
 using System.Collections.Generic;public delegate double
 Del(List<double> pa);
 class Temp
 {
 public static void Main(String [] args) {
 //----- Use a Generic List (List<T>)
 //----- to accumulate command line arguemnts
 List<double> a = new List<double>();
 for(int i=0; i< args.Length ; ++ i)
 a.Add(Convert.ToDouble(args[i]));
 //--- Define a anonymous delegate and assign
 //--- to the variable temp
 //--- The delegate aggregates value and
 //--- compute average
 Del temp = delegate(List<double> pa) {
 double sum = 0.0;
 foreach(double at in pa)
 sum = sum + at;
 return sum/pa.Count;
 };
 //---- invoke the delegate
 //---- and wait for the key
 Console.WriteLine(temp(a));
 Console.Read();
 }
 }

The release of .NET platform 3.0 overcame the shortcomings of the previous releases by
introducing WCF, WPF, and Windows Workflow Foundation (WF), which coincided with
the release of the Vista platform.

Microsoft released version 3.5 of the platform with some key features including LINQ,
lambda, and anonymous types. They also released the C# 3.0 programming language. Using
type inference and lambda expressions, the average computation program is rewritten as
follows:

 //--- Chap1_03.cs
 using System;
 using System.Collections;
 using System.Collections.Generic;

An Introduction to Patterns and Pattern Catalogs

[22]

 using System.Linq;
 class Temp {
 public static void Main(String [] args) {
 //---- leverage type inference feature to assign
 //---- a List<T> and accumulate values to that list
 var a = new List<double>();
 for(int i=0; i< args.Length ; ++ i)
 a.Add(Convert.ToDouble(args[i]));
 //----- Define a Lambda function which passes
 //----- through the value.
 Func<double,double> ar2 = (x => x);
 //------ use the Sum function available with List<T>
 //------ to compute the average
 var ar = a.Sum(ar2)/a.Count;
 //------ Spit the value to the console
 Console.WriteLine(ar);
 Console.Read();
 }
 }

With Visual Studio 2010, Microsoft released C# 4.0 with support for dynamic programming.
The following code snippet demonstrates dynamic typing (based on DynamicObject) and
ExpandoObjects. The following code snippet shows how one can create a custom object that
can add arbitrary properties and methods:

 // Chap1_04.cs
 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Dynamic;

 namespace TestVS
 {
 class DynamicClass : DynamicObject
 {
 //---- underlying container for storing
 //---- Ibject memebers
 private Dictionary<string, Object> props =
 new Dictionary<string, object>();

 public DynamicClass() { }

 //------- Retrieve value from a member
 public override bool TryGetMember(GetMemberBinder binder,
 out object result){
 string name = binder.Name.ToLower();
 return props.TryGetValue(name, out result);

An Introduction to Patterns and Pattern Catalogs

[23]

 }
 public override bool TrySetMember(SetMemberBinder binder,
 object value){
 props[binder.Name.ToLower()] = value;
 return true;
 }
 }

 class Program{
 static void Main(string[] args){
 dynamic dc = new DynamicClass();
 //--------- Adding a property
 dc.hell = 10;
 //--------read back the property...
 Console.WriteLine(dc.hell);
 //------- Creating an Action delegate...
 Action<int> ts = new Action<int>(delegate(int i) {
 Console.WriteLine(i.ToString());
 });
 //------------Adding a method....
 dc.rs = ts;
 //----------- invoking a method....
 dc.rs(100);
 Console.Read();
 }
 }
 }

The following code snippet shows how one can use ExpandoObject to add a property to a
type we created. We will be leveraging the dynamic feature of C# 4.0:

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Dynamic;

 namespace TestVS
 {
 class Program
 {
 static void Main(string[] args){
 dynamic ds = new ExpandoObject(); //---- Adding a property
 ds.val = 20;
 Console.WriteLine(ds.val);
 //---- Assign a new value to the "val" property
 //-----This is possible because of dynamic typing
 ds.val = "Hello World...";

An Introduction to Patterns and Pattern Catalogs

[24]

 Console.WriteLine(ds.val);
 //---------------- Wait for the Keyboard input
 Console.Read();
 }
 }
 }

In 2012, Microsoft released version 5.0 of the C# programming language, which
incorporated a declarative concurrency model based on the async/await paradigm. The
following C# code demonstrates the usage of async/await:

 //-- Chap1_05.cs
 using System;
 using System.IO;
 using System.Threading.Tasks;

 class Program
 {
 static void Main() {
 //--- Create a Task to Start processing
 Task task = new Task(ProcessCountAsync);
 task.Start(); task.Wait();
 Console.ReadLine();
 }

 static async void ProcessCountAsync()
 {
 // Start the HandleFile method.
 Task<int> task = HandleFileAsync(@".\WordCount.txt");
 //
 // -------- One can do some lengthy processing here
 //
 int x = await task;
 Console.WriteLine("Count: " + x);
 }

 static async Task<int> HandleFileAsync(string file)
 {
 int count = 0;
 using (StreamReader reader = new StreamReader(file))
 {
 string v = await reader.ReadToEndAsync();
 count += v.Length;
 }
 return count;
 }
 }

An Introduction to Patterns and Pattern Catalogs

[25]

With Visual Studio 2015, Microsoft released C# 6.0, which mostly contains cosmetic changes
to the language. Additionally, C# 7.0 does not add many features to the language. The .NET
Core released by Microsoft runs on Windows GNU Linux and MAC OS X, promises to
make C# a multiplatform/cross platform language. The acquisition of Xamarin has helped
Microsoft to foray into cross-platform, native code-based mobile development.

C# language and the singleton pattern
The authors consider the singleton pattern, the way it was presented in the GoF book, as
some kind of anti-pattern. A lot has been written about how to implement it in a multi-
core/multi-threaded environment. Constructs such as the double-checked locking pattern
have been implemented to incorporate lazy loading while implementing singleton.

The C# programming language has got a nifty feature called a static constructor, which
helps to implement the singleton pattern in a thread-safe manner. The static constructor is
guaranteed to be called before any method (including the constructor) is called. We believe
we can stop cutting down trees in order to write about the singleton pattern, at least in the
.NET world.

 //--Chap1_06.cs
 using System;

 class SingleInstance
 {
 private int value = 10;
 //----- In the case of Singleton Pattern, we make our
 //----- ctor private to avoid instantiating the object using
 //----- the new keyword
 private SingleInstance() { }

 //----- The static method acts as a mechanism to expose
 //------ the internal instance
 public static SingleInstance Instance {
 get {
 return Nested.instance;
 }
 }

 private class Nested
 {
 static Nested() { }
 internal static readonly SingleInstance instance
 = new SingleInstance();
 }

An Introduction to Patterns and Pattern Catalogs

[26]

 public void Increment()
 {
 value++;
 }
 public int Value { get { return value; } }
 }

 public class SingletonExample
 {
 public static void Main(String[] args)
 {
 SingleInstance t1 = SingleInstance.Instance;
 SingleInstance t2 = SingleInstance.Instance;
 t1.Increment();
 if (t1.Value == t2.Value)
 Console.WriteLine("SingleTon Object");
 }
 }

Summary
The pattern movement has revolutionized the way people are developing software. By
capturing the wisdom of experts in their respective areas, pattern catalogs can be used for
software engineering, library design, and all areas where they are available. The famous
GoF pattern book started the whole movement in the year 1994. Some notable catalogs
include POSA, POEAA, EIP, J2EE, DDD, and Arlow/Nuestadt. We have also seen how a
multi-paradigm language such as C# is well-suited for pattern-based software
development, considering the language's evolution in terms of features. We will continue to
explore the applicability and consequence of patterns in the following chapters. We will
also be looking at the key design principles, and will explain the need for design patterns
using an application case study.

2
Why We Need Design

Patterns?
In this chapter, we will try to understand the necessity of choosing a pattern-based
approach to software development. We start with some principles of software development,
that one might find useful while undertaking large projects. The working example in this
chapter starts with a requirements specification and progresses toward a preliminary
implementation. We will then try to iteratively improve the solution using patterns and
idioms, and come up with a good design that supports a well-defined programming
Interface. During this process, we will learn about some software development principles
that one can adhere to, including the following:

SOLID principles for OOP
Three key uses of design patterns
Arlow/Nuestadt archetype patterns
Entity, value, and data transfer objects
Command pattern and factory method pattern
Design by contract idiom and the template method pattern
Facade pattern for API
Leveraging the .NET Reflection API for plugin architecture
XML processing using LINQ for parsing configuration files
Deep cloning of CLR objects using extension methods
Designing stateless classes for better scalability

Why We Need Design Patterns?

[28]

Some principles of software development
Writing quality production code consistently is not easy without some foundational
principles under your belt. The purpose of this section is to whet the developer's appetite,
and towards the end, some references are given for detailed study. Detailed coverage of
these principles warrants a separate book on its own scale. The authors have tried to
assimilate the following key principles of software development, which help one write
quality code:

KISS: Keep it simple, stupid

DRY: Don't repeat yourself

YAGNI: You aren't gonna need it

Low coupling: Minimize coupling between classes

SOLID principles: Principles for better OOP

William of Ockham framed the maxim Keep it simple, stupid (KISS). It is
also called the law of parsimony. In programming terms, it can be
translated as “writing code in a straightforward manner, focusing on a
particular solution that solves the problem at hand”.

This maxim is important because, most often, developers fall into the trap of writing code in
a generic manner for unwarranted extensibility. Even though it initially looks attractive,
things slowly go out of bounds. The accidental complexity introduced in the code base for
catering to improbable scenarios, often reduces readability and maintainability. The KISS
principle can be applied to every human endeavor. Learn more about the KISS principle by
consulting the Web.

Don't repeat yourself (DRY), a maxim that is often forgotten by
programmers while implementing their domain logic. Most often, in a
collaborative development scenario, code gets duplicated inadvertently
due to a lack of communication and proper design specifications.

This bloats the code base, induces subtle bugs, and makes things really difficult to change.
By following the DRY maxim at all stages of development, we can avoid additional effort
and make the code consistent. The opposite of DRY is write everything twice (WET).

Why We Need Design Patterns?

[29]

You aren't gonna need it (YAGNI), a principle that complements the KISS
axiom. It serves as a warning for people who try to write code in the most
general manner, anticipating changes right from the word go.

Too often, in practice, most of the code which are written in a generic manner, might result
in code smells.

While writing code, one should try to make sure that there are no hard-
coded references to concrete classes. It is advisable to program to an
interface as opposed to an implementation.

This is a key principle which many patterns use to provide behavior acquisition at runtime.
A dependency injection framework could be used to reduce coupling between classes.

SOLID principles are a set of guidelines for writing better object-oriented software. It is a
mnemonic acronym that embodies the following five principles:

Sr.
no

Principles Description

1 Single Responsibility
Principle (SRP)

A class should have only one responsibility. If it is doing more
than one unrelated thing, we need to split the class.

2 Open Close Principle
(OCP)

A class should be open for extension, closed for modification.

3 Liskov Substitution
Principle (LSP)

Named after Barbara Liskov, a Turing Award laureate, who
postulated that a sub-class (derived class) could substitute any
super class (base class) references without affecting the
functionality. Even though it looks like stating the obvious, most
implementations have quirks that violate this principle.

4 Interface Segregation
Principle (ISP)

It is more desirable to have multiple interfaces for a class (such
classes can also be called components) than having one Uber
interface that forces implementation of all methods (both
relevant and non-relevant to the solution context).

Why We Need Design Patterns?

[30]

5 Dependency
Inversion (DI)

This is a principle which is very useful for framework design. In
the case of frameworks, the client code will be invoked by server
code, as opposed to the usual process of the client invoking the
server. The main principle here is that abstraction should not
depend upon details; rather, details should depend upon
abstraction. This is also called the Hollywood principle (Do not
call us, we will call you back).

The authors consider the preceding five principles primarily as a verification mechanism.
This will be demonstrated by verifying the ensuing case study implementations for
violation of these principles.

Karl Seguin has written an e-book titled Foundations of Programming –
Building Better Software, which covers most of what has been outlined here.
Read his book to gain an in-depth understanding of most of these topics.
The SOLID principles are well covered in the Wikipedia page on the
subject, which can be retrieved from
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design.
Robert Martin's Agile Principles, Patterns, and Practices in C# is a definitive
book on learning about SOLID, as Robert Martin himself is the creator of
these principles, even though Michael Feathers coined the acronym.

Why are patterns required?
According to the authors, the three key advantages of pattern-oriented software
development that stand out are as follows:

A language/platform-agnostic way to communicate about software artifacts
A tool for refactoring initiatives (targets for refactoring)
Better API design

With the advent of the pattern movement, the software development community got a
canonical language to communicate about software design, architecture, and
implementation. Software development is a craft that has got trade-offs attached to each
strategy, and there are multiple ways to develop software. The various pattern catalogs
brought some conceptual unification for this cacophony in software development.

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design

Why We Need Design Patterns?

[31]

Most developers around the world today who are worth their salt can understand and
speak this language. We believe you will be able to do the same by the end of the chapter.
Imagine yourself stating the following about your recent implementation:

For our tax computation example, we have used the command pattern to
handle the computation logic. The commands (handlers) are configured
using an XML file, and a factory method takes care of the instantiation of
classes on the fly using Lazy loading. We cache the commands, and avoid
instantiation of more objects by imposing singleton constraints on the
invocation. We support the prototype pattern where command objects can
be cloned. The command objects have a base implementation, where
concrete command objects use the template method pattern to override
methods that are necessary. The command objects are implemented using
the design by contracts idiom. The whole mechanism is encapsulated
using a Facade class, which acts as an API layer for the application logic.
The application logic uses entity objects (reference) to store the taxable
entities, attributes such as tax parameters are stored as value objects. We
use data transfer object (DTO) to transfer the data from the application
layer to the computational layer. The Arlow/Nuestadt-based archetype
pattern is the unit of structuring the tax computation logic.

For some developers, the preceding language/platform-independent description of the
software being developed is enough to understand the approach taken. This will boost
developer productivity (during all phases of SDLC, including development, maintenance,
and support) as the developers will be able to get a good mental model of the code base.
Without Pattern catalogs, such succinct descriptions of the design or implementation would
have been impossible.

In an Agile software development scenario, we develop software in an iterative fashion.
Once we reach a certain maturity in a module, developers refactor their code. While
refactoring a module, patterns do help in organizing the logic. The case study given next
will help you to understand the rationale behind patterns as refactoring targets.

APIs based on well-defined patterns are easy to use and impose less cognitive load on
programmers. The success of the ASP.NET MVC framework, NHibernate, and APIs for
writing HTTP modules and handlers in the ASP.NET pipeline are a few testimonies to the
process. You will see how these three key advantages are put into practice in the ensuing
chapters and case studies.

Why We Need Design Patterns?

[32]

A quick foray into the .NET Reflection API
When we write non-trivial software that should go to production, it is mandatory to have
the ability to load and execute modules on the fly. This is useful when you are planning to
provide user defined extensions as a mechanism to add new features to the existing
software. The .NET Reflection API is a nifty mechanism supported by the Microsoft
Corporation to help developers to write code that can be loaded dynamically, after the base
software has been written. The platform technologies, such as ASP.net, WCF,EF, and WPF,
use reflection extensively:

 public class Test
 {
 //---- Only Property this class has
 public int X { get; set; }
 //----- This method will be invoked dynamically
 public void Spit()
 {
 Console.WriteLine(" X is " + X);
 }
 }

We will write a simple program that will instantiate the object using the new keyword, and
after the object instantiation, a property (X) will be set to the value 0xBEEF. The .NET
Reflection API will be used to retrieve the property value and invoke a method (Spit)
using them:

 class Program
 {
 static void Main(string[] args)
 {
 Test a = new Test();
 //------ Set the property
 a.X = 0xBEEF;
 //------ Retrieve the CLR Type
 Type t = a.GetType();
 if (t == null) return;
 //---- Retrieve the Property Handle
 PropertyInfo np = t.GetProperty("X");
 //---- Retrieve the Property Value
 Console.WriteLine(np.GetValue(a));
 //------ Retrieve the Method Handle
 MethodInfo mi = t.GetMethod("Spit");
 //------ Invoke the method
 mi.Invoke(a, null);

 Console.Read();

Why We Need Design Patterns?

[33]

 }
 }

We will be using .NET Reflection API extensively in our programs. A competent
programmer should know the .NET Reflection API and its features to write any advanced
piece of code. Do consult the Microsoft documentation to understand the features available
and the nuances of the API. If you want to be a library or framework designer, you should
know Reflection API in depth.

Personal income tax computation – A case
study
Rather than explaining the advantages of patterns, the following example will help us to see
things in action. Computation of annual income tax is a well-known problem domain across
the globe. We have chosen an application domain that is well known for focusing on
software development issues.

The application should receive inputs regarding the demographic profile
(UID, Name, Age, Sex, Location) of a citizen and the income details (Basic,
DA, HRA, CESS, Deductions) to compute their tax liability. The system
should have discriminants based on the demographic profile, and have a
separate logic for senior citizens, juveniles, disabled people, female senior
citizens, and others. By discriminant we mean that demographic
parameters such as age, sex, and location should determine the category to
which a person belongs and therefore apply category-specific computation
for that individual. As a first iteration, we will implement logic for the
senior citizen and ordinary citizen categories.

After preliminary discussions, our developer created a prototype screen, as shown in the
following image:

Why We Need Design Patterns?

[34]

Archetypes and business archetype patterns
The legendary Swiss psychologist, Carl Gustav Jung, created the concept of archetypes to
explain fundamental entities that arise from a common repository of human experiences.
The concept of archetypes percolated to the software industry from psychology. The
Arlow/Nuestadt patterns describe business archetype patterns such as Party, Customer
Call, Product, Money, Unit, Inventory, and so on. An example is the Apache Maven
archetype, which helps us to generate projects of different natures, such as J2EE apps,
Eclipse plugins, OSGI projects, and so on. The Microsoft patterns and practices describe
archetypes for targeting builds such as web applications, rich client applications, mobile
applications, and services applications. Various domain-specific archetypes can exist in
respective contexts as organizing and structuring mechanisms.

In our case, we will define some archetypes that are common in the taxation domain. Some
of the key archetypes in this domain are as follows:

Sr.no Archetype Description

1 SeniorCitizenFemale Tax payers who are female, and above the age of 60 years.

2 SeniorCitizen Tax payers who are male, and above the age of 60 years.

3 OrdinaryCitizen Tax payers who are male/female, and above 18 years of age.

4 DisabledCitizen Tax payers who have any disability.

5 MilitaryPersonnel Tax payers who are military personnel.

6 Juveniles Tax payers whose age is less than 18 years.

We will use demographic parameters as discriminants to find the archetype that
corresponds to the entity. The whole idea of inducing archetypes is to organize the tax
computation logic around them. Once we are able to resolve the archetypes, it is easy to
locate and delegate the computations corresponding to the archetypes.

Entity, value, and data transfer objects
We are going to create a class that represents a citizen. Since a citizen needs to be uniquely
identified, we are going to create an entity object, which is also called a reference object
(from the DDD catalog). The universal identifier (UID) of an entity object is the handle to
which an application refers. Entity objects are not identified by their attributes, as there can
be two people with the same name. The ID uniquely identifies an entity object. The
definition of an entity object is given as follows:

 public class TaxableEntity

Why We Need Design Patterns?

[35]

 {
 public int Id { get; set; }
 public string Name { get; set; }
 public int Age { get; set; }
 public char Sex { get; set; }
 public string Location { get; set; }
 public TaxParamVO taxparams { get; set; }
 }

In the preceding class definition, Id uniquely identifies the entity object. TaxParams is a
value object (from the DDD catalog) associated with the entity object. Value objects do not
have a conceptual identity. They describe some attributes of things (entities). The definition
of TaxParams is given as follows:

 public class TaxParamVO
 {
 public double Basic {get;set;}
 public double DA { get; set; }
 public double HRA { get; set; }
 public double Allowance { get; set; }
 public double Deductions { get; set; }
 public double Cess { get; set; }
 public double TaxLiability { get; set; }
 public bool Computed { get; set; }
 }

While writing applications ever since Smalltalk, Model-view-controller (MVC) is the most
dominant paradigm for structuring applications. The application is split into a model layer
(which mostly deals with data), a view layer (which acts as a display layer), and a controller
(to mediate between the two). In the web development scenario, they are physically
partitioned across machines. To transfer data between layers, the J2EE pattern catalog
identified the DTO. The DTO object is defined as follows:

 public class TaxDTO
 {
 public int id { }
 public TaxParamVO taxparams { }
 }

If the layering exists within the same process, we can transfer these objects as-is. If layers
are partitioned across processes or systems, we can use XML or JSON serialization to
transfer objects between the layers.

Why We Need Design Patterns?

[36]

A computation engine
We need to separate UI processing, input validation, and computation to create a solution
that can be extended to handle additional requirements. The computation engine will
execute different logic depending upon the command received. The GoF command pattern
is leveraged for executing the logic based on the command received.

The command pattern consists of four constituents. They are as follows:

Command object
Parameters
Command Dispatcher
Client

The command object's interface has an Execute method. The parameters to the command
objects are passed through a bag. The client invokes the command object by passing the
parameters through a bag to be consumed by the Command Dispatcher. The parameters are
passed to the command object through the following data structure:

 public class COMPUTATION_CONTEXT
 {
 private Dictionary<String, Object> symbols = new
 Dictionary<String, Object>();
 public void Put(string k, Object value) {
 symbols.Add(k, value);
 }
 public Object Get(string k) { return symbols[k]; }
 }

The ComputationCommand interface, which all the command objects implement, has only
one Execute method, which is shown next. The Execute method takes a bag as a
parameter. The COMPUTATION_CONTEXT data structure acts as the bag here:

 Interface ComputationCommand
 {
 bool Execute(COMPUTATION_CONTEXT ctx);
 }

Since we have already implemented a command interface and bag to transfer the
parameters, it is time that we implemented a command object. For the sake of simplicity, we
will implement two commands where we hardcode the tax liability:

 public class SeniorCitizenCommand : ComputationCommand
 {
 public bool Execute(COMPUTATION_CONTEXT ctx)

Why We Need Design Patterns?

[37]

 {
 TaxDTO td = (TaxDTO)ctx.Get("tax_cargo");
 //---- Instead of computation, we are assigning
 //---- constant tax for each archetypes
 td.taxparams.TaxLiability = 1000;
 td.taxparams.Computed = true;
 return true;
 }
 }

 public class OrdinaryCitizenCommand : ComputationCommand
 {
 public bool Execute(COMPUTATION_CONTEXT ctx)
 {
 TaxDTO td = (TaxDTO)ctx.Get("tax_cargo");
 //---- Instead of computation, we are assigning
 //---- constant tax for each archetypes
 td.taxparams.TaxLiability = 1500;
 td.taxparams.Computed = true;
 return true;
 }
 }

The commands will be invoked by a CommandDispatcher object, which takes an
archetype string and a COMPUTATION_CONTEXT object. The CommandDispatcher acts as
an API layer for the application:

 class CommandDispatcher
 {
 public static bool Dispatch(string archetype,
 COMPUTATION_CONTEXT ctx)
 {
 if (archetype == "SeniorCitizen")
 {
 SeniorCitizenCommand cmd = new SeniorCitizenCommand();
 return cmd.Execute(ctx);
 }
 else if (archetype == "OrdinaryCitizen")
 {
 OrdinaryCitizenCommand cmd = new OrdinaryCitizenCommand();
 return cmd.Execute(ctx);
 }
 else {
 return false;
 }
 }
 }

Why We Need Design Patterns?

[38]

The application to engine communication
The data from the application UI, be it web or desktop, has to flow to the computation
engine. The following ViewHandler routine shows how data, retrieved from the
application UI, is passed to the engine, via the Command Dispatcher, by a client:

 public static void ViewHandler(TaxCalcForm tf)
 {
 TaxableEntity te = GetEntityFromUI(tf);
 if (te == null){
 ShowError();
 return;
 }
 string archetype = ComputeArchetype(te);
 COMPUTATION_CONTEXT ctx = new COMPUTATION_CONTEXT();
 TaxDTO td = new TaxDTO { id = te.id, taxparams =
 te.taxparams};
 ctx.Put("tax_cargo",td);
 bool rs = CommandDispatcher.Dispatch(archetype, ctx);
 if (rs) {
 TaxDTO temp = (TaxDTO)ctx.Get("tax_cargo");
 tf.Liabilitytxt.Text =
 Convert.ToString(temp.taxparams.TaxLiability);
 tf.Refresh();
 }
 }

At this point, imagine that a change in requirements has been received from the
stakeholders. Now we need to support tax computation for new categories.

Initially, we had different computations for senior citizens and ordinary
citizens. Now we need to add new archetypes. At the same time, to make
the software extensible (loosely coupled) and maintainable, it would be
ideal if we provided the capability to support the new archetypes in a
configurable manner, as opposed to recompiling the application for every
new archetype owing to concrete references.

The Command Dispatcher object does not scale well to handle additional archetypes. We
need to change the assembly whenever a new archetype is included, as the tax computation
logic varies for each archetype. We need to create a pluggable architecture to add or remove
archetypes at will.

Why We Need Design Patterns?

[39]

The plugin system to make system extensible
Writing system logic without impacting the application warrants a mechanism–that of
loading a class on the fly. Luckily, the .NET Reflection API provides a mechanism for one to
load a class during runtime, and invoke methods within it. A developer worth his salt
should learn the Reflection API to write systems that change dynamically. In fact, most of
the technologies such as ASP.NET, Entity Framework, .NET Remoting, and WCF work
because of the availability of Reflection API in the .NET stack.

Henceforth, we will be using an XML configuration file to specify our tax computation
logic. A sample XML file is given next:

 <?xml version="1.0"?>
 <plugins>
 <plugin archetype ="OrindaryCitizen"
 command="TaxEngine.OrdinaryCitizenCommand"/> <plugin
 archetype="SeniorCitizen"
 command="TaxEngine.SeniorCitizenCommand"/>
 </plugins>

The contents of the XML file can be read very easily using LINQ to XML. We will be
generating a Dictionary object with the following code snippet:

 private Dictionary<string,string> LoadData(string xmlfile)
 {
 return XDocument.Load(xmlfile)
 .Descendants("plugins")
 .Descendants("plugin")
 .ToDictionary(p => p.Attribute("archetype").Value,
 p => p.Attribute("command").Value);
 }

Factory method pattern and plugins
The factory method (from the GoF catalog) is a pattern that solves the creation of objects
through a static method exposed solely for this purpose. The object we create will be based
on a particular class or derived class. In our case, we need to create objects that have
implemented the ComputationCommand interface.

Why We Need Design Patterns?

[40]

The consumer of the Factory class can also indicate whether it requires a singleton or a
prototype. The default behavior of the factory method is singleton, and it is supposed to
return the same instance whenever a call to the Factory (Get) method is received. If the
prototype option is given, a clone of the object will be created and returned:

 public class ObjectFactory
 {
 //--- A Dictionary to store
 //--- Plugin details (Archetype/commandclass)
 private Dictionary<string, string> plugins = new
 Dictionary<string, string>();
 //--- A Dictionary to cache objects
 //--- archetype/commandclassinstance
 private Dictionary<string, ComputationCommand> commands =
 new Dictionary<string, ComputationCommand>();

 public ObjectFactory(String xmlfile)
 {
 plugins = LoadData(xmlfile);
 }

 private Dictionary<string,string> LoadData(string xmlfile)
 {
 return XDocument.Load(xmlfile)
 .Descendants("plugins")
 .Descendants("plugin")
 .ToDictionary(p => p.Attribute("archetype").Value,
 p => p.Attribute("command").Value);
 }
 //---- Rest of the code omitted
 }

The consumer of the ObjectFactory class will indicate whether it wants a reference to the
object to be available in the plugin cache or a clone of the object. We can clone an object
using binary serialization. By writing an extension method leveraging generics, we can
write an all-purpose clone routine. The following code snippet will help us to achieve that:

 public static T DeepClone<T>(this T a) {
 using (MemoryStream stream = new MemoryStream()) {
 BinaryFormatter formatter = new BinaryFormatter();
 formatter.Serialize(stream, a);
 stream.Position = 0;
 return (T)formatter.Deserialize(stream);
 }
 }

Why We Need Design Patterns?

[41]

Now the implementation of Get becomes a straightforward affair; the full listing of the Get
method is given as follows:

 public ComputationCommand Get(string archetype,
 string mode = "singleton")
 {
 //---- We can create a new instance, when a
 //---- prototype is asked, otherwise we will
 //---- return the same instance stored in the dictionary
 if (mode != "singleton" && mode != "prototype")
 return null;

 ComputationCommand temp = null;
 //--- if an instance is already found, return
 // it (singleton) or clone (prototype
 if (commands.TryGetValue(archetype, out temp))
 {
 return (mode == "singleton") ? temp :
 temp.DeepClone<ComputationCommand>();
 }

 //---- retrieve the commandclass name
 string classname = plugins[archetype];
 if (classname == null)
 return null;
 //------ retrieve the classname, if it
 //------ is available with CLR
 Type t = Type.GetType(classname);

 if (t == null)
 return null;
 //---- Create a new Instance and store it
 //---- in commandclass instance dictionary
 commands[archetype]=
 (ComputationCommand)Activator.CreateInstance(t);
 return commands[archetype];
 }

Now that we have got a factory method implementation, let us see how one can consume
the code. The Command Dispatcher will get a handle to the instance of a command based
on the archetype provided to it. Once the handle to the object is received, the Execute
method can be invoked:

 public class CommandDispatcher
 {
 private static ObjectFactory obj =
 new ObjectFactory("Pluggins.xml");

Why We Need Design Patterns?

[42]

 public static bool Dispatch(string archetype,
 COMPUTATION_CONTEXT ctx)
 {
 ComputationCommand cmd = obj.Get(archetype);
 return (cmd == null) ? false : cmd.Execute(ctx);
 }
 }

The authors of the book feel that command objects should be designed in a
stateless manner. In the imperative programming world, this means that
there shouldn't be any shared variables between the methods of a class.
We should not add class-level variables in order to avoid locks in a
multithreaded environment. In effect, parameters become the sole
determinant of the results. If you cannot avoid having class-level
variables, they should be immutable (read only). If we mutate the state of
an object, the prototype created out of that will have an impact because of
object references. The Java servlet specification expects the servlets to be
stateless, and Spring controllers are also stateless. The Microsoft ASP.NET
MVC controllers need not be stateless (not sure why Microsoft chose
things that way).

Now, let us revisit our ViewHandler routine. The interface does not change here. The real
magic happens beneath the Command Dispatcher object:

 public static void ViewHandler(TaxCalcForm tf)
 {
 TaxableEntity te = GetEntityFromUI(tf);
 if (te == null)
 {
 ShowError();
 return;
 }
 string archetype = ComputeArchetype(te);
 COMPUTATION_CONTEXT ctx = new COMPUTATION_CONTEXT();
 TaxDTO td = new TaxDTO { id = te.id, taxparams = te.taxparams};
 ctx.Put("tax_cargo",td);
 bool rs = CommandDispatcher.Dispatch(archetype, ctx);
 if (rs) {
 TaxDTO temp = (TaxDTO)ctx.Get("tax_cargo");
 tf.Liabilitytxt.Text =
 Convert.ToString(temp.taxparams.TaxLiability);
 tf.Refresh();
 }
 }

Why We Need Design Patterns?

[43]

The view handler routine does the following:

Retrieves the value from the UI elements to create entity
Determines the archetype based on demographic parameters
Creates a DTO and places it in a bag
Dispatches the method through CommandDispatcher
Updates the UI based on the status

Let's create a new command that will compute taxes for senior citizens who are female:

 public class SeniorCitizenFemaleCommand : ComputationCommand
 {
 public bool Execute(COMPUTATION_CONTEXT ctx)
 {
 TaxDTO td = (TaxDTO)ctx.Get("tax_cargo");
 //---- Compute the Tax for Senior Females
 //---- They belong to different Slabs
 double accum = td.taxparams.Basic +
 td.taxparams.DA + td.taxparams.Allowance +
 td.taxparams.HRA;
 double net = accum - td.taxparams.Deductions -
 td.taxparams.Surcharge;
 //---- Flat 10% Tax
 td.taxparams.TaxLiability = net*0.1;
 td.taxparams.Computed = true;
 return true;
 }
 }

We have to make some changes to the configuration file. The resulting XML configuration is
given as follows:

 <?xml version="1.0"?>
 <plugins>
 <plugin archetype ="OrindaryCitizen"
 command="TaxEngine.OrdinaryCitizenCommand"/> <plugin
 archetype="SeniorCitizen"
 command="TaxEngine.SeniorCitizenCommand"/> <plugin
 archetype="SeniorCitizenFemale"
 command="TaxEngine.SeniorCitizenFemaleCommand"/>
 </plugins>

Why We Need Design Patterns?

[44]

Finalizing the solution
We started with a solution that solved the problem at hand. After creating a basic pipeline,
we created an elaborate pipeline, which made the solution extensible. Now we can add new
commands without recompiling the application. This is very important in the case of
applications that are governed by amendable laws. To make our code robust, we will add
the design by contract strategy to our command objects.

Design by contract and template method pattern
The design by contract idiom, created by Bertrand Meyer (creator of the Eiffel language),
extends the ordinary definition of abstract data types with preconditions, post conditions,
and invariants. To execute any contract in real life, we need to satisfy some preconditions,
followed by execution, and a post execution (verification) phase as listed here:

Pre-Execute
Execute
Post-Execute

At the end of the Post-Execute phase, the invariants are checked to see whether they are
violated. The consumer will call PreExecute to determine whether there is a context for
the execution of the contract. The invocation will proceed only if PreExecute returns true.
To incorporate design by contract, we extend the interface with two additional methods.
The resultant interface is given as follows:

 public interface ComputationCommand
 {
 bool PreExecute(COMPUTATION_CONTEXT ctx);
 bool Execute(COMPUTATION_CONTEXT ctx);
 bool PostExecute(COMPUTATION_CONTEXT ctx);
 }

We will create a BaseComputationCommand class, which will stub the methods in the
ComputationCommand interface. This will help the concrete, derived command classes to
override only those methods which have the respective changes. After redefining the
interface, we will create a default implementation of the command pattern with methods
marked as virtual. This helps us to override the implementation in the derived class. This
is an instance of the template method pattern:

 public class BaseComputationCommand : ComputationCommand
 {
 public virtual bool PreExecute(COMPUTATION_CONTEXT ctx) { return

Why We Need Design Patterns?

[45]

 true; } public virtual bool Execute(COMPUTATION_CONTEXT ctx) {
 return true; } public virtual bool
 PostExecute(COMPUTATION_CONTEXT ctx) { return true; }
 }

Our commands here will use the template method pattern to override only those methods
that are relevant. Otherwise, there is already a fallback in the BaseComputationCommand.
The template method pattern defines the program skeleton of an algorithm(s) in a method,
and they are called template method(s). These template methods are overridden by sub-
classes, which implement the concrete logic:

 public class SeniorCitizenCommand : BaseComputationCommand {
 public override bool PreExecute(COMPUTATION_CONTEXT ctx)
 {
 TaxDTO td = (TaxDTO)ctx.Get("tax_cargo");
 //--- Do Some Sanity Checks
 //--- if some problems => return false;
 return base.PreExecute(ctx);
 }
 public override bool Execute(COMPUTATION_CONTEXT ctx)
 {
 TaxDTO td = (TaxDTO)ctx.Get("tax_cargo");
 //---- Compute the Tax for Senior Citizens
 //---- They belong to different Slabs
 td.taxparams.TaxLiability = 1000;
 td.taxparams.Computed = true;
 return true;
 }

 public override bool PostExecute(COMPUTATION_CONTEXT ctx)
 {
 //--- Do the Check on Invariants
 //--- Return false, if there is violation
 return base.PostExecute(ctx);
 }
 }

We need not override every method, and yet, the whole scheme would still work:

 public class SeniorCitizenFemaleCommand : BaseComputationCommand
 {
 public override bool Execute(COMPUTATION_CONTEXT ctx)
 {
 TaxDTO td = (TaxDTO)ctx.Get("tax_cargo");
 //---- Compute the Tax for Senior Females
 //---- They belong to different Slabs
 double accum = td.taxparams.Basic +
 td.taxparams.DA + td.taxparams.Allowance +

Why We Need Design Patterns?

[46]

 td.taxparams.HRA;
 double net = accum - td.taxparams.Deductions -
 td.taxparams.Surcharge;
 //---- Flat 10% Tax
 td.taxparams.TaxLiability = net*0.1;
 return true;
 }
 }

Now we need to rewrite the command pattern to reflect the implementation of the design
by contract idiom in the command classes:

 public class CommandDispatcher
 {
 private static ObjectFactory obj = new
 ObjectFactory("Pluggins.xml"); public static bool
 Dispatch(string archetype, COMPUTATION_CONTEXT ctx)
 {
 ComputationCommand cmd = obj.Get(archetype);
 if (cmd == null)
 return false;

 if (cmd.PreExecute(ctx))
 {
 bool rs = cmd.Execute(ctx);
 cmd.PostExecute(ctx);
 return rs;
 }
 return false;
 }
 }

In some implementations, the clients will check the return value to see whether invariants
have been violated. In some cases, a compensating transaction will be executed to restore
the state to the previous one.

Using the Facade pattern to expose the
computation API
Our computation engine contains a lot of classes that coordinate to implement the
application logic. Any client who wants to interact with this implementation would prefer a
simplified interface to this subsystem. A facade is an object that provides a simple interface
to a large body of code in large classes or modules.

Why We Need Design Patterns?

[47]

The GoF facade pattern is a mechanism that we can use to expose a coarse-grained API:

 public class TaxComputationFacade
 {
 /// <summary>
 /// A Rule Engine can do Archetype detection
 /// One can write a small Expression Evaluator Engine
 /// and GOF terms its Interpreter pattern
 /// </summary>
 /// <param name="te"></param>
 /// <returns></returns>
 private static string ComputeArchetype(TaxableEntity te)
 {
 if ((te.Sex == 'F') && (te.age > 59))
 {
 return "SeniorCitizenFemale";
 }
 else if (te.age<18) {
 return "JuevenileCitizen";
 }

 return (te.age > 60) ? "SeniorCitizen" : "OrdinaryCitizen";
 }

 public static bool Compute(TaxableEntity te)
 {
 string archetype = ComputeArchetype(te);
 COMPUTATION_CONTEXT ctx = new COMPUTATION_CONTEXT();
 TaxDTO td = new TaxDTO { id = te.id, taxparams = te.taxparams
 };
 ctx.Put("tax_cargo", td);
 return CommandDispatcher.Dispatch(archetype, ctx);
 }
 }

Now the ViewHandler has become much simpler, as shown in the following code:

 public static void ViewHandler(TaxCalcForm tf)
 {
 TaxableEntity te = GetEntityFromUI(tf);
 if (te == null)
 {
 ShowError();
 return;
 }
 bool rs = TaxComputationFacade.Compute(te);
 if (rs)
 {

Why We Need Design Patterns?

[48]

 tf.Liabilitytxt.Text =
 Convert.ToString(te.taxparams.TaxLiability);
 tf.Refresh();
 }
 }

Summary
In this chapter, we have covered quite a lot of ground in understanding why pattern-
oriented software development is a good way to develop modern software. We started the
chapter by citing some key principles. We progressed further to demonstrate the
applicability of these key principles by iteratively skinning an application that is extensible
and resilient to changes. Through this journey, we covered concepts such as the command
pattern, factory method pattern, facade pattern, design by contract, template method
pattern, XML configuration files, LINQ to XML, and so on.

In the next chapter, we will continue our discussion of patterns by implementing a logging
library, which can serialize contents into file, database, or remote network.

3
A Logging Library

In this chapter, we will try to create a logging library that will enable an application
developer to log information to a media (file, network, or database) during program
execution. This would be a critical library that the developer would be able to use for audit
trail (domain pre-requisite) and code instrumentation (from a debugging and verification
stand-point). We will design and implement this library from scratch, and make it available
as an API to the end developer for consumption.

During the course of this chapter, as a reader, you will learn to leverage strategy pattern,
factory method pattern, template pattern, singleton and prototype patterns to do the
following:

Writing data to a file stream
Creating a simple Data Access Layer (DAL) using ADO.NET
Writing data to an SQLite database
Writing data to a network stream using the System.Net API
Handling concurrency
Threads

A Logging Library

[50]

Requirements for the library
Before we embark on writing the library, let us scribble down a preliminary requirement
statement as shown next:

The logging library should provide a unified interface to handle log entries which are
supposed to be persisted in a media (file, remote node, or a database) and target media
should be determined during runtime from a configuration file. The API should be target-
independent and there should be provision to add new log targets without changing the
application logic.

Solutions approach
Before we write the code to implement our library (a Windows assembly), let us enumerate
the requirements to get the big picture:

The data should be written to multiple streams
File, network, and DB

The developer API should be target-agnostic
The library should maintain its object lifetime
The library should provide facility for adding new log targets
The library should be able to handle concurrent writes to log targets

Writing content to a media
To manage the complexity of code isolation, let's declare a C# interface which will manage
the idiosyncrasies of multiple log targets:

 public interface IContentWriter
 {
 Task<bool> Write(string content);
 }

A Logging Library

[51]

The basic idea here, is that the concrete classes which implement the interface should
provide an implementation of this method that writes the log to the respective media. But
on closer inspection, we find that it is better to write a base class implementation of this
method and its associated semantics in an abstract class. The base class implementation can
add a log entry to a queue (that would give concurrency support), flush the queue, and
persist to target the media when a threshold (configured) is reached. A method will be
marked as abstract which will provide a mechanism for concrete classes to write entries for
the respective media.

Since our library is supposed to work in a multi-threaded environment, we need to handle
concurrency in a neat manner. While writing to a file or network, we need to be careful that
only one thread gets access to the file or socket handle. We will leverage the .NET
async/await declarative programming model to manage background processing tasks.
Model-view-controller (MVC) is the most dominant paradigm for structuring applications.

Template method pattern and content writers
In the first stage, we plan to flush the log contents to the file, network, and database targets.
The bulk of our logic is common for all content writers. To aid separation of concerns and
avoid duplication of code, it is best to let the concrete content writer classes manage their
target media. Base implementation will take care of concurrency and queue management.

To make the code simple, we will leverage the ConcurrentQueue class
(data structure introduced with .NET framework version 4) available with
the Systems.Collections.Concurrent package. In the interest of
clarity, we've left out the exception handling code. Please note that the
AggregateException class should be leveraged for handling exceptions
in concurrent execution scenarios.

This class will make sure that only one thread gets to write to the queue at any point of
time. We will implement an asynchronous Flush method using Task Parallel Library
(TPL). This routine will retrieve data from the queue, and delegate the task of persistence
(in the media of choice) to the respective concrete classes via an abstract method
(WriteToMedia):

 public abstract class BaseContentWriter : IContentWriter
 {
 private ConcurrentQueue<string> queue =
 new ConcurrentQueue<string>();
 private Object _lock = new Object();

 public BaseContentWriter() { }

A Logging Library

[52]

 //---- Write to Media
 public abstract bool WriteToMedia(string logcontent);

 async Task Flush()
 {
 string content;
 int count = 0;
 while (queue.TryDequeue(out content) && count <= 10)
 {
 //--- Write to Appropriate Media
 //--- Calls the Overriden method
 WriteToMedia(content);
 count++;
 }
 }

Once the contents of the queue reach a threshold level, a thread will acquire the lock for
flushing the data. In our case, we will initiate flushing beyond 10 items in queue:

 public async Task<bool> Write(string content)
 {
 queue.Enqueue(content);
 if (queue.Count <= 10)
 return true;
 lock (_lock){
 Task temp = Task.Run(() => Flush());
 Task.WaitAll(new Task[] { temp });
 }
 return true;
 }
 }

The concrete classes derived from BaseContentWriter will implement the following
method to handle the specificities:

 public abstract bool WriteToMedia(string logcontent);

This is an instance of a template method pattern. The template method
pattern is a behavioral design pattern where the bulk of logic resides in the
base class, and certain steps of a process are implemented by concrete
classes. In BaseContentWriter, we have the logic for adding elements to
and retrieving elements from a concurrent queue. Persistence is taken care
of by the sub-classes that implement our template method
(WriteToMedia).

A Logging Library

[53]

The following UML class diagram represents the realizations, dependencies, and
associations between the various classes. Do observe the annotation that clearly outlines the
template method pattern in action:

Writing a log entry to a file stream
We will use file streams to write a file. We implement the actual file handling logic in the
WriteToMedia template method:

 public class FileContentWriter : BaseContentWriter
 {
 private string _file_name;
 public FileContentWriter(string name){

A Logging Library

[54]

 _file_name = name;
 }
 public override bool WriteToMedia(string content)
 {
 using (FileStream SourceStream =
 File.Open(_file_name, FileMode.Append))
 {
 byte[] buffer =
 Encoding.UTF8.GetBytes(content+"\r\n");
 SourceStream.Write (buffer, 0, buffer.Length);
 }
 return true;
 }
 }

Writing a log entry to a database
Some familiarity with ADO.NET is necessary to understand the nitty-gritties of this section.
To make the matter simple, we have chosen SQLite as our database of choice to persist the
log entries. One can choose MySQL, SQL Server, or Oracle. Because of the ADO.NET
library, the code will be more or less the same for every RDBMS offering. We have created a
class, SQLAccess, which wraps a subset of the ADO.NET calls to provide a simple interface
for SQLite. The class encapsulates and leverages the ADO.NET provider for SQLite to
provide an interaction with the SQLite database engine (x86/x64). In case this assembly
(System.Data.SQLite) is not available locally, please use nuget to install it via the
Package Manager Console as PM> Install-Package System.Data.SQLite:

 public class SQLAccess
 {
 private SQLiteConnection _con = null;
 private SQLiteCommand _cmd = null;
 private SQLiteTransaction _cts = null;
 private string _constr;
 public SQLAccess(string constr)
 {
 _constr = constr;
 }

The Open method given next instantiates the connection object, and invokes the Open
method of the ADO.NET connection object. If we require transaction support, we need to
instantiate a transaction context (SQLiteTransaction) object:

 public bool Open(bool trans = false)
 {
 try

A Logging Library

[55]

 {
 _con = new SQLiteConnection(_constr);
 _con.Open();
 if (trans)
 _cts = _con.BeginTransaction();
 return true;
 }
 catch(SQLiteException e)
 {
 return false;
 }
 }

To insert a value or set of values to a database, we instantiate a command object by giving a
connection object and a string (containing the SQL statement). ADO.NET has the
ExecuteNonQuery method to execute the query:

 public bool ExecuteNonQuery(string SQL)
 {
 try
 {
 _cmd = new SQLiteCommand(SQL, _con);
 _cmd.ExecuteNonQuery();
 _con.Close();
 _con = null;
 return true;
 }
 catch (Exception e)
 {
 _con = null;
 return false;
 }
 }

We close the connection once we have finished inserting records to the database:

 public Boolean Close()
 {
 if (_con != null)
 {
 if (_cts != null)
 {
 _cts.Commit();
 _cts = null;
 }
 _con.Close();
 _con = null;
 return true;

A Logging Library

[56]

 }
 return false;
 }

Once we have a class which will help us persist data to a relational database, writing the
template method (WriteToMedia) becomes easy. The whole code listing is given as follows:

 public class DbContentWriter : BaseContentWriter
 {
 private string _con_str =
 @"Data Source=./Logstorage.db";
 public DbContentWriter(){ }
 public override bool WriteToMedia(string logcontent)
 {
 SQLAccess access = new SQLAccess(_con_str);
 if (access.Open())
 {
 string query = "INSERT INTO logs VALUES('" +
 logcontent + "');";
 bool result = access.ExecuteNonQuery(query);
 access.Close();
 return result;
 }
 return false;
 }
 }

Writing a log entry to a network stream
We will use the TCPListener class under the System.Net namespace for writing data to a
network stream. For the current implementation, we have hard-coded the domain name
(localhost:127.0.0.1) and port (4500). We can read these values from a configuration file.
As usual, the whole action happens within the WriteToMedia template method. At the end
of the chapter, we have given a simple implementation of a log server for the sake of
completeness. The log server receives the entries we write, and prints it to its console:

 public class NetworkContentWriter : BaseContentWriter
 {
 private static string domain = "127.0.0.1";
 private static int port = 4500;
 public NetworkContentWriter(){}
 public override bool WriteToMedia(string content)
 {
 TcpClient _client = new TcpClient();
 if (_client == null){ return false; }

A Logging Library

[57]

 try{
 _client.Connect(domain, port);
 }
 catch (Exception) { return false; }

 StreamWriter _sWriter =
 new StreamWriter(_client.GetStream(), Encoding.ASCII);
 _sWriter.WriteLine(content);
 _sWriter.Flush();
 _sWriter.Close();
 _client.Close();
 return true;
 }
 }

We have now implemented content writers for file, DB (using ADO.NET), and network
streams. With this under our belt, we need to provide an interface for applications to
consume these content writers. Depending on the logging strategy chosen by the
application, the appropriate content writers are to be connected to the log data streams. This
warrants another set of interfaces.

Logging strategy atop the strategy pattern
We will use the GoF strategy pattern to implement the interface for the logging library.

We can treat the logging of data to different streams as algorithms, and
strategy pattern is meant to parameterize the algorithm to be executed.

By having concrete classes for network, file, and DB strategies, we are able to swap the
implementation logic:

 public abstract class LogStrategy
 {
 // DoLog is our Template method
 // Concrete classes will override this
 protected abstract bool DoLog(String logitem);
 public bool Log(String app, String key, String cause)
 {
 return DoLog(app + " " + key + " " + cause);
 }
 }

A Logging Library

[58]

To test the code, we will write a NullLogStrategy class, which prints the log entry to the
console. Since we have written the logic for scheduling the execution of the code, our
implementation will be much simpler. We implement the template method (DoLog)
through which we write the log entry in the console:

 public class NullLogStrategy : LogStrategy
 {
 protected override bool DoLog(String logitem)
 {
 // Log into the Console
 Console.WriteLine(logitem+"\r\n");
 return true;
 }
 }

Since we have taken pains to create the ContentWriter classes, our implementation of
strategy classes is just a matter of implementing the DoLog template method, and
delegating the actual work to the respective content writers:

 public class DbLogStrategy : LogStrategy
 {
 BaseContentWriter wt = new DbContentWriter();
 protected override bool DoLog(String logitem)
 {
 return wt.Write(logitem);
 }
 }

 public class FileLogStrategy : LogStrategy
 {
 BaseContentWriter wt = new FileContentWriter(@"log.txt");
 protected override bool DoLog(String logitem)
 {
 // Log into the file
 wt.Write(logitem);
 return true;
 }
 }

 public class NetLogStrategy : LogStrategy
 {
 BaseContentWriter nc = new NetworkContentWriter();
 protected override bool DoLog(String logitem)
 {
 // Log into the Network Socket
 nc.Write(logitem);
 return true;

A Logging Library

[59]

 }
 }

The following image illustrates the strategy pattern in action:

The factory method pattern for instantiation
Now, we should take care of the instantiation of the right object based on the parameter
received (often retrieved from a configuration file) to identify the strategy.

We will use the GoF factory method pattern to instantiate the
LogStrategy object. By checking the loggertype parameter, the
appropriate concrete class will be instantiated.

 public static LogStrategy CreateLogger(string loggertype)
 {
 if (loggertype == "DB")
 return new DbLogStrategy();
 else if (loggertype == "FILE")

A Logging Library

[60]

 return new FileLogStrategy();
 else if (loggertype == "NET")
 return new NetLogStrategy();
 else
 return new NullLogStrategy();
 }

The application developer can also control the logging strategy through a configuration
entry. The process of instantiating the LogStrategy class is given as follows:

 string loggertype=read_from_config("loggertype");
 LogStrategy lf = LoggerFactory.CreateLogger(loggertype);
 //-- somewhere out in the module
 lf.Log("APP","KEY","CAUSE");

Writing a generic factory method implementation
As discussed in the previous chapter, writing system logic without impacting the
application warrants a mechanism – that of loading a class on the fly. We will tweak the
factory method (LogFactory) implementation to make the system generic. We will use an
XML file to provide the metadata that the factory method would use to create the respective
log handler (LogStrategy) for the requested strategy (by the consumer). The sample XML
file (LogStrategy.xml) is given as follows:

 <?xml version="1.0"?>
 <entries>
 <entry key ="DB" value="LogLibrary.DbLogStrategy"/>
 <entry key="NET" value="LogLibrary.NetLogStrategy"/>
 <entry key="FILE" value="LogLibrary.FileLogStrategy"/>
 <entry key="NULL" value ="LogLibrary.NullLogStrategy"/>
 </entries>

The contents of the XML file can be read very easily using LINQ to XML.

A Logging Library

[61]

Factory method, singleton, and prototype pattern
for dynamic class loading
The .NET Reflection API helps us to load a class dynamically and instantiate an object .
There is option for cloning an existing object to create a new one. We will use both
strategies, for instantiation of objects.

The factory method (from the GoF catalog) is a pattern which solves the
creation of objects through a static method exposed solely for this purpose.
The object we create will be based on a particular class or derived class.
The consumer of the Factory class can also indicate whether it requires a
singleton or a prototype. The default behavior of the factory method is to
create a singleton, and it will return the same instance whenever a call is
made to the factory (Get) method. If the prototype option is given, a clone
of the object will be created and returned. This is a good example that
demonstrates how these three patterns compose and work in harmony to
give you this desired outcome. Also note the adept usage of the dictionary
object to achieve singletons. The constructs for creating an object pool is
already present in this implementation. That would be a good exercise for
any interested reader to uncover and implement.

The consumer of the ObjectFactory class would indicate whether it wants a reference to
the object available in the cache or a clone of the object. We can clone an object using binary
serialization. By writing an extension method leveraging generics, we can create an all-
purpose clone routine. The following code snippet achieves that:

 public static T DeepClone<T>(this T a) {
 using (MemoryStream stream = new MemoryStream()) {
 BinaryFormatter formatter = new BinaryFormatter();
 formatter.Serialize(stream, a);
 stream.Position = 0;
 return (T)formatter.Deserialize(stream);
 }
 }

However, please note a cloneable interface could be leveraged in case you need custom
cloning procedures. Now the implementation of Get becomes a straightforward affair; the
following is a full listing of the Get method:

 public class ObjectFactory
 {
 //----- The Dictionary which maps XML configuration

A Logging Library

[62]

 //----- Keys (key) to TypeName (value)
 private Dictionary<string, string> entries =
 new Dictionary<string, string>();
 //----- The Dictionary which maps Entry Keys to Objects
 //----- already instantiated by the Container
 private Dictionary<string, Object> objects =
 new Dictionary<string, Object>();

 private Dictionary<string, string> LoadData(string str)
 {
 //---- We use LINQ lambda syntax to load the contents of the
 //---- XML file.
 return XDocument.Load(str).Descendants("entries").
 Descendants("entry").ToDictionary(p =>
 p.Attribute("key").Value,
 p => p.Attribute("value").Value);
 }

 public ObjectFactory(String str)
 {
 entries = LoadData(str);
 }

 public Object Get(string key, string mode = "singleton")
 {
 //------------ singleton will return the same object
 //------------ every time.
 //------------ prototype will create a clone of the
 //------------ object if already instantiated before
 //------------ Singleton and Protype are the permissible
 //------------ Parameters
 if (mode != "singleton" && mode != "prototype")
 return null;
 Object temp = null;
 if (objects.TryGetValue(key, out temp))
 return (mode == "singleton") ? temp :
 temp.DeepClone<Object>();
 //------ if we could not retrieve an instance of previously
 //------ created object, retrieve the typename from entries
 //------ map

 string classname = null;
 entries.TryGetValue(key, out classname);
 if (classname == null)
 return null;
 string fullpackage = classname;
 //---- use .NET Reflection API to retrieve the CLR type
 //---- of the class name

A Logging Library

[63]

 Type t = Type.GetType(fullpackage);
 if (t == null)
 return null;
 //------- Instantiate the object using .NET Reflection API
 objects[key] = (Object)Activator.CreateInstance(t);
 return objects[key];
 }
 }
 }

We will be using the preceding class and different configuration files for all examples going
forward. This will simplify our code, and we would have a terse listing.

Refactoring the code with the generic factory
method
Using ObjectFactory, our strategy instantiation becomes much cleaner. If we cannot
locate a proper implementation of strategy by dictionary lookup (within the factory store),
we will instantiate a NullStrategy object (fallback option):

 public class LoggerFactory
 {
 private static ObjectFactory of =
 new ObjectFactory("LogStrategy.xml");
 public static LogStrategy CreateLogger(string loggertype)
 {
 LogStrategy sf = (LogStrategy)of.Get(loggertype);
 return (sf != null)?sf: new NullLogStrategy();
 }
 }

A log server for network logging
An implementation of a server application that can handle incoming streams of data from a
remote application is given next. Here we are using System.Net's TCPListener class to
listen to the incoming connection. Once we receive a connection from the remote process,
we will kick-start a thread to handle the log data from that connection. This implementation
is given here for the sake of completeness:

 class LogSocketServer
 {
 private TcpListener _server;

A Logging Library

[64]

 private Boolean _running;
 private int port = 4500;

 public LogSocketServer()
 {
 _server = new TcpListener(IPAddress.Any, port);
 _server.Start();
 _running = true;
 AcceptClients();
 }

 public void AcceptClients()
 {
 while (_running)
 {
 TcpClient newClient = _server.AcceptTcpClient();
 Thread t = new Thread(
 new ParameterizedThreadStart(
 HandleClientData));
 t.Start(newClient);
 }
 }

 public void HandleClientData(object obj)
 {
 TcpClient client = obj as TcpClient;
 StreamReader sReader = new
 StreamReader(client.GetStream(),
 Encoding.ASCII);
 bool bRead = true;
 while (bRead == true)
 {
 String sData = sReader.ReadLine();
 if (sData == null || sData.Length == 0)
 bRead = false;
 Console.WriteLine(sData);
 }
 }
 }

A Logging Library

[65]

A simple client program to test the library
A simple test harness for the logging library is given next. The program accepts a
command-line parameter, which is the log target (NET | FILE | DB). We create the
appropriate logging strategy classes using the factory method pattern.

 class Program
 {
 private static bool Table(LogStrategy ls)
 {
 int a = 10;
 int b = 1;
 while (b < 100)
 {
 ls.Log("Table", a.ToString() + " * " +
 b.ToString(), "=" +(a * b).ToString());
 b++;
 }
 return true;
 }
 static void Main(string[] args)
 {
 if (args.Length != 1)
 {
 return;
 }
 string loggertype=args[0];
 LogStrategy lf = LoggerFactory.CreateLogger(loggertype);
 Table(lf);
 }
 }

A Logging Library

[66]

The following UML diagram illustrates the key set of patterns in action for the logging API:

A Logging Library

[67]

Summary
In this chapter, we covered more ground to gain a good understanding on some of the
design patterns. We created a logging library which can log information from multiple
threads and handle different targets like file, database, and remote servers. We used
strategy pattern to swap the various logger implementations based on a configuration file.
Once again, the template method pattern helped us to create an extensible solution for
accommodating new log targets. All we needed to do was to override the base
implementation with the specifics of the new log targets, as log information processing is
handled by the base implementation. We extended our factory method pattern to handle
arbitrary objects based on configuration files. We also learned to leverage dictionary objects
for generating singletons and prototypes. In the next chapter, we will write a data access
layer which can help an application target multiple databases. In the process, you will learn
about adapter pattern, factory methods, and so on.

4
Targeting Multiple Databases

In this chapter, we will try to create a library which will help application developers target
their applications against SQL Server, SQLite, MySQL, and Oracle. As a result of creating
this library, we will be able to write the application code without worrying about the
underlying persistence technology. Even though ADO.NET does a wonderful job of
abstracting away the nitty-gritties of a relational database management system (RDBMS),
we need more than what is available as a stock feature within ADO.NET to write a
database-agnostic persistence layer.

During the course of this chapter, as a reader, you will learn to leverage the abstract factory
pattern, factory pattern, and the adapter pattern to be able to do the following:

Interfacing with various ADO.NET providers
Writing persistence-store agnostic logic
Writing data to an SQLite database
Writing data to an SQL Server database
Writing data to an ODBC data source

Requirements for the library
Before we embark on writing the library, let us scribble down a preliminary requirement
statement as follows:

When we write business applications, our application should be able to
persist to relational database engines from different database vendors.

Targeting Multiple Databases

[69]

We should be able to support SQL Server, SQLite, Oracle, or any database
engine which supports ADO.net. Adding a new DB engine should be a
breeze. Likewise, changing the database technology should be seamless
for the application developer.

Solutions approach
With the advent of ORM technologies like ADO.NET Entity Framework (EF) and
NHibernate, writing an application which targets multiple database offerings has become
easier. The authors believe that ADO.NET EF works in tandem with the Visual Studio
environment and its tools, and would be difficult to deal with in a book meant for pattern
oriented software development. For people from the Java world, who are accustomed to the
Hibernate library, NHibernate flattens the learning curve. Despite its dwindling usage and
popularity (reasons unknown) amidst .NET professionals, the authors feel that NHibernate
is a viable option to write enterprise grade applications in. In this book, for the sake of
simplicity, we will be using the ADO.NET programming model to isolate the database
specificities.

The ADO.NET library is based on the following set of interfaces defined in the
System.Data assembly from Microsoft:

Interface Definition

IDbConnection Interface for managing database connection specifics.

IDbCommand Interface for issuing SQL commands and queries.

IDbDataAdapter Interface for disconnected data access.

IDataReader Interface for cursor-based access to the database.

There are other interfaces which deal with the management of
transactions, stored procedures, and associated parameter handling. We
will ignore them in this book for the sake of shortening our code listings.
Those can be incorporated into our library without much effort.

Targeting Multiple Databases

[70]

Each of the aforementioned Interfaces is implemented by a provider written by the
respective database vendor. Microsoft encourages independent vendors to write ADO.NET
providers. The SQL Server implementation (System.Data.SqlClient) of these interfaces
are named as follows:

Class Definition

SqlConnection Implementation of IDbConnection interface.

SqlCommand Implementation of IDbCommand interface.

SqlDataAdapter Implementation of IDbAdapter interface.

SqlDataReader Implementation of IDataReader interface.

In the case of System.Data.SQLite, the scheme is as follows:

Class Definition

SQLiteConnection Implementation of IDbConnection interface.

SQLiteCommand Implementation of IDbCommand interface.

SQLitelDataAdapter Implementation of IDbAdapter interface.

SQLiteDataReader Implementation of IDataReader interface.

Similar provider classes are implemented by Oracle and MySQL.

We will be using the GoF catalog's abstract factory methods to instantiate
standard ADO.NET-library-specific interfaces for connection, command,
data adapter, and reader. The abstract factory pattern is a creational
pattern which provides an interface for creating families of related or
dependent objects without specifying their concrete classes.

A quick primer on ADO.net
Since we are using ADO.net API for accessing databases, a couple of code snippets will be
of help to comprehend the following sections. There are two ways to write code using the
ADO.net API. We can directly use the concrete classes to access the database content. The
following code snippet shows how one can write code against SQLite using
SQliteConnection, SQliteCommand and SQliteDataReader and so on. Similar code can
be written for SQL Server, MySQL and Oracle:

 public static void TestAdoNetSpecificInterface()
 {

Targeting Multiple Databases

[71]

 string connectionString = @"Data Source=./Logstorage.db";
 //----- Create a Connection Object
 //----- and open it
 SQLiteConnection dbcon=
 new SQLiteConnection(connectionString);
 dbcon.Open();
 //----------- Create a Command Object
 //----------- to issue SQL Query
 SQLiteCommand dbcmd = dbcon.CreateCommand();
 string sql = "SELECT * from logs";
 dbcmd.CommandText = sql;

 //----------- Create a Reader Object
 //----------- And Iterate through it
 SQLiteDataReader reader = dbcmd.ExecuteReader();
 while (reader.Read())
 {
 string logentry = reader.GetString(0);
 Console.WriteLine(logentry);
 }
 // clean up
 reader.Close();
 reader = null;
 dbcmd.Dispose();
 dbcmd = null;
 dbcon.Close();
 dbcon = null;
 }

The above code snippet leverages the concrete classes provided. If we want to write code in
a generic manner, we can program against the interfaces like IDbConnection, IDbCommand
and IDbDataReader etc. The following code snippet demonstrates the technique:

 public static void TestAdoNetWithGenericInterface()
 {
 string connectionString = @"Data Source=./Logstorage.db";
 //------ Open a connection and assign the connection object
 //------ to the IDbconnection interface. SQliteConnection,
 //------ OracleConnection,SQLConnection etc. implements the
 //------ IDbConnection Interface
 IDbConnection dbcon
 = (IDbConnection)new SQLiteConnection(connectionString);
 dbcon.Open();
 //------------ IDbCommand is the interface for
 //------------ Command Object . Every ADO.net
 //------------ Interface (for Oracle,SQL server etc)
 //------------ supports it
 IDbCommand dbcmd = dbcon.CreateCommand();

Targeting Multiple Databases

[72]

 string sql = "SELECT * from logs";
 dbcmd.CommandText = sql;
 //------- Create a Data Reader and Assign
 //------- it to IDataReader Interface
 IDataReader reader = dbcmd.ExecuteReader();
 while (reader.Read())
 {
 string logentry = reader.GetString(0);
 Console.WriteLine(logentry);
 }
 // clean up
 reader.Close();
 reader = null;
 dbcmd.Dispose();
 dbcmd = null;
 dbcon.Close();
 dbcon = null;
 }

The abstract factory pattern and object
instantiation
In our case, the abstract factory pattern is pertinent, as we are supposed to create a set of
related classes based on the ADO.NET defined interfaces. For this very purpose, we will
define an abstract class with the following signature:

 public abstract class DbAbstractFactory
 {
 public abstract IDbConnection CreateConnection(string connstr);
 public abstract IDbCommand CreateCommand(IDbConnection con,
 string cmd);
 public abstract IDbDataAdapter CreateDbAdapter(IDbCommand cmd);
 public abstract IDataReader CreateDataReader(IDbCommand cmd);
 }

Targeting Multiple Databases

[73]

In the preceding interface, we have methods to create connection object, command object,
data adapter object, and data reader object. These classes are related, and concrete classes
are for each of the database offerings. The concrete classes make calls to the corresponding
ADO.NET driver.

The SQL server implementation
The SQL Server implementation of abstract factory uses the default provider given by
Microsoft Corporation. We need to include the System.Data.SqlClient namespace in
our projects to utilize the objects in the provider namespace. Though the code given
warrants more robust and defensive programming practices mandated for an industrial
strength implementation, it provides clarity and is a good template for such an
implementation:

 [Serializable()]
 public class SQLServerDbFactory : DbAbstractFactory,ISerializable
 {
 private string drivertype { get; set; }
 public SQLServerDbFactory() { this.drivertype = null; }
 //------------------ Create a Connection Object
 //------------------ returns a reference to
 //------------------- a IDbConnection Interface
 public override IDbConnection CreateConnection(string connstr)
 {
 if (connstr == null || connstr.Length == 0)
 return null;

Targeting Multiple Databases

[74]

 return new SqlConnection(connstr);
 }
 public override IDbCommand CreateCommand(IDbConnection con,
 string cmd)
 {
 if (con == null || cmd == null || cmd.Length == 0)
 return null;
 if (con is SqlConnection)
 return new SqlCommand(cmd,
 (SqlConnection)con);
 return null;
 }
 public override IDbDataAdapter CreateDbAdapter(IDbCommand cmd)
 {
 if (cmd == null) { return null; }
 if (cmd is SqlCommand)
 return new
 SqlDataAdapter((SqlCommand)cmd);
 return null;
 }
 public override IDataReader CreateDataReader(IDbCommand cmd)
 {
 if (cmd == null) { return null; }
 if (cmd is SqlCommand)
 return (SqlDataReader)cmd.ExecuteReader();
 return null;
 }
 public void GetObjectData(SerializationInfo info,
 StreamingContext ctxt)
 {
 }
 protected SQLServerDbFactory(SerializationInfo info,
 StreamingContext context)
 {
 }
 }

The SQLite implementation
The SQLite implementation uses the ADO.NET provider maintained by the SQLite
implementation team. To include that, we need to download assemblies from the
https://system.data.sqlite.org site. We need to also include sqlite3.dll available on
the SQLite site.

https://system.data.sqlite.org/

Targeting Multiple Databases

[75]

You could also use nuget to install it via the Package Manager Console as PM> Install-
Package System.Data.SQLite:

 [Serializable()]
 public class SQLiteDbFactory : DbAbstractFactory,ISerializable
 {
 private string drivertype { get; set; }
 public SQLiteDbFactory() { this.drivertype = null; }
 public override IDbConnection CreateConnection(string connstr)
 {
 if (connstr == null || connstr.Length == 0)
 return null;
 return new SQLiteConnection(connstr);
 }

 public override IDbCommand CreateCommand(IDbConnection
 con,string cmd)
 {
 if (con == null || cmd == null || cmd.Length == 0)
 return null;
 if (con is SQLiteConnection)
 return new SQLiteCommand(cmd,
 (SQLiteConnection)con);
 return null;
 }

 public override IDbDataAdapter CreateDbAdapter(IDbCommand cmd)
 {
 if (cmd == null) { return null; }
 if (cmd is SQLiteCommand)
 return new
 SQLiteDataAdapter((SQLiteCommand)cmd);
 return null;
 }

 public override IDataReader CreateDataReader(IDbCommand cmd)
 {
 if (cmd == null) { return null; }
 if (cmd is SQLiteCommand)
 return (SQLiteDataReader)cmd.ExecuteReader();
 return null;
 }

 public void GetObjectData(SerializationInfo info,
 StreamingContext ctxt)
 {
 }

Targeting Multiple Databases

[76]

 protected SQLiteDbFactory(SerializationInfo info,
 StreamingContext context)
 {
 }
 }

The Oracle and ODBC implementation
Since Microsoft has deprecated the System.Data.OracleClient interface, we need to
download ADO.NET providers from the Oracle Corporation site. Incorporating Oracle into
the mix is similar to the way we did for SQL Server and SQLite. Since Oracle supports
ODBC, we use an ODBC ADO.NET provider through the System.Data.Oledb namespace
to interact with the other databases. The implementation is available as part of the source
code downloads.

The following diagram illustrates the abstract factories in action (though only one has been
labeled):

The adapter pattern powered API
The GOF Adapter pattern is useful for us in this context to provide a unified programming
model for the consumers of the sub system.

Targeting Multiple Databases

[77]

The Adapter pattern is a structural pattern which works as a bridge
between different interfaces or different implementations of an interface.
In our case, we will use the adapter pattern as a bridge between
application developers and various implementations of
DbAstractFactory.

We need to create an Application Program Interface (API) for the application software
developer to leverage different implementations based on a configuration entry. We will
create a C# interface, which an adapter class needs to implement, to act as an API. At this
point in time, we have only one instance of the adapter class. In future, we can have
adapters for different scenarios:

 public interface IDbEngineAdapter
 {
 bool Open();
 DataSet Execute(string SQL);
 IDataReader ExecuteQuery(string SQL);
 bool ExecuteNonQuery(string SQL);
 Boolean Close();
 }

The adapter class Implementation
We will implement an adapter class which will help us to seamlessly integrate multiple
database engines with our application. For implementing the adapter class, we will leverage
the object factory (ObjectFactory) implementation from the previous chapter:

 public class DbEngineAdapter : IDbEngineAdapter
 {
 static ObjectFactory of = new ObjectFactory("DbDrivers.xml");
 private IDbConnection _con = null;
 private IDbCommand _cmd = null;
 private DbAbastractFactory df = null;
 private string _constr;
 private string _driver;

We leverage the factory method infrastructure created in Chapter 3, A Logging Library to
help instantiate the proper concrete implementation of DbAstractFactory. The
DbDrivers.xml configuration file contains the necessary information to instantiate the
concrete classes:

 public DbEngineAdapter(string constr, string driver)
 {
 _constr = constr;

Targeting Multiple Databases

[78]

 _driver = driver;
 //----- Instantiate the correct concrete class
 //----- based on the driver
 df = (DbAbastractFactory)of.Get(driver, "prototype");
 }

The constructor takes two parameters, that is, connection string and driver name. Using the
driver name as the key, the appropriate implementation of ADO.NET will be instantiated:

 public bool Open()
 {
 try
 {
 if (_con != null || df == null || _constr == null)
 {
 return false;
 }
 //------ Create Connection Object
 _con = df.CreateConnection(_constr);
 if (_con == null)
 return false;
 _con.Open();
 return true;
 }
 catch (Exception e)
 {
 e.ToString();
 return false;
 }
 }

The Open method creates the connection object through the abstract factory concrete
implementation. Once the connection object has been created, the ADO.NET connection is
opened. The application developer should then make a call to Open method of the current
class before calling any other method:

 public DataSet Execute(string SQL)
 {
 try
 {
 if (_con == null || df == null || _cmd != null)
 {
 return null;
 }
 _cmd = df.CreateCommand(_con, SQL);
 IDbDataAdapter da = df.CreateDbAdapter(_cmd);
 if (da == null) { return null; }
 DataSet ds = new DataSet();

Targeting Multiple Databases

[79]

 da.Fill(ds);
 return ds;
 }
 catch (Exception e)
 {
 e.ToString();
 return null;
 }
 }

The Execute method helps one to dispatch an SQL string to the selected database engine,
and returns a dataset. This method is also used for disconnected access where an
application wants to retrieve a small set of data to be populated in a user interface:

 public IDataReader ExecuteQuery(string SQL)
 {
 try
 {
 if (_con == null || df == null || _cmd != null) { return
 null;}
 _cmd = df.CreateCommand(_con, SQL);
 if (_cmd == null) { return null; }
 IDataReader rs = df.CreateDataReader(_cmd);
 return rs;
 }
 catch (Exception e)
 {
 e.ToString();
 return null;
 }
 }

The ExecuteQuery method helps one to dispatch an SQL query to a database, and retrieve
a data reader object which will help one to navigate one record at a time. This is called
cursor-based access, and is suitable for queries which return a large dataset:

 public bool ExecuteNonQuery(string SQL)
 {
 try
 {
 if (_con == null || df == null || _cmd != null)
 return false;
 _cmd = df.CreateCommand(_con,SQL);
 if (_cmd == null) { return false; }
 _cmd.ExecuteNonQuery();
 return true;
 }
 catch (Exception e)

Targeting Multiple Databases

[80]

 {
 e.ToString();
 return false;
 }
 }

The ExecuteNonQuery method is meant to insert, update, or delete records from the table.
It does not return any value. In other words, the method is called for mutable operations on
a relational database:

 public Boolean Close()
 {
 if (_con != null)
 {
 _con.Close();
 _con = null;
 return true;
 }
 return false;
 }
 }

The Close method, as indicated, closes the database connection. The adapter class can be
instantiated inside the application code using the following schema. All we need is a
connection string and a driver name (SQLITE, SQLSERVER, and so on) to instantiate the
object. Once we have instantiated the object, we can dispatch an arbitrary query against the
chosen database engine as indicated in the following code:

 DbEngineAdapter db =
 new DbEngineAdapter(connstr,driver);
 if (db.Open())
 {
 bool result = db.ExecuteNonQuery(query);
 }
 db.Close();

The adapter configuration
The drivers for the respective database engines are configured via an XML file
(DbDrivers.xml) as follows:

 <?xml version="1.0"?>
 <entries>
 <entry key ="SQLITE" value="Chapter4_Example.SQLiteDbFactory"/>
 <entry key="SQLSERVER"

Targeting Multiple Databases

[81]

 value="Chapter4_Exanple.SQLServerDbFactory"/>
 <entry key="NULL" value ="Chapter4_Example.NULLDbFactory"/>
 </entries>

When we want to target a new database, we need to create a concrete class which
implements the abstract factory interface, and add an entry to this configuration file.

The client program
We can write a client program to test this logic. The code for inserting an entry to a database
of your choice is given next. We have chosen SQLite initially for the sake of simplicity. Since
SQLite is a server-less database engine, we can embed an SQLite DB as part of our project:

 static void TestInsert(string connstr, string driver)
 {
 DbEngineAdapter db =
 new DbEngineAdapter(connstr,driver);
 //----- a Test Log Entry
 string test = "Log value is " + Math.PI * 1999;
 if (db.Open())
 {
 string query = "INSERT INTO logs VALUES('" +
 test + "');";
 bool result = db.ExecuteNonQuery(query);
 }
 db.Close();
 return;
 }

To retrieve data from a table, we can use either the disconnected recordset model or cursor
model. When we are dealing with large datasets, especially for reports, using the cursor
model is preferred. For scenarios where we need to edit a small set of data through some
control, a disconnected set is preferred. The following code demonstrates how one can use
the disconnected recordset for retrieving the data:

 static void TestDataSet(string connstr, string driver)
 {
 IDbEngineAdapter db =
 new DbEngineAdapter(connstr,driver);
 if (db.Open())
 {
 string query = "SELECT * from logs";
 DataSet ds = db.Execute(query);
 DataTable dt = ds.Tables[0];
 int i = 0;

Targeting Multiple Databases

[82]

 int max = dt.Rows.Count;
 while (i < max)
 {
 DataRow dr = dt.Rows[i];
 Console.WriteLine(dr[0]);
 i++;
 }
 }
 db.Close();
 return;
 }

The DataReader interface of ADO.NET is meant for cursor-based access to the database.
This helps one to iterate through the data which satisfies some criteria. Reporting
applications are a typical use case for cursor-based access:

 static void TestDataReader(string connstr, string driver)
 {
 IDbEngineAdapter db =
 new DbEngineAdapter(connstr,driver);
 string query = "select * from logs";
 if (db.Open())
 {
 IDataReader reader = db.ExecuteQuery(query);
 while(reader.Read())
 {
 Console.WriteLine(reader.GetString(1));
 }
 }
 db.Close();
 }

The Main program which invokes these helper routines is given next. The initial code
snippet shows how to use SQLite as a target database:

 static void Main(string[] args)
 {
 TestInsert(@"Data Source=./Logstorage.db", "SQLITE");
 TestDataSet(@"Data Source=./Logstorage.db", "SQLITE");
 TestDataReader(@"Data Source=./Logstorage.db", "SQLITE");
 }

Targeting Multiple Databases

[83]

To use the SQL Server, one needs to make changes to the connection string. Since the
connection string is specific to the SQL Server installation (which a reader will have), the
general scheme of invoking the program is the following:

 static void Main(string[] args)
 {
 TestInsert(@"sqlserverconnstring", "SQLSERVER");
 TestDataSet(@"sqlserverconnstring", "SQLSERVER");
 TestDataReader(@"sqlserverconnstring", "SQLSERVER");
 }

The following UML diagram illustrates the key set of patterns in action for the Database
Access Library (DAL) API that we have built:

Targeting Multiple Databases

[84]

Summary
In this chapter, we created a reusable DAL to target different relational database offerings
available for persistence. The library leverages the Microsoft ADO.NET programming
model to implement database-agnostic persistence. In the process, you learned about the
abstract factory pattern, adapter pattern, and revisited factory method pattern. You also
understood the difference between the factory method and the abstract factory pattern. In
the next chapter, we will write a document object library which will help one save data
contents to different formats like PDF, SVG, and HTML. In that process, you will learn
about the composite design pattern and visitor pattern.

5
Producing Tabular Reports

In this chapter, we will create a library that will help application developers to create
tabular reports using a custom Document Object Model (DOM), created for this purpose.
The tree-structured document object model will be traversed to produce output in the
Adobe® Portable Document Format (PDF) and HTML format. Support for new target
formats would be seamless, with developers writing handlers for those. For PDF output, we
plan to use the open source iTextSharp library. During the course of this chapter, as a
reader, you will learn the following:

Defining an object model for documents
The composite pattern for modeling part/whole relationship
Producing PDF documents by leveraging the iTextSharp library
The visitor pattern and composite object traversal

Requirements for the library
Before we embark on writing the library, let us scribble down a preliminary requirements
statement as follows:

For a large class of business applications, we require tabular reports in various formats. The
popular choice for output formats are PDF, HTML, SVG, and so on. We should create a
library to produce tabular output in these formats. The library should define a unified
programming model, and serve as an API for the developers. The contents of the
documents and its tables should be separated from the processing layer to incorporate
future output drivers.

Producing Tabular Reports

[86]

Solutions approach
Before writing the code, let us step back a bit to enumerate the details of the requirements.
The library which we are planning to write should have the following:

Support for various output formats like HTML, PDF, and so on
An object model for storing the contents of the table
A unified programming model and API for developers
Separate content and it's processing
The ability to write new pluggable output processors (drivers)

We will start by creating a hierarchy of elements for storing document contents. A simple
hierarchy which has been conceived is as follows:

We will encode our content in a tree-structured document model. For the sake of simplicity,
we have reduced the number of document elements. In an industrial strength
implementation of this library, we will have many more elements. We can create tables
within tables in this scheme, as we allow nested tables. Before we get into the
implementation of the aforementioned hierarchy, we will look into the specifics of the
creation of a PDF document using an open source library.

Producing Tabular Reports

[87]

iTextSharp for the PDF output
To produce the output of a document in the PDF format, we plan to use the .NET version of
the open source iText library.

The library can be downloaded from the iTextSharp website at the
following address: https://www.nuget.org/packages/iTextSharp/.

A simple program, which produces a PDF document using the library, is given next to
make the reader understand the programming model of this library:

 using iTextSharp;
 using iTextSharp.text;
 using iTextSharp.text.pdf;
 //------some code omitted
 FileStream fs = new FileStream(@"D:\ab\fund.pdf",
 FileMode.Create);
 Document document = new Document(PageSize.A4, 25, 25, 30, 30);
 PdfWriter writer = PdfWriter.GetInstance(document, fs);
 document.AddAuthor("Praseed Pai");
 document.AddCreator("iTextSharp PDF Library");
 document.AddTitle("PDF Demo");
 document.Open();
 PdfPTable table = new PdfPTable(2);
 PdfPCell cell = new PdfPCell(new Phrase("A Header which spans
 Columns"));
 cell.Colspan = 3;
 cell.HorizontalAlignment = 1;
 table.AddCell(cell);
 table.AddCell("Col 1 Row 1");
 table.AddCell("Col 2 Row 1");
 table.AddCell("Col 3 Row 1");
 table.AddCell("Col 1 Row 2");
 table.AddCell("Col 2 Row 2");
 table.AddCell("Col 3 Row 2");
 document.Add(table);
 document.Close();
 writer.Close();
 fs.Close();

The preceding code will produce a PDF document with the contents given to the iTextsharp
library through the iTextSharp API. Now we will focus on the creation of a DOM for storing
our contents.

https://www.nuget.org/packages/iTextSharp/

Producing Tabular Reports

[88]

Composite and visitor pattern – A quick
primer
Whenever we deal with hierarchies like W3C DOM, document formats, graphics database
or abstract syntax tree (AST) of a compiler, we create part/whole relationship. The GoF
composite pattern is natural choice for creating hierarchies. Building hierarchies and its
processing can be separated using GoF visitor pattern. The visitor pattern visits each node
in the hierarchy and perform some action on the node. In a compiler, the tree representation
of a program will be processed for type checking, code generation, trans compilation
(source to source transformation) and so on. Sometimes people would like to perform
additional activities on the tree. It is not feasible to add methods for processing the nodes
within a node. Whenever a programmer wants a new method, we are forced to change
every node in the hierarchy. A mechanism is necessary for processing to be decoupled from
the nodes in a hierarchy. When we use visitor pattern, the nodes within the hierarchy
becomes a container for data alone. We will write an expression composite to model a four
function calculator to demonstrate the composite and visitor:

 public enum OPERATOR
 {
 //--- supports +,-,*/
 PLUS,MINUS,MUL,DIV
 }
 /// <summary>
 /// Base class for all Expression
 /// supports accept method to implement
 /// so called "Double Dispatch". Search for
 /// "Double Dispatch" and Visitor to understand more
 /// about this strategy
 /// </summary>
 public abstract class Expr
 {
 //------ Whenever we start traversal, we will start from
 //------ the topmost node of a hierarchy and
 //-------descends down the heirarchy
 //------ The Visitor will call the accept method of a node
 //------ and node will reflect it back to concrete class
 //------ using Visit method. Thus Visitor dispatches the
 //------ call to a node and node dispatches it back to the
 //-------visit method of the Visitor. This is called a
 //------ a double dispatch
 public abstract double accept(IExprVisitor expr_vis);
 }

Producing Tabular Reports

[89]

The hierarchy for an expression is

Expr

Number

BinaryExpr

UnaryExpr

 /// <summary>
 /// Our Visitor Interface. The Purpose of seperating Processing
 /// Of Nodes and Data Storage (heirarchy) is for various
 /// transformations on the composites created.
 /// </summary>
 public interface IExprVisitor
 {
 double Visit(Number num);
 double Visit(BinaryExpr bin);
 double Visit(UnaryExpr un);
 }

The following class will store an IEEE 754 double precision floating point value. Our
evaluator will handle only constants, as an expression evaluator which supports variables
will take additional effort and won't serve our primary purpose of demonstrating the
composite and visitor pattern:

 /// <summary>
 /// Class Number stores a IEEE 754 doouble precision
 /// floating point
 /// </summary>
 public class Number : Expr
 {
 public double NUM { get; set; }
 public Number(double n) { this.NUM = n; }
 public override double accept(IExprVisitor expr_vis)
 {
 return expr_vis.Visit(this);
 }
 }

Producing Tabular Reports

[90]

Now that we have created the Number node, we should create a node to compose values
through a binary operator. The binary operators supported are +, -, /, * and the class has
been named BinaryExpr:

 /// <summary>
 /// Class BinaryExpr models a binary expression of
 /// the form <Operand> <OPER> <Operand>
 /// </summary>
 public class BinaryExpr : Expr
 {
 public Expr Left { get; set; }
 public Expr Right { get; set; }
 public OPERATOR OP { get; set; }
 public BinaryExpr(Expr l,Expr r,OPERATOR op){
 Left = l; Right = r; OP = op;
 }
 public override double accept(IExprVisitor expr_vis)
 {
 //----- When this method gets invoked by a Concrete
 //----- implementation of Visitor, the call is routed
 //----- back to IExprVisitor.Visit(BinaryExpr)
 return expr_vis.Visit(this);
 }
 }

The following class implements unary expression node. We support unary operators + and
-, in our evaluator:

 /// <summary>
 /// Class UnaryExpr models a unary expression of the form
 /// <OPER> <OPERAND>
 /// </summary>
 public class UnaryExpr : Expr {
 public Expr Right;
 public OPERATOR OP;
 public UnaryExpr (Expr r,OPERATOR op) {
 Right = r; OP = op;
 }
 public override double accept(IExprVisitor expr_vis)
 {
 //----- When this method gets invoked by a Concrete
 //----- implementation of a Visitor, the call is routed
 //----- back to IExprVisitor.Visit(UnaryExpr)
 return expr_vis.Visit(this);
 }
 }

Producing Tabular Reports

[91]

We have defined a expression hierarchy which can be composed to form arithmetical
expressions of arbitrary complexity. Our nodes store only data and references to child
nodes. The processing of nodes are decoupled from the node proper, using visitor pattern.
Let us see couple of examples which we can use to compose arithmetical expression. As an
example, let us see how we can store the expression 1+2 using our composites:

 Expr first = new BinaryExpr(
 new Number(1),
 new Number(2),
 OPERATOR.PLUS);

The expression 2+3*4 can be encoded as:

 Expr r = new BinaryExpr(new Number(2),
 new BinaryExpr(
 new Number(3),
 new Number(4),
 OPERATOR.MUL),
 OPERATOR.PLUS);

We can compose expressions of arbitrary complexity using this method. Now, we will see
how we can process these composites using the visitor pattern. As an example, we will
write a visitor which generates Reverse Polish Notation (RPN) from our expression tree.
RPN is also called postfix notation and are used in some calculators and Forth
programming language. Read more about RPN from the Internet.

 /// <summary>
 /// A Visitor implementation which converts Infix expression to
 /// a Reverse Polish Notation (RPN)
 /// </summary>
 public class ReversePolishEvaluator : IExprVisitor
 {
 public double Visit(Number num)
 {
 //------ Spit the number to the console
 Console.Write(num.NUM+ " ");
 return 0;
 }
 public double Visit(BinaryExpr bin)
 {
 //------ Traverse the Left Sub Tree followed
 //------ By Right Sub Tree. We follow a Depth
 //------ First Traversal
 bin.Left.accept(this);
 bin.Right.accept(this);
 //----- After Nodes has been processed, spit out
 //----- the Operator

Producing Tabular Reports

[92]

 if (bin.OP == OPERATOR.PLUS)
 Console.Write(" + ");
 else if (bin.OP == OPERATOR.MUL)
 Console.Write(" * ");
 else if (bin.OP == OPERATOR.DIV)
 Console.Write(" / ");
 else if (bin.OP== OPERATOR.MINUS)
 Console.Write(" - ");
 return Double.NaN;
 }
 public double Visit(UnaryExpr un)
 {
 //-------- In a Unary Expression we have got
 //-------- only a sub tree, Traverse it
 un.Right.accept(this);
 //-------- Spit the operand to the Console.
 if (un.OP == OPERATOR.PLUS)
 Console.Write(" + ");
 else if (un.OP == OPERATOR.MINUS)
 Console.Write(" - ");
 return Double.NaN;
 }
 }

The above class can be invoked as follows. We will show how one can convert the
expression 2+3*4 to 2 3 4 * +. Let us encode the expression using our expression hierarchy as
follows:

 Expr r = new BinaryExpr(new Number(2),
 new BinaryExpr(
 new Number(3),
 new Number(4),
 OPERATOR.MUL),
 OPERATOR.PLUS);

The expression hierarchy composed above can be traversed by ReversePolishEvaluator
to produce 2 3 4 * + as follows:

 IExprVisitor visitor =
 new ReversePolishEvaluator();
 second.accept(visitor);

The whole purpose of creating an expression tree to evaluate it. We will write a stack based
expression evaluator to demonstrate the use of visitor pattern:

 /// <summary>
 /// A Visitor which evaluates the Infix expression using a Stack
 /// We will leverage stack implementation available with .NET

Producing Tabular Reports

[93]

 /// collections API
 /// </summary>
 public class StackEvaluator : IExprVisitor
 {
 //------- A stack to store double values
 //------- .NET Framework has got a stack implementation!
 private Stack<double> eval_stack = new Stack<double>();
 //---- return the computed value
 //---- implementation does not do any error check
 public double get_value() { return eval_stack.Pop(); }

 public StackEvaluator() { eval_stack.Clear(); }
 public double Visit(Number num)
 {
 //---- whenever we get an operand
 //---- push it to the stack
 eval_stack.Push(num.NUM);
 return 0;
 }
 public double Visit(BinaryExpr bin)
 {
 bin.Left.accept(this);
 bin.Right.accept(this);
 //--- We have processed left and right sub tree
 //--- Let us pop values, apply the operator
 //--- and push it back
 if (bin.OP == OPERATOR.PLUS)
 eval_stack.Push(eval_stack.Pop() + eval_stack.Pop());
 else if (bin.OP == OPERATOR.MUL)
 eval_stack.Push(eval_stack.Pop() * eval_stack.Pop());
 else if (bin.OP == OPERATOR.DIV)
 {
 double dval = eval_stack.Pop();
 if (dval == 0)
 {
 //--- handle division by zero error
 //--- throw an exception
 }
 eval_stack.Push(eval_stack.Pop()/dval);
 }
 else if (bin.OP == OPERATOR.MINUS)
 eval_stack.Push(eval_stack.Pop() - eval_stack.Pop());
 return Double.NaN;
 }
 public double Visit(UnaryExpr un)
 {
 un.Right.accept(this);
 if (un.OP == OPERATOR.PLUS)

Producing Tabular Reports

[94]

 eval_stack.Push(eval_stack.Pop());
 else if (un.OP == OPERATOR.MINUS)
 eval_stack.Push(-eval_stack.Pop());
 return Double.NaN;
 }
 }

The above stack evaluator can be invoked as follows:

 Expr third = new BinaryExpr(new Number(2),
 new BinaryExpr(
 new Number(3),
 new Number(4),
 OPERATOR.MUL),
 OPERATOR.PLUS);

 StackEvaluator seval = new StackEvaluator();
 third.accept(seval);
 Console.WriteLine(seval.get_value());
 Console.WriteLine();

We have finished our discussion on visitor and composite pattern. In the above example,
we defined a small hierarchy to compose mathematical expressions and processed it using
visitor classes which traversed the composite to produce RPN expression and evaluate it
using a stack. This technique is widely used wherever one is supposed to process a
hierarchy. Let us focus on how to create a document hierarchy and process it.

The composite pattern and document
composition
While representing part-whole hierarchies (tree-structured), the composite design pattern
describes a group of objects to be treated in a uniform manner, as if the leaf node and
interior nodes are instances of the same object. A document object can contain multiple
tables, and we can nest tables as well. This is an instance of a part-whole hierarchy, and
composite design pattern is a natural choice here. To create a composite, we need to declare
a base class, and all objects should be derived from this base class:

 public abstract class TDocumentElement
 {
 public List<TDocumentElement> DocumentElements { get; set; }
 //------ The method given below is for implementing Visitor
 Pattern
 public abstract void accept(IDocumentVisitor doc_vis);
 //--- Code Omitted

Producing Tabular Reports

[95]

 public TDocumentElement()
 {
 DocumentElements = new List<TDocumentElement>(5);
 this.Align = alignment.LEFT;
 this.BackgroundColor = "0xFF000000L";
 }
 //---- Code Omitted
 public void addObject(TDocumentElement value)
 {
 if (value != null)
 DocumentElements.Add(value);
 }
 public Boolean removeObject(TDocumentElement value)
 {
 if (value != null)
 {
 DocumentElements.Remove(value);
 return true;
 }
 return false;
 }
 //----- Code Omitted
 }

The TDocumentElement class acts as a base class for all the classes in the object model.
Please note the following two important things about the TDocumentElement class:

The first one is the DocumentElements property. Every TDocumentElement has
a list of TDocumentElement to store its child objects. This means, we can insert a
list of concrete objects which implements TDcoumentElement as a child. Using
this technique, we can compose a document hierarchy of arbitrary complexity.
The second thing is the presence of an abstract method called accept. The
accept method is a mechanism by which we will be able to separate the
operations on node and the node data structure. We will learn more about the
semantics of the accept method in a later section.

The topmost class in the hierarchy is TDocument, which acts as a container for a hierarchical
collection of the TDocumentElement derived class. The class will store all the child contents
(concrete classes of base type TDocumentElement) to be embedded inside the document.

 public class TDocument : TDocumentElement
 {
 public string Title {get;set;}
 public string BackGroundImage { get; set;}
 public string TextColor { get; set;}

Producing Tabular Reports

[96]

 public string LinkColor {get;set;}
 public string Vlink { get; set;}
 public string Alink {get;set;}
 public int ColumnCount { get; set;}
 public override void accept(IDocumentVisitor doc_vis)
 {
 doc_vis.visit(this);
 }
 public TDocument(int count=1)
 {
 this.ColumnCount = count;
 this.Title = "Default Title";
 }
 }

Application developers can leverage the addObject method available in the
TDocumentElement class to add contents to TDocument. In our canned example, the most
obvious choice is a list of tables. The accept method makes a call to the visitor's visit
method with the TDocument instance (this) as a parameter. This will hit the
visit(TDocument) method implemented in a class, which implements the
IDocumentVisitor interface. More on visitor pattern and its implementation is available
in a later section.

The TDocumentTable models a table object, which can be embedded inside a document.
Since the TDocumentTable object inherits from TDocumentElement, we can add any
TDocumentElement derived class as a child. With this technique, we can embed objects of
arbitrary complexity. But, for our library, an Instance of TDocumentTable is the natural
choice as the first child of the TDocument object.

 public class TDocumentTable : TDocumentElement
 {
 public string Caption {get;set; }
 public int Width { get;set; }
 public int Border { get; set; }
 public int CellSpacing { get;set;}
 public int Cellpadding { get; set; }
 public Boolean PercentageWidth { get;set; }
 public String bgColor {get; set; }

 public int RowCount
 {
 get
 {
 return this.DocumentElements.Count;
 }
 }

Producing Tabular Reports

[97]

 public override void accept(IDocumentVisitor doc_vis)
 {
 doc_vis.visit(this);
 }

 public TDocumentTable()
 {
 }
 }

Inside a table, we store data as a series of rows, and the class for storing information is
appropriately named TDocumentTableRow. We can insert another table as a child as well.
One can embed a table within a table. For the sake of brevity, we have not included that
feature in the current implementation. If we need to support nested tables, we need to
incorporate a data structure called scope tree. The listing of such an implementation cannot
be conveniently included in a book.

 public class TDocumentTableRow : TDocumentElement
 {
 public TDocumentTableRow(){}
 public override void accept(IDocumentVisitor doc_vis)
 {
 doc_vis.visit(this);
 }
 }

A row is a collection of cells, and inside each cell, we can store arbitrary text. It is possible to
store an image as well, but, for the sake of brevity, we have limited the cell contents to text.
The image or another content type can be incorporated very easily following the schema
used for text.

 public class TDocumentTableCell : TDocumentElement
 {
 public int ColumnSpan { get; set; }
 public alignment Horizontal { get; set; }
 public alignment Vertical { get; set; }
 public alignment Type { get; set; }
 public TDocumentTableCell()
 {
 this.ColumnSpan = 1;
 this.Horizontal = alignment.LEFT;
 this.Vertical = alignment.MIDDLE;
 this.Type = alignment.DATA;
 }
 public override void accept(IDocumentVisitor doc_vis)
 {
 doc_vis.visit(this);

Producing Tabular Reports

[98]

 }
 }

Every cell in the table contains a text item for our implementation. We model the text using
the TDocumentText class. In this class, the Text property is used to store and load text.

 public class TDocumentText : TDocumentElement
 {
 public string Text { set;get; }
 public Boolean Bold {get;set;}
 public Boolean Italic {get;set;}
 public Boolean Underline { get; set; }
 public Boolean Center {get;set;}
 public Boolean Preformatted { get; set; }
 public string Color { get; set; }
 public Boolean Font {get;set;}

 public TDocumentText(string value = null)
 {
 this.Text = value;
 }

 public override void accept(IDocumentVisitor doc_vis)
 {
 doc_vis.visit(this);
 }
 }

Thus, we have defined our DOM. You can see the UML representation of the composite
pattern in action in the following diagram:

Producing Tabular Reports

[99]

Now we need to create a mechanism to traverse the hierarchy to produce the output of our
choice.

Visitor pattern for document traversal
The tree-structured DOM created by us needs to be traversed to produce the content in an
output format like HTML, PDF, or SVG.

The composite tree created by us can be traversed using the GoF visitor
pattern. Wherever composite pattern is used for composing an hierarchy
of objects, the visitor pattern is a natural choice for the traversal of the tree.

In a visitor pattern implementation, every node in the composite tree will support a method
called accept, which takes a visitor concrete class as a parameter. The job of the accept
routine is to reflect the call to the appropriate visit method in the visitor concrete class. We
declare an interface named IDocumentVisitor with methods for visiting each of the
elements in our hierarchy as follows:

 public interface IDocumentVisitor
 {
 void visit(TDocument doc);
 void visit(TDocumentTable table);
 void visit(TDocumentTableRow row);
 void visit(TDocumentTableCell cell);
 void visit(TDocumentText txt);
 }

The traversal of the tree should start from the top node of the tree. In our case, we start the
traversal from the TDocument node. For each node in the hierarchy, we will add an accept
method, which takes an instance of IDocumentVisitor. The signature of this function is as
follows:

 public abstract class TDocumentElement
 {
 //--- code omitted
 public abstract void accept(IDocumentVisitor doc_vis);
 //--- code omitted
 }

Producing Tabular Reports

[100]

Each element of the document node which derives from TDocumentElement needs to have
an implementation of this method. For example, the body of the TDocument class is as
follows:

 public class TDocument : TDocumentElement
 {
 //----- code omitted
 public override void accept(IDocumentVisitor doc_vis)
 {
 doc_vis.visit(this);
 }
 //------ code omitted
 }

In the TDocument class, the accept method will reflect the call to the IDocumentVisitor
visit(TDocument) method implemented by the Visitor class. In the Visitor class, for
each node inserted as a child, a call to the accept method of the respective nodes will be
triggered. Each time the call gets reflected back to the appropriate visit method of the
Visitor class. In this manner, the accept/visit pair processes the whole hierarchy.

The traversal starts with the TDocument accept method, as follows:

 string filename = @"D:\ab\fund.pdf";
 ds.accept(new PDFVisitor(filename));

The ds object is of type TDocument, and the accept method takes an instance of the
IDocumentVisitor interface. In the document object, the call gets reflected to the
IDocumentVisitor visit(TDocument) method.

PDFVisitor for PDF generation
We have defined our object hierarchy and an interface to traverse the hierarchy. Now we
need to implement routines to traverse the tree. The PDFVisitor class implements the
IDocumentVisitor interface, as shown in the following code snippet:

 public class PDFVisitor : IDocumentVisitor
 {
 private string file_name = null;
 private PdfWriter writer = null;
 private Document document = null;
 private PdfPTable table_temp = null;
 private FileStream fs = null;
 private int column_count;

Producing Tabular Reports

[101]

 public PDFVisitor(string filename)
 {
 file_name = filename;
 fs = new FileStream(file_name, FileMode.Create);
 document = new Document(PageSize.A4, 25, 25, 30, 30);
 writer = PdfWriter.GetInstance(document, fs);
 }

The visit method, which takes TDocument as a parameter, adds some metadata to the
PDF document being created. After this operation, the method inspects all the child
elements of TDocument, and issues an accept method call with the current visitor instance.
This invokes the accept method of the concrete class of TDocumentElement embedded as
a child object:

 public void visit(TDocument doc)
 {
 document.AddAuthor(@"Praseed Pai & Shine Xavier");
 document.AddCreator(@"iTextSharp Library");
 document.AddKeywords(@"Design Patterns Architecture");
 document.AddSubject(@"Book on .NET Design Patterns");
 document.Open();
 column_count = doc.ColumnCount;
 document.AddTitle(doc.Title);

 for (int x = 0; x < doc.DocumentElements.Count; x++)
 {
 try
 {
 doc.DocumentElements[x].accept(this);
 }
 catch (Exception ex)
 {
 Console.Error.WriteLine(ex.Message);
 }
 }
 document.Add(this.table_temp);
 document.Close();
 writer.Close();
 fs.Close();

Producing Tabular Reports

[102]

The TDocumentTable object will be handled by the visit method in a similar fashion.
Once we have worked with the node, all the children stored in DocumentElements will be
processed by invoking the accept method of each of the node element embedded inside
the table:

 public void visit(TDocumentTable table)
 {
 this.table_temp = new PdfPTable(column_count);
 PdfPCell cell = new
 PdfPCell(new Phrase("Header spanning 3 columns"));
 cell.Colspan = column_count;
 cell.HorizontalAlignment = 1;
 table_temp.AddCell(cell);
 for (int x = 0; x < table.RowCount; x++)
 {
 try
 {
 table.DocumentElements[x].accept(this);
 }
 catch (Exception ex)
 {
 Console.Error.WriteLine(ex.Message);
 }
 }
 }

Mostly, an instance of TDocumentTableRow is included as a child of TDocumentTable. For
our implementation, we will navigate to all the children of a row object, issuing accept calls
to the respective nodes:

A table is a collection of rows, and a row is a collection of cells. Each of the
cells contains some text. We can add a collection of text inside a cell as
well. Our implementation assumes that we will store only one text.

 public void visit(TDocumentTableRow row)
 {
 for (int I = 0; i < row.DocumentElements.Count; ++i)
 {
 row.DocumentElements[i].accept(this);
 }
 }

Producing Tabular Reports

[103]

To process TDocumentTableCell, we iterate through all the child elements of a cell, and
these elements are instances TDocumentText. For the sake of brevity, we have included an
attribute called Text to store the contents of a cell there:

 public void visit(TDocumentTableCell cell)
 {
 for (int i = 0; i < cell.DocumentElements.Count; ++i)
 {
 cell.DocumentElements[i].accept(this);
 }
 }

The TDocumentText class has a property by the name of Text, where an application
developer can store some text. That will be added to the table:

 public void visit(TDocumentText txt)
 {
 table_temp.AddCell(txt.Text);
 }
 }

HTMLVisitor for HTML generation
The HTMLVisitor class produces HTML output by traversing the DOM. The skeleton
implementation of HTMLVisitor is as follows:

 public class HTMLVisitor : IDocumentVisitor
 {
 private String file_name = null;
 private StringBuilder document = null;
 public HTMLVisitor(string filename) {
 file_name = filename;
 }
 //--- Code omitted for all methods
 public void visit(TDocument doc){}
 public void visit(TDocumentTable table){}
 public void visit(TDocumentTableRow row) {}
 public void visit(TDocumentTableCell cell) {}
 public void visit(TDocumentText txt) {}
 }

The HTMLVisitor class can be leveraged as follows:

 string filename = @"D:\ab\fund.html";
 ds.accept(new HTMLVisitor(filename));

Producing Tabular Reports

[104]

The client program
A simple program which leverages the DOM is given next. We create a TDocument object as
a top-level node, and add the rest of the document contents as child nodes to the respective
classes:

 static void DocumentRender()
 {
 TDocument ds = new TDocument(3);
 ds.Title = "Multiplication Table";
 TDocumentTable table = new TDocumentTable();
 table.Border = 1;
 table.Width = 100;
 table.BackgroundColor = "#EFEEEC";
 TDocumentTableRow row = null;
 row = new TDocumentTableRow();

 TDocumentText headtxt = new TDocumentText("Multiplicand");
 headtxt.Font = true;
 headtxt.Color = "#800000";
 TDocumentTableCell cell = null;
 cell = new TDocumentTableCell(alignment.HEADING);
 cell.addObject(headtxt);
 row.addObject(cell);

 headtxt = new TDocumentText("Multiplier");
 headtxt.Color = "#800000";
 cell = new TDocumentTableCell(alignment.HEADING);
 cell.addObject(headtxt);
 row.addObject(cell);
 headtxt = new TDocumentText("Result");
 headtxt.Color = "#800000";
 cell = new TDocumentTableCell(alignment.HEADING);
 cell.addObject(headtxt);
 row.addObject(cell);
 table.addObject(row);

 int a = 16;
 int j = 1;

 while (j <= 12)
 {
 row = new TDocumentTableRow();
 cell = new TDocumentTableCell(alignment.DATA);
 cell.addObject(new TDocumentText(a.ToString()));
 row.addObject(cell);
 cell = new TDocumentTableCell(alignment.DATA);

Producing Tabular Reports

[105]

 cell.addObject(new TDocumentText(j.ToString()));
 row.addObject(cell);
 cell = new TDocumentTableCell(alignment.DATA);
 int result = a * j;
 cell.addObject(new TDocumentText(result.ToString()));
 row.addObject(cell);
 table.addObject(row);
 j++;
 }
 ds.addObject(table);

 string filename =
 @"D:\ab\fund.pdf";
 ds.accept(new PDFVisitor(filename));

 string filename2 =
 @"D:\ab\fund.html";
 ds.accept(new HTMLVisitor(filename2));
 }

Summary
In this chapter, we created a library for producing tabular reports in various formats. In the
process, we learned about creating arbitrary hierarchies of objects in a tree-structured
manner. We leveraged the composite pattern to implement our hierarchy. The composites
were processed using the visitor pattern. We dealt with PDF and HTML output by writing
PDFVisitor and HTMLVisitor classes. Incorporating a new output format is just a matter
of writing a new visitor (say, SVGVisitor), where one needs to map the contents of the
document to the appropriate SVG tags. In the next chapter, we will learn about the
interpreter pattern and the observer pattern by implementing a library that will help us plot
arbitrary expressions as graphs.

6
Plotting Mathematical

Expressions
In this chapter, we will create an application which will plot arbitrary mathematical
expressions on a Windows Presentation Foundation (WPF)-based graphical surface. We
will be using the GoF observer pattern for wiring expression input control and the
rendering surface. In the process, we will develop a library which can evaluate arbitrary
arithmetic expressions on the fly. The expression evaluator will support basic arithmetic
operators (+, -, *, /, unary +/-), trigonometric functions, and a pseudo variable ($t) which
can represent the value of X-axis in a 2D Plane. During the course of this chapter, as a
reader, you will learn the following:

The observer pattern
Parsing mathematical expressions using recursive descent
Modeling abstract syntax tree (AST) as a composite
The interpreter pattern
The builder pattern
Elementary WPF 2D graphics

Plotting Mathematical Expressions

[107]

Requirements for the expressions library
and app
Before we embark on writing the library, let us scribble down a preliminary requirement
statement, which is as follows:

The ability to plot the result of arbitrary mathematical expressions is a common
requirement for business applications. We need to parse an expression to evaluate the
resulting tree-structured representation. The process of lexical analysis, parsing, modeling
expression nodes, recursive evaluation, and so on should be opaque to the application
programmer. The library should support some trigonometric functions and a variable ($t)
to pass the information of the current X-coordinate of the graphics surface. The application
should evaluate the value of the Y-coordinate for each value of the X-coordinate passed to
the expression evaluation engine.

Solutions approach
We will divide the requirement into the two following parts:

A library for evaluating arbitrary mathematical expressions
An application which will consume the aforementioned library to plot data

The expression evaluator library requirements can be enumerated as follows:

Modeling expressions as AST
Writing a lexical analyzer
Writing a recursive descent parser
Depth first walk of the tree
Supporting trigonometric functions and pseudo variable ($)
Packaging everything as a facade pattern-based API

The application requirements can be enumerated as follows:

A screen with a WPF 2D graphics surface
A prompt for entering expressions
Implementation of the observer for detecting a new plot request
Passing the value to the expressions library for change in the X-coordinate value
Rendering the resulting value

Plotting Mathematical Expressions

[108]

The graph plotter application
The graph plotter application is a simple WPF application with a canvas and a textbox in
the frame. The following image gives a snapshot of the screen after the screen has rendered
the result of an expression:

The WPF canvas gets a notification whenever there is a change in the expression textbox. If
the expression in the textbox is valid, the graph will be plotted as shown in the preceding
image. We will deal with the nuances of implementing an expression evaluation engine in
the following sections. The following code snippet shows how the change in text gets
handled:

 public override void
 Observer_ExpressionChangedEvent(string expression)
 {
 MainWindow mw = this._ctrl as MainWindow;
 mw.Expr = expression;
 ExpressionBuilder builder = new
 ExpressionBuilder(expression);
 Exp expr_tree = builder.GetExpression();

 if (expr_tree != null)
 mw.Render();
 }

Plotting Mathematical Expressions

[109]

The observer pattern for UI events
We will use the GoF observer pattern to handle UI events in an automatic fashion. The
moment an expression gets changed in the textbox, the window should get a notification
about it, and if the expression is valid, the resulting expression will be rendered on the
screen.

While implementing the observer pattern, we have two classes-the
Subject class, which represents the event source, and the Observer class,
which is a list of observers (observer who are interested in listening to the
event. Whenever there is a change in the text, the Subject class which
represents the event source sends notification to all the sinks who have
subscribed to the event.

We have already mentioned that in the case of the observer pattern, we communicate
between the event source and event sinks. The event source is represented using the
Subject class, and the event sink is represented using an Observer class. Let us dissect the
implementation of the Observer class:

 public abstract class BaseObserver
 {
 protected delegate void
 ExpressionEventHandler(string expression);
 protected ExpressionEventHandler ExpressionChangedEvent;
 protected Control _ctrl = null;
 public abstract void Observer_ExpressionChangedEvent(string
 expression);

We declare a delegate which will act as an event handler, and to make the class handle all
the WPF controls, we mark the event subscriber as a WPF control. The concrete class can
hold any object derived from Control:

 public BaseObserver(Control ctrl)
 {
 this.ExpressionChangedEvent +=
 new ExpressionEventHandler(
 Observer_ExpressionChangedEvent);
 this._ctrl = ctrl;
 }

Plotting Mathematical Expressions

[110]

In the constructor, we initialize the delegate with an address of an abstract method. This
will automatically get wired to the concrete class implementation of the method. We are,
effectively, using the GoF template method pattern for the observer implementation. The
concrete class is mandated to implement the Observer_ExpressionChangedEvent
method:

 private void OnChange(string expression)
 {
 if (ExpressionChangedEvent != null)
 ExpressionChangedEvent(expression);
 }
 public void Update(string expression)
 {
 OnChange(expression);
 }
 }

Now, we will try to write the Subject class which acts as an event source. The Subject
class will iterate through the list of observers to dispatch the events which the observers are
interested in. Any change in the expression textbox will be relayed to the window object,
which acts as a receiver of the events:

 public class Subject
 {
 List<BaseObserver> observers = new List<BaseObserver>();
 private delegate void NotifyHandler(string expression);
 private event NotifyHandler NotifyEvent;

 public Subject(){
 this.NotifyEvent += new NotifyHandler(Notify);
 }

 public void UpdateClient(string expression){
 OnNotify(expression);
 }

 private void OnNotify(string expression){
 if (NotifyEvent != null)
 NotifyEvent(expression);
 }

 private void Notify(string expression){
 foreach (BaseObserver b in observers)
 b.Update(expression);
 }

 public void RegisterClient(BaseObserver obs){

Plotting Mathematical Expressions

[111]

 observers.Add(obs);
 }
 }

The BaseObserver class given in the preceding code snippet is an abstract class, and we
need to create a concrete class which implements Observer_ExpressionChangedEvent.
The concrete implementation listing is given as follows:

 class ExpressionObserver : BaseObserver
 {
 public ExpressionObserver(Window _win) :
 base(_win){ }

 public override void
 Observer_ExpressionChangedEvent(string expression)
 {
 MainWindow mw = this._ctrl as MainWindow;
 mw.Expr = expression;
 ExpressionBuilder builder = new
 ExpressionBuilder(expression);
 Exp expr_tree = builder.GetExpression();

 if (expr_tree != null)
 mw.Render();
 }
 }

Let us see how we can connect the Subject and Observer class. See the MainWindow.cs
module in the source code associated with this book. A snippet of the code is given as
follows:

 _observer = new ExpressionObserver(this);
 _subject = new Subject();
 _subject.RegisterClient(_observer);

Plotting Mathematical Expressions

[112]

Whenever there is change in the text, the rendering routine will be notified. The rendering
routine uses WPF 2D graphics transformations to plot the equation:

 private void text_changed(object sender, TextChangedEventArgs e)
 {
 if (_subject != null)
 _subject.UpdateClient(this.ExprText.Text);
 }

The expression evaluator and interpreter
pattern
The authors of this book believe that any programmer worth his salt needs to learn the
rudiments of compiler construction for implementing mini-languages or domain-specific
language (DSL) in his work. A compiler treats expressions as data, and expressions are
mostly hierarchical in nature. We use a data structure called AST for representing the nodes
of an expression tree. To convert textual expressions into an AST, we need to write a parser
to analyze the constituents of an expression. The subsystem which feeds data to the parser
is a module called lexical analyzer, which breaks the input stream into a series of tokens.

The definition of a mini language, and writing an evaluator for it, is dealt with by the GoF
catalog as interpreter pattern.

In software design, the interpreter pattern is a design pattern that specifies how to evaluate
sentences in a (mini) language. The basic idea is to have a class for each symbol (terminal or
non-terminal) in a specialized computer language. In our case, we use a mini language with
double precision floating point numbers, a symbolic variable ($t), trigonometric functions
(sine/cosine), and basic arithmetic operators. The syntax tree of a sentence in the language is
an instance of the composite pattern, and is used to evaluate (interpret) the sentence for a
client. Some expressions which we handle are 2*3 + SIN($t)*2, $t*100, COS((3.14159/2) – $t),
and so on.

The abstract syntax tree (AST)
In computer science, an AST, or just syntax tree, is a tree representation of the abstract
(simplified) syntactic structure of the source code. Each node of the tree denotes a construct
of the programming language under consideration. In our expression evaluator, the nodes
are numeric values (IEEE 754 floating points), binary operators, unary operators,
trigonometric functions, and a variable.

Plotting Mathematical Expressions

[113]

The syntax is abstract in the sense that it does not represent every detail that appears in the
real syntax. For instance, grouping parentheses is implicit in the tree structure, and AST
data structure discards parentheses. Before we model the AST, let us see some expressions
and its AST representations:

 // AST for 5*10
 Exp e = new BinaryExp(
 new NumericConstant(5),
 new NumericConstant(10),
 OPERATOR.MUL);

The preceding example uses two node types, that is, NumericConstant, BinaryExp. Even
the simplest expression creates a structure which seems a bit complicated.

Let us look at an expression which has a unary operator as well:

 // AST for -(10+(30+50))
 Exp e = new UnaryExp(
 new BinaryExp(
 new NumericConstant(10),
 new BinaryExp(
 new NumericConstant(30),
 new NumericConstant(50),
 OPERATOR.PLUS),
 OPERATOR.PLUS)
 ,OPERATOR.MINUS);

Plotting Mathematical Expressions

[114]

Since our expression evaluator only supports a single variable, we create a context class
which will store the variable in question. The class is named RUNTIME_CONTEXT, and the
whole listing is given as follows:

 public class RUNTIME_CONTEXT
 {
 private double _t = 0 ;
 public RUNTIME_CONTEXT(){ }
 public double T {
 get { return _t; }
 set { _t = value; }
 }
 }

In any programming language, expression is what you evaluate for its value. This can be
modeled as an abstract class. The numeric value which we support is of the type IEEE 754
double precision floating point:

 abstract class Exp{
 public abstract double Evaluate(RUNTIME_CONTEXT cont);
 }

The expression evaluator supports operators like PLUS (+), MINUS (-), DIV (/), and MUL (*).
They are modeled using an enumerated type named OPERATOR:

 public enum OPERATOR{
 ILLEGAL = -1,PLUS, MINUS, DIV, MUL
 }

Plotting Mathematical Expressions

[115]

We will start by creating a hierarchy of nodes for modeling an expression. We use the
composite pattern to compose bigger expressions out of smaller ones:

 class Exp // Base class for Expression
 class NumericConstant // Numeric Value
 class BinaryExp // Binary Expression
 class UnaryExp // Unary Expression
 class SineExp // Trig fn
 class SineExp // Trig
 class Var // psuedo variable $t

The NumericConstant class can store an IEEE 754 double precision floating point value in
it. This is a leaf node in the AST:

 public class NumericConstant : Exp
 {
 private double _value;
 public NumericConstant(double value){ _value = value;}

 public override double Evaluate(RUNTIME_CONTEXT cont)
 { return _value;}
 }

The BinaryExp class models a binary expression which takes two expressions (ex1 for the
left node and ex2 for the right node), it applies the operator on both, the left-side value and
the right-side value, inside the evaluate routine:

 public class BinaryExp : Exp
 {
 private Exp _ex1, _ex2;
 private OPERATOR _op;

 public BinaryExp(Exp a, Exp b, OPERATOR op)
 { _ex1 = a; _ex2 = b; _op = op; }

 public override double Evaluate(RUNTIME_CONTEXT cont)
 {
 switch (_op)
 {
 case OPERATOR.PLUS:
 return _ex1.Evaluate(cont) + _ex2.Evaluate(cont);
 case OPERATOR.MINUS:
 return _ex1.Evaluate(cont) - _ex2.Evaluate(cont);
 case OPERATOR.DIV:
 return _ex1.Evaluate(cont) / _ex2.Evaluate(cont);
 case OPERATOR.MUL:
 return _ex1.Evaluate(cont) * _ex2.Evaluate(cont);
 }

Plotting Mathematical Expressions

[116]

 return Double.NaN;
 }
 }

In the case of unary expressions, we take an operator and an Exp node as a child:

 public class UnaryExp : Exp
 {
 private Exp _ex1;
 private OPERATOR _op;
 public UnaryExp(Exp a, OPERATOR op)
 {_ex1 = a;_op = op }
 public override double Evaluate(RUNTIME_CONTEXT cont)
 {
 switch (_op)
 {
 case OPERATOR.PLUS:
 return _ex1.Evaluate(cont);
 case OPERATOR.MINUS:
 return -_ex1.Evaluate(cont);
 }
 return Double.NaN;
 }
 }

The sine node takes an expression as a child. We evaluate _ex1, and invoke Math.Sin on
the resulting value:

 class SineExp : Exp
 {
 private Exp _ex1;
 public SineExp(Exp a)
 { _ex1 = a; }
 public override double Evaluate(RUNTIME_CONTEXT cont){
 double val = _ex1.Evaluate(cont);
 return Math.Sin(val);
 }
 }

The cosine node takes an expression as a child. We evaluate _ex1, and invoke Math.Cos on
the resulting value:

 class CosExp : Exp
 {
 private Exp _ex1;
 public CosExp(Exp a)
 { _ex1 = a;}
 public override double Evaluate(RUNTIME_CONTEXT cont){

Plotting Mathematical Expressions

[117]

 double val = _ex1.Evaluate(cont);
 return Math.Cos(val);
 }
 }

And finally, the variables ($t) are modeled as follows:

 class Var : Exp
 {
 public Var(){}
 public override double Evaluate(RUNTIME_CONTEXT cont){
 return cont.T;
 }
 }

The grammar of expressions
The Backus-Naur Form (BNF) notation is used to specify the grammar for programming
languages. The semantics of BNF can be learned from books, and plenty of material is
available. The grammar of the expression evaluator we use is as follows:

 <Expr> ::= <Term> | Term { + | - } <Expr>
 <Term> ::= <Factor> | <Factor> {*|/} <Term>
 <Factor>::= <number> | (<expr>) | {+|-} <factor> |
 SIN(<expr>) | COS(<expr>) | $t

This BNF can be converted to source code very easily.

Lexical analysis
The lexical analyzer groups characters into tokens including '+', '-', '/', '*', SIN, COS,
and so on. In the process, the module feeds the parser when a request is made to it. Rather
than doing a lexical scan of the entire input, the parser requests the next token from the
lexical analyzer. In our expression evaluator, the following tokens are returned by the
lexical analyzer upon request for the next token by the parser:

 public enum TOKEN
 {
 ILLEGAL_TOKEN = -1, // Not a Token
 TOK_PLUS = 1, // '+'
 TOK_MUL, // '*'
 TOK_DIV, // '/'
 TOK_SUB, // '-'

Plotting Mathematical Expressions

[118]

 TOK_OPAREN, // '('
 TOK_CPAREN, // ')'
 TOK_DOUBLE, // '('
 TOK_TPARAM, // $t
 TOK_SIN, // SIN
 TOK_COS, // COS
 TOK_NULL // End of string
 }

The lexical analyzer module scans through the input, and whenever it finds a token (legal
or illegal), it saves the current input pointer and returns the next token. Since the listing is
lengthy and code is trivial, it is given as part of the code repository. The following pseudo-
code shows the schema of the lexical analyzer:

 while (<there is input>)
 {
 switch(currentchar) {
 case Operands:
 <advance input pointer>
 return TOK_XXXX;
 case '$':
 <Now Look for 't'>
 if found return TOK_TPARAM
 else Error
 case Number:
 <Extract the number(Advance the input)>
 return TOK_DOUBLE;
 case 'S' or 'C':
 <Try to see whether it is SIN/COS>
 Advance the input
 return TOK_SIN Or TOK_COS
 default:
 Error
 }
 }

The parser module
By using recursive descent parsing, we will arrange the tokens to see whether expressions
are valid, and generate the AST out of the input stream with the help of the lexical analyzer.

Plotting Mathematical Expressions

[119]

A recursive descent parser is a top-down parser built from a set of mutually-recursive
procedures, where each such procedure usually implements one of the production rules of
the grammar. Thus, the structure of the resulting program closely mirrors the grammar that
it recognizes:

 public class RDParser : Lexer
 {
 TOKEN Current_Token;
 public RDParser(String str): base(str){}

 public Exp CallExpr()
 {
 Current_Token = GetToken();
 return Expr();
 }

The constructor of the RDParser class takes the expression string as a parameter, and
passes it to the Lexer class. Whenever the parser requires a token, it asks the Lexer class to
provide one through the GetToken() method. The whole parsing process starts from the
CallExpr() method, and inside it, a token is grabbed by the parser through the Lexer
class:

 //Implementation of <Expr> ::= <Term> | Term { + | - } <Expr>
 Grammar
 public Exp Expr()
 {
 TOKEN l_token;
 Exp RetValue = Term();
 while (Current_Token == TOKEN.TOK_PLUS ||
 Current_Token == TOKEN.TOK_SUB)
 {
 l_token = Current_Token;
 Current_Token = GetToken();
 Exp e1 = Expr();
 RetValue = new BinaryExp(RetValue, e1,
 l_token == TOKEN.TOK_PLUS ?
 OPERATOR.PLUS : OPERATOR.MINUS);
 }
 return RetValue;
 }

Plotting Mathematical Expressions

[120]

The Expr() function descends down to the Term() function (which is listed next), and
returns the subexpressions from there. As long as there are further operators of the same
precedence, it recursively calls the Expr() method to retrieve the factors in the form of tree.
A BinaryExp node is created to represent the subexpressions parsed so far:

 //Implementation of <Term> ::= <Factor> | <Factor> {*|/} <Term>
 Grammar
 public Exp Term()
 {
 TOKEN l_token;
 Exp RetValue = Factor();
 while (Current_Token == TOKEN.TOK_MUL ||
 Current_Token == TOKEN.TOK_DIV)
 {
 l_token = Current_Token;
 Current_Token = GetToken();
 Exp e1 = Term();
 RetValue = new BinaryExp(RetValue, e1,
 l_token == TOKEN.TOK_MUL ?
 OPERATOR.MUL : OPERATOR.DIV);
 }
 return RetValue;
 }

The term descends down to the Factor() method (shown next) to retrieve a node (which
can be an expression itself within the parentheses), and as long as operators of the same
precedence are available, it recursively calls itself to generate the terms of the same type:

 //Implementation of <Factor>::= <number> | (<expr>) | {+|-}
 <factor> |
 //SIN(<expr>) | COS(<expr>) | $t Grammar
 public Exp Factor()
 {
 TOKEN l_token;
 Exp RetValue = null;

 if (Current_Token == TOKEN.TOK_DOUBLE)
 {
 RetValue = new NumericConstant(GetNumber());
 Current_Token = GetToken();
 }

If the parser returns a number, the factor creates a numeric node and returns the same:

 else if (Current_Token == TOKEN.TOK_TPARAM)
 {
 RetValue = new Var();

Plotting Mathematical Expressions

[121]

 Current_Token = GetToken();
 }

If the current token is $t, a Var node is returned by the factor method. After instantiating
the Var object, the parser grabs the next token before returning the expression object
instance:

 else if (Current_Token == TOKEN.TOK_SIN ||
 Current_Token == TOKEN.TOK_COS)
 {
 TOKEN old = Current_Token;
 Current_Token = GetToken();
 if (Current_Token != TOKEN.TOK_OPAREN)
 {
 Console.WriteLine("Illegal Token");
 throw new Exception();
 }
 Current_Token = GetToken();
 RetValue = Expr(); // Recurse

 if (Current_Token != TOKEN.TOK_CPAREN)
 {
 Console.WriteLine("Missing Closing Parenthesis\n");
 throw new Exception();
 }

 Retvalue = (old == TOKEN.TOK_COS) ?
 new CosExp(RetValue) :
 new SineExp(RetValue);
 Current_Token = GetToken();
 }

If the current token is SIN or COS, we call Expr() recursively to parse the parameters. Once
Expr() returns, we create the appropriate node:

 else if (Current_Token == TOKEN.TOK_OPAREN)
 {
 Current_Token = GetToken();
 RetValue = Expr(); // Recurse
 if (Current_Token != TOKEN.TOK_CPAREN)
 {
 Console.WriteLine("Missing Closing Parenthesis\n");
 throw new Exception();
 }
 Current_Token = GetToken();
 }

Plotting Mathematical Expressions

[122]

If we find an opening parenthesis, a call to Expr() will go to parse the nested expressions:

 else if (Current_Token == TOKEN.TOK_PLUS ||
 Current_Token == TOKEN.TOK_SUB)
 {
 l_token = Current_Token;
 Current_Token = GetToken();
 RetValue = Factor(); // Recurse
 RetValue = new UnaryExp(RetValue,
 l_token == TOKEN.TOK_PLUS ?
 OPERATOR.PLUS : OPERATOR.MINUS);
 }
 else
 {
 Console.WriteLine("Illegal Token");
 throw new Exception();
 }
 return RetValue;
 }
}

The preceding code snippet handles unary operators, and if the current token is any other
thing which is not supposed to be there, an error will be thrown. The syntax diagrams (also
known as railroad diagrams) of the grammar realized are shown next.

Expr is represented with the following syntax diagram. The BNF grammar gives better
clarity:

 <Expr> ::= <Term> | Term { + | - } <Expr>

The following syntax diagram represents the Term. The BNF grammar is shown for
better clarity:

 <Term> ::= <Factor> | <Factor> {*|/} <Term>

Plotting Mathematical Expressions

[123]

Factor can be represented using the following railroad diagram. The BNF grammar is also
shown for the sake of clarity:

 <Factor>::= <number> | (<expr>) | {+|-} <factor> | SIN(<expr>) |
 COS(<expr>) | $t

The builder, facade, and expression APIs
The process of interpreting an expression is a complicated process, where a lot of classes
work together towards the goal. As an application developer, to focus on the task at hand,
we might have to expose an API which abstracts away the complexities of lexical analysis,
parsing, and AST generation. We normally use the GoF facade pattern in these contexts.
But, we will use the GoF builder pattern here, as this creational pattern is more appropriate
in situations where we need to create a composite object. Here, we create expressions which
are modeled as composites:

 public class AbstractBuilder{}

 public class ExpressionBuilder : AbstractBuilder
 {
 public string _expr_string;
 public ExpressionBuilder(string expr)
 { _expr_string = expr; }

 public Exp GetExpression()
 {
 try
 {
 RDParser p = new RDParser(_expr_string);
 return p.CallExpr();
 }
 catch (Exception)
 {

Plotting Mathematical Expressions

[124]

 return null;
 }
 }
 }

The GetExpression() method leverages recursive descent parsing and lexical analysis to
create an Exp object composed of AST nodes. If the parse fails, the routine will return null.
The Builder class will be used to parse an expression from its textual representation:

 double t = -x / 2;
 double final = x / 2;
 ExpressionBuilder bld = new ExpressionBuilder(expr);
 Exp e = bld.GetExpression();
 if (e == null)
 return false;

We parse the tree once to create the AST. Once the AST has been created,
we can evaluate the resulting AST many times over by changing the value
in the RUNTIME_CONTEXT object.

 RUNTIME_CONTEXT context = new RUNTIME_CONTEXT();
 context.T = t;
 for (; t < final; t += 4)
 {
 context.T=t;
 double n = e.Evaluate(context);
 RenderAPixel();
 }

The expression is parsed once, and an AST is created out of it. Once the tree has been
created, it can be evaluated by changing the context object. In the preceding loop, t is
updated and set to the context object. Each time you evaluate the tree, you evaluate
against a different value of t.

Plotting Mathematical Expressions

[125]

Summary
In this chapter, we created an application which plots the result of an arbitrary
mathematical expression on a graphics surface. We used WPF for our rendering purpose.
We also created an expression evaluator library, which uses the recursive descent parsing
technique to parse an expression to a data structure called AST. The AST can be walked
depth-first to evaluate the value. This is a good example of the interpreter pattern. We used
the observer pattern to automatically relay the changes in the expression input to the canvas
object. In the next chapter, you will learn how the .NET framework library leverages
patterns to expose a good API for developers.

7
Patterns in the .NET Base

Class Library
In this chapter, we will focus on areas where the creators of the .NET Framework library
have leveraged GoF design patterns for creating Application Programming Interfaces
(APIs). This will give you an enormous insight into the usage of design patterns as a
mechanism to expose well-defined software interfaces. Most developers consume design
pattern-based software interfaces without knowing much about their underpinnings. This
chapter will demystify API design based on patterns. As a reader, you will find real-world
application of the following GoF patterns in the .NET Framework library:

Adapter pattern
Strategy pattern
Builder pattern
Decorator pattern
Chain of responsibility pattern
Bridge pattern
Factory pattern
Observer pattern
Composite pattern
Facade pattern
Iterator pattern

Patterns in the .NET Base Class Library

[127]

Adapter pattern in the .NET BCL
The adapter pattern (aka wrapper) translates one interface for a class into a compatible
interface expected by the client. This allows objects to work together, which normally
wouldn't because of incompatible interfaces.

This is achieved by providing its cooperating interface to clients while
using the original interface to invoke the core functionality provided by
the object.

The amount of code necessary to do this is most often small. The adapter is also responsible
for transforming data into appropriate forms expected by the library that implements the
actual logic. The adapter can be a class adapter or an object adapter. The SQLDataAdapter
class in .NET Framework represents a set of data commands (select, update, and
delete) and a database connection that is used to fill the DataSet (in the case of select), or
update the data source:

 private static RetrieveRows(
 string connectionString,string queryString)
 {
 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 //--- Adapter class here creates a DataSet
 //--- without bothering the developer about
 //--- opening the connections, fetching data
 //--- from the Data Reader and Filling the Data
 //--- to a DataSet
 SqlDataAdapter adapter = new SqlDataAdapter();
 adapter.SelectCommand = new SqlCommand(
 queryString, connection);
 adapter.Fill(dataset);
 return dataset;
 }
 }

Patterns in the .NET Base Class Library

[128]

Strategy pattern in the .NET BCL
The strategy pattern (aka policy pattern) is a design pattern where we can choose
algorithms depending upon the context. The pattern is intended to provide a means to
define a family of algorithms encapsulated as an object to make them interchangeable. The
strategy pattern lets the algorithms vary independently from the clients that use them.

The Array and the ArrayList classes provide the capability to sort objects contained in
them through the Sort method. One can use different strategies to sort by leveraging the
strategy design pattern-based API provided by the .NET BCL. The designers of .NET
Framework have given us the IComparer<T> interface to provide a sorting strategy. Array
and ArrayList provide the capability to sort the objects contained in the collection via the
Sort method. Strategy design pattern is used with Array and Arraylist to enable sorting
using different strategies, without changing any client code, via an IComparable interface:

 class Employee
 {
 public String name {get;set;}
 public int age {get;set;}
 public double salary { get; set; }
 }

To sort an Employee list, we need to create a class that implements the IComparer<T>
interface. An instance of this class needs to be passed to the Sort routine of the List<T>
instance. The Compare method of IComparer<T> should implement a SIGNUM function that
returns 1, 0, or -1:

class SortByAge : IComparer<Employee>
 {
 public int Compare(Employee a, Employee b)
 {
 return a.age > b.age ? 1 : -1;
 }
 }

Patterns in the .NET Base Class Library

[129]

The following code snippets show how we can change sorting criteria depending on the
context:

 List<Employee> ls = new List<Employee>();
 ls.Add(
 new Employee { name = "A", age = 40, salary = 10000 });
 ls.Add(
 new Employee { name = "C", age = 20, salary = 6000 });
 ls.Add(
 new Employee { name = "B", age = 30, salary = 4000 });
 ls.Sort(new SortByAge());
 foreach(Employee e in ls)
 {
 Console.WriteLine(e.name + " " +
 e.age + " " + e.salary);
 }

To sort by name, we need to create another object implementing the same interface:

 class SortByName : IComparer<Employee>
 {
 public int Compare(Employee a, Employee b)
 {
 return a.name.CompareTo(b.name);
 }
 }

We will leverage the SortByName class to sort the object based on the lexicographical order.
We will also use the StringBuilder class to create a string object to be printed on the
console. The StringBuilder class is an instance where the builder pattern is leveraged by
the designers of .NET Framework:

 ls.Sort(new SortByName());
 foreach(Employee e in ls)
 {
 StringBuilder strbuilder = new StringBuilder();
 strbuilder.Append(e.name);
 strbuilder.Append(" ");
 strbuilder.Append(e.age);
 strbuilder.Append(" ");
 strbuilder.Append(e.salary);
 Console.WriteLine(strbuilder.ToString());
 }

Patterns in the .NET Base Class Library

[130]

Builder pattern in the .NET BCL
The builder pattern is a creational pattern, which separates the construction of a complex
object from its representation. Usually, it parses a complex representation to create one or
more target objects. Most often, builders create composites. In the
System.Data.SqlClient namespace, SqlConnectionStringBuilder helps one build
connection strings for the purpose of connecting to an RDBMS engine:

 SqlConnectionStringBuilder builder = new
 SqlConnectionStringBuilder();
 builder["Data Source"] = "(local)";
 builder["integrated Security"] = true;
 builder["Initial Catalog"] = "AdventureWorks;NewValue=Bad";
 Console.WriteLine(builder.ConnectionString);

The .NET BCL also contains a class that will help us create a URI by assembling its
constituents. The following code snippet creates a secured HTTP (https) URL, which sends
data to port 3333:

 var builder = new UriBuilder(url);
 builder.Port = 3333
 builder.Scheme = "https";
 var result = builder.Uri;

Decorator pattern in the .NET BCL
The decorator pattern attaches additional responsibilities to an object dynamically. The
inheritance is always not feasible, because it is static and applies to an entire class.
Decorators provide a flexible alternative to sub-classing for extending functionality. The
pattern helps add behavior or state to individual objects at runtime. The .NET Framework
uses decorators in the case of stream processing classes. The hierarchy of stream processing
classes are as follows:

System.IO.Stream

System.IO.BufferedStream

System.IO.FileStream

System.IO.MemoryStream

System.Net.Sockets.NetworkStream

System.Security.Cryptography.CryptoStream

Patterns in the .NET Base Class Library

[131]

The following code snippets show how one can use FileStream to read contents from an
operating system disk file:

 using (FileStream fs = new FileStream(path, FileMode.Open))
 {
 using (StreamReader sr = new StreamReader(fs))
 {
 while (sr.Peek() >= 0)
 {
 Console.WriteLine(sr.ReadLine());
 }
 }
 }

The StreamReader is a decorator object, which uses the additional functionality of
buffering the avoid disk access to speed up operation.

Chain of responsibility pattern in ASP.net
The chain of responsibility pattern is a design pattern consisting of a series of processing
objects through which we pass a data stream for filtration or modification. Ultimately, the
process terminates when the data stream passes the last processing object at the end of the
chain. The ASP.NET pipeline is a wonderful example where the chain of responsibility
pattern is leveraged to provide an extensible programming model. The ASP.NET
infrastructure implements WebForms API, ASMX Web services, WCF, ASP.NET Web API,
and ASP.NET MVC using HTTP modules and handlers. Every request in the pipeline
passes through a series of modules (a class that implements IHttpModule) before it reaches
its target handler (a class that implements IHttpHandler). Once a module in the pipeline
has done its duty, it passes the responsibility of the request processing to the next module in
the chain. Finally, it reaches the handler. The following code snippet shows how one can
write an object that leverages the chain of responsibility pattern to create a module that
filters an incoming request. These filters are configured as chains and will pass the request
content to the next filter in the chain by the ASP.net runtime:

 public class SimpleHttpModule : IHttpModule
 {
 public SimpleHttpModule(){}
 public String ModuleName
 {
 get { return "SimpleHttpModule"; }
 }
 public void Init(HttpApplication application)
 {

Patterns in the .NET Base Class Library

[132]

 application.BeginRequest +=
 (new EventHandler(this.Application_BeginRequest));
 application.EndRequest +=
 (new EventHandler(this.Application_EndRequest));
 }
 private void Application_BeginRequest(Object source,
 EventArgs e)
 {
 HttpApplication application = (HttpApplication)source;
 HttpContext context = application.Context;
 context.Response.Write(SomeHtmlString);
 }
 private void Application_EndRequest(Object source, EventArgs e)
 {
 HttpApplication application = (HttpApplication)source;
 HttpContext context = application.Context;
 context.Response.Write(SomeHtmlString);
 }
 public void Dispose(){}
 }

We can configure the preceding HTTP module in the Web.config file as follows:

 <configuration>
 <system.web>
 <httpModules>
 <add name=" SimpleHttpModule " type=" SimpleHttpModule "/>
 </httpModules>
 </system.web>
 </configuration>

In the ASP.NET pipeline, a request passes through a series of HTTP modules before it hits a
handler. A simple HTTP handler routine is given as follows:

 public class SimpleHttpHandler: IHttpHandler
 {
 public void ProcessRequest(System.Web.HttpContext context){
 context.Response.Write("The page request ->" +
 context.Request.RawUrl.ToString());
 }
 public bool IsReusable
 {
 get{ return true; }
 }
 }

Patterns in the .NET Base Class Library

[133]

We can configure the handler as given next. Whenever we create an ASP.NET resource with
the .smp extension, the handler will be SimpleHttpHandler:

 <system.web>
 <httpHandlers>
 <add verb="*" path="*.smp" type="SimpleHttpHandler"/>
 </httpHandlers>
 </system.web>

The preceding technique of leveraging the chain of responsibility pattern is available in
other web technologies such as Java Servlets (called Servlet filters) and also available in IIS
as ISAPI filters.

Bridge pattern in the .NET RCW
The Component Object Model (COM) technology solutions packaged as libraries can be
consumed through Runtime Callable Wrapper (RCW), available in the .NET platform. By
allowing managed classes and COM components to interact, despite their interface
disparity, RCWs are an example of bridge pattern (implemented as an adapter!). Please
consult the documentation on Com Callable Wrapper (CCW) and RCW to understand how
the bridge pattern is implemented to interoperate with components written in other
languages (mostly C++/ATL). Technically speaking, even ADO.NET API also leverages the
bridge pattern, to interact with ODBC and other native drivers implemented by respective
database vendors.

Factory pattern in the .NET BCL
The factory design pattern has been used by System.Data.Common to create an instance of
the provider, connection, command, or adapter objects in order to fetch data from a
relational database. The following code snippets demonstrates the idea:

 DbProviderFactory factory =
 DbProviderFactories.GetFactory(providerName);
 DbConnection connection = factory.CreateConnection();
 connection.ConnectionString = connectionString;
 string queryString = "SELECT CategoryName FROM Categories";
 DbCommand command = factory.CreateCommand();
 command.CommandText = queryString;
 command.Connection = connection;
 DbDataAdapter adapter = factory.CreateDataAdapter();
 adapter.SelectCommand = command;
 DataTable table = new DataTable();

Patterns in the .NET Base Class Library

[134]

 adapter.Fill(table);

Observer pattern in the WPF
The ObservableCollection can be considered as a data structure, which leverages the
observer pattern to provide notifications when items get added or removed, or when the
whole list is refreshed:

 class ObservableDataSource
 {
 public ObservableCollection<string> data
 { get; set; }

 public ObservableDataSource()
 {
 data = new ObservableCollection<string>();
 data.CollectionChanged += OnCollectionChanged;
 }
 void OnCollectionChanged(object sender,
 NotifyCollectionChangedEventArgs args)
 {
 Console.WriteLine("The Data got changed ->" +
 args.NewItems[0]);
 }
 public void TearDown()
 {
 data.CollectionChanged -= OnCollectionChanged;
 }
 }

The following code snippet creates an instance of an Observableconnection based
ObservableDataSource class. When we add items to the class, we get a notification in the
OnCollectionDataChanged method of the ObservableDataSource class:

 ObservableDataSource obs = new ObservableDataSource();
 obs.data.Add("Hello");
 obs.data.Add("World");
 obs.data.Add("Save");

Patterns in the .NET Base Class Library

[135]

Composite pattern in the .NET Framework
To create complex UI screens, the .NET Framework leverages composite patterns
extensively. The WPF, ASP.NET Web Forms, and Winforms are some of the key examples
in this regard. In a UI scenario, one can have a frame class, which acts as a container for all
the child controls. Typically, developers place panels to divide the physical screen to some
kind of logical grouping and child controls are placed inside these panels. The controls like
list, grid can embed other controls. Thus, these are wonderful examples of the composite
pattern.

Facade pattern in the .NET BCL
The GoF facade pattern is used in scenarios where a lot of work happens in the background
and the interfaces to those classes are exposed using a simple API. The XMLSeralizer class
in the .NET BCL does quite a bit of its work behind the scenes and access to those routines
are given using a very simple interface. The following code snippets create a DataSet to
store a multiplication table for the number 42 (remember Douglas Adams!) and the
XMLSeralizer class persists the table to a text file:

 class Program
 {
 private static DataSet CreateMultTable()
 {
 DataSet ds = new DataSet("CustomDataSet");
 DataTable tbl = new DataTable("Multiplicationtable");
 DataColumn column_1 = new DataColumn("Multiplicand");
 DataColumn column_2 = new DataColumn("Multiplier");
 DataColumn column_3 = new DataColumn("REsult");
 tbl.Columns.Add(column_1);
 tbl.Columns.Add(column_2);
 tbl.Columns.Add(column_3);

 ds.Tables.Add(tbl);
 int Multiplicand = 42;
 DataRow r;
 for (int i = 0; i < 10; i++)
 {
 r = tbl.NewRow();
 r[0] = Multiplicand;
 r[1] = i;
 r[2] = Multiplicand * i;
 tbl.Rows.Add(r);
 }

Patterns in the .NET Base Class Library

[136]

 return ds;
 }
 // The Entrypoint for execution
 // using Serialize method, we can traverse the tree
 // and persist the content to a XML file. Behind the scenes
 // the code to traverse the DataSet structure is getting
 // executed. Using FAÇADE pattern, the .NET framekwork
 // designers have managed to hide the complexity

 static void Main(string[] args)
 {
 XmlSerializer ser = new XmlSerializer(typeof(DataSet));
 DataSet ds = CreateMultTable();
 TextWriter writer = new StreamWriter("mult.xml");
 ser.Serialize(writer, ds);
 writer.Close();
 Console.ReadKey();
 }
 }

Iterator pattern in the .NET BCL
The iterator pattern is so common that most platforms and frameworks provide a
mechanism to support it. The .NET BCL has got IEnumerable and its generic variant , that
is, IEnumerable<T> to implement custom iterators. To iterate, we have got the foreach
loop construct in C#. Similar constructs are available in Java as well. The following program
creates a custom list by leveraging the .NET fixed length array facility:

 public class CustomList<T> : IEnumerable<T>
 {
 //------ A Fixed Length array to
 //------ Example very simple
 T[] _Items = new T[100];
 int next_Index = 0;

 public CustomList(){}

 public void Add(T val)
 {
 // We are adding value without robust
 // error checking
 _Items[next_Index++] = val;
 }

 public IEnumerator<T> GetEnumerator()

Patterns in the .NET Base Class Library

[137]

 {
 foreach (T t in _Items)
 {
 //---only reference objects can be populated
 //-- and checked for null
 if (t == null) { break; }
 yield return t;
 }
 }

 System.Collections.IEnumerator
 System.Collections.IEnumerable.GetEnumerator()
 {
 return this.GetEnumerator();
 }
 }
 // The Entry point function
 // creates a Custom List instance and adds entry to the list
 // and uses foreach loop to access the iterator implemented
 class Program
 {
 static void Main(string[] args)
 {
 CustomList<string> lst = new CustomList<string>();
 lst.Add("first");
 lst.Add("second");
 lst.Add("third");
 lst.Add("fourth");

 foreach (string s in lst)
 {
 Console.WriteLine(s);
 }
 Console.ReadKey();
 }
 }

Summary
In this chapter, we learned how the designers of the .NET BCL leverage design patterns to
expose a well-defined programming model and a flexible API for the same. You learned
about how some important patterns are put to use by the designers of the .NET Framework.
In the next chapter, you will learn about concurrent and parallel programming in the .NET
platform.

8
Concurrent and Parallel

Programming under .NET
So far, we have been mostly focusing on the GoF design patterns. When the catalog
appeared, the computing world was mostly sequential, and the bias was reflected in the
catalog. The world has changed a lot since the publication of the catalog in 1994. There was
a shift towards language-level concurrency and parallelism due to the arrival of the Java
and C# programming languages. The processor designers understood the limits of
constructing powerful single-core CPUs, and began focusing on many core CPUs. This
brought its own set of complexity in developing software using the existing paradigms.
Even a language like C++, which relegated concurrency to libraries, added language-level
concurrency features in its latest avatar, C++ 11/14. With the advent of functional
programming features into the OOP world, the programming landscape changed
drastically. In this chapter, you will learn some techniques for writing concurrent and
parallel programs using the C# programming language and .NET platform features. In this
chapter, we will cover the following points:

Factors that influenced evolution of concurrency and parallelization models
Concurrency versus Parallelism
.NET Parallel Programming libraries
Some Parallel/Concurrent memes/idioms

Embarrassingly parallel
Fork/join parallelism
Producer/consumer paradigm

Concurrent and Parallel Programming under .NET

[139]

Days of Free Lunch
The celebrated Moore's law went on despite microprocessors hitting the clock-speed limits
in terms of heat dissipation and achieving fabrications beyond nano-level. CPU designers
found an intelligent workaround for this roadblock–that of leveraging the increased chip
densities to scale the computation infrastructure horizontally as opposed to the traditional
vertical way. This principle has deep consequences in modern day architecture and design,
where application scalability (both vertical and horizontal) inherits natural elasticity with
respect to the infrastructure that powers them. What resulted was a new generation of CPU
architectures including hyper-threading, multi-core, and many-core. It wasn't too late
before the developers realized that the Free Lunch (just leveraging the conventional CPU
performance gains through clock speed, execution optimization, and cache, with no change
in their programs) was over. Herb Sutter wrote an influential article in Dr. Dobb's Journal
about this, aptly titled, The Free Lunch Is Over: A Fundamental Turn toward Concurrency in
Software!

This realization that software was the gating factor in terms of achieving
more with most of what was available was the dawn of a new revolution
in software architecture and design.

This new model helped remove many shortcomings in modeling real-world problem
scenarios. It seemed though that we (developers) began adding justice to the grand
concurrent design that went into modelling this world with interactions to be parallel as
opposed to just being sequential and object-oriented. The prevalent parallelization
techniques (leveraged mostly by the scientific community for doing embarrassingly parallel
computations)–that of explicit threading with an affinity to hardware threads–was
primitive and less scalable. Very few people had expertise (or rather felt comfortable) in
working with the low-level constructs for leveraging multi-threading in their applications.
This state of affairs brought in a strong imperative for creating better abstractions and the
needed APIs to write the next generation software that would inherently leverage
concurrency and parallelism to achieve more with most of what was available.

Days of Sponsored Lunch
Microsoft's .Net Common Language Runtime (CLR) came to the rescue with the managed
thread pool (which stabilized around version 2.0), which paved the way for a strong
foundation layer on top of which the concurrency and parallelization models subsequently
evolved.

Concurrent and Parallel Programming under .NET

[140]

The most notable ones include Asynchronous Programming Model
(APM), Concurrency and Coordination Runtime (CCR), Decentralized
Software Services (DSS), Parallel LINQ (PLINQ), Task Parallel Library
(TPL), and the Task-based Async/Await model.

Certain functional constructs and language features like Anonymous Methods, Lambda
Expressions, Extension Methods, Anonymous Types, and Language Integrated Query
(LINQ) were the core catalysts that aided this evolution. Major contributors and SMEs
include Erik Meijer for LINQ, Joe Duffy and Jon Skeet for Multithreading in .NET), Stephen
Toub, Ade Miller, Colin Campbell, and Ralph Johnson for Parallel Extensions, and Jeffrey
Richter and George Chrysanthakopoulos for CCR.

Of the aforementioned notable models, the major ones that matured and are advocated
today are the following:

Task-based async/await model for concurrency
Parallel Extensions (PFX) including PLINQ and TPL for parallelization

Concurrent versus parallel
These are two key constructs are often confused by developers, and warrant clear
demystification. The authors strongly feel that a thorough understanding of this distinction
holds the key to effective software design for achieving more by effective utilization of the
available infrastructure (processors, cores, hardware, and software threads). Let's start with
the classical definition by Rob Pike (inventor of the Go programming language), and try to
decode its meaning.

Concurrent and Parallel Programming under .NET

[141]

Parallelization is doing multiple tasks (related or non-related) at the same time whereas
concurrency is about dealing with lots of things at once.
Concurrency is about structure; parallelism is about execution.
Concurrency provides a way to structure a solution to solve a problem that may (but not
necessarily) be parallelizable.
 – Rob Pike

This clearly articulates the difference between these constructs, and goes further to illustrate
how concurrency, as a model, helps to structure a program by breaking it into pieces that
can be executed independently. This powerful consequence of a concurrent design model
facilitates parallelism depending on the hardware support available for the program's
runtime or compiler infrastructure.

This further means write-once, run-anywhere.

The days of Free Lunch are back with this model, where a concurrent program can perform
better on multiple cores by leveraging parallelization techniques (mostly abstracted or
under the hood, and is dependent on the framework library or runtime that executes these
programs). This could be understood very clearly as the way an asynchronous
programming model works using async and await. This model helps to structure the
program by breaking it into pieces that can be executed independently. These independent
pieces become tasks (part of the TPL), and are executed simultaneously, leveraging the
available hardware (cores and threads). Now you see how parallelism becomes an
interesting side-effect of a concurrent model. This is managed (in terms of the degree of
parallelism that determines the number of cores to be leveraged for reducing contention) by
the TPL API and CLR. So, the developer can focus on the core decomposition (with little or
no shared state) of the process into independent tasks as opposed to getting entangled in
the low-level constructs (threads and synchronization) for realizing concurrency and
parallelization. The APIs have evolved quite intelligently to support this, thus making the
code-base quite expressive, declarative, and readable.

On the contrary, if you explicitly try to leverage basic naive parallelism (Parallel.For
and PLINQ) for executing the decomposed tasks, there is a good chance you would end up
blocking your threads, thus curtailing scalability and availability (especially for server-side
programs).

Don't Block your threads, Make Async I/O work for you
 – Stephen Toub/Scott Hanselman

Concurrent and Parallel Programming under .NET

[142]

This is the founding principle on which concurrent programming models work. The classic
example is Node.js, which has gained prominence as a middleware and backend system
with its inherent support for async I/O. Again, one needs to understand that the benefits are
seen more in I/O and asynchronous service executions as opposed to long-running CPU-
bound tasks (which wouldn't give you the benefit you typically desire, as these tend to
block, and, in turn, cause thread starvation). This is a classic scenario, where developers
complain that their program takes more time to execute (compared to the serial
implementation) when task parallelism is employed with Parallel.For loops.

Again, none of these imply that one shouldn't employ high-and low-level constructs for
task creation, threading, and parallelism. As long as scalability and availability is not a high
priority, task parallelism, with appropriate partitioning strategies, could be very effectively
employed. This is because these libraries effectively load balance the work across the CLR
threads to minimize contention, and maximize throughput through work stealing.

The consequence of both these models is something to be kept in mind when designing
effective algorithms that can leverage the best of what you have, and yet, scale. We will try
to illustrate these in the coming sections.

Some common patterns of parallel
programming
Now that we understand the power that these two models bring, one needs to be wary of
the responsibility that this power brings forth. Typical abuse of concurrency and parallelism
in the form of blanket code refactoring are often found counterproductive. Patterns become
more pertinent in this paradigm, where developers push the limits of computing hardware.

Issues of races, deadlocks, livelocks, priority inversions, two-step dances, and lock convoys
typically have no place in a sequential world, and avoiding such issues makes quality
patterns all the more important
 – Stephen Toub

Concurrent and Parallel Programming under .NET

[143]

The authors wish to put in perspective the modelling/decomposition aspects of the
problem, and illustrate the applicability of some of the key patterns, data structures, and
synchronization constructs to these so as to aid the programmer to leverage concurrency
and parallelism to its full potential. For detailed coverage in terms of patterns and primitive
constructs, the authors strongly recommend developers to read Patterns of Parallel
Programming by Stephen Toub and Concurrent Programming on Windows by Joe Duffy.

Embarrassingly or conveniently parallel
This is the foremost pattern we would cover. The candidate programs that can leverage
these are ones that can be easily decomposed into tasks/operations which have little or no
dependency. This independence makes parallel execution of these tasks/operations very
convenient. We will stray a bit from the conventional examples (that of a ray tracer and
matrix multiplication), plus instill a sense of adventure and accomplishment in creating an
algorithm, which, in turn, is embarrassingly parallel in nature.

We would be articulating this pattern by creating a C# implementation of
the Schönhage-Strassen algorithm for rapidly multiplying large integers.

Problem statement
As indicated, the problem statement seems straightforward in terms of having an ability to
multiply large numbers (let's push ourselves a bit by further stating astronomically large
numbers), which cannot even be represented (64-bit computing limit). We have consciously
reduced the scope by restricting ourselves to just one operation (multiplication) for
outlining the pattern. Nothing prevents any interested reader who is game to go ahead and
implement other operations thereby devising their own BigInteger version with support
for all mathematical operations.

Concurrent and Parallel Programming under .NET

[144]

Solutions approach
Let's start by outlining the algorithm to multiply two three-digit sequences (456 and 789):

The Schönhage-Strassen algorithm depends fundamentally on the convolution theorem,
which provides an efficient way to compute the cyclic convolution of two sequences.

The authors wish to take a disclaimer here: the cyclic convolution
computation is not done in the most efficient way here. The prescribed
steps include that of taking the Discrete Fourier Transform (DFT) of each
sequence, multiplying the resulting vectors element by element, and then
taking the Inverse Discrete Fourier Transform (IDFT). In contrast to this,
we adopt a naïve and computationally intensive algorithmic way. This
results in a runtime bit complexity of O(n2) in Big-O notation for two n
digit numbers. The core idea here is to demonstrate the intrinsic parallel
nature of the algorithm!

As illustrated, the algorithm to compute the product of two three-digit sequences comprises
of three major steps. We will look at the problem decomposition in detail, and interlude the
steps with code to see this pattern in action, leveraging some of the core .NET
parallelization constructs (specifically, the For method of the Parallel class in TPL-
Parallel.For). In this process, you will understand how task decomposition is done
effectively, taking into consideration the algorithmic and structural aspects of your
application.

Concurrent and Parallel Programming under .NET

[145]

Step 1
We will start off multiplying the two numbers 456 (sequence-1) and 789 (sequence-2) using
long multiplication with base 10 digits, without performing any carrying. The
multiplication involves three further sub-steps as illustrated.

Step 1.1

As part of the long multiplication, we multiply the least significant digit (9) from sequence-2
with all the digits of sequence-1, producing a sequence 36, 45, and 54.

Step 1.2

We multiply the next least significant digit (8) from sequence-2 with all the digits of
sequence-1, producing a sequence 32, 40, and 48.

Step 1.3

Finally, we multiply the most significant digit (7) from sequence-2 with all the digits of
sequence-1, producing a sequence 28, 35, and 42.

Step 2
Add the respective column elements (again without carrying) to obtain the acyclic/linear
convolution sequence (28, 67, 118, 93, 54) of sequence 1 and 2.

Step 3
Perform the final step: that of doing the carrying operation (for example, in the rightmost
column, keep the 4 and add the 5 to the column containing 93). In the given example, this
yields the correct product, 359,784.

The following is the serial implementation of this algorithm (it faithfully follows the
preceding steps for clarity):

 //----------------------------Abstract Factory
 public interface INumeric
 {
 BigNumOperations Operations ();
 }
 //----------------------------Abstract Product
 public abstract class BigNumOperations
 {
 public abstract string Multiply (string x, string y);
 public virtual string Multiply (
 string x,

Concurrent and Parallel Programming under .NET

[146]

 string y,
 CancellationToken ct,
 BlockingCollection<string> log)
 {
 return this.Multiply(x, y);
 }

In the following Power method, we will employ Exponentiation by
Squaring Algorithm, which relies on the fact that: x^y == (x*x)^(y/2)
Using this, we will continuously divide the exponent (in this case y) by
two while squaring the base (in this case x).That is, in order to find the
result of 2^11, we will do [((2*2)*(2*2))*((2*2)*(2*2))] * [(2*2)] * [(2)] or, to
put it simply, we will do 2^8 * 2^2 * 2^1.This algorithm achieves O(log n)
efficiency!

 public string Power (string number, int exponent)
 {
 int remainingEvenExp = exponent / 2;
 int remainingOddExp = exponent % 2;
 string result = number;
 if (remainingEvenExp > 0)
 {
 string square = this.Multiply(number, number);
 result = square;
 if (remainingEvenExp > 1)
 {
 if (remainingOddExp == 1)
 {
 result = this.Multiply(
 this.Power(square, remainingEvenExp),
 number);
 }
 else
 {
 result = this.Power(square, remainingEvenExp);
 }
 }
 else
 {
 if (remainingOddExp == 1)
 {
 result = this.Multiply(square, number);
 }
 }
 }
 return result;
 }

Concurrent and Parallel Programming under .NET

[147]

 // Creates, Initializes and Returns a Jagged Array

 public static int[][] CreateMatrix (int rows, int cols)
 {
 int[][] result = new int[rows][];
 for (int i = 0; i < rows; ++i)
 result[i] = new int[cols];
 return result;
 }
 }

 // ----------------------------Concrete Product-1

 public class BigNumOperations1 : BigNumOperations
 {
 /// <summary>
 /// Serial Implementation of Schönhage-Strassen Algorithm
 /// <param name="x">String number Sequence-1</param>
 /// <param name="y">String number Sequence-2</param>
 /// <returns>String Equivalent Product Sequence</returns>
 /// </summary>

 public override string Multiply (string x, string y)
 {
 int n = x.Length;
 int m = y.Length;
 int prodDigits = n + m - 1;
 int[] linearConvolution = new int[prodDigits];
 int[][] longMultiplication = CreateMatrix(m, prodDigits);

 //----------------------------Step-1

 for (int i = m - 1; i >= 0; i--)
 {
 int row = m - 1 - i;
 int col = 0;
 int iProduct;
 for (int j = n - 1; j >= 0; j--)
 {
 col = i + j;
 iProduct = ((int)
 Char.GetNumericValue(y[i])) *
 ((int) Char.GetNumericValue(x[j]));
 longMultiplication[row][col] = iProduct;
 }
 }

 //----------------------------Step-2

Concurrent and Parallel Programming under .NET

[148]

 for (int j = prodDigits - 1; j >= 0; j--)
 {
 int sum = 0;
 for (int i = 0; i < m; i++)
 {
 sum += longMultiplication[i][j];
 }
 linearConvolution[j] = sum;
 }

 //----------------------------Step-3

 int nextCarry = 0;
 int[] product = new int[prodDigits];
 for (int i = (n + m - 2); i >= 0; i--)
 {
 linearConvolution[i] += nextCarry;
 product[i] = linearConvolution[i] % 10;
 nextCarry = linearConvolution[i] / 10;
 }
 return (nextCarry > 0 ? nextCarry.ToString() : "") +
 new string
 (
 Array.ConvertAll<int, char>
 (product, c => Convert.ToChar(c + 0x30))
);
 }
 }

 // Concrete Factory-1

 public class BigNumber1 : INumeric
 {
 public BigNumOperations Operations()
 {
 return new BigNumOperations1();
 }
 }

Concurrent and Parallel Programming under .NET

[149]

If you closely evaluate the code, Step 1 and Step 2 in our algorithm are
embarrassingly, or rather, conveniently parallelizable. Listed next is the
equivalent lock-free parallel implementation of the same algorithm. This
leverages the TPL Parallel.For parallelization construct.

 // Concrete Product-2

 public class BigNumOperations2 : BigNumOperations
 {
 public override string Multiply (string x, string y)
 {
 int n = x.Length;
 int m = y.Length;
 int prodDigits = n + m - 1;
 int[] linearConvolution = new int[prodDigits];
 int[][] longMultiplication = CreateMatrix(m, prodDigits);

 //----------------------------Step-1

 Parallel.For(0, m, i =>
 {
 int row = m - 1 - i;
 int col = 0;
 int iProduct;
 for (int j = 0; j < n; j++)
 {
 col = i + j;
 iProduct = ((int) Char.GetNumericValue(y[i]))
 * ((int) Char.GetNumericValue(x[j]));
 longMultiplication[row][col] = iProduct;
 }
 });

 //----------------------------Step-2

 Parallel.For(0, prodDigits, j =>
 {
 int sum = 0;
 for (int i = 0; i < m; i++)
 {
 sum += longMultiplication[i][j];
 }
 linearConvolution[j] = sum;
 });

 //----------------------------Step-3

Concurrent and Parallel Programming under .NET

[150]

 //Use code from Concrete Product-1 here...
 }
 }

 // Concrete Factory-2

 public class BigNumber2 : INumeric
 {
 public BigNumOperations Operations()
 {
 return new BigNumOperations2();
 }
 }

Now, to really understand the leverage we got from the Parallel.For
parallelization construct, we have to do a CPU-intensive operation, which
would be best achieved by computing the power (as opposed to the
product) utilizing the multiplication algorithm. Imagine solving the wheat
and chess problem, or perhaps more, say, 2100,000 (to the power of 100,000)
in place of 232. A recursive divide and conquer strategy has been applied to
compute the exponential (default implementation of the Power method in
the abstract class/product BigNumOperations, which further uses the
overridden, concrete Multiply methods of the respective core product
implementations).

Can you really compute 2100,000 (given our limit of 64-bit arithmetic operations)? Well, take a
look at the following invocation code and result:

 public static void Power (string[] args)
 {
 var bigN1 = new BigNumber1();
 var bigN2 = new BigNumber2();
 var x = args[0];
 int y = Convert.ToInt32(args[1]);

 var watch = Stopwatch.StartNew();
 var val1 = bigN1.Operations().Power(x, y);

 Console.WriteLine(
 "Serial Computation of {0} ^ {1}: {2} seconds",
 x, y, watch.ElapsedMilliseconds / 1000D);

 watch = Stopwatch.StartNew();
 var val2 = bigN2.Operations().Power(x, y);

 Console.WriteLine(

Concurrent and Parallel Programming under .NET

[151]

 "Parallel Computation of {0} ^ {1}: {2} seconds",
 x, y, watch.ElapsedMilliseconds / 1000D);
 Console.WriteLine("Computed Values are {0}!!!",
 val1.Equals(val2) ? "EQUAL" : "DIFFERENT");
 }

Yes!!! It computed the values, and the parallel implementation took around half the time as
compared to the serial one.

The qualifier here, that of taking half the time, is relative and will depend
on the availability of cores and resources; it will also vary with
environments.

Also see how the task granularity seems to utilize the CPU (with all its available cores) to
the maximum extent possible in the case of parallel execution (towards the right-hand side
of the usage spectrum in all of the four cores):

The following is a quick summary of the key applicability of best practices and patterns in
this implementation:

This is a classic case, where data parallelism (applying a single operation to many
data elements/inputs) is exploited to the core, and the parallelization construct
(Parallel.For) we have chosen is best suited for this. We could also leverage
the synchronization primitive Barrier (System.Threading.Barrier), which
would enable various sub-tasks to cooperatively work in parallel through
multiple phases/tasks. A Barrier is recommended when the phases are
relatively large in number.

Concurrent and Parallel Programming under .NET

[152]

Choose a lock-free task data structure (here, a two dimensional array has been
utilized to capture the product sequences from each iteration in step 1). The
operations (reads/writes) are atomic if you examine them closely (including step
2). This makes the parallelization process very effective, as there wouldn't be any
synchronization penalties (locks, specifically) but a seamless utilization of
resources (with the inherent load balancing provided by Parallel.For). It is
best to leave Parallel.For to calibrate the degree of parallelism (DOP) itself so
as to leverage all the available cores, and thereby prevent side-effects because of
thread starvation or oversubscription. At best, we could specify
ParallelOptions of Parallel.For to use Environment.ProcessorCount so
as to explicitly state the usage of one thread per core (a recommended practice in
parallelization). The biggest limitation would be in terms of the memory required
for array allocation in this case. You would tend to hit the OutOfMemory
exception beyond powers of 100,000 (again, specific to this algorithm and the
associated data structures that it employs).
Fine-grained partitioning of tasks, as part of the decomposition process, enables
throughput (again, it's a balance that needs to be achieved with careful analysis;
any attempt to overdo can swing the performance pendulum to the other side).

Choose the data representation in string format to represent really big numbers.
Of course, you do incur the penalty of data conversion (a necessary evil in this
case). You could as well create an extension method for string type to support
these big number operations (perhaps, with a validation for legal numbers).
Use of alternate algorithm (reverse long multiplication; that is, reversing steps 1.1
through 1.3) to leverage the parallel loop partition counter, which is forward only
(as its purpose is only to partition, unlike that of a step counter in a conventional
for loop). Restructuring your algorithm is better than tweaking the code that was
originally designed to run serially.
And finally, leverage the abstract factory GoF design pattern to seamlessly
support the various implementations (in this case, serial and parallel).

Fork/join or master/worker
This is a pattern that you generally associate with task parallelism. When there are distinct
asynchronous operations that can run simultaneously, you can temporarily fork a
program's flow of control with tasks that can potentially execute in parallel. You can then
wait for these forked tasks to complete.

Concurrent and Parallel Programming under .NET

[153]

In the Microsoft® .NET Framework, tasks are implemented by the Task class in the
System.Threading.Tasks namespace. Unlike threads, new tasks that are forked (using
the StartNew method) don't necessarily begin executing immediately. They are managed
internally by a task scheduler, and run based on a FIFO manner (from a work queue) as
cores become available. The Wait (for task) and WaitAll (for task array) method ensures
the join operation.

Now, if you try to apply this pattern holistically to our original problem statement (to
compute the power of big numbers), you will see the potential to leverage this for executing
the tasks within the major phases (Steps 1, 2, and 3) concurrently (by forking off tasks), and
have the phases blocking (joining these forked tasks within each phase) to mirror the
sequential ordering (steps 1, 2, and 3) as advocated by the algorithm. See the following code
that does lock-free parallel implementation of Schönhage-Strassen Algorithm by leveraging
the System.Threading.Tasks concurrency construct:

 // Concrete Product-3

 public class BigNumOperations3 : BigNumOperations
 {
 public override string Multiply (string x, string y,
 CancellationToken ct, BlockingCollection<string> log)
 {
 int n = x.Length;
 int m = y.Length;
 int prodDigits = n + m - 1;
 int[] linearConvolution = new int[prodDigits];
 int[][] longMultiplication = CreateMatrix(m, prodDigits);

 var degreeOfParallelism = Environment.ProcessorCount;
 var tasks = new Task[degreeOfParallelism];

 //----------------------------Step-1

 for (int taskNumber = 0;
 taskNumber < degreeOfParallelism;
 taskNumber++)
 {
 int taskNumberCopy = taskNumber;
 tasks[taskNumber] = Task.Factory.StartNew(
 () =>
 {
 var max =
 m * (taskNumberCopy + 1) /
 degreeOfParallelism;
 var min =
 m * taskNumberCopy /

Concurrent and Parallel Programming under .NET

[154]

 degreeOfParallelism;
 for (int i = min; i < max; i++)
 {
 int row = m - 1 - i;
 int col = 0;
 int iProduct;
 for (int j = 0; j < n; j++)
 {
 col = i + j;
 iProduct =
 ((int) Char
 .GetNumericValue(y[i])) *
 ((int) Char
 .GetNumericValue(x[j]));
 longMultiplication[row][col] =
 iProduct;
 }
 }
 });
 }

 Task.WaitAll(tasks); //Blocking Call

 //----------------------------Step-2

 for (int taskNumber = 0;
 taskNumber < degreeOfParallelism;
 taskNumber++)
 {
 int taskNumberCopy = taskNumber;
 tasks[taskNumber] = Task.Factory.StartNew(
 () =>
 {
 var max =
 prodDigits * (taskNumberCopy + 1) /
 degreeOfParallelism;
 var min =
 prodDigits * taskNumberCopy /
 degreeOfParallelism;
 for (int j = min; j < max; j++)
 {
 int sum = 0;
 for (int i = 0; i < m; i++)
 {
 sum += longMultiplication[i][j];
 }
 linearConvolution[j] = sum;
 }

Concurrent and Parallel Programming under .NET

[155]

 });
 }

 Task.WaitAll(tasks); //Blocking Call
 //----------------------------Step-3

 //Use code from Concrete Product-1 here...

 }
 }

 // Concrete Factory-3

 public class BigNumber3 : INumeric
 {
 public BigNumOperations Operations()
 {
 return new BigNumOperations3();
 }
 }

The collective sample output along with the preceding code is as follows:

What we have done here in the preceding code is essentially explicit macro-range
partitioning with respect to the available cores, and not spinning off in place of micro-range
partitioning with respect to the outer loop. This is a strategy which has to be dealt with
carefully, as results would vary with the resources available at your disposal. Deliberate
calibration can yield much higher throughputs. In this context, we come to the next
important pattern.

Concurrent and Parallel Programming under .NET

[156]

Speculative execution
Now that we have seen close to three different implementation strategies of the Schönhage-
Strassen algorithm, how do we perform deliberate calibration, and decide which is the best
strategy (now that we understand that it has a close co-relation with its environment and
associated resources)?

This is where this important pattern really helps us make a decision, when
deviations against anticipated results are unavoidable, and need to be
smartly addressed.

We would schedule asynchronous tasks for each of these strategies for execution, leverage
the WaitAny method of the Task class to wait for one of the operations to complete (one
that finishes first), and attempt to cancel all others. On a smart-learning front, this could be
done periodically to continuously calibrate and cache your strategy for mass consumption.
It's an aspect of machine learning where the program intelligently adapts to sieve and use
effective algorithms. See the following code that incorporates options to cancel tasks upon
determination of the winner by working out who is the fastest:

 // Concrete Product-4

 public class BigNumOperations4 : BigNumOperations
 {
 /// <summary>
 /// Serial Cancellable Implementation of
 /// Schönhage-Strassen Algorithm
 /// <param name="x">String number Sequence-1</param>
 /// <param name="y">String number Sequence-2</param>
 /// <returns>String Equivalent Product Sequence</returns>
 /// </summary>

 public override string Multiply (
 string x,
 string y,
 CancellationToken ct,
 BlockingCollection<string> log)
 {
 if (ct.IsCancellationRequested == true)
 {
 ct.ThrowIfCancellationRequested();
 }
 //Use code from Concrete Product-1 here...
 //----------------------------Step-1

 for (int i = m - 1; i >= 0; i--)

Concurrent and Parallel Programming under .NET

[157]

 {
 //Use code from Concrete Product-1 here...

 for (int j = n - 1; j >= 0; j--)
 {
 if (ct.IsCancellationRequested)
 {
 ct.ThrowIfCancellationRequested();
 }

 //Use code from Concrete Product-1 here...

 }
 }

 //----------------------------Step-2

 for (int j = prodDigits - 1; j >= 0; j--)
 {
 if (ct.IsCancellationRequested)
 {
 ct.ThrowIfCancellationRequested();
 }

 //Use code from Concrete Product-1 here...
 }

 //----------------------------Step-3

 for (int i = (n + m - 2); i >= 0; i--)
 {
 if (ct.IsCancellationRequested)
 {
 ct.ThrowIfCancellationRequested();
 }

 //Use code from Concrete Product-1 here...
 }
 }

Similarly, concrete products 5 and 6 are created based on constructs
employed in products 2 and 3. Please refer the relevant code sections in
the companion website for these implementations.

Now that we have executable parallel code that will respond to user interruptions, lets
understand how we can do speculative execution.

Concurrent and Parallel Programming under .NET

[158]

It's quite interesting, or rather an art, how we can achieve control over these constructs. It's
just that you need to see through your algorithm, and determine how the decomposition
helps you gain coarser or finer control on execution. You will see areas that pose limitations
once you get into the finer intricacies of task parallelization and concurrency. You will also
see the power of abstraction that these constructs bring to the table, and better appreciate
the instrumentation and hooks that need to go in for aiding you in gaining better control of
your program, as opposed to letting heisenbugs haunt your programs. Let's observe the
output that determined the fastest implementation:

Though the Parallel.For construct emerged the winner in all the three trials. This is not a
certainty, as the outcome is determined by the available resources and the complexity of the
algorithm (in terms of control flow and data flow), depending on input data provided.
Something interesting has occurred here, which warrants an explanation, and will, thereby,
demystify certain behaviors. Remember, everything ought to have an explanation (unless
you are not in control, and have absolutely no idea how your code behaves)!

In case you are wondering why the serial implementation got cancelled, before it started,
only once, it's primarily related to the work load in the machine and the
precedence/sequence in which the tasks started being executed by the CLR thread pool.
Also, the reason why the Tasks Implementation – Cancelled message comes only once is
because Console.WriteLine blocks until the output has been written, as it calls the Write
method of the underlying stream instance; the ones that don't get blocked appear on the
console. You also need to ensure that the token cancellation detection code
(token.IsCancellationRequested) is set at the required control flow points (forks,
joins, and so on) to record near real-time cancellations, and throw
TaskCanceledException via the token.ThrowIfCancellationRequested method
(causing the task to transition to the faulted state). Please inspect the highlighted areas in
the code to understand this.

Concurrent and Parallel Programming under .NET

[159]

The limitation that we noticed in terms of the missing console messages is something that
we would need to overcome, as, capturing relevant information during program execution
is an important horizontal concern, irrespective of the execution model (synchronous or
asynchronous). Ideally, this activity should happen without impacting the normal execution
flow, or causing any performance penalties (in terms of blocking calls). Asynchronous I/O is
typically a standard option used by logging libraries to capture information (user and
system-driven) behind the scenes. We have already dealt with the logging library in
Chapter 3, A Logging Library, and now we will see how to channel data and invoke these
libraries asynchronously in the next pattern.

Another relevant GoF pattern that could be leveraged here is the visitor pattern, where new
strategic implementation of the algorithms could be declaratively tried out, without
flooding consumers with concrete products.

Producer/consumer
This is a natural pattern that one can easily relate to from the moment you start modelling
solutions for real-world problems. It is so intuitive that one may fail to appreciate the
elegance of it, and yet many times we struggle with implementations associated with it.

A producer producing something which a consumer wants is a common scenario in
software modelling. And this can even happen at multiple levels or stages in your data
flow. This is a typical pipeline in design parlance, and warrants good synchronization
between stages. A seamless interplay between the stages in a pipeline warrants a regulated
handshake, where we don't let consumers starve, and at the same time, ensure they are not
overfed. Throttling this handshake involves laying down a communication protocol
(publish-subscribe model, queue-based, and so on), which requires some of the boiler-plate
concurrency constructs (be it data structures or synchronization primitives) to be in place,
as opposed to one wiring these on their own. We have concurrent data structure starting
with .NET 4.0, including BlockingCollection<T>, ConcurrentBag<T>,
ConcurrentDictionary(TKey, TValue), ConcurrentQueue<T>, and
ConcurrentStack<T>, which help us in this task by abstracting out the synchronization
pain-points, and giving us just the adequate blocking features for a seamless integration of
concurrent execution scenarios.

If you really look at our big-number multiplication algorithm, it involves a pipeline too,
having three stages. The only thing is that our stages aren't concurrent, but serial (this is
where, irrespective of the cores you have, you tend to reach the point of diminishing returns
that Amdahl's law predicts). Additionally, our data structure (2D Array) gives non-blocking
reads/writes for the concurrent producers within each stage.

Concurrent and Parallel Programming under .NET

[160]

The performance of a pipeline implementation is purely determined by
the performance of its individual stages, and for efficiency, we need a
concurrent model for each stage (which was achieved in our case).

Let's look at a producer-consumer model-based implementation for non-blocking or
asynchronous logging in the case of speculative execution. We want this primarily to
overcome the limitation of blocking, and console-based stream writes (in production you
can leverage asynchronous I/O for file or db writes).

The code for the consumer is shown as follows:

 /// <summary>
 /// Adaptive Speculation for determining the best strategy
 /// for your environment. Leveraging Task.WaitAny method
 /// </summary>
 /// <param name="args"></param>

 public static void AdaptivePower (string[] args)
 {
 var bigN1 = new BigNumber4();
 var bigN2 = new BigNumber5();
 var bigN3 = new BigNumber6();

 var val1 = "";
 var val2 = "";
 var val3 = "";

 var x = args[0];
 int y = Convert.ToInt32(args[1]);

 var tasks = new Task[3];
 var tokenSource = new CancellationTokenSource();
 var token = tokenSource.Token;
 BlockingCollection<string> log = new BlockingCollection<string>();
 Stopwatch watch;

 tasks[0] = Task.Factory.StartNew(() =>
 {
 watch = Stopwatch.StartNew();
 val1 = bigN1.Operations()
 .Power(x, y, token, log);

 Console.WriteLine("Elapsed Time for Serial " +
 "Computation of {0} ^ {1}: {2} seconds " +
 ">> {3}", x, y, watch.ElapsedMilliseconds / 1000D, val1);
 }, token);

Concurrent and Parallel Programming under .NET

[161]

 tasks[1] = Task.Factory.StartNew(() =>
 {
 watch = Stopwatch.StartNew();
 val2 = bigN2.Operations()
 .Power(x, y, token, log);

 Console.WriteLine("Elapsed Time for " +
 "Parallel.For Computation of " +
 "{0} ^ {1}: {2} seconds >> {3}", x, y,
 watch.ElapsedMilliseconds / 1000D, val2);
 }, token);

 tasks[2] = Task.Factory.StartNew(() =>
 {
 watch = Stopwatch.StartNew();
 val3 = bigN3.Operations()
 .Power(x, y, token, log);
 Console.WriteLine("Elapsed Time for Parallel " +
 "Task Computation of {0} ^ {1}: {2} " +
 "seconds >> {3}", x, y,
 watch.ElapsedMilliseconds / 1000D, val3);
 }, token);

 Console.WriteLine("Determining Fastest Algorithm "
 + "Implementation...");
 Task.WaitAny(tasks); // Wait for fastest task to complete.
 tokenSource.Cancel(); // Cancel all the other slower tasks.
 try
 {
 Task.WaitAll(tasks);
 }
 catch (AggregateException ae)
 {
 ae.Flatten().Handle(e => e is OperationCanceledException);
 }
 finally
 {
 if (tokenSource != null)
 tokenSource.Dispose();
 foreach (string logItem in log)
 {
 Console.WriteLine(logItem);
 }
 Console.WriteLine("Adaptive Speculation Complete!!!");
 }
 }

Concurrent and Parallel Programming under .NET

[162]

Here you can see that we are using a blocking collection to record logs. This needs to be
passed as another parameter to the implementation, and, in turn, collects all the log
information.

The following is an indicative code for the logger (handled in the respective concrete
products):

 // Concrete Product-4

 public class BigNumOperations4 : BigNumOperations
 {
 /// <summary>
 /// Serial Cancellable & Loggable Implementation of
 /// Schönhage-Strassen Algorithm
 /// <param name="x">String number Sequence-1</param>
 /// <param name="y">String number Sequence-2</param>
 /// <returns>String Equivalent Product Sequence</returns>
 /// </summary>

 public override string Multiply (string x, string y,
 CancellationToken ct, BlockingCollection<string> log)
 {
 if (ct.IsCancellationRequested == true)
 {
 log.Add("Serial Implementation Task was " +
 "cancelled before it got started!");
 ct.ThrowIfCancellationRequested();
 }
 //Use code from Concrete Product-1 here...
 //----------------------------Step-1

 for (int i = m - 1; i >= 0; i--)
 {
 //Use code from Concrete Product-1 here...

 for (int j = n - 1; j >= 0; j--)
 {
 if (ct.IsCancellationRequested)
 {
 log.Add("Serial Implementation Step1 " +
 "was cancelled!");
 ct.ThrowIfCancellationRequested();
 }

 //Use code from Concrete Product-1 here...

 }
 }

Concurrent and Parallel Programming under .NET

[163]

 //----------------------------Step-2

 for (int j = prodDigits - 1; j >= 0; j--)
 {
 if (ct.IsCancellationRequested)
 {
 log.Add("Serial Implementation Step2 " +
 "was cancelled!");
 ct.ThrowIfCancellationRequested();
 }

 //Use code from Concrete Product-1 here...
 }

 //----------------------------Step-3

 for (int i = (n + m - 2); i >= 0; i--)
 {
 if (ct.IsCancellationRequested)
 {
 log.Add("Serial Implementation Step3 " +
 "was cancelled!");
 ct.ThrowIfCancellationRequested();
 }

 //Use code from Concrete Product-1 here...
 }
 }

So, we have seen some of the key patterns that play a major role in modelling concurrent
tasks that could be run in parallel. Though the narration has been primarily based on a
single example, we believe that, as a developer, you were able to understand the
applicability of these in a real-world problem scenario. In terms of coverage, there is a lot
one needs to learn and prototype. Exception handling is a chapter on its own, especially
when dealing with concurrent scenarios, and that has been avoided for brevity. A sea of
threads awaits you. Bon Voyage!

Summary
In this chapter, we just touched the surface of concurrent and parallel programming under
.NET. The topic warrants a book dedicated for itself. Now you have enough background to
learn about writing advanced software using features of the C# programming language, like
LINQ, lambda, expression trees, extension methods, async/await, and so on. The next
chapter will deal with the issue of better state management by leveraging these tools.

9
Functional Programming

Techniques for Better State
Management

While writing concurrent/parallel code, handling state is difficult in an imperative program
(something that you would have seen by now). Modern languages and platforms borrow
idioms and practices that enable better state management and facilitate strong concurrency
models from the functional programming community. In this chapter, we will see what
those are and try to understand, through code samples, how to best leverage some of those
features (striving for coverage would stretch this chapter to an entire book) to our
advantage. We would also see how C# has evolved as a language to bring the best of both
worlds (imperative and functional), and to help you apply functional thinking to model
real-world scenarios. This chapter will also cover Language Integrated Query (LINQ) as a
mechanism for writing compositional code. Through this journey, we will uncover some
good design practices, leveraging the functional constructs in the language (primarily C#).
We hope this chapter serves as a starter kit by providing you with some of the techniques
and tools to tackle programming tasks in a functional way. Some of the ideas covered
include:

Being functional
Referential transparency
First class functions (also higher order functions)
Lambda calculus and anonymous functions
Currying and partial function application
A brief overview of how LINQ works

Functional Programming Techniques for Better State Management

[165]

Being functional
Functional programming is a programming paradigm that involves algorithm composition,
to be dealt on the same lines as mathematical function evaluations. This implies that the
output of these functions would purely depend on the inputs provided. Moreover, any
applicable data structures that the algorithm would need to create the output would be
transient, having a lifetime within the function scope, and thus help in avoiding state
mutation. It is also a powerful declarative programming paradigm, which involves
leveraging expressions for readable code in place of procedural in-line statements.

Referential transparency
Let's delve a bit deeper to understand the consequences of being functional, as illustrated by
the definitions given in the preceding section. Now, when we try to relate functions from
both these worlds (mathematical and imperative programming), we see a strong disparity,
as the latter mutates state with commands in the source language, thereby bringing in side
effects (though desirable from an imperative programming standpoint). This violates one of
the fundamental pre-requisites of functional programming – that of referential
transparency, that is, the same expressions (when run at different times) yield different
values with respect to the executing program's state. This affects the predictability of the
program, which is definitely not desirable. On the other hand, pure functions (say f, one
without such side effects) in the mathematical world would yield the same result f(x) each
time with the same value of x, say sin(x). This characteristic is attributed to idempotency in
software behavior (delivers consistency). Now you understand how this characteristic
became so fundamental to functional programming.

Let's understand the consequence of this by looking at two functions: one which is
referentially opaque (with side effects), and the other which is referentially transparent:

 public class Counter
 {
 private int i = 0;
 public int AddOneRO (int x) //Referentially Opaque
 {
 i += 1;
 return x + i;
 }
 public int AddOneRT (int x) //Referentially Transparent
 {
 return x + 1;
 }
 }

Functional Programming Techniques for Better State Management

[166]

The function AddOneRT is referentially transparent, which means that AddOneRT (x) =
AddOneRT (y) if x = y. However, we can't say any such thing for AddOneRO, because it
uses a global variable (i) that it modifies.

Now since AddOneRO (x) <> AddOneRO (y) if x = y, this further
implies AddOneRO (x) - AddOneRO (x) <> 0, thus invalidating the
fundamental mathematical identity (x - x = 0)!

This has major consequences in terms of code robustness and optimization by means of
memorization (caching intermediate results), common subexpression elimination (where
the result of a pure expression can be substituted in place of repeated evaluations without
affecting the program behavior), lazy evaluation, or parallelization. So, in order to reap the
benefits of these consequences from functional computation, one needs to strive to get the
functions to be as referentially transparent (that is, free from the side effects of memory and
I/O) as a mathematical function. With this, we come to the next important functional
programming feature where functions become first-class citizens.

First-class and higher-order functions
Functions are the fundamental processing units in functional programming, and since they
can be used like any other value, functions can be stored in variables, properties, objects,
and collections. The term first-class function was created by Christopher Strachey.

Higher-order functions are functions that can either take other functions as
arguments or return them as results.

C# supports higher-order functions (both named and anonymous), which are treated like
ordinary variables with a function type.

Function type
C# provides the capability to define both generic functions and strongly typed delegates.
The delegate type carries the method signature of a function prototype, and its instances
become function pointers. Thus, you can manipulate a function variable whose function
method signature matches with that of the function prototype.

Functional Programming Techniques for Better State Management

[167]

In addition to generic function types, C# 2.0 introduced anonymous methods/delegates and
iterators (with the yield return statement which lets you create iterator/continuation
methods that return sequences based on the caller's demand/pull. That is, you get the
benefit of deferred execution without incurring storage allocation overheads for the input
and output sequences), which provided more flexibility and compositional capability. We
can also use the following three generic function types that C# provides:

A function that takes multiple type arguments, and returns result of a particular
type:

 Func<T1, T2, . . . , Tn, TReturn>

A procedure that takes multiple type arguments, and performs action/s without
returning any result:

 Action<T1, T2, . . . , Tn>

A function that takes multiple type arguments, and returns a Boolean result:

 Predicate<T1, T2, . . . , Tn>

You can see the preceding function types in action as follows:

 public static IEnumerable<T> GenerateSequences<T> (
 int noOfElements, Func<T> generator)
 {
 for (int i = 0; i < noOfElements; i++)
 {
 yield return generator();
 }
 }

 public static IEnumerable<TSource> Where<TSource> (
 IEnumerable<TSource> source, Predicate<TSource> predicate)
 {
 foreach (TSource element in source)
 {
 if (predicate(element))
 yield return element;
 }
 }

Functional Programming Techniques for Better State Management

[168]

A client using the anonymous delegate syntax would consume the preceding static methods
as follows:

 int startEven = -2;
 int startOdd = -1;
 int increment = 2;

 //To Generate first 1000 even numbers
 IEnumerable<int> evenSequences = GenerateSequences<int> (
 1000, () => startEven += increment);

 //To Generate first 1000 odd numbers
 IEnumerable<int> oddSequences = GenerateSequences<int> (
 1000, () => startOdd += increment);

As you can see, this deferred execution model makes your algorithms use
less storage space and compose better than traditional imperative
methods. More importantly, with functional purity you'll be able to
leverage parallelism by assigning different operations to different CPU
cores, thereby improving throughput.

Now it's time to look at a core functional programming concept which was adopted in C#
3.0, that is, lambda expressions that facilitated wide adoption of functional programming
practices (with little or no knowledge on it's consequences) in the imperative world.

Lambda (λ) calculus
λ-calculus is a mathematical formalism for denoting computation in an abstract form using
functions. This brings forth a formal notation and transformation rules for representation
(function abstraction) and manipulation (function application) of lambda terms. The key to
this formalism is variable binding and substitution. Alonzo Church created lambda
calculus in an attempt to prove mathematical logic.

Functional Programming Techniques for Better State Management

[169]

The λ-calculus provides a simple semantics for computation using computable functions
based on Church-Turing thesis (readers are urged to take a look at the history of lambda
calculus, its motivation, and mathematical implications at a little deeper level to better
appreciate this formalism and its consequences, as opposed to just being sheer consumers)
by incorporating the following simplifications and concepts:

Anonymous functions
This involves treating functions as anonymous, without giving them explicit names.
For example, take this simple static method:

 public static int AddOperation (int x, int y)
 {
 return x + y;
 }

If you rewrite the preceding static method, the equivalent representation as an anonymous
delegate would be what is highlighted in the following code:

 Func<int, int, int> AddOperation = delegate(int x, int y)
 {
 return x + y;
 };

Now, the corresponding lambda expression would be the one highlighted in this code:

 Func<int, int, int> AddOperation = (x, y) => x + y;

Another lambda expression that follows the same function signature, yet bringing in a
polymorphic behavior, is as follows:

 Func<string, string, string> ConcatOperation = (x, y) => x + y;

Now you can see the formal syntax that lambda expressions obey, as stated in the
definitions given earlier, which denotes that variables x and y are bound to the lambda term
x + y. You just witnessed the lambda abstraction for the function f(x, y) = x + y. The
function definitions (AddOperation and ConcatOperation) with this lambda abstraction
just sets up the function without invocation. An application in lambda calculus parlance,
with respect to the preceding example, would signify applying inputs x and y to the
function f.

Functional Programming Techniques for Better State Management

[170]

Function application in lambda calculus is achieved through beta reduction (a continuous
reduction process involving substitution of bound variables to the lambda terms till no
applications remain for reduction). A function application in lambda calculus is analogous
to method invocation in the imperative world, except that the consequences are totally
different, which you would have understood by now.

Closures
As mentioned earlier, the key to formalism is variable binding and substitution. Bound
variables are the ones that fall within the scope of an abstraction. The remaining variables
are said to be free (from the context of that specific abstraction). A closed lambda expression
is one with no free variables.

Something to note here is that a variable is bound by its nearest
abstraction, which means that a free variable, with respect to an
abstraction, would eventually be bound to higher abstractions in the
hierarchy. And this free or unbound variable (with its associated
references and values), which gets captured in the context of an
abstraction (that is, the lexical Scope), constitutes a closure (again
pertaining to that abstraction).

 public static Func<int, Func<int, int>> sum =
 x => y => x + y;

The preceding code clearly shows a closure in action. Here, the closure object (which
constitutes of variable x and its target method) helps to share data between the functions.
The use of this higher-order sum function (where new functions are composed and
returned) is illustrated clearly in the following code snippet:

 var add10 = sum(10); //Returns closure with 10
 var add50 = sum(50); //Returns closure with 50

 Console.WriteLine(add10(90)); //Returns 100
 Console.WriteLine(add10(190)); //Returns 200
 Console.WriteLine(add50(70)); //Returns 120

Functional Programming Techniques for Better State Management

[171]

Currying and partial application
Partial application and currying are two distinct techniques, yet loosely depicted. It is
facilitated by the capability of higher-order functions, wherein their partial application
(against one or multiple arguments) returns new functions (that accept the remaining
arguments) with lesser arity (compared to the original function).

Let's now understand the difference between currying and partial application.

Currying is a natural consequence of lambda calculus, where functions
employ only a single input. This technique primarily involves conversion
of a function evaluation that accepts multiple arguments (as in any
practical function) into a series of function evaluations that accept one
argument at a time. Currying got its name from Haskell Curry, who
developed it following the work of Gottlob Frege and Moses Schönfinkel.

Without much ado, let's see these in action.

Currying
Let's go back to our old example here:

 public static int AddOperation (int x, int y)
 {
 return x + y;
 }

Now this is a simple and practical function we employ mostly. Let's see how this is deftly
curried to generate functions that accept one argument at a time, and yet leverage the core
function for function application:

 public static Func<T1, Func<T2, TReturn>> Curry<T1, T2, TReturn>
 (Func<T1, T2, TReturn> f)
 {
 return a => b => f(a, b);
 }

Any client would leverage the curried function this way:

 var curriedSum = Curry<int, int, int>(AddOperation);

 Console.WriteLine("Sum: {0}", curriedSum(10)(90));
 //Prints Sum: 100

Functional Programming Techniques for Better State Management

[172]

There's another interesting way to curry functions; as a matter of fact, we can curry any
arbitrary function using the function definition (delegate in our case). Here we leverage
extension methods (a language feature introduced in version 3.0) to provide innate currying
capability to a generic function definition: Func<T1, T2, TReturn>. This means you can
apply currying to any function that has this method signature. See the following code:

 public static Func<T1, Func<T2, TReturn>> Curry<T1, T2, TReturn>
 (this Func<T1, T2, TReturn> f)
 {
 return a => b => f(a, b);
 }

The keyword this in the highlighted code enables the extension method magic for you
(which essentially decorates the generic delegate type Func<T1, T2, TReturn) with the
curry function. Voila! We finally have imparted innate currying capability to any function
that conforms to this definition. Take a look at the following code:

 Func<int, int, int> op = AddOperation;
 var curriedSum = op.Curry<int, int, int>();

 Console.WriteLine(
 "Sum: {0}",
 curriedSum1(10)(90)
);
 //Prints Sum: 100

Now to replicate the same thing in the polymorphic function below:

 public static string ConcatOperation (string x, string y)
 {
 return x + y;
 }

 Func<string, string, string> op2 = ConcatOperation;
 var curriedConcat = op2.Curry<string, string, string>();

 Console.WriteLine(
 "Concatenation: {0}",
 curriedConcat("Currying ")("Rocks!!!")
);
 //Prints "Concatenation: Currying Rocks!!!"

Functional Programming Techniques for Better State Management

[173]

You could continue (as shown in the next code) to create more curry function overloads to
support additional function definitions (that has more than two input parameters):

 //Currying Extension Method that Supports 3 Input Parameters

 public static Func<T1, Func<T2, Func<T3, TReturn>>>
 Curry<T1, T2, T3, TReturn>
 (this Func<T1, T2, T3, TReturn> f)
 {
 return a => b => c => f(a, b, c);
 }
 // Currying Extension Method that Supports 4 Input Parameters

 public static Func<T1, Func<T2, Func<T3, Func<T4, TReturn>>>>
 Curry<T1, T2, T3, T4, TReturn>
 (this Func<T1, T2, T3, T4, TReturn> f)
 {
 return a => b => c => d => f(a, b, c, d);
 }

Partial application
Now let's look at partial application which is distinctively different from currying, though
highly confusing to many programmers.

Partial application (or partial function application) is yet another
consequence of lambda calculus where functions employ a fixed set of
inputs. This technique primarily involves conversion of a function
evaluation that accepts multiple arguments (as in any practical function)
into a function that accepts a fixed number of arguments, which in turn
yields yet another function that accepts the remaining arguments.

The following code says it all:

 public static string ConcatOperation(string a, string b, string c,
 string d)
 {
 return a + b + c + d;
 }

 //Partial Application in functions that have 3 Input Parameters
 public static Func<T2, T3, TReturn>
 PartialApply<T1, T2, T3, TReturn>
 (this Func<T1, T2, T3, TReturn> f, T1 arg1)
 {
 return (arg2, arg3) => f(arg1, arg2, arg3);

Functional Programming Techniques for Better State Management

[174]

 }

 //Partial Application in functions that have 4 Input Parameters

 public static Func<T2, T3, T4, TReturn>
 PartialApply<T1, T2, T3, T4, TReturn>
 (this Func<T1, T2, T3, T4, TReturn> f, T1 arg1)
 {
 return (arg2, arg3, arg4) => f(arg1, arg2, arg3, arg4);
 }

 //Sample code that illustrates usage

 Func<string, string, string, string, string> op3 = ConcatOperation;

 var partiallyAppliedConcat = op3.
 PartialApply<string, string, string, string, string>
 ("Partial ");
 Console.WriteLine(
 "Concatenation: {0}",
 partiallyAppliedConcat(
 "Function ",
 "Application ",
 "Rocks!!!")
);
 //Prints "Concatenation: Partial Function Application Rocks!!!"

Applying currying and partial application
Let's see these two in action in a real programming scenario. The scenario we would look at
is a classic mathematical conundrum – that of determining the Pythagorean Triples within a
given range. As the name suggests, the Pythagorean triple constitutes the set of numbers
that satisfy the Pythagorean theorem (a2 + b2 = c2). The conventional method to find the
triples is shown in the following code:

 //The formula that confirms a Pythagorean Triplet

 public static bool IsPythagoreanTriplet (int x, int y, int z)
 {
 return (x * x + y * y) == (z * z);
 }

 //Function that generates the triples within a given range based
 //on the above formula.

 public static IEnumerable<IEnumerable<int>>

Functional Programming Techniques for Better State Management

[175]

 PythagoreanTriples (int range)
 {
 Func<int, int, int, bool> formula = IsPythagoreanTriplet;
 HashSet<string> capturedTriplets = new HashSet<string>();

 for (int a = 1; a < range; a++)
 {
 for (int b = 1; b < range; b++)
 {
 for (int c = 1; c < range; c++)
 {
 if (formula(a, b, c)) //Direct Evaluation
 {
 string keyPart1 = a.ToString();
 string keyPart2 = b.ToString();
 //This check filters the duplicate triplets
 if (!capturedTriplets
 .Contains(keyPart1 + ":" + keyPart2)
 &&
 !capturedTriplets
 .Contains(keyPart2 + ":" + keyPart1)
)
 {
 capturedTriplets
 .Add(keyPart1 + ":" + keyPart2);
 yield return new List<int>() { a, b, c };
 }
 }
 }
 }
 }
 }

This preceding code continuously yields the triplets as and when it is discovered. Another
interesting thing about the brute force approach here is that it returns duplicates (for
example-[3, 4, 5] and [4, 3, 5], [6, 8, 10] and [8, 6, 10], and so on. The filter (highlighted code),
in conjunction with the HashSet, helps eliminate these duplicates.

Now let's see the same code leveraging curried functions:

 public static IEnumerable<IEnumerable<int>>
 PythagoreanTriplesCurried (int range)
 {
 Func<int, int, int, bool> formula = IsPythagoreanTriplet;
 var cFormula = formula.Curry<int, int, int, bool>();
 HashSet<string> capturedTriplets = new HashSet<string>();

 for (int a = 1; a < range; a++)

Functional Programming Techniques for Better State Management

[176]

 {
 for (int b = 1; b < range; b++)
 {
 for (int c = 1; c < range; c++)
 {
 if (cFormula(a)(b)(c)) //Curried Evaluation
 {
 // Use same code from PythagoreanTriples function
 }
 }
 }
 }
 }

In this case the curried function is created, based on the formula that proves the
Pythagorean theorem, which would accept a valid input for a, b, and c consecutively, and
final evaluation is done when the last argument is received.

Now let's check out partial application usage in this same scenario:

 public static IEnumerable<IEnumerable<int>>
 PythagoreanTriplesPartiallyApplied (int range)
 {
 Func<int, int, int, bool> formula = IsPythagoreanTriplet;
 HashSet<string> capturedTriplets = new HashSet<string>();

 for (int a = 1; a < range; a++)
 {
 var paFormula = formula
 .PartialApply<int, int, int, bool>(a);
 for (int b = 1; b < range; b++)
 {
 for (int c = 1; c < range; c++)
 {
 //Final Evaluation with remaining arguments
 if (paFormula(b, c))
 {
 // Use same code from PythagoreanTriples function
 }
 }
 }
 }
 }

Functional Programming Techniques for Better State Management

[177]

Now, you can clearly see the distinction between currying and partial application. The
result yielded by partial application becomes a closure (gets captured) for reuse in place of
function captures in the currying approach. This early evaluation (a2 and b2) in the case of
partial application would give an advantage for reuse in subsequent iterations in place of
repeated deferred evaluations with respect to currying. The real use of currying and partial
application is seen when inputs are generated asynchronously for consumption by a grand
computation function. You could capture or partially compute as and when these inputs are
generated, and trigger the final evaluation on obtaining the last input. Another thing to note
is that partial application can accept more than one arguments (unlike the example shown
here where it accepts one as in currying). A typical consumer client would be as follows:

 Console.WriteLine("PythagoreanTriples within 50....");

 foreach (var triplets in PythagoreanTriplesPartiallyApplied(50))
 {
 Console.WriteLine(string.Join(",", triplets.ToArray()));
 }
 Console.ReadLine();

So, we guess no more confusions on these two concepts from now on! Another adventure (if
you're game; yes, we dare you) is to do the following:

Optimize this algorithm (now you know there are range3 iterations and the
performance impact is huge when you go beyond the range of 1,000).
Making the filter operation lazily evaluated as part of the LINQ consumer query
which would yield duplicates (without the HashSet in the first place). And again,
nothing actually stops you from figuring out a way to generate triplets without
duplicates!
Figure out a way to generate triples forever as they are detected (without the
limitation of a range, loop, or any computation limits (such as reaching the max
value for a 64-bit signed integer).

Expression trees
By now you have seen how to create delegates from a lambda expression (anonymous
function). You can also opt to create expression tree types. Expression trees are analogous to
Abstract Syntax Tree (AST) in the compiler construction realm, and they embody code in a
tree data structure, where each node is represented as an expression. Using expression
trees, you can compile and run code, thereby gaining powerful ability to dynamically
modify executable code.

Functional Programming Techniques for Better State Management

[178]

Expression trees are also used in the Dynamic Language Runtime (DLR) to provide
interoperability between dynamic languages and the .NET Framework and to enable
compiler writers to emit expression trees instead of Microsoft Intermediate language
(MSIL).
 - MSDN

Expression trees are inherently immutable. All that we need to get the compiler emit the
code for an expression tree is to assign the lambda expression to a variable of type
Expression<TDelegate>. The .NET framework provides a rich API (expression class
under System.Linq.Expressions Namespace) for parsing, creation, and manipulation (of
course recreating with appropriate tree visitors). The API supports most of the language
grammar.

Altogether, this becomes a very powerful construct that can be leveraged for
code/dependency injection, Domain-Specific Language (DSL) creation, and associated
language translations (all you would need to do in such a case is to let your dynamic
language lexer and parser to generate the Abstract Syntax Tree (AST), which in our case is
the expression tree itself, and DLR would do the rest. Don't think twice before embarking
on your next DSL adventure. There is inherent platform support!)You finally understand
how a lambda expression (an anonymous function) can be used to create delegates
or expression tree types. By using lambda expressions, you can write local functions that
can be passed as arguments or returned as the value of function calls.

Recursion
Recursions are no alien feature to any programmer worth his salt. Recursions are leveraged
in functional programming to accomplish iteration/looping. Recursive functions invoke
themselves, performing an operation repeatedly till the base case is reached. Tail call-based
recursions are a common phenomenon. Recursion typically involves adding stack frames to
the call stack, thus growing the stack. You can run out of stack space during deep
recursions. The compiler does its own share of optimizations (predominantly tail call
optimization/elimination) to conserve stack space and improve throughput. But the
functional world (with its first-class and higher-order functions) gives us more flexibility to
wire such optimizations in our recursive functions. Let's see how this is achieved with the
following factorial example:

 //Regular Recursion

 Func<int, int> factorial = (n) =>
 {
 Func<int, int> fIterator = null; //Work-around for "use of

Functional Programming Techniques for Better State Management

[179]

 unassigned variable" error!
 fIterator = (m) =>
 (m < 2) ? 1 : m * fIterator(m - 1);
 return fIterator(n);
 };

Unlike the classical example, you see how recursion is put to work by lambda expressions
as well, which makes you use these anonymous functions as higher order functions (where
they are dynamically created or passed as arguments). You can also notice the use of a
wrapper function (factorial in this case), which is directly called, but does not recurse itself,
and instead, leverages an auxiliary function (fIterator in this case) to do the actual
recursion.

The wrapper function becomes handy for performing parameter
validations, error handling, memorization, and so forth.

In order to conserve stack space, we can opt for a tail call elimination technique known as
tail recursion as follows:

 //Tail Call Elimination with Tail Recursion

 Func<int, int> factorial = (n) =>
 {
 Func<int, int, int> fIterator = null;
 fIterator = (product, i) =>
 (i < 2) ? product : fIterator(product * i, i - 1);
 return fIterator(1, n);
 };

In this case, no state, except for the calling function's address, needs to be saved either on
the stack or on the heap, and the call stack frame for fIterator is reused for storage of the
intermediate results. Another thing to note is the addition of an accumulator argument
(product in this case).

Tail recursion can be achieved by another technique called trampolining, where functions
are called by a trampoline function as opposed to functions calling each other directly. All
the needed payload (function pointer and arguments) for the function call is provided to the
trampoline function, which then places the call on the caller's behalf. This ensures that the
stack does not grow and iteration can continue indefinitely:

 //Tail Recursion with Trampolining

 Func<int, int> factorial = (n) =>

Functional Programming Techniques for Better State Management

[180]

 {
 Func<int, int, int> trampoline = null;
 Func<int, int, int> fIterator = (product, i) =>
 (i < 2) ? product : trampoline(product * i, i - 1);
 trampoline = (product, i) =>
 fIterator(product * i, i - 1);
 return trampoline(1, n);
 };

The following image depicts the supporting language constructs that have evolved to make
these functional programming features available for consumption:

Sample programs
Now that we have taken a detailed look at the core functional programming constructs, it's
time to indulge in power play (with code of course). Let's learn to play the game with some
hardcore sample programs.

Spell checker
This was inspired by Peter Norvig's (former Research Director at Google) technical blog on
How to Write a Spelling Corrector. What is interesting is the way the solution has been
envisaged. The solution employs the probability theory at its core to find all possible
corrections for a word of length n, by accounting for user errors in the form of typos arising
because of omissions (deletes), characters misplaced (replaces and transposes), and inserted
(inserts).

Functional Programming Techniques for Better State Management

[181]

You can refer to this technical blog on How to Write a Spelling Corrector by Peter Norvig for
the following:

For a word of length n, there will be n deletions, n-1 transpositions, 26n
replacements, and 26(n+1) insertions.

To have fair shot at determining the corrections, we do find all possible corrections that are
1 (edits1 function) and 2 (edits2 function) distance away. You would be able to see the
function compositions in the code given next using LINQ queries that yield these possible
corrections in a breeze. This demonstrates the expressive and declarative power of lambda
expressions.

What is most important, and to ensure the right filtering of this huge set (for meaningful
corrections), is to determine what are the known or meaningful words. For this a dictionary
is either fed or created (in our case) from a corpus of free text from Project Gutenberg, and
lists of the most frequent words from Wiktionary and the British National Corpus. The text
is extracted, concatenated, and provided in the text file NSC_Training_Model.txt (you
could also directly obtain this from http://norvig.com/big.txt). The known function does
this filtering for you.

Now, to determine the list of corrections in the order of recommendation, we employ the
probability of occurrence of the known corrections in the dictionary created out of the
corpus (as it becomes a good indication of common usage). Now you know how
personalized spelling correctors work on your mobile device! (Yes, you guessed it right, it
certainly is based on the probability of the list of possible corrections in the order of your
usage of words).

The authors encourage the readers to visit the site
(http://norvig.com/spell-correct.html), and take a look at the detailed explanation of
the solution. One of the authors has his JavaScript implementation published on the site as
well.

The function NorvigSpellChecker shown below returns a list of potential corrections
based on the word and count (maximum items in list) specified:

 public static IEnumerable<string> NorvigSpellChecker
 (string word, int count)
 {
 var alphabets = @"abcdefghijklmnopqrstuvwxyz";
 var WORDS = new ConcurrentDictionary<string, int>();
 var trainingFile = @"D:\Packt\Code\NSC_Training_Model.txt";
 //Training Model Creation

http://norvig.com/big.txt
http://norvig.com/spell-correct.html

Functional Programming Techniques for Better State Management

[182]

 var Train = Task.Factory.StartNew(() =>
 {
 foreach (var line in File
 .ReadLines(trainingFile)
 .AsParallel()) //Parallel read
 {
 foreach (Match match in
 Regex.Matches(
 line,
 @"([a-z]+)", //Word detection
 RegexOptions.IgnoreCase
)
 .AsParallel())
 {
 WORDS.AddOrUpdate(//Add detected word to dictionary
 match.Value,
 0,
 (k, v) => v + 1); //Increment word count
 }
 }
 });

 //All edits that are 1 edit away from word

 Func<string, Task<IEnumerable<string>>> edits1 =
 (tWord) => Task.Factory.StartNew(() =>
 {
 return from i in Enumerable.Range(0, tWord.Length)
 select new
 {
 part1 = tWord.Substring(0, i),
 part2 = tWord.Substring(i)
 }; //splits
 })
 .ContinueWith(ant =>
 {
 return (from splits in ant.Result
 where splits.part2 != ""
 select splits.part1 +
 splits.part2
 .Substring(1)) //deletes
 .Union(from splits in ant.Result
 where splits.part2.Length > 1
 select splits.part1 +
 splits.part2[1] +
 splits.part2[0] +
 splits.part2
 .Substring(2)) //transposes

Functional Programming Techniques for Better State Management

[183]

 .Union(from splits in ant.Result
 from c in alphabets
 where splits.part2 != ""
 select splits.part1 + c + splits.part2.Substring(1)) //replaces
 .Union(from splits in ant.Result
 from c in alphabets
 select splits.part1 + c + splits.part2); //inserts
 });

 //All edits that are 2 edits away from word

 Func<string, Task<IEnumerable<string>>> edits2 =
 (tWord) => Task.Factory.StartNew(() =>
 {
 return (from e1 in edits1(tWord).Result
 from e2 in edits1(e1).Result
 where WORDS.ContainsKey(e2)
 select e2);
 });

 //Returns the subset of words that appear in the
 //dictionary of WORDS

 Func<IEnumerable<string>, Task<IEnumerable<string>>> known =
 (tWords) => Task.Factory.StartNew(() =>
 {
 return (from e1 in tWords
 where WORDS.ContainsKey(e1)
 select e1);
 });

 //Generate all possible spelling corrections for word

 Func<string, Task<IEnumerable<string>>> candidates =
 (tWord) => Task.Factory.StartNew(() =>
 {
 List<string> tWords = new List<string>();
 tWords.Add(word);
 return ((from e1 in known(tWords).Result
 select e1)
 .Union(from e2
 in known(edits1(tWord).Result).Result
 select e2)
 .Union(from e3
 in known(edits2(tWord).Result).Result
 select e3)
 .Union(from e4
 in tWords

Functional Programming Techniques for Better State Management

[184]

 select e4))
 .Distinct();
 });

 //Returns most probable spelling correction for word in the
 //order of their probability of occurrence in the corpus

 Func<string, Task<IEnumerable<string>>> corrections =
 (tWord) => Task.Factory.StartNew(() =>
 {
 var N = (from x in WORDS
 select x.Value)
 .Sum();
 List<string> tWords = new List<string>();
 return (from e1 in candidates(tWord).Result
 .OrderByDescending(
 e1 => WORDS.ContainsKey(e1) ?
 (float) WORDS[e1] / (float) N : 0)
 select e1)
 .Take(count);
 });
 Task.WaitAll(Train); //Ensures Training Model is Created!
 return corrections(word).Result;
 }

A declarative style of coding with lambda expressions has been employed fluidly in
realizing this spell checker. You could see how the algorithm is composed using LINQ
expressions. Closures, concurrency, and parallelism (in the form of PLINQ) has been
employed in realizing this function. A typical consumer of this spell checker would be the
following:

 static void SpellCheckerClient ()
 {
 var corrections = NorvigSpellChecker("somthing", 10);

 foreach (var correction in corrections)
 {
 Console.WriteLine(correction);
 }
 Console.WriteLine("Training Model Creation Complete! {0}",
 corrections.Count());
 }

We urge interested developers to explore options to further parallelize the algorithm/steps,
and see the results (at least from a performance standpoint). It would be a worthwhile
journey to understand that the parallelization constructs at your disposal (especially PLINQ
and TPL) are not mere silver bullets!

Functional Programming Techniques for Better State Management

[185]

Subset generation
This problem has a classical implication on a variety of NP-complete problems that we are
exposed to in daily life. The procedural and generic serial implementation is shown as
follows:

 public static IEnumerable<IEnumerable<T>>
 Subsets<T> (IEnumerable<T> inputSet)
 {
 T[] _input = inputSet.ToArray<T>();
 int _bitcount = _input.Length;
 int _mask = Convert.ToInt32(Math.Pow(2.0d, _bitcount));
 int i = 0;
 while (i < _mask)
 {
 List<T> _output = new List<T>();
 int j = 0;
 while (j < _bitcount)
 {
 if ((i & (1 << j)) > 0)
 {
 _output.Add(_input[j]);
 }
 j++;
 }
 yield return _output.ToArray<T>();
 i++;
 }
 }

As you see, the preceding algorithm leverages Boolean logic to determine the unique sets.
The possible ON (1) states of the gates determine the sets, and we just need to determine the
index of the element in the array (that has the complete list of elements whose sets need to
be determined) that yields a state of 1.

The declarative equivalent of the preceding implementation has been realized with PLINQ
as follows:

 string[] names = { "a", "b", "c", "d", "e", "f" };

 var result = from i in Enumerable
 .Range(0, Convert.ToInt32(Math.Pow(2.0d, names.Length)))
 .AsParallel()
 from j in Enumerable
 .Range(0, names.Length)
 .AsParallel()
 let k = new

Functional Programming Techniques for Better State Management

[186]

 {
 a = i,
 b = names[j]
 }
 where ((i & (1 << j)) > 0)
 orderby k.a
 group k.b by k.a;

Now, to take this to the next level, since this has a limit (9,223,372,036,854,775,807 – max
value for a 64-bit signed integer) on the _mask, that is, computing the total possible
combinations, we would have to trade this algorithm for another which can continuously
generate subsets, that too, forever. This is the power of deferred execution and continuation
methods (supported by the yield return keyword). Let's see this algorithm (again
optimized for some amount of parallelism which becomes significant for large set
generation). This also employs Boolean logic but in a different way. It computes 1- bit
addition forever, in this case using the full adder logic (as the resulting bits directly
represent the set):

The parallelization done here is to chunk the binary additions for each overFlow (as the
code indicates). For example, say there are three elements namely, 10, 20, and 30. The
process of determining the sets (including chunking) would happen as follows:

Bits Chunks Resulting set

0 – 0 – 1 1 [30]

0 – 1 – 0 2 [20]

0 – 1 – 1 2 [20, 30]

1 – 0 – 0 3 [10]

1 – 0 – 1 3 [10, 30]

1 – 1 – 0 3 [10, 20]

1 – 1 – 1 3 [10, 20, 30]

Functional Programming Techniques for Better State Management

[187]

The initial set of bit (0-0-0) which yields an empty set is ignored here. The overflows are
indicated by the high-lighted rows, and the bits that shift are represented as bold. The
throughput was observed to be ~three times faster than the serial implementation on a
quad-Core computer! In case you're wondering why parallelization has been restricted to
one level, the authors urge you to find out the effect of parallelizing/optimizing further.
This is a NP-complete problem that would demand 2n cores for the ultimate parallelization!
It would be interesting to see how these sets could be applied for packing algorithms:

 public static IEnumerable<IEnumerable<T>>
 BigSubsetsP<T> (IEnumerable<T> inputSet)
 {
 T[] _input = inputSet.ToArray<T>();
 BlockingCollection<IEnumerable<T>> output = new
 BlockingCollection<IEnumerable<T>>(boundedCapacity: 20);
 int _bitcount = _input.Length;
 BitArray bits = new BitArray(_bitcount);
 BitArray _bitsIncrement = new BitArray(_bitcount);
 _bitsIncrement.Set(0, true);

 //Stage#1 [GENERATE]

 var generate = Task.Factory.StartNew(() =>
 {
 try
 {
 Parallel.For(0, _bitcount,
 (chunkIndex) =>
 {
 BitArray _bits = new BitArray(_bitcount);
 bool overFlow = false;
 _bits.Set(chunkIndex, true);
 output.Add(new[] { _input[chunkIndex] });
 while (!overFlow)
 {
 List<T> _output = new List<T>();
 int j = 0;
 bool a;
 bool b;
 bool cIN = false;
 bool cOUT = false;
 bool bSUM = false;
 while (j <= chunkIndex) //Full-Adder Addition
 {
 a = _bits[j];
 b = _bitsIncrement[j];
 bSUM = a ^ b ^ cIN;
 cOUT = (a & b) | (cIN & (a ^ b));

Functional Programming Techniques for Better State Management

[188]

 _bits.Set(j, bSUM);
 if (bSUM)
 {
 _output.Add(_input[j]);
 }
 cIN = cOUT;
 j++;
 }
 overFlow = cIN;
 if (_output.Count > 0)
 {
 output.Add(_output.ToArray<T>());
 }
 _output.Clear();
 _output = null;
 }
 _bits = null;
 });
 }
 finally
 {
 output.CompleteAdding();
 }
 });

 //Stage#2 [CONCURRENT READ]

 foreach (var subset in
 output.GetConsumingEnumerable().AsParallel())
 {
 yield return subset;
 }
 generate.Wait();
 }

Just in case you are wondering how this could help in solving packing problems (of course
with smaller sets), see this client given next, which generates the various ways in which the
following packages (having weights 3, 1, 1, 2, 2, and 1 kg) could be packed in boxes that can
accommodate 5 kg. We believe this opens up a window of possibilities for any interested
developer:

 static void GenerateBoxingCombinations ()
 {
 Console.WriteLine("All possible packages:");
 var watch = Stopwatch.StartNew();
 var resultSet = from subset in
 Program4.BigSubsetsP<int>(
 new List<int>() { 3, 1, 1, 2, 2, 1 })

Functional Programming Techniques for Better State Management

[189]

 .AsParallel()
 where subset.Sum() == 5
 select subset;
 foreach (var set in resultSet)
 {
 Console.WriteLine(
 "SET >> {0} :: SUM >> {1}",
 string.Join(",", set),
 set.Sum());
 }
 Console.WriteLine(
 "Elapsed Time for Package set Generation : {0} seconds",
 watch.ElapsedMilliseconds / 1000D);
 }

How does LINQ work?
Before we conclude this chapter, we would like to give you a rough idea about how
Language Integrated Query (LINQ) works under the hood, in a schematic manner. As we
know, LINQ is a declarative language embedded inside a multi-paradigm language. The
primary advantage of LINQ is the alignment to the rich type system of C#. Syntactically,
LINQ is very similar to SQL language and the evaluation model is very similar to an SQL
engine. As an example, let us explore a LINQ query which retrieves information regarding
a set of employees by querying Employee and Department table. The query returns an
anonymous type consisting of employee name, department name and location of the
employee. We are using the comprehension syntax in this particular example:

 var empInfo = from emp in db.Employee
 join dept in db.Department
 on emp.deptid equals dept.nid
 select new
 {
 emp.Name,
 dept.Name,
 emp.Location
 };

While evaluating this LINQ statement, even though documentation states about outer
sequence and inner sequence, schematically speaking, a cartesian product (aka cross join in
database parlance) will be performed between Employee and Department table. The
resulting data set will be filtered based on the join clause (on emp.deptid equals
dept.nid), resulting in yet another data set.

Functional Programming Techniques for Better State Management

[190]

Then, a project operation will be performed (select new { <data> }) to create an
instance of new anonymous type, to add into a collection. The anonymous type will be
synthesized by the C# compiler during the compile time. The above example uses
comprehension style syntax and it will be transformed into a lambda expression syntax by
the C# compiler, before generating the code. When we evaluate comprehension queries or
mixed mode queries, the C# compiler transforms everything to lambda syntax before
generating the code. The core algorithm for evaluation of LINQ queries are:

Cartesian product (of data sets involved)
Restrict or filter (where predicate)
Order by
Group operations
Projection (technical name for selecting subsets of fields, in a result)

To understand more about the query evaluation process, one can consult a book which
deals with relational database theory, as this topics warrants another book! The LINQ was
introduced with C# with version 3.0 of the language and the designers of language
introduced the following features to the language to facilitate the implementation of LINQ.
They are:

Lambda expressions and functions: To facilitate the passing of predicates and
transformations as parameters to LINQ operator functions
Extension methods: To avoid the syntactic clutter while nesting LINQ operators
(transformation of nested queries to fluent interface style)
Anonymous types: To allow developers to project the contents of a data set to
types which are not declared ahead of time by the developers
Type inference: This feature was mandated because of the difficulty for
programmers to identify the type of result from a LINQ operations

Try to understand in detail what has been covered in this section. If you are able to
comprehend what has been dealt here tersely, it can help improve the competence as a
developer.

Functional Programming Techniques for Better State Management

[191]

Summary
Functional programming model and its idioms help a programmer to write better code in
the many-core architecture of the modern CPUs. C# programming language and the .NET
platform has incorporated FP constructs into the language to help write certain kind of code
in a functional manner. The mastery of lambda expressions and functions, type inference,
expression trees, LINQ, and so on helps structure our code better if used judiciously by
mixing the OOP and FP codes. Mixing of OOP and FP to write code is termed as
object/functional programming, and most modern day languages like C#, Scala, Java (after
version 8), Ruby, and so on support this idiom. In the next chapter, we will implement some
GoF design patterns using object/functional programming, and also pick up some OOP/FP
programming idioms such as map/reduce.

10
Pattern Implementation Using

Object/Functional Programming
Most modern programming languages (partially or completely) support Functional
Programming (FP) constructs these days. As outlined in the previous chapters, the advent
of many-core computing is a factor in this progressive evolution. In some cases, we can
encode a solution using OOP, and there can be a functional version of the solution as well.
The most pragmatic use of the FP constructs can be undertaken by judiciously mixing them
with OOP code. This is also called object/functional programming, and is becoming a
dominant paradigm in languages such as F#, Scala, Ruby, and so on. The C# programming
language is not an exception. There are instances where programmers abuse FP constructs
to make themselves appear modern, often resulting in unreadable code. Programming
being a social activity (in addition to its intellectual appeal), the readability of code is as
important as its elegance and performance. In this chapter, we will take a closer look at this
popular paradigm by applying it in the context of GoF patterns.

We will cover the following topics in this chapter:

A strategy pattern implementation using FP/OOP
A fresh look at the iterator pattern using FP/OOP
MapReduce programming idiom
A new spin on the template method pattern using FP/OOP

Pattern Implementation Using Object/Functional Programming

[193]

A strategy pattern implementation using
FP/OOP
To focus on the programming model aspect, let us write a bubble sort routine to sort an
array of the int, double, or float types. In a sort routine, we need to compare adjacent
elements to decide whether one should swap the position of the elements. In computer
science literature, this is called a comparator. Since we are using generic programming
techniques, we can write a generic comparator interface to model the comparison action
that would need to be performed while sorting is happening, and we will apply the strategy
pattern to provide comparators based on types.

 interface IComparatorStrategy<T>
 { int Execute(T a, T b); }

Even though we can use a single generic implementation for comparing elements, in real
life we might need concrete classes that are specific to the types. We will implement two
concrete classes for the comparison of integers and doubles.

 class IntComparator : IComparatorStrategy<int> {
 public int Execute(int a, int b) {
 return a > b ? 1 : (b > a) ? -1 : 0;
 }
 }

 class DoubleComparator : IComparatorStrategy<double> {
 public int Execute(double a, double b){
 return a > b ? 1 : (b > a) ? -1 : 0;
 }
 }

Armed with the comparison classes, we can write a generic sort routine by parameterizing
the comparison classes, as follows:

 private static void BSort<T>(this T[] arr,
 IComparatorStrategy<T> test) where T : struct
 {
 int n = arr.Length;
 for(int i = 0; i<n; ++i)
 for (int j = 0; j < n-i-1; j++)
 if (test.Execute(arr[j],arr[j + 1]) > 0){
 T temp = arr[j]; arr[j] = arr[j + 1];
 arr[j + 1] = temp;
 }
 }

Pattern Implementation Using Object/Functional Programming

[194]

The following code snippets show how the bubble sort routine can be invoked for sorting
integers:

 int [] s= { -19,20,41, 23, -6};
 s.BSort(new IntComparator());
 foreach(var n in s)
 Console.WriteLine(n);

The equivalent version for sorting doubles is given next:

 double[] s2 = { -19.3, 20.5, 41.0, 23.6, -6.0 };
 s2.BSort(new DoubleComparator());
 foreach (var n in s2)
 Console.WriteLine(n);

The OOP version of the code is simple and intuitive. But we need to resort to interface
declaration and its implementation to write our code.

In most cases, the comparison logic can be given at the call site, using
lambda.

Using FP constructs to make the code better
Lambda functions can be used to write a comparison strategy routine in a much terser and
intuitive manner. We can leverage the C# function type Func<TIn,TResult> construct to
do this. Let's rewrite the sort routine to leverage this idiom. We could also impart this sort
capability to the array types using extension methods.

 private static void BSort2<T>(this T[] arr,
 Func<T,T,int> test) where T : struct
 {
 int n = arr.Length;
 for (int i = 0; i < n; ++i)
 for (int j = 0; j < n - i - 1; j++)
 if (test(arr[j], arr[j + 1]) > 0) {
 T temp = arr[j]; arr[j] = arr[j + 1];
 arr[j + 1] = temp;
 }
 }

Pattern Implementation Using Object/Functional Programming

[195]

We can invoke the routine by explicitly defining a Func<T1,T2,TReturn> method to do
the comparison. The following code snippet demonstrates this method:

 int[] s3 = { -19, 20, 41, 23, -6 };
 Func<int ,int ,int> fn = (int a, int b) => {
 return (a > b) ? 1 : -1;
 };
 s3.BSort2(fn);
 foreach (var n in s3)
 Console.WriteLine(n);

We can also invoke the routine by writing a call site lambda, as follows:

 s3.BSort2((int a, int b) => (a > b) ? 1 : -1);

If you want to sort a double array, the following code snippet will do the trick:

 s4.BSort2((double a, double b) => (a > b) ? 1 : -1);

The strategy routine, implemented as lambda expressions, made the code much terse and
readable as well.

A fresh look at the iterator pattern using
FP/OOP
The C# programming language has built-in support for the iterator pattern using the
foreach loop construct. Any programmer worth his salt might have written code to iterate
over a collection and apply some kind of transformation. To get things in perspective, let's
globally write some code to compute the arithmetic mean (average) of a set of numbers.

 double[] arr = { 2, 4, 4, 4 ,5, 5, 7, 9};
 List<double> arrlist = arr.ToList();
 double nsum = 0;
 foreach (var n in arr) {
 nsum += n;
 }
 double avg = nsum / arrlist.Count;
 Console.WriteLine(avg);

Pattern Implementation Using Object/Functional Programming

[196]

The preceding imperative code does the job really well, and it is quite readable. Let us
explore whether we can improve the situation further. If you take a closer look, the code
iterates through a collection, and applies some logic which is context-dependent. If we want
to calculate the product of numbers, we need to write the same code by slightly changing
the operation. While computing the geometric mean, we compute the product of the
numbers. To parametrize the computation, we will use a lambda expression or function.

Let us write an aggregator function, which will iterate through an array of numbers and
perform an operation we specify at the call site. We will use the function to
compute the arithmetic sum (called sigma) or the multiplicative sum (called PI) by passing
the transformer function as a parameter:

 private static double Aggregate(double [] p ,
 double init,Func<double,double,double> fn)
 {
 double temp = init;
 foreach (var n in p)
 temp = fn(n,temp);
 return temp;
 }

Let us see how we can write the arithmetic mean function using our aggregator function.
The following code uses a lambda expression to specify the computation:

 private static double AMEAN(double[] p)
 {
 return Aggregate(p, 0, (double a, double b) =>
 { return b += a; }) / p.Length;
 }

The geometric mean can be computed in the following way (for brevity, we have ignored
robustness concerns such as the presence of a zero, empty, or null array):

 private static double GMEAN(double[] p)
 {
 double pi = Aggregate(p, 1,
 (double a, double accum) => { return accum *= a; });
 return Math.Exp(Math.Log(pi)*(1 / p.Length));
 }

To put everything together, we will write a standard deviation (STD) method to compute
the standard deviation of the elements in an array:

 private static double STD(double[] p)
 {
 double avg = Aggregate(p, 0,(double a, double b) =>
 { return b += a; }) / p.Length;

Pattern Implementation Using Object/Functional Programming

[197]

 double var = Aggregate(p, 0, (double a, double b) =>
 { return b += ((a - avg)*(a-avg)); }) / p.Length;
 return Math.Sqrt(var);
 }

The STD method takes the average of the list of numbers as a first step, and uses the value
(avg) to compute the variance. For variance computation, the average is subtracted from
each number and squared to make the resulting value positive, before accumulating it to a
running sum (b) variable. Finally, the square root function is invoked to compute the
standard deviation. The resulting code is readable, and can be used as a basis for other
transformations on the list.

MapReduce programming idiom
In the FP world, MapReduce is considered as a programming idiom.

The process of mapping can be described as the application of a function
or computation on each element of a sequence to produce a new sequence.
Reduction gathers computed elements to produce the result of a process,
algorithm, or a functional transformation.

In 2003, two Google engineers (Sanjay Ghemawat and Jeff Dean) published a paper about
how the company used the MapReduce programming model to simplify their distributed
programming tasks. The paper entitled MapReduce: Simplified Data Processing on Large
Clusters is available on the public domain. This particular paper was very influential, and
the Hadoop distributed programming model was based on the ideas outlined in the paper.
You can search the Internet to find the details of the paper and the origin of the Hadoop
data operating system.

To reduce the complexity, we are going to implement a MapReduce function to apply the
computation on an array of doubles. The following Map function applies a lambda on each
element of the array, and returns another array; this actually transforms the original array
without mutating it. For large arrays, in order to speed up the operation, we can leverage
the Parallel.For construct in the code.

 public static double [] Map(double [] src,
 Func<double,double> fnapply)
 {
 double[] ret = new double[src.Length];
 Parallel.For(0,ret.Length,
 new ParallelOptions {
 MaxDegreeOfParallelism =Environment.ProcessorCount },
 (i) => { ret[i] = fnapply(src[i]);

Pattern Implementation Using Object/Functional Programming

[198]

 });
 return ret;
 }

The MapReduce model can also be considered as the scatter/gather model of computation.
In the last example, we leveraged parallel programming techniques to scatter the
computation into different tasks, which would be scheduled in different threads. This way,
computation for large arrays can be made faster. In the distributed version scenario, we
scatter the computation to different machines. In the reduce scenario, we accumulate or
aggregate the result of computation that occurred at the map stage. The following code
shows the use of a serial operation in aggregating the value to an accumulator:

 public static double Reduce(double[] arr,
 Func<double,double,double> reducer,double init)
 {
 double accum = init;
 for(int i=0; i< arr.Length; ++i)
 accum = reducer(arr[i], accum);
 return accum;
 }

The preceding two functions can be used to compute standard deviation as follows:

 double[] arr = { 2, 4, 4, 4 ,5,5,7,9};
 double avg = Reduce(Map(arr,(double a) => {return a;}),
 (double a, double b) =>
 {return b +=a;},0)/arr.Length;
 double var = Reduce(Map(arr, (double a) =>
 {return (a-avg)*(a-avg); }),
 (double a, double b) =>
 {return b += a; }, 1) / arr.Length;
 Console.WriteLine(Math.Sqrt(var));

For the time being, we are parking our discussion on the MapReduce programming model.
It is a very vast topic, at least in the context of distributed computing environments. The
Microsoft Azure platform offers a MapReduce implementation as part of its services. To be
a modern developer, one should understand the MapReduce programming model and its
stream processing counterparts available as part of various offerings.

Pattern Implementation Using Object/Functional Programming

[199]

A new spin on the template method pattern
using FP/OOP
In this section, we will demonstrate how the template method pattern can be implemented
using imperative programming techniques, and we will refactor the code to write an FP
one. As a concrete example, we plan to use the computation of Internal rate of return (IRR)
as a running example.

To focus on the essentials, let us quickly hack an engine to compute the IRR, given a series
of payments (List<double>), the rate, and the period. As a first step, we need to compute
the present value of a series of payments by using the technique of discounting. The
following routine computes the present value of the series of payments:

 public static double CashFlowPVDiscreteAnnual(
 List<double> arr, double rate, double period)
 {
 int len = arr.Count;
 double PV = 0.0;
 for (int i = 0; i < len; ++i)
 PV += arr[i] / Math.Pow((1+rate/100), i);
 return PV;
 }

The definition of IRR goes as follows:
An IRR is a computation that maps a series of payments that are supposed
to accrue to the present value by finding the rate at which the series of
payments has to be discounted to make the future value equivalent to the
present value.

The following routine has been ported from the book, Financial Numerical Recipes in C++,
Bernt Arne Odegard. For details, one can consult section 3.2.1 (material on IRR) of the book
available on the Internet.

 public static double CashFlow_IRR_Annual(List<double> arr,
 double rate,double period)
 {
 const double ACCURACY = 1.0e-5;
 const int MAX_ITERATIONS = 50;
 const double ERROR = -1e30;
 double x1 = 0.0;
 double x2 = 20.0;
 // create an initial bracket,
 // with a root somewhere between bot,top
 double f1 = CashFlowPVDiscreteAnnual(arr,x1,period);

Pattern Implementation Using Object/Functional Programming

[200]

 double f2 = CashFlowPVDiscreteAnnual(arr,x2,period);

 for (int j = 0; j < MAX_ITERATIONS; ++j)
 {
 if ((f1*f2) < 0.0) {break; }

 if (Math.Abs(f1) < Math.Abs(f2))
 f1 = CashFlowPVDiscreteAnnual(arr,
 x1+= 1.06*(x1-x2),period);
 else
 f2 = CashFlowPVDiscreteAnnual(arr,
 x2+=1.06*(x2-x1),period);
 if (f2*f1>0.0)
 return ERROR;
 }
 double f = CashFlowPVDiscreteAnnual(arr,x1,period);
 double rtb;
 double dx=0;
 if (f<0.0) {
 rtb = x1;dx=x2-x1;
 }
 else {
 rtb = x2; dx = x1-x2;
 }
 for (int i=0;i<MAX_ITERATIONS;i++)
 {
 dx *= 0.5;
 double x_mid = rtb+dx;
 double f_mid = CashFlowPVDiscreteAnnual(arr,x_mid,period);
 if (f_mid<=0.0) { rtb = x_mid; }
 if ((Math.Abs(f_mid)<ACCURACY) ||
 (Math.Abs(dx)<ACCURACY))
 return x_mid;
 }
 return ERROR; // error.
 }

With the routine under our belt, we can create an IRR calculation class that will use the
template method pattern to receive the input for the computation of IRR, based on the series
of future payments.

Let us create a class for the purpose of specifying inputs to the IRR computation sub system:

 public class IRR_PARAMS
 {
 public List<double> revenue { get; set; }
 public double rate { get; set; }
 public double period { get; set; }

Pattern Implementation Using Object/Functional Programming

[201]

 }

In the template method pattern implementation, we define an abstract base class, which
does the bulk of the computation, and an abstract method, which the concrete class has to
override to create an object out of it:

 public abstract class IRRComputationEngine
 {
 public abstract IRR_PARAMS Compute();
 public double Evaluate()
 {
 IRR_PARAMS par = Compute();
 if (par == null) return -1;
 return CashFlow_IRR_Annual(par.revenue,
 par.rate, par.period);
 }
 private static double CashFlow_IRR_Annual(
 List<double> arr,double rate,double period)
 { //----- Code Omitted }
 }
 }

Since the compute method is flagged as abstract, we cannot instantiate an object. The main
thing which we can do is override the class and provide the content of the abstract
method.

 public class BridgeIRR :IRRComputationEngine {
 IRR_PARAMS ps = new IRR_PARAMS();
 public BridgeIRR(List<double> rev, double period, double rate){
 ps.period = period; ps.rate = rate; ps.revenue = rev;
 }
 public override IRR_PARAMS Compute() { return ps;}
 }

We can use the preceding class as follows:

 double[] ns = { 10, 12, 13, 14, 20 };
 BridgeIRR test = new BridgeIRR(ns.ToList(),10,5);
 double irr = test.Evaluate();
 Console.WriteLine(irr);

Pattern Implementation Using Object/Functional Programming

[202]

Using FP for the template method pattern
implementation
We will use lambda functions to simplify the template method pattern implementation.
Instead of overriding a method after sub-classing the abstract class, we will use anonymous
delegates to achieve the same objective. The resulting code, given next, is very simple and
easy to understand:

 public class IRRComputationEngine2
 {
 public delegate IRR_PARAMS Compute();
 public Compute comp{get;set;}

 public double Evaluate()
 {
 if (comp == null) return -1;
 IRR_PARAMS par = comp();
 return CashFlow_IRR_Annual(par.revenue,
 par.rate, par.period);
 }
 private static double CashFlow_IRR_Annual(
 List<double> arr,double rate,double period)
 { //--- Code Omitted }
 }

The class can be leveraged as follows:

 IRRComputationEngine2 n = new IRRComputationEngine2();
 double[] ns = { 10, 12, 13, 14, 20 };
 n.comp = () => {
 IRR_PARAMS par = new IRR_PARAMS();
 par.revenue = ns.ToList();
 par.rate = 10; par.period = 5;
 return par;
 };
 double r = n.Evaluate();
 Console.WriteLine(r);

Pattern Implementation Using Object/Functional Programming

[203]

A quick note on the observer pattern
The functional programming model is well suited for implementing the observer pattern.
Microsoft Corporation has already created a library, christened Rx, to exploit this synergy.
This library implements a subset of features that falls under the category of compositional
event streams. We will be covering the relationship between the observer pattern and
functional programming from the next chapter onwards.

Does FP replace GoF patterns?
There is a notion among some programmers that functional programming can help to keep
us away from GoF patterns. As far as the authors of this book are concerned, it is bit of an
overstatement. In this chapter, we have already seen how GoF implementations can be
made simple and better using functional language idioms. But the examples in this book are
mostly written using C#. If we are using F# or Haskell, there are techniques available, in the
rich type system of those languages, to do away with some of the GoF patterns.

Two examples are:

Partial function applications have made the builder pattern unnecessary for FP
programming languages
Functional pattern matching helps us to eliminate the visitor pattern

If you take a closer look at the scheme of things, the GoF pattern was a solution for the static
and rigid type system of C++. After that, languages such as Java node C#, on reflection,
came to the fore to simplify the implementation of GoF patterns. The FP can be treated as
yet another enhancement. A dynamic language with FP support can help us implement
GoF patterns better, or sometimes completely do away with patterns. But, completely
replacing GoF patterns is bit of a shot in the dark!

Pattern Implementation Using Object/Functional Programming

[204]

Summary
In this chapter, you saw how imperative code (aka OOP code) can be mixed with FP
constructs to write implementations of some of the GoF design patterns. Some functional
programmers say that the GoF design patterns were conceived as a mechanism to overcome
the limitations of an OOP in general (C++ in particular). If a language supports good FP
constructs, most pattern implementations are unnecessary. According to our
understanding, this view is a bit extreme and a middle path between FP and OOP seems to
be a better option. In the coming days, FP idioms will become more and more popular and
the progress will be a smooth transition. In the next chapter, we will delve into the nuances
of functional reactive programming techniques. This is a very important paradigm where
FP and events come together to provide us with frameworks such as .NET Reactive
Extensions (Rx).

11
What is Reactive

Programming?
By now we have seen how parallel and functional programming constructs in the .NET
world help one naturally compose algorithms/business logic and model programs/data
flows. These paradigms help realize a software system that has close correlation with the
real world in which they exist. We have seen relevance of data structures and their role in
program composition. We also saw the benefits (in terms of concurrency and parallelism) of
keeping the data structures (modeled in an object-oriented way) different from the
algorithms (modelled as pure function compositions) that consume them. To take this one
knot further, in order to keep up with growing system complexity, there's a growing
software revolution called reactive programming, which defines how to model applications
from a behavior stand-point. In this chapter, we will try to unravel the concept through
some examples, and understand how this programming paradigm becomes a natural
succession, but more importantly, a unifying model for creating responsive systems. We
will look at the various reactive programming constructs (including key data structures,
interfaces, and operators) available in .NET Reactive Extensions (Rx). By the end of the
chapter, you will understand how natural it is to model responsiveness, which becomes
quite relevant in this new world of multicore, cloud, mobile, and web-scale systems.

What is Reactive Programming?

[206]

Being reactive
To start with, let's look at the classic definition of reactive programming, and try to
understand the concept brought forth by this model. This is important to undo any
misconceptions that govern one's mind on this topic.

In computing, reactive programming is a programming paradigm that maintains a
continuous interaction with their environment, but at a speed which is determined by the
environment, not the program itself.
 - Gèrard Berry

This implies that this programming model helps, or rather, has an inherent capability to
propagate changes without the programmer having to explicitly wire any such logic (the
conventional way, which was error prone and rendered programs inconsistent; a nightmare
that still haunts some of us). This would mean that the programming model would be
declarative and provide the needed constructs (including data structures and interfaces) to
capture the relationship between attributes in order to ensure seamless propagation or
synchronization of changes through data flows.

The design pattern that really powers this model is observer, where the
relationships between subscribers and publishers are declaratively
modeled.

Let's try to understand this further via this example. In typical assignment statements (in
the imperative world), relations are implicitly declared (say c2 = a2 + b2 , the Pythagorean
equation that symbolizes the Pythagorean theorem), or functions (in the functional
programming world) are defined explicitly, say c = Compute Hypotenuse(a, b). On the other
hand, in the reactive world, computation (value of c) is automatically done with new values
of the sides (a and b). The computation is automatically triggered every time the value
changes for a and b in the relation c2 = a2 + b2. This behavior is termed as reactive. You could
say that this is similar to event-driven programming, but there is a very distinct difference
here that you need to understand.

This behavior is extremely important to model concurrent real-world systems including
real-time analytics, control systems with feedback loops, electronic circuits and printed
circuit board (PCB) design, rule engine, state machines, simulators, and so on.

What is Reactive Programming?

[207]

Electronic spread sheets – A quintessential
example
Electronic spreadsheets such as Excel software help one to input values in Cells, in a
program-specific manner (for example-A7 , B6, and so on). They also allow you to embed
computation as a value of a cell (such as =$A7*$B6) using formulas. Whenever a value is
changed in A7 or B6, the resulting formula will be recomputed. Actually, the change is
propagated to cells where there is reference to the cell which changed. This can be called a
type of reactive computation. Let's see our Pythagorean triple generation in action on Excel:

In the preceding table, you can see that column F indicates (achieved with conditional
formatting using icon sets) whether a, b, and c are Pythagorean triples or not.

The hidden columns D and F compute the values of (a2 + b2) and c2 independently, and
column F just checks for an equality in order to display a potential match. All these are
done, of course, using formulas, and the changes across cells are propagated automatically.

What is Reactive Programming?

[208]

The following screenshot illustrates this:

This example should give you an idea of how reactive programming works, and more
interestingly, we will use this trivial example to illustrate a deep consequence beyond
reactive programming. This spreadsheet program elegantly models the Model-View-
ViewModel (MVVM) pattern, an architectural pattern heavily employed in WPF,
Silverlight, and now, most of the prevalent HTML UI frameworks (JS-based). The Model in
this case would be columns A and B (consider each row as entities and the columns as
entity attributes). The View Model would be columns D and E (derived attributes from the
model attributes). And column F would be the View which is bound to the View Model
(and any change in View Model would be synchronized with the View; as a matter of fact,
any changes in the Model would be propagated to the View Model and further down to the
View).

Reactive programming model
Simply put, reactive programming is nothing but programming with asynchronous data
streams. By applying various operations on stream, we can achieve different computational
goals. The primary task in a reactive program is to convert the data into streams, regardless
of what the source of the data is. While writing modern graphical user interface
applications, we process mouse move-and-click events. Currently, most systems get a
callback, and process these events as and when they happen. Most of the time, the handler
does a series of filtering operations before it invokes the action methods associated with the
event calls.

What is Reactive Programming?

[209]

In this particular context, reactive programming helps us in aggregating the mouse move-
and-click events into a collection, and sets filters on them before notifying the handler logic.
In this way, the application/handler logic does not get executed unnecessarily.

Stream-processing model is well known, and it is very easy to encode by application
developers. Pretty much anything can be converted into a stream. Such candidates include
messages, logs, properties, twitter feeds, blog posts, RSS feeds, and so on. Functional
programming techniques are really good at processing streams. A language like C#, with its
inherent support for functional programming idioms, becomes a natural choice for writing
reactive programs.

The basic idea behind reactive programming is that there are certain datatypes that
represent a value over time. These datatypes (or rather data sequences) are represented as
observable sequences in this programming paradigm. Computations that involve these
changing (time dependent) values will, in turn, themselves have values that change over
time, and would need to asynchronously receive notifications (as and when the dependent
data changes). Remember the spreadsheet application discussed earlier?

Functional reactive programming
Most modern programming languages support functional programming constructs.
Functional programming constructs such as Map/Reduce, Filter, Fold, and so on are good
for processing streams. Programming asynchronous data streams using functional
programming constructs is called functional reactive programming. This is gaining
more traction among the developers these days.

The FRP programs can be classified as push-based and pull-based. The pull-based system
waits for a demand to push the data streams to the requestor (or subscriber in our case).
This is the classic case where the data source is actively polled for more information. This
employs the iterator pattern, and IEnumerable <T>/IEnumerator <T> interfaces are
specifically designed for such scenarios that are synchronous in nature (application can
block while pulling data). On the other hand, a push-based system aggregates the events
and pushes through a signal network to achieve the computation. In this case, unlike the
pull-based system, data and related updates are handed to the subscriber from the source
(observable sequences in this case). This asynchronous nature is achieved by not blocking
the subscriber, but rather making it react to the changes. The observer pattern is put to
extensive use here using the IObservable <T> and IObserver<T> interfaces (which have
been introduced as part of .NET framework 4.0). As you can see, employing this push
pattern is more beneficial in rich UI environments where you wouldn't want to block the
main UI thread while waiting for some events. This becomes ideal, thus making reactive
programs responsive.

What is Reactive Programming?

[210]

Reactive programming principles
Reactive systems are composed of small subsystems, which have got reactive properties at
the subsystems level. This is possible, because reactive applications apply sound design
principles to maintain the responsiveness of their constituents.

According to the reactive manifesto, the following are the four principles of reactive
programming:

Responsiveness: A reactive system is supposed to respond to events in a time-
bound manner. This helps in usability and utilizability of the systems.
Responsive systems help us to detect anomalies very early, and can maintain
good Quality of Service (QoS). This is very important for systems that have
service level agreement (SLA) and operations level agreement (OLA).
Resilience: Reactive systems should stay responsive even in the case of a system
failure. Failures are contained in each component by careful isolation of
subsystems, and making sure that failure does not get propagated to other parts.
By good modularization, we can recover from failure by replacing components
that fail without affecting the other modules of the system.
Elasticity: Reactive systems should stay responsive under varying levels of stress
due to the workloads. By effective throttling of event streams and dynamic
resource management, we can write systems that can handle varying workloads.
Message driven: Reactive systems rely on asynchronous messaging-based
programming models to establish strict boundaries between components by
maintaining loose coupling and location transparency (in the case of distributed
systems). Employing explicit message-passing helps to manage load better, and
to provide elasticity and explicit flow control through throttling. Non-blocking
communication between components makes sure that resource management is
done diligently. Moreover, system failures can be propagated as messages.

What is Reactive Programming?

[211]

Rx from Microsoft
Microsoft brought out software development kit (SDK) for reactive programming, which it
monikers as .NET Rx. According to them, Rx extensions is a unified library for composing
asynchronous and event-based programs using observable sequences and LINQ style query
operations. The key aspects of their descriptions are as follows:

Asynchronous event streams
Composition
Observable sequences (streams)
LINQ style queries

The sequences can be contents of a file, network socket, web service response, input
streams, and so on. Microsoft gives a symbolic formula for Rx, that is, Rx = Observables +
LINQ + Schedulers.

Key data structures of Rx
The Microsoft Rx SDK specifies some key data types, which a programmer can leverage to
implement reactive programs. Some of the key types are as follows:

IObservable<T>

IObserver<T>

Subject<T>

The signature of IObserver and IObservable is given as follows:

 public interface IObserver<T>
 {
 void OnCompleted();
 void OnError(Exception exception);
 void OnNext(T value);
 }

 public interface IObservable<T>
 {
 IDisposable Subscribe(IObserver<T> observer);
 }

What is Reactive Programming?

[212]

IEnumberable/IObservable duality
The .NET framework has built-in support for the Iterator pattern (through
IEnumerable<T>) and observer pattern (through IObservable<T>). If you take a closer
look, there is only a subtle difference between these two patterns. IEnumerable<T> can be
considered the pull-based equivalent of the push-based IObservable<T>. In fact, they are
duals. When two entities exchange information, one entity's action of pull corresponds to
other entity pushing the information. This duality is illustrated in the following image:

Let's understand this duality by looking at this sample code, an even number sequence
generator:

 static void Main(string[] args)
 {
 int[] number_array = new int[] { 1,2,3,4,5,6,8};
 IEnumerable<int> number_sequence = number_array;
 foreach (var n in number_sequence)
 if (n % 2 == 0)
 Console.WriteLine(n);
 }

We will write a number sequence generator to demonstrate how these data types work
together in converting a pull-based program to an Rx push program. First we will write a
toy implementation of IDisposable to be used later: The robustness aspect is given low
priority to keep the listing terse:

 class EmptyDisposable : IDisposable
 {
 internal Action action {get; set;}
 void IDisposable.Dispose()
 { this.action(); }
 }

What is Reactive Programming?

[213]

 class EvenNumberObservable : IObservable<int>
 {
 public EvenNumberObservable(IEnumerable<int> numbers)
 {
 this._numbers = numbers;
 }

 private IEnumerable<int> _numbers;

 public IDisposable Subscribe(IObserver<int> observer)
 {
 foreach(int number in _numbers)
 {
 if (number%2 == 0)
 observer.OnNext(number);
 }
 observer.OnCompleted();

 return new EmptyDisposable { action = () => { ; } };
 }
 }

 class SimpleObserver : IObserver<int>
 {
 public void OnNext(int value) { Console.WriteLine(value);}
 public void OnCompleted() { Console.WriteLine("Completed"); }
 public void OnError(Exception ex){
 Console.WriteLine("An Error Encountered");
 throw ex;
 }
 }

The following code snippet invokes the preceding code:

 static void Main(string[] args)
 {
 new EvenNumberObservable(
 new[] { 1,2, 3, 4,6,7,8 })
 .Subscribe(new SimpleObserver());
 Console.ReadLine();
 }

From this preceding example, you see how one can naturally subscribe for even numbers
from an observable sequence of natural numbers. The system will automatically push
(publish) the values to the observer (subscriber) when an even number is detected. The code
gives explicit implementations for the key interfaces so that one can understand or
speculate what really happens under the hood.

What is Reactive Programming?

[214]

Another example would be Pythagorean triple generation from observable sequences of
base, altitude, and hypotenuse. We have already seen the functional code for achieving
this, and now, let's see the reactive equivalent (or should we say, a better one):

 void Main()
 {
 var result =
 from i in Observable.Range(1, 100)
 from j in Observable.Range(1, 100)
 from k in Observable.Range(1, 100)
 where k * k == i * i + j * j
 select new { a = i, b = j, c = k };

 // A Subscriber with
 // A callback (Lambda) which prints value,
 // A callback for Exception
 // A callback for Completion

 IDisposable subscription = result.Subscribe(
 x => Console.WriteLine("OnNext: {0}", x),
 ex => Console.WriteLine("OnError: {0}", ex.Message),
 () => Console.WriteLine("OnCompleted"));
 }

Converting entities to streams
(IObservable<T>)
The following constructs can be converted to a sequence source. IObservable<T> can be
generated from the following:

Events
Delegates
Tasks
IEnumerable<T>

Asynchronous programming model

What is Reactive Programming?

[215]

Converting events into stream
We have now understood how one can convert an IEnumerable<T>-based pull program to
an IObservable<T>/IObserver<T>-based push program. In real life, the event source is
not as simple as we found in the number stream example given previously. Let us see how
we can convert a MouseMove event into a stream with a small WinForms program:

 static void Main()
 {
 var mylabel = new Label();
 var myform = new Form { Controls = { mylabel } };

 IObservable<EventPattern<MouseEventArgs>>
 mousemove =
 Observable.
 FromEventPattern<MouseEventArgs>(myform, "MouseMove");

 mousemove.Subscribe(
 (evt)=>{mylabel.Text = evt.EventArgs.X.ToString();},
 ()=>{});

 Application.Run(myform);
 }

Please see the following form, which displays the mouse positions:

What is Reactive Programming?

[216]

Reduction of streams (sequences)
The whole idea of converting data to streams is to apply functional programming operators
such as Reduce, Aggregate, Fold, and so on. This is quite relevant in terms of choosing the
needed data (and also in an efficient way) from an enormous pile that is ever growing with
respect to time:

Filter and partition operators: These operations help to reduce the source
sequence into a sequence of elements that we are interested in
Aggregation operators: Reduce the source sequence to a sequence with a single
element
Fold operators: Reduce the source sequence to a single element as a scalar value

Some of the common sequence/stream operators supported by Rx/LINQ are as follows:

Where: As the name implies, and for those familiar with this operator from LINQ
days, it does the very purpose of filtering of sequences. If we were to rewrite our
earlier example-that of extracting/filtering even numbers-it would declaratively
be as simple as this:

 var evenNumbers = Observable.Range(0, 10)
 .Where(i => i % 2 == 0)
 .Subscribe(Console.WriteLine);

In the preceding example, the input is 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, and the output
will be 2, 4, 6, and 8.

Skip: This helps in skipping n items in a sequence.
Take: This helps in taking n items (skipping the rest) in a sequence.
SkipWhile: This helps in skipping items (while a certain condition is satisfied) in
a sequence. Please note that the element would be skipped until the predicate
evaluates to true. Beyond this, all items would be returned.
TakeWhile: This is the converse of SkipWhile, and helps in taking items (while
a certain condition is satisfied) in a sequence.
SkipUntil: This requires two observable sequences, and continues to skip all the
values in the first sequence until any value is produced by the second sequence.
TakeUntil: Again, this requires two observable sequences, and forces the first
sequence to completion when the second sequence starts producing any value.
SkipLast: Intelligently queues elements, skips the last n elements, and returns
the rest.
TakeLast: Returns the last n elements.

What is Reactive Programming?

[217]

Zip: Merges two observable sequences into one observable sequence.

Inspection of streams (sequences)
Rx provides a set of operators, which can help us to inspect the contents of a stream. Some
of them are:

Any: This returns an observable sequence (result), which returns one value (True
or False) and completes. True indicates that the source sequence produced a
value that caused the result sequence to produce True. On the other hand, the
result sequence returns False if the source sequence completes without any
values.
All: This works similar to Any except that the results sequence returns True if
the predicate is evaluated to True and False vice versa.
Contains: This shows the same behavior as All except that it helps seek a
specific value instead of a value that fits the predicate.
ElementAt: This returns an observable sequence (result), which returns the value
in the source sequence (specified by the index) and completes. It uses a 0-based
index.

Aggregation of streams (sequences)
Rx provides a series of operators, which help us to aggregate the content of a stream. Some
of the most important ones are as follows:

Count

Min, Max, Average, Sum (descriptive statistics)
MinBy, MaxBy, GroupBy (partitioning)
Custom aggregators and scans

Transformation of streams (sequences)
The values produced by our event source are not in the formats that we might want, and we
are required to make the transformation on each element in the sequence. The most
important functional transformation is bind, where we apply a function (morphism) on
each element of the sequence to produce a new sequence.

What is Reactive Programming?

[218]

In functional programming parlance, the transformations available are the following:

Anamorphism, which transforms T to IObservable<T>:

Unfold

Generate

Catamorphism, which transforms an IObservable<T> to T:

Fold

Reduce

Accumulate

Bind, which transforms an IObservable<T> to IObservable<T>:

Map

SelectMany

Projection

Transform

Combining streams (sequences)
We get data from different data sources, and it is necessary to combine streams to do
processing. Rx provides a series of operators, which can be grouped into the following:

Sequential concatenation:

Concat: As the name indicates, the resulting sequence concatenates
multiple input sequences without interleaving them
Repeat: Creates a sequence that emits a particular item multiple times
StartWith: Emits a specified sequence of items before beginning to
emit the items from the source sequence

Concurrent sequences:

Amb: This returns one of the sequences (from two or more source
sequences), which first starts emitting an item or notification
Merge: As the name indicates, this operator combines multiple
sequences into one

What is Reactive Programming?

[219]

Switch: This returns a sequence (from two or more source sequences)
that emits the items emitted by the most recently emitted one of those
input/source sequences

Pairing sequences:

CombineLatest: Combines the most recently emitted items from each
of the participating input sequences using a function that is provided,
and emits the return value of that function
Zip: The behavior is similar to that of CombineLatest except that the
function is applied in a strict sequence (in terms of combining items
from the participating input sequences)
And/Then/When: The behavior is very similar to Zip, but certain
intermediary data structures (namely pattern and plan objects) are
used as part of combining the input sequences before emitting the
resulting sequence

A philosophy for reactive programming
We started this chapter with a lot of verbose description about the reactive programming
model. Then, we showed how one can convert an IEnumerable<T>-based sequence
generator to an IObservable<T>/IObserver<T>-based push program. We also
demonstrated how one can convert mouse-event data to a stream, using a toy program. The
rest of the chapter was about the tools available for manipulating streams or sequences. You
learned about the different genres of stream processing operators. One needs to consult the
Microsoft documentation on Rx to understand the specifics of stream processors.

The basic philosophy here can be summarized as follows:

Aggregate data into asynchronous or synchronous streams from the event source.
Apply preprocessing methods using various operators available at the data
source itself (outside the stream consumer).
Process the resulting stream pushed from the data source at the data sink level by
applying functional transformation techniques. We can compose stream
operations to produce compound operations. By doing this, the whole program
becomes a linear chain of functions applied on a stream. If the data stream is not
mutated, there is no need for a compensating transaction logic as well.

 try {
 outstream = f(g(h(immutablestream)));

What is Reactive Programming?

[220]

 }
 catch {}

Schematically, the preceding code snippets can be interpreted as that we can apply a series
of functions on a stream to produce output stream. Since the input stream is immutable
when we process at the data sink level, there is no need for a compensating transaction in
the catch handler. The whole processing can be easily debugged as well.

Summary
In this chapter, you learned the conceptual underpinnings of (functional) reactive
programming, and how Microsoft Rx helps you to write reactive programs using a
scheduler, observable interface, and LINQ. We have avoided API documentation in this
book (as that is exhaustive and redundant considering the nature of this book). We urge
you to refer to the ReactiveX website (http://reactivex.io/documentation/operators),
MSDN, interactive Rx illustrations website (http://rxmarbles.com), and the online book
Introduction to Rx by Lee Campbell (http://www.introtorx.com) for specifics and usage
examples on the various operators that we have discussed. In the following chapters, we
will see detailed examples in C# and JavaScript-based functional reactive programs.

http://reactivex.io/documentation/operators
http://rxmarbles.com
http://www.introtorx.com

12
Reactive Programming Using

.NET Rx Extensions
In the previous chapter, we saw how reactive programming shapes you up for scalability
and responsiveness. We saw how these two attributes are supported in event-driven
applications that enable it to readily respond to events, failures, and loads.

Now in this chapter we will:

Take a deep dive into the Reactive Extensions (Rx) library and see how we write
asynchronous and event-driven programs using observable sequences and LINQ
query operators
We will also take a detailed look at some sample use cases and their
implementations with Rx to clearly understand how Observables, LINQ, and
Schedulers in the .NET Framework are leveraged to create concurrent and
responsive applications that can work with asynchronous data streams

By the end of this chapter, you will understand why Rx has been touted as the next big
thing, and one that will become the de facto event-driven programming model, gaining
traction and acceptance in various mainstream programming languages.

Streams as a way of life
As you saw in the previous chapter, the fundamental success to reactive programs is to
convert events into immutable and observable streams. Program composition becomes very
easy and intuitive with this format, and you can create a unifying interface using the .NET
Rx extensions.

Reactive Programming Using .NET Rx Extensions

[222]

This is really important to understand, as wielding a hammer like Rx
doesn't make you Thor. You don't necessarily start seeing every single
implementation as a nail and drive your hammer down on it. As Uncle
Ben once advised Peter aka Spiderman – “With great power comes great
responsibility”.

Let's understand this more by looking at the palette of options available, and making sound
decisions on what can be done. Consider the following image:

As you can see in the preceding figure, in terms of unifying the worlds, Rx brings forth
bridges that help you work seamlessly across these programming models. To quickly recap
what we read in Chapter 11, What is Reactive Programming?, take a look at the following
table:

Factory methods Unfold methods Bridges

• Observable.Return
• Observable.Empty
• Observable.Never
• Observable.Throw
• Observable.Create

• Observable.Range
• Observable.Interval
• Observable.Timer
• Observable.Generate

• Observable.Start
• Observable.FromEventPattern
• Task.ToObservable
• Task<T>.ToObservable
• IEnumerable<T>.ToObservable
• Observable.FromAsyncPattern

As reiterated earlier, we don't replace existing asynchrony. The .NET events, async
methods, tasks, and so on, have their use and are perfect in their own worlds.

Rx just becomes the glue to unify these worlds, provides compositionality, and helps build
bridges.

Reactive Programming Using .NET Rx Extensions

[223]

Now, let's get started on some examples that will help us understand how to put Rx to best
use in our day-to-day programming. Only certain pragmatic aspects are highlighted
leveraging key constructs in Rx, as complete coverage warrants another book in its own
size.

Spell checker using events composition
This first example is a Windows application that integrates the previously implemented
spell checker (from Chapter 9, Functional Programming Techniques for Better State
Management) using Rx, and explores how this can be leveraged to suggest alternatives and
corrections. Consider the following code snippet:

 static void Main()
 {
 ObservableEventsDemo();
 }

Initialize your input from here, with some basic controls that we will need, that is, a text box
(used for keyword search) and a list box that provides suggestions/corrections for a given
keyword. Take a look at the following code snippet:

 static void ObservableEventsDemo()
 {
 // Input form

 var txtBoxSpellCorrect = new TextBox();
 var lstBoxSuggestions = new ListBox {
 Top = txtBoxSpellCorrect.Height + 10 };
 var frmSpellChecker = new Form { Controls = { txtBoxSpellCorrect,
 lstBoxSuggestions } };

Now, we will need to create a DispatcherScheduler that schedules units of work on the
dispatcher of the current UI thread. The delegate onInputChange is created to clear the
suggestions in the list box whenever the input keyword changes. Consider the following
code snippet:

 // Dispatcher scheduler for the UI thread

 var _dispatcher = new DispatcherScheduler(
 System.Windows.Threading.Dispatcher.CurrentDispatcher);

 Action<string> onInputChange = word =>
 {
 lstBoxSuggestions.Items.Clear();

Reactive Programming Using .NET Rx Extensions

[224]

 Console.WriteLine("Word Changed: " + word);
 };

We will define an observable stream/sequence on the input based by subscribing to the
TextChanged event of the text box using the FromEventPattern bridge. We will further
filter the input stream based on minimum characters (three, in this case) and distinct entries
(helps us throttle the lookup frequency). A valid output from this input sequence will
trigger the delegate that clears the list box contents and gets it ready to receive a new set of
suggestions as and when they are available. Consider the following code snippet:

 var input = Observable
 .FromEventPattern(txtBoxSpellCorrect, "TextChanged")
 .Select(evt => ((TextBox)evt.Sender).Text)
 .Timestamp().Select(evt => evt.Value)
 .Where(evt => evt.Length > 3)
 .DistinctUntilChanged()
 .Do(onInputChange);

This defines the second observable sequence that fetches suggestions based on the first
sequence (keyword) we defined in the preceding code:

 Func<string, IObservable<string>> matches =
 searchText => NorvigSpellCheckerModel.
 Instance.SpellCheck(searchText, 5).ToObservable<string>();

This is an important step where we declaratively specify to continue fetching suggestions
until the keyword changes (the first observable sequence for us here). If you notice, this is
done here using the TakeUntil operator:

 var result = from term in input
 from words in matches(term)
 .TakeUntil(input)
 .Finally(() =>
 {
 Console.WriteLine("Disposed Lookup For: " + term);
 })
 select words;

We will then define delegates (onEachSuggest, onSuggestError, and
onSuggestComplete) for the Subscribe method to receive push-based notifications, as
shown in the following piece of code (onEachSuggest tend to add received suggestions to
the list box as and when they are received):

 Action<string> OnEachSuggest = word =>
 {

Reactive Programming Using .NET Rx Extensions

[225]

 lstBoxSuggestions.Items.Add(word);
 Console.WriteLine("Match: " + word);
 };

 Action<Exception> OnSuggestError = ex =>
 {
 Console.WriteLine("Error: " + ex.Message);
 };

 Action OnSuggestComplete = () =>
 {
 lstBoxSuggestions.Items.Clear();
 Console.WriteLine("Suggestion Complete!!!");
 };

This is the final step where we will specify to observe on the dispatcher of the UI thread (it
is absolutely critical for you to make the necessary UI updates) and subscribe on the default
task scheduler instance (Rx will decide one for you based on the principle of least
concurrency). Consider the following code snippet:

 using (result.OnErrorResumeNext(
 Observable.Empty<string>())
 .ObserveOn(_dispatcher)
 .SubscribeOn(Scheduler.Default)
 .Subscribe(
 OnEachSuggest,
 OnSuggestError,
 OnSuggestComplete))
 Application.Run(frmSpellChecker);
 }

Let's quickly see the supporting Model code (refactored the earlier NorvigSpellChecker
code to make it a singleton and implement the ISpellCheckerModel interface) as well.
This interface helps in returning the results as an enumerable list, which can further be
converted to an observable sequence. Lets take a look at the following code snippet:

 public interface ISpellCheckerModel
 {
 IEnumerable<string> SpellCheck(string word, int count);
 }

Reactive Programming Using .NET Rx Extensions

[226]

This is the old code from Chapter 9, Functional Programming Techniques for Better State
Management, based on Peter Norvig's post: http://norvig.com/spell-correct.html,
modified to become a singleton. Consider the following code snippet:

 public sealed class NorvigSpellCheckerModel : ISpellCheckerModel
 {
 private static readonly Lazy<NorvigSpellCheckerModel>
 spellCheckerInstance = new Lazy<NorvigSpellCheckerModel>(() =>
 new NorvigSpellCheckerModel());
 private NorvigSpellCheckerModel()
 {
 //......... USE CODE FROM CHAPTER 9 HERE
 }

 public static NorvigSpellCheckerModel Instance
 {
 get
 {
 return spellCheckerInstance.Value;
 }
 }

 public IEnumerable<string> SpellCheck(string word, int count)
 {
 //......... USE CODE FROM CHAPTER 9 HERE
 }
 }

Some key things to notice here are:

The use of the FromEventPattern bridge to subscribe to the TextChanged
event
The classic use case for a Singleton (to prevent Training Model corpus creation
repeatedly every time a word is looked up) to create and cache the dictionary for
future use
It will be worthwhile to take a look at the Singleton implementation that has
leveraged .NET 4's Lazy<T> type for thread safety, lazy instantiation, and not
resorting to the conventional double-check locking idiom, where explicit locking
is used
The use of the Where and DistinctUntilChanged operators to restrict lookup
for unique four letter words and beyond

http://norvig.com/spell-correct.html

Reactive Programming Using .NET Rx Extensions

[227]

The screenshots of our spell checker in action are shown as follows:

The supporting console helps you understand the sequence of actions behind the scenes, as
shown in the following screenshot:

MVVM on Rx
Now, let's convert the preceding example to see how we can apply this for a classic MVVM
implementation.

Reactive Programming Using .NET Rx Extensions

[228]

MVVM is an important application development framework that has its
roots with Windows Presentation Framework (WPF). It is best suited for
event-driven programming where you achieve clear Separation of
Concerns, thereby facilitating parallel development (Model, View, and
View Model) and testability.

As you observe (no pun intended) in the preceding solution model, the TextChanged event
of the text box, where the word to be looked up is entered, will indicate to the
ISubject<T> type here, one that implements both IObservable<T> and IObserver<T>
interfaces, thereby enabling you to conveniently observe and publish items to subscribers.

Ensure that you have the appropriate dependencies/packages installed via the NuGet
package manager and referenced properly. The ones under consideration here include the
following:

System.Reactive.Core

System.Reactive.Interfaces

System.Reactive.Linq

System.Reactive.PlatformServices

System.Reactive.Windows.Threading

The code for the View layer is shown as follows. Take note (highlighted) of the data binding
with the corresponding view model:

 public partial class frmSpellChecker : Form
 {
 private SpellCheckerViewModel _spellCheckerViewModel;

Reactive Programming Using .NET Rx Extensions

[229]

 public frmSpellChecker()
 {
 InitializeComponent();
 _spellCheckerViewModel = new
 SpellCheckerViewModel(NorvigSpellCheckerModel.Instance);
 //Data Binding Is Done Here
 lstBoxSuggestions.DataSource =
 _spellCheckerViewModel.Corrections;
 }

 private void txtBoxSpellCorrect_TextChanged(
 object sender, EventArgs e)
 {
 _spellCheckerViewModel.SearchChanges(((TextBox)sender).Text);
 }
 }

As you can see, an instance of View Model is created and the Model (code in reference is the
same one used for the earlier example) instance is specified. The text changes are routed to
the subject in View Model through the TextChanged event. Synchronization, with respect
to the data bindings, (against the suggestion list box), happens automatically through
property change notifications from View Model, which happens to implement the
INotifyPropertyChanged interface. The data source for the bindings is retained in the
View Model. Let's take a look at the View Model now:

 class SpellCheckerViewModel : INotifyPropertyChanged
 {
 private BindingList<string> _corrections;
 private ISpellCheckerModel _spellChecker;
 private ISubject<string> _searchChanged;
 private IScheduler _dispatcher;
 public event PropertyChangedEventHandler PropertyChanged;
 public BindingList<string> Corrections
 {
 get
 {
 return this._corrections;
 }

 set
 {
 if (value != this._corrections)
 {
 this._corrections = value;
 NotifyPropertyChanged();
 }

Reactive Programming Using .NET Rx Extensions

[230]

 }
 }

Here, we will use the CallerMemberName attribute to avoid specifying the member name
as a string argument to the called method:

 private void NotifyPropertyChanged([CallerMemberName]
 String propertyName = "")
 {
 if (PropertyChanged != null)
 {
 this.PropertyChanged(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }

 public void SearchChanges(string text)
 {
 _searchChanged.OnNext(text);
 }

 public ISubject<string> SearchChanged
 {
 get
 {
 return _searchChanged;
 }
 }

 public SpellCheckerViewModel(ISpellCheckerModel spellChecker)
 {
 _spellChecker = spellChecker;
 _dispatcher = new DispatcherScheduler(
 System.Windows.Threading.Dispatcher.CurrentDispatcher);
 _corrections = new BindingList<string>();
 _searchChanged = new Subject<string>();
 Func<string, IObservable<string>> GetSuggestions = (searchText) =>
 {
 IsProcessing = true;
 Corrections.Clear();
 Error = null;
 return _spellChecker.SpellCheck(searchText, 5)
 .ToObservable<string>();
 };

 var searches = this.SearchChanged.Select(GetSuggestions);

Reactive Programming Using .NET Rx Extensions

[231]

Now, this final step provides the necessary magic in terms of:

Providing the most recent changes in the sequence (the Switch operator)
Looking up suggestions for only four letter words and above (the Where
operator)
Looking up suggestions only if the new value entered is different from old (the
DistinctUntilChanged operator)
And, finally, looking up on a background thread using the schedulers task/thread
pool and returning suggestions on the UI thread's dispatcher. Take a look at the
following code snippet:

 searches.Switch()
 .Where(s => s.Length > 3)
 .DistinctUntilChanged()
 .SubscribeOn(Scheduler.Default)
 .ObserveOn(_dispatcher)
 .Subscribe(OnEachSuggest, OnSuggestError,
 OnSuggestComplete);
 }
 private void OnEachSuggest(string searchText)
 {
 Corrections.Add(searchText);
 }
 }

This View Model clearly shows how Observables, LINQ
(Where and DistinctUntilChanged), and Schedulers are put to good practical use. As
highlighted in the preceding code, the lookup, which is done on a background thread, lets
the observer, in this case, the data source, that is, the BindingList<string>, know
through property change notifications; thereby, triggering automatic content refresh in the
Suggestions list box. Another thing to note is the adept usage of the
SubscribeOn/ObserveOn pair to prevent blocking of UI thread and yet update UI objects
on it.

There are some key things to notice here:

The use of Switch operator, in addition to the Where and
DistinctUntilChanged operators, to ensure the liveliness in search in terms of
showing the latest and relevant changes with respect to the sequence
This will also serve as an example of the Collection Pipeline pattern, where your
computation becomes a sequence of operations by taking a collection/sequence
from one operation and feeding to another

Reactive Programming Using .NET Rx Extensions

[232]

It leverages immutability, comprehensions (declarative query syntax in LINQ), laziness,
and parallelism to achieve this.

The screenshot of our spell checker in action is shown here:

An asynchronous logger
Logging and Audit trail is an important cross-cutting or horizontal concern in the day-to-
day application that we create. There are various third-party tools that we leverage; and we
have seen how to write one ourselves in depth in Chapter 3, A Logging Library. Here, we
will see how to impart reactive behavior to a custom-logging component.

We will use the same spell checker example in the preceding section and see how to
integrate logging capability into the existing code base.

We will start off by initializing the log collection as a BindingList, the same way we got
the corrections/suggestions initialized:

 class SpellCheckerViewModel : INotifyPropertyChanged
 {
 private BindingList<string> _logs;
 private ISubject<string> _logChanged;
 public BindingList<string> Logs
 {
 get
 {
 return this._logs;
 }

 set
 {
 if (value != this._logs)
 {

Reactive Programming Using .NET Rx Extensions

[233]

 this._logs = value;
 NotifyPropertyChanged();
 }
 }
 }

The following AddToLog method will be the generic logging method used to hand off the
log text to the observer waiting on the _logchanged subject. You can see instrumentation
code throughout the methods, shown as follows, for applicability and clarity:

 public void AddToLog(string text)
 {
 _logChanged.OnNext(text);
 }

 public SpellCheckerViewModel(ISpellCheckerModel spellChecker)
 {
 _logs = new BindingList<string>();
 _logChanged = new Subject<string>();

 Func<string, IObservable<string>> GetSuggestions = (searchText) =>
 {
 AddToLog(string.Format("Searching for
 suggestions : {0}", searchText));
 return _spellChecker.SpellCheck(searchText, 5)
 .ToObservable<string>();
 };

 var searches = _searchChanged
 .Select(GetSuggestions)
 .Finally(() => AddToLog("Search DISPOSED!!!"));
 searches
 .Switch()
 .Where(s => s.Length > 3)
 .DistinctUntilChanged()
 .SubscribeOn(Scheduler.Default)
 .ObserveOn(_dispatcher)
 .Subscribe(OnEachSuggest, OnSuggestError, OnSuggestComplete);

 DoLogging(_logChanged);
 }

 private void OnEachSuggest(string searchText)
 {
 AddToLog(string.Format("Suggestion Added : {0}", searchText));
 }

Reactive Programming Using .NET Rx Extensions

[234]

 private IObservable<string> GetSuggestions(string searchText)
 {
 AddToLog(string.Format("Searching for suggestions :
 {0}", searchText));
 }

 private void OnEachLog(string searchText)
 {
 Logs.Add(searchText);
 }

The following DoLogging method sets the observer, the OnEachLog method in our case, to
listen for log text sequences/feeds from the observable _logChanged based on its onNext
method invocations via the AddToLog method, thus, facilitating both publication and
subscription using the _logchanged subject:

 private void DoLogging(IObservable<string> sequence)
 {
 sequence
 .SubscribeOn(ThreadPoolScheduler.Instance)
 .ObserveOn(_dispatcher)
 .Subscribe(OnEachLog);
 }
 }

This binding list is bound to the Listbox specifically used in this example to view the logs.
This change's property is further routed to the UI thread that senses the change in the
bounded data source list in our case against the list box and forces a refresh. If you observe
carefully, the logging feature is purely asynchronous and is handled by a background
thread–a worker thread from thread pool in this case. Consider the following code snippet:

 public frmSpellChecker()
 {
 //Data Binding Is Done Here
 lstBoxSuggestions.DataSource = _spellCheckerViewModel.Corrections;
 lstBoxLog.DataSource = _spellCheckerViewModel.Logs;
 }

Reactive Programming Using .NET Rx Extensions

[235]

The logs can be further persisted using the store, such as file, database, and so on, of your
choice. You can also use this to clearly understand the data flow from an observer and
subscriber standpoint. The modified application will look like the following:

Near real-time visualizer/dashboard
Dashboards are natural candidates for viewing real-time, or near real-time, data. Reactive
constructs can be very effectively utilized in realizing utility dashboards from a reporting
standpoint. Let's look at an interesting scenario where election poll results are viewed on a
real-time basis as and when the poll feeds come in from different states. Again, this has no
resemblance to the actual polling process, but just conceptualized here in a fictitious
manner that will enable learning and throw light on various interesting possibilities of
leveraging reactive programming for such a reporting application. Consider the following
code snippet:

 public partial class Form1 : Form
 {
 public enum Party { Republican, Democratic };
 public enum States { AZ, CA, FL, IN, NY };
 string[] xState = { "AZ", "CA", "FL", "IN", "NY" };
 double[] yRVotes = { 0, 0, 0, 0, 0 };
 double[] yDVotes = { 0, 0, 0, 0, 0 };
 Random random = new Random();
 class Vote
 {
 public Party VoteId { get; set; }
 public string State { get; set; }

Reactive Programming Using .NET Rx Extensions

[236]

 }
 public Form1()
 {
 InitializeComponent();
 chart1.Series.Clear();
 DrawSimulation(chart1);
 }

This is the first stage in the prototype where we start building the simulation model for data
sequences/streams, in our case, votes from multiple states. Here, we are initializing a certain
number of votes per state. The Take query operator is utilized here, in case you noticed:

 private void DrawSimulation(Chart chart1)
 {
 var azVotes = GenerateVotes<Vote>(
 () => new Vote() { VoteId = CauchyDistribution(
 random.NextDouble()), State = "Arizona" }).Take(200000);
 var caVotes = GenerateVotes<Vote>(
 () => new Vote() { VoteId = CauchyDistribution(
 random.NextDouble()), State = "California" }).Take(500000);
 var flVotes = GenerateVotes<Vote>(
 () => new Vote() { VoteId = CauchyDistribution(
 random.NextDouble()), State = "Florida" }).Take(300000);
 var inVotes = GenerateVotes<Vote>(
 () => new Vote() { VoteId = CauchyDistribution(
 random.NextDouble()), State = "Indiana" }).Take(100000);
 var nyVotes = GenerateVotes<Vote>(
 () => new Vote() { VoteId = CauchyDistribution(
 random.NextDouble()), State = "New York" }).Take(700000);

This is the next stage in the prototype, where we will filter democratic and republican votes
from the simulation model's stream source, which is generated in the preceding code:

 var azDVotes = from v in azVotes.ToObservable<Vote>()
 where v.VoteId == Party.Democratic
 select v;
 var azRVotes = from v in azVotes.ToObservable<Vote>()
 where v.VoteId == Party.Republican
 select v;
 var caDVotes = from v in caVotes.ToObservable<Vote>()
 where v.VoteId == Party.Democratic
 select v;
 var caRVotes = from v in caVotes.ToObservable<Vote>()
 where v.VoteId == Party.Republican
 select v;
 var flDVotes = from v in flVotes.ToObservable<Vote>()
 where v.VoteId == Party.Democratic

Reactive Programming Using .NET Rx Extensions

[237]

 select v;
 var flRVotes = from v in flVotes.ToObservable<Vote>()
 where v.VoteId == Party.Republican
 select v;
 var inDVotes = from v in inVotes.ToObservable<Vote>()
 where v.VoteId == Party.Democratic
 select v;
 var inRVotes = from v in inVotes.ToObservable<Vote>()
 where v.VoteId == Party.Republican
 select v;
 var nyDVotes = from v in nyVotes.ToObservable<Vote>()
 where v.VoteId == Party.Democratic
 select v;
 var nyRVotes = from v in nyVotes.ToObservable<Vote>()
 where v.VoteId == Party.Republican
 select v;

Here, we will initialize and create the data series for the X and Y axis needed by the chart
component. This way the series are bound to the charting component:

 Series democratic = new Series("Democratic");
 Series republican = new Series("Republican");
 chart1.Series.Add(democratic);
 chart1.Series.Add(republican);

This is the stage where we kick-start simulation, that is, a generation of votes specified per
state:

 GetDemocraticVotes(States.AZ, azDVotes);
 GetRepublicanVotes(States.AZ, azRVotes);
 GetDemocraticVotes(States.CA, caDVotes);
 GetRepublicanVotes(States.CA, caRVotes);
 GetDemocraticVotes(States.FL, flDVotes);
 GetRepublicanVotes(States.FL, flRVotes);
 GetDemocraticVotes(States.IN, inDVotes);
 GetRepublicanVotes(States.IN, inRVotes);
 GetDemocraticVotes(States.NY, nyDVotes);
 GetRepublicanVotes(States.NY, nyRVotes);
 }

Reactive Programming Using .NET Rx Extensions

[238]

The following two helper methods, GetDemocraticVotes and GetRepublicanVotes,
used as a part of kick-starting simulation ensure that the observers (the following lambda
function in this case) are bound and listening for changes as and when the votes start
streaming in. The filtered votes are channeled to these respective helper methods and will
continuously increment the respective vote counters on a near real-time basis:

 private void GetDemocraticVotes(States state, IObservable<Vote> votes)
 {
 int stateIndex = (int)state;
 votes.SubscribeOn(Scheduler.Default)
 .ObserveOn(NewThreadScheduler.Default)
 .Subscribe(v =>
 {
 double voteCount = yDVotes[stateIndex];
 yDVotes[stateIndex] = voteCount + 1;
 });
 }

 private void GetRepublicanVotes(States state, IObservable<Vote> votes)
 {
 int stateIndex = (int)state;
 votes.SubscribeOn(Scheduler.Default)
 .ObserveOn(NewThreadScheduler.Default)
 .Subscribe(v =>
 {
 double voteCount = yRVotes[stateIndex];
 yRVotes[stateIndex] = voteCount + 1;
 });
 }

The following GenerateVotes method is the real vote generator (infinite, as you see)
limited by the number specified using the Take operator, as indicated in the preceding code.
This uses the generator function CauchyDistribution internally to generate the votes
randomly and non-uniformly:

 public IEnumerable<T> GenerateVotes<T>(Func<T> generator)
 {
 while (true) yield return generator();
 }

 private Party CauchyDistribution(double p)
 {
 return Math.Tan(Math.PI * (p - 0.5)) >= 0 ?
 Party.Democratic : Party.Republican;
 }

Reactive Programming Using .NET Rx Extensions

[239]

This timer control helps in refreshing the chart control, which is based on the preset
frequency, with values indicating votes scored by the two parties in the various states under
consideration. Now, one important thing that you need to understand here is that as and
when you traverse layers of subscribers and observers, you tend to introduce latency, again,
based on the kind of schedulers you employ for concurrency, which makes the final output
near real-time as opposed to real time not to introduce any interpretable subjectivity here.
One should strive to reduce these layers and choose the right schedulers through multiple
trials and calibrations to minimize these latencies and meet the required SLAs. Consider the
following code snippet:

 private void timer1_Tick(object sender, EventArgs e)
 {
 chart1.Series["Republican"].Points.DataBindXY(xState, yRVotes);
 chart1.Series["Democratic"].Points.DataBindXY(xState, yDVotes);
 }
 }
 }

As can you see, the program is divided into multiple stages, which are as follows:

Stage1: A simulation model building block
Stage2: Filtering votes based on Party
Stage3: Publish to subscribers
Stage4: Dashboard renderer

The near real-time dashboard will look like the following:

Reactive Programming Using .NET Rx Extensions

[240]

Summary
As you saw, we have gone through some interesting and pragmatic examples that illustrate
the applicability of reactive programming principles. The idea is to make you aware of the
possibilities and warm you up for some serious programming tasks ahead. We believe you
are in a position to appreciate this paradigm now, and possibly able to relate to it as a
natural way of expressing solution models in a declarative manner, which involved a lot of
plumbing code earlier. The power of composability that you get in this model is quite
evident. Now, in the next chapter, we will go on to explore RxJS, the reactive programming
JavaScript library that helps you brace for web programming.

13
Reactive Programming Using

RxJS
In the previous chapter, we saw how .NET Reactive Extensions (Rx) aided natural
programming in terms of composability, scalability, and responsiveness. We saw how
streams enable natural state management with respect to time. Some of the constructs
were dealt with in detail as well. More importantly, we saw how reactive constructs could
be integrated seamlessly into the MVVM pattern, in terms of achieving data
synchronization between View and Model via the View Model layer. Now, in this chapter,
we will take a deep dive into the Reactive Extensions for JavaScript (RxJS) library, and
look at how to write asynchronous and event-driven programs using observable collections.
We will also take a detailed look at some interesting use cases, and their implementations
with RxJS, to clearly understand how the RxJS library is leveraged to create concurrent and
responsive applications. This will cover the reactive spectrum of web and Windows
programming and, by the end of this chapter, you will be in a position to appreciate the
possibilities of JavaScript and confidently leverage RxJS by having a jump start at it. This
chapter includes the following:

A refresher on JavaScript execution context
An analogy of RxJS with YieldJS (a custom JS framework created by the authors)
A detailed outline on RxJS foundations and formalisms
Detailed code samples that demonstrate RxJS in action

Reactive Programming Using RxJS

[242]

The JS world
It is important to recap one's understanding of some of the JavaScript world's state of
affairs. The most important aspect is that the language is single-threaded and, given this,
the only option left for developers to write asynchronous code is by using callbacks,
promises, and events. As a developer, you should be comfortable with the functional
programming aspects of JS (in addition to its innate dynamic nature), including closures,
higher-order functions, anonymous functions, and extension methods (augmenting types).
We also cannot discount the advancements that have been made in the language core itself,
with Node.js now becoming a preferred backend for serious scalability involving async I/O.
Let's have a quick peek into these core concepts before we dive into RxJS.

As we all know (we presume you do), functions are objects in JavaScript, and they are first-
class citizens, which makes JS a functional programming language as well (although it is
formally classified as a dynamic language). We already discussed and saw in Chapter 10,
Pattern Implementation Using Object/Functional Programming (that too, in depth), how higher-
order functions, along with closures, enable you to compose programs naturally, now that
we have been thinning the OOP wall for some time (at least from Chapter 10 onwards).
Well, we don't intend to imply that JS is an exception.

JS supports OOP through prototypal inheritance compared to classic
inheritance in C#. This is important to understand how types can be
augmented (analogous to our extension methods in C#).

Let's look at a higher-order function, which leverages callback (yet another function, which
typically gets called for notification and continuation purposes):

 function onComplete(message) {
 console.log(message);
 }

 function doSomething(onComplete) {
 //Do what is needed here and then trigger onComplete
 onComplete("Complete!");
 }

 doSomething(onComplete);

In the preceding code snippet, the callback (onComplete) is passed as an
attribute to a function (doSomething), thus making it (doSomething) a
higher-order function.

Reactive Programming Using RxJS

[243]

Now let's look at a Closure in action:

 function add(x) {
 return function (y) {
 return x + y;
 };
 };

 var addTen = add(10);
 console.log(addTen(5)); //Returns 15
 console.log(add(2)(3)); //Returns 5

In the preceding code, add is a higher-order function (as it can be assigned to a variable),
and x becomes a closure (lexical closure) within this function (irrespective of any nested/sub
functions within). The results presented as comments against the respective statements
speak for themselves. Also, see how anonymous functions (in this case, the inner function
within the add function) are so natural in the JS realm. If you remember (from Chapter 9,
Functional Programming Techniques for Better State Management), this also touches upon
currying (an important concept in the functional programming world, which we've already
dealt with in detail), a formalism that breaks any function with arity greater than one into a
series of function evaluations (each accepting one argument at a time).

Another important concept to understand is augmenting types in JS. This provides an
amazing way to impart capabilities to a type (just like the way we use extension methods in
C#). Let's quickly look at the power of this, using the following example in terms of
dynamically adding error-handling capability to functions (ones that don't have it) at
runtime. Ever thought of that?

 Function.prototype.throws = function () {
 var slice = Array.prototype.slice,
 args = slice.apply(arguments),
 errorMessage = args[0],
 fn = this;
 return function () {
 try {
 return fn.apply(null, args.slice(1));
 }
 catch (e) {
 console.log(errorMessage);
 //Do what is needed apart from logging
 }
 } ();
 };

Reactive Programming Using RxJS

[244]

This preceding code essentially augments a function object by adding the throws method
to its prototype object (the base object). It deftly leverages some nifty features in the JS
language (including array slicing, arguments object, function context capture using closure,
and the apply method used for function evaluation). We suggest you look it up in case you
are unable to follow the code. The candidate function, which deliberately throws an
exception and one that should gracefully exit function evaluation is as follows:

 function errorSimulator(a, b) {
 console.log(a, b);
 return (parseInt(RxJS,10));//This statement forces an error!
 }

The following code (line 1) can be used in place of direct function evaluation (line 2), where
the program throws a runtime error (ReferenceError: RxJS is not defined) and breaks
execution. What is important to note is the preservation of arity for these functions despite
using the decorator. This is where you will understand the relevance of the arguments
object and the apply method. Here, our decorator assumes the semantics – that of issuing
the first argument with the error message followed by the function arguments in the exact
same order! You can easily achieve this with a find and replace in your code file, can't you?

 errorSimulator.throws("I have you!", 2, 0); // line 1
 errorSimulator(2, 0); // line 2

We guess that now you've got a handle on how things work in the JS world. It's important
to know these as we move forward to explore reactive programming using RxJS.

To try out the code samples in this chapter, please ensure you have Node.js set up and RxJS
dependencies installed through npm, as follows:

 npm install rx
 rx@4.1.0 node_modules\rx

Rx foundations
Although it may sound repetitive, it is so important to understand the foundations of Rx
and the key design patterns that govern Rx. Being a book on patterns and idioms, it would
be really gratifying to know if any interested reader would benefit from understanding the
underpinnings of these keys concepts as they are realized in the host language (JS in this
case) directly or via libraries.

Reactive Programming Using RxJS

[245]

The two key design patterns based on which Rx works are the observer and iterator
patterns. Let's have a quick look at how these patterns are implemented, and then speculate
or peek at a possible implementation of RxJS. This way of learning would really help in
forming a deeper understanding of the core concepts. And not to hide the fact that the
authors themselves have attempted to create a JS library (code-named YieldJS on GitHub
at http://shinexavier.github.io/YieldJS/), which gives the rudimentary capability of
RxJS despite being a pull-based implementation. However, one thing to keep in mind is that
this library was never intended to be created as an RxJS clone, but to bring in the yield
(from the C# world) capability to JS prior to ES 6.0.

The strategy was very straightforward, since the language ES 5.0 didn't
have inherent support for yield where you would want a generator object,
which would continuously yield the next computed value and at the same
time provide an option for forward iteration.

The preceding statement is very powerful with respect to the fact that this library would
impart the following capabilities to a generator function in JS:

Augmenting the generator function object to have forward iteration capability
Accepting a series (unlimited) of iterator methods, which act as continuation
methods to the core yielded elements
Yielding the next valid result based on the continuous and sequenced (the very
order in which it is specified during iteration) iterator function evaluations
Supporting lazy evaluation by yielding the computed value only when requested

What do you think the authors had in mind when they set on this task of creating this
library? In case you are still wondering, it was a novel attempt to create LINQ capability for
sequences created by any generator object (functions, in our case) in JS. A subset of the
library implementation is depicted in the following code, as this helps reason about a
possible implementation of RxJS:

 Function.prototype.getGenerator = function (setCount) {
 "use strict";
 var fnGen = this,
 numberOfElements = setCount,
 slice = Array.prototype.slice,
 gen = {},
 fnContexts = [],
 yieldIndex = -1,
 getFunctionContext = function (fnIndex, input) {
 var fnContext = fnContexts[fnIndex];
 if (fnContext === undefined) {
 fnContext = { "index": 0, "current": input, "outList": []
 };

http://shinexavier.github.io/YieldJS/

Reactive Programming Using RxJS

[246]

 fnContexts[fnIndex] = fnContext;
 } else {
 fnContext.current = input;
 fnContext.index += 1;
 }
 return fnContext;
 },
 isYieldEmpty = function () {
 return ((yieldIndex + 1) === numberOfElements);
 },
 moveNext = function () {
 var args = arguments,
 yieldedResult = null,
 core = function () {
 var i,
 result = null,
 fn = null,
 fnCtxt = null;
 yieldIndex += 1;
 result = fnGen.apply(null, []);
 if (args.length > 0) {
 for (i = 0; i < args.length; i += 1) {
 fn = args[i];
 fnCtxt = getFunctionContext(i, result);
 result = fn.call(null, fnCtxt);
 if (result === null) {
 break;
 } else {
 fnCtxt.outList.push(result);
 }
 }
 if (result !== null) {
 gen.current = result;
 }
 } else {
 gen.current = result;
 }
 return result;
 };
 while ((yieldedResult === null) && (!isYieldEmpty())) {
 //Recursive call to find the next non-null value
 yieldedResult = core();
 }
 return (yieldedResult !== null) ? true : false;
 };
 gen.current = null; gen.moveNext = moveNext;
 return gen;
 };

Reactive Programming Using RxJS

[247]

As highlighted in the preceding code, the key to this implementation is the state object
fnContext, which holds information regarding every function (provided during iteration)
and its evaluation details. This is critical for the continuation needed during iteration.

As you can see, the generator would be a method, getGenerator(numberOfElements),
which augments any generator function (by accepting the number of elements to be
generated) and has the following interfaces:

Properties:

current: Yields the current element during the course of a generation.

Methods:

moveNext: Attempts to generate the next element based on the
generator function, increments the iteration pointer, and returns true
if successful. If unsuccessful (primarily because the iteration pointer
points to the last element returned by the generator function based on
the number of elements specified), it returns false.

From a usage standpoint, take a look at the following generic sequence generator:

 function sequence(z) {
 "use strict";
 var y = 0;
 return function () {
 y += z;
 return y;
 };
 }

As you can see, this accepts a seed incremental value during sequence initialization, and
returns the actual function (anonymous), which can be invoked multiple times to generate
the seed sequences. Another critical thing would be the accumulator (y in our case), which
holds the previous item in our sequence because of its closure property. Now, let's see our
generator in action:

 var a = sequence(1).getGenerator(10);
 //For generating the first 10
 elements (1 through 10)
 while (a.moveNext() {
 console.log(a.current);
 }

Reactive Programming Using RxJS

[248]

Now, if you really look carefully, the preceding code snippet has the basic framework for
creating a reactive library in terms of manipulating sequences (upon generation) to suit
your needs. This is done using the iterator methods, which sort of become your LINQ
operators. What really enables this are the context objects, which get created for each of the
iterator functions. You will understand this when we look at some of the iterator methods
shown next (ideally, the end users are just expected to write the sequence generator, and
this library of iterator methods can be used for manipulating sequences in real time). Plus,
the moment you understand how the context object provided during function evaluation
can be used to write more iterator methods, it becomes all the more exciting and the
possibilities seem endless. The context object provides the following attributes for creating
various useful iterator functions:

index: Gives the index of the current element in the iteration context
current: Gives the current element in the iteration context
outList: Gives the cumulative output collection/array till that point of iteration

The usage is as follows:

 function square(context) {
 "use strict";
 return (context.current * context.current);
 }

This is a very standard use of transform operators, where the current element in the
sequence is retrieved and manipulated (squared in this case):

 function unique(context) {
 "use strict";
 return (context.outList.indexOf(context.current) < 0) ?
 context.current : null;
 }

In the preceding code, you clearly see how the outList property is leveraged for
generating unique sequences! Typically, this property becomes very handy for
implementing aggregation operators:

 function filter(condition) {
 "use strict";
 return function (context) {
 return condition(context.current) ? context.current : null;
 };
 }

 function even(val) {
 "use strict";

Reactive Programming Using RxJS

[249]

 return (val % 2 === 0);
 }

Here is an interesting scenario, where a predicate function (even) is used in conjunction
with an iterator function (filter) to filter those elements in the sequence that satisfy a
certain condition:

 function skip(count) {
 "use strict";
 return function (context) {
 return ((context.index % (count + 1)) === 0) ? context.current
 : null;
 };
 }

And finally, here you see how the index property is leveraged for skipping certain
elements in the sequence!

Now, to see the entire thing in action, look at the following example usage:

 var a = sequence(1).getGenerator(10);
 while(a.moveNext(skip(1), square)) {
 console.log(a.current); //Yields 1, 9, 25, 49, 81
 }

Do you get the connection now? Do you see how the two iterator methods (a filter and a
transformation operator in this case) are composed elegantly in a declarative manner? One
that would chain these operators during an iteration as an element in the sequence is
generated. This is reactive (except that, with the iteration, you pull as opposed to the
conventional push)! Don't you get it? All we need is a callback to be passed to our generator
object, which would get notified any time a new element in the sequence is generated! We
will leave that entirely to any interested reader (depending on whether you like to be an
API producer or a consumer) to toy around with this implementation (you are free to fork it
on GitHub), or directly jump to RxJS and start benefiting from it. Either way, by now, we
feel you are ready and have the foundation to lock horns with RxJS!

Reactive Programming Using RxJS

[250]

RxJS formalism
Now, unlike YieldJS, RxJS is push-based. Here, the subscribers would automatically receive
new values from the publisher. A subscriber or listener is denoted by the observer object,
and the publisher (that pushes/publishes new values) is denoted by the Observable object.
Just like the way we specified iterator methods (our future operators) to compose our
generated sequences, we can efficiently do the same (transform, filter, and so on) for all the
elements in the observable sequence.

Observables and observers
The generator becomes our observable, and the callback function, which would be
interested in these sequences, becomes the observer. Having said this, creating
Observables is pretty straightforward, as we saw in the earlier chapter with reactive
extensions for .NET. The following code bares it all:

 var client = Rx.Observable.create(function (observer) {
 observer.onNext('On Your Mark');
 observer.onNext('Get Set');
 observer.onNext('GO');
 observer.onCompleted();
 });

 client.subscribe(
 function onNext(x) { console.log('Next: ' + x); },
 function onError(err) { console.log('Error: ' + err); },
 function onCompleted() { console.log('Completed'); }
);

The client in the preceding code is the observer, which has the three important callbacks
(highlighted), namely, OnNext, OnError, and OnCompleted.

As expected, this faithfully prints the following on the console:

Next: On Your Mark
Next: Get Set
Next: GO
Completed

Now let's look at some key bridges offered by RxJS when it comes to working with core
language constructs.

Reactive Programming Using RxJS

[251]

Observables from arrays
Let's see how observables can be created from arrays using RxJS:

 Rx.Observable
 .from(['On Your Mark', 'Get Set', 'GO'])
 .subscribe(
 function (x) { console.log('Next: ' + x); },
 function (err) { console.log('Error:', err); },
 function () { console.log('Completed'); }
);

As highlighted in the preceding code, you can see that the from operator does the trick
here, and you get the same results as earlier!

Observables from events
Similarly, we can create observables from events using the fromEvent operator. The
following is an observable, which displays the mouse pointer coordinates whenever the
mouse crosses diagonally across the window. Since we need the DOM elements (document
and window) here, we will use the JSbin playground for running this code:

 var allMoves = Rx.Observable.fromEvent(document, 'mousemove')
 allMoves.subscribe(function (e) {
 console.log(e.clientX, e.clientY);
 });

 var movesCrossingDiagonal = allMoves.filter(function (e) {
 return e.clientX === e.clientY;
 });
 movesCrossingDiagonal.subscribe(function (e) {
 console.log('Crossed the diagonal:', e.clientX, e.clientY);
 });

Reactive Programming Using RxJS

[252]

If you observe the preceding code, you'll see that allMoves is the primary observable
sequence, and then we derive the next movesCrossingDiagonal sequence from
allMoves. All these sequences are immutable, and we just subscribe (the two subscribers
are highlighted in code) to those that are of interest. We also see the use of the filter
operator. See the following equivalent code executed in the JSbin editor:

In the HTML code given in the preceding screenshot, you can see the Rx library included
(you could simply do this in JSbin by using the Add library option shown in the web
editor):

You will get these results, as seen in the preceding screenshot, the moment you move your
mouse in the output window (not shown in this screenshot on account of brevity).

Reactive Programming Using RxJS

[253]

Observables from callbacks
Creating observables from callbacks is indispensable when it comes to asynchronous and
event-driven programming, and it truly completes the final dimension of possibilities that
observables have to offer:

 // Load Node.js Filesystem module
 var fs = require('fs');
 // Create an Observable from the watch method
 var source = Rx.Observable.fromCallback(fs.watch)('./tmp', {
 encoding: 'buffer' });
 // Create an Observer
 var fsClient = Rx.Observer.create(
 function (changes) {
 console.log('Next: ', changes);
 },
 function (err) {
 console.log('Error: ', err);
 },
 function () {
 console.log('Completed');
 }
);
 var subscription = source.subscribe(fsClient);

Now, let's presume you have a file named alas.tmp within the tmp folder, and you modify
its contents and save it. The observer would immediately get notified of this change, as
shown here:

Next: ['change', 'alas.tmp']
Completed

Now, this preceding code, as you can see, helps you with subscribing to a file system
watcher (directory watcher in this case). There's a shortcoming though! Can you spot that
before we address this in the coming sections?

Observable pipeline
Remember the operator chaining we did with YieldJS a while ago? Well that's precisely
what an Observable pipeline is. And if you remember how we trickled the state across the
chaining operations (as opposed to maintaining it outside), you are in good hands. RxJS
offers the same, as the Observable pipeline is self-contained and the state flows from one
chained operator to another:

 Rx.Observable

Reactive Programming Using RxJS

[254]

 .from([1, 2, 3, 4, 5, 6, 7, 8])
 .skip(4)
 .map(function (val) { return val * val; })
 .subscribe(function (value) {
 console.log('Next : ', value);
 });

This preceding code yields the following:

Next : 25
Next : 36
Next : 49
Next : 64

Another thing to note is that this pipeline is highly efficient in terms of evaluations (or, we
say, the various steps in an algorithm). In place of conventionally having three
iterations/passes (per operator), we can do this operator chaining in just one iteration for all
the three operators. We saw how this is clearly achieved in YieldJS. Additionally, you get
the benefit of lazy evaluations as well! Be sure to check out other operators that may
become handy for your day-to-day development.

Subject et al.
As we saw in the previous chapter, we have subjects (those that implement both Observer
and Observable types) within RxJS as well. This makes it a powerful mediator (a proxy
object to be precise) between a source and downstream subscribers/observers:

 var subject = new Rx.Subject();
 var source = Rx.Observable
 .interval(1000)
 .take(3);
 source.subscribe(subject);
 //Observer #1
 var client1 = subject.subscribe(
 function (changes) {
 console.log('Client1 Next: ', changes);
 },
 function (err) {
 console.log('Client1 Error: ', err);
 },
 function () {
 console.log('Client1 Completed!');
 }
);
 //Observer #2

Reactive Programming Using RxJS

[255]

 var client2 = subject.subscribe(
 function (changes) {
 console.log('Client2 Next: ', changes);
 },
 function (err) {
 console.log('Client2 Error: ', err);
 },
 function () {
 console.log('Client2 Completed!');
 }
);
 subject.onNext(5);
 subject.onNext(15);
 subject.onNext(20);
 setTimeout(function () {
 subject.onCompleted();
 client1.dispose();
 client2.dispose();
 }, 5000);

The following output is seen upon execution of the preceding code:

Client1 Next: 15
Client2 Next: 15
Client1 Next: 20
Client2 Next: 20
Client1 Next: 0
Client2 Next: 0
Client1 Next: 1
Client2 Next: 1
Client1 Next: 2
Client2 Next: 2
Client1 Completed!
Client2 Completed!

These are some of the specialized subjects which one could leverage based on their intent of
usage:

AsyncSubject: Represents the result of an asynchronous action. It can be used
like a promise object in JS. It caches and returns only the last value, thus making
it ideal for use in asynchronous operations, including AJAX calls, file I/O, and so
on.
BehaviorSubject: This mandates a starting value, making it ideal for
initializing with placeholder values during any asynchronous operation,
including AJAX calls, file I/O, and so on.

Reactive Programming Using RxJS

[256]

ReplaySubject: Caches values (based on the buffer size specified) and re-emits
those to subscribers irrespective of the time they subscribe to it.

Schedulers
As we saw earlier, schedulers are powerful tools to manage and handle concurrency. You
have a lot more control in terms of the concurrency models you choose for notifications and
subscriptions. You have the following three basic schedulers at your disposal:

Immediate: This is de-facto for most of the operators, and is synchronous in
nature
Default: This is asynchronous in nature, and leverages the event loop (using
nextTick in the case of Node.js), setTimeout, and so on, behind the scenes
Current thread: This, again, is synchronous in nature, except that in the case of
recursive operators (such as repeat), it enqueues executions

And we have two handy operators to help us here:

observeOn

subscribeOn

Both these return observable instances, but give fine-grained control on concurrency by
taking in the scheduler as an attribute.

Please do check out the RxJS references for a deeper understanding of these (as coverage of
these needs a chapter on its own, and that is not the true intent of this book). Now that we
have looked at some of the core formalisms in RxJS, let's try to explore the world of RxJS
with more examples.

RxJS samples
How can we even proceed without seeing our spell checker in action on a web page? For
this, we need an ASP.NET Web API that provides the suggestions. We will reuse our
earlier NorvigSpellCheckerModel class as-is for this:

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Net;
 using System.Net.Http;

Reactive Programming Using RxJS

[257]

 using System.Web.Http;
 using SpellChecker;

 namespace MvcApplication1.Controllers
 {
 public class SearchContext
 {
 public string Lookup { get; set; }
 public int Count { get; set; }
 }
 public class ValuesController : ApiController
 {
 ISpellCheckerModel _spellChecker =
 NorvigSpellCheckerModel.Instance;
 // GET api/values
 public IEnumerable<string> Get([FromUri] SearchContext
 context)
 {
 return _spellChecker.SpellCheck(context.Lookup,
 context.Count);
 }
 }
 }

In this preceding code, a SearchContext class has been created to pass in values for the get
API! Also, a small change has been made to the Global.asax.cs file to accommodate
JSONP responses (highlighted in the following code):

 protected void Application_Start()
 {
 AreaRegistration.RegisterAllAreas();
 WebApiConfig.Register(GlobalConfiguration.Configuration);
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);
 GlobalConfiguration.Configuration.Formatters.Insert(0, new
 JsonpMediaTypeFormatter());
 }

The following utility class, which helps you with formatting needs, is needed:

 public class JsonpMediaTypeFormatter : JsonMediaTypeFormatter
 {
 private string callbackQueryParameter;

 public JsonpMediaTypeFormatter()
 {
 SupportedMediaTypes.Add(DefaultMediaType);

Reactive Programming Using RxJS

[258]

 SupportedMediaTypes.Add(new
 MediaTypeHeaderValue("text/javascript"));
 MediaTypeMappings.Add(new UriPathExtensionMapping("jsonp",
 DefaultMediaType));
 }

 public string CallbackQueryParameter
 {
 get { return callbackQueryParameter ?? "callback"; }
 set { callbackQueryParameter = value; }
 }

 public override Task WriteToStreamAsync(Type type, object value,
 Stream stream, HttpContent content, TransportContext
 transportContext)
 {
 string callback;

 if (IsJsonpRequest(out callback))
 {
 return Task.Factory.StartNew(() =>
 {
 var writer = new StreamWriter(stream);
 writer.Write(callback + "(");
 writer.Flush();

 base.WriteToStreamAsync(type, value, stream, content,
 transportContext).Wait();

 writer.Write(")");
 writer.Flush();
 });
 }
 else{
 return base.WriteToStreamAsync(type, value, stream, content,
 transportContext);
 }
 }

 private bool IsJsonpRequest(out string callback)
 {
 callback = null;

 if (HttpContext.Current.Request.HttpMethod != "GET")
 return false;

 callback = HttpContext.Current.Request.QueryString
 [CallbackQueryParameter];

Reactive Programming Using RxJS

[259]

 return !string.IsNullOrEmpty(callback);
 }
 }

Now let's see how we can make a responsive frontend using RxJS:

 <h3>RxJS Samples:</h3>
 <ol class="round">
 <li class="one">
 <h5>Spell Checker</h5>
 <script type="text/javascript" src="~/Scripts/rx.lite.js">
 </script>
 <script type="text/javascript" src="~/Scripts/rx.dom.js">
 </script>

As indicated here, you would need the following two JS files:

 <script type="text/javascript">
 var textInput;
 var throttledInput;
 var suggestions;
 var resultList;

The following function (initialize) is called as soon as the DOM is loaded:

 function initialize() {
 textInput = document.querySelector('#textInput');
 console.log(textInput);
 throttledInput = Rx.DOM.keyup(textInput)
 .do(function (msg) {
 console.log(msg.key);
 })
 .pluck('target', 'value')
 .filter(function (text) {
 return text.length > 3;
 })
 .debounce(500)
 .distinctUntilChanged();
 suggestions = throttledInput.flatMapLatest(SpellChecker);

 In the preceding code, we do some throttling, and do not overload the server with requests,
by doing the following:

Transforming keyup DOM events into observable sequences
Focusing on the value entered (the pluck operator here serves this purpose)

Reactive Programming Using RxJS

[260]

Looking up search items which have more than three characters (using the
filter operator)
Slowing down user input with a timeout of 500 milliseconds (using the debounce
operator)

Restricting lookup for distinct values in the input stream (using the
distinctUntilChanged operator):

 resultList = document.getElementById('results');
 suggestions.subscribe(
 function (data) {
 var results = data.response;
 clearSelector(resultList);
 for (var i = 0; i < results.length; i++) {
 resultList.appendChild(createLineItem(results[i]));
 }
 },
 function (e) {
 clearSelector(resultList);
 resultList.appendChild(createLineItem('Error: ' + e));
 }
);
 }

This function issues the search against the web API, and gets back an observable:

 function SpellChecker(term) {
 var url = 'http://localhost:18679/api/values/?Lookup='
 + encodeURIComponent(term) +
 '&Count=5&format=json&callback=JSONPCallback';
 return Rx.DOM.jsonpRequest(url);
 }

The clearSelector and createLineItem functions are helper functions for DOM
manipulations, which facilitate display:

 function clearSelector(element) {
 while (element.firstChild) {
 element.removeChild(element.firstChild);
 }
 }

 function createLineItem(text) {
 var li = document.createElement('li');
 li.innerHTML = text;
 return li;
 }

Reactive Programming Using RxJS

[261]

 Rx.DOM.ready().subscribe(initialize);
 </script>
 <input id="textInput" type="text"/>
 <ul id="results">

A sample output is shown in the following screenshot:

So, by now we have seen how to subscribe to observable sequences (both keyboard events
and AJAX calls/responses).

The next sample we will deal with is a logical extension of what we discussed earlier.
Remember we asked if you could spot a shortcoming in the file watcher sample that we
discussed under observable from callbacks?

Real-time file watcher
The earlier version would terminate the observable sequence upon detecting the first
change, thus impairing its ability to continuously detect changes. The solution to this fix is
shown as follows:

 var Rx = require('rx');
 // Load Node.js Filesystem module
 var fs = require('fs');

 var disposable = Rx.Scheduler.default.scheduleRecursive(
 0,
 function (i, recurse) {
 // Create an Observable from the watch method

Reactive Programming Using RxJS

[262]

 var source = Rx.Observable
 .fromCallback(fs.watch)('./tmp', { encoding: 'buffer' });
 var subscription = source.subscribe(
 function (changes) {
 console.log('Next: ', i, changes);
 },
 function (err) {
 console.log('Error: ', err);
 },
 function () {
 console.log('Completed');
 ++i;
 recurse(i);
 });
 }
);

As you can see in the highlighted code, the fix to the earlier problem is
recursive scheduling (using the sceduleRecursive operator) upon
sequence completion (indicated using onCompleted) during an event
detection by the file system watcher component.

The following result indicates that our fix works:

Next: 0 ['change', 'alas.tmp']
Completed
Next: 1 ['change', 'alas2.tmp']
Completed
Next: 2 ['change', 'anotherfile.tmp']
Completed

Change galore
This sample has a wider implication in various domains, especially logistics. The solution
involves finding all the change sets for an amount with a given set of currency
denominations:

 // -------------------------Load RxJS module
 var Rx = require('rx');
 var calculateChange = function (denominations, amount) {
 'use strict';
 var changeSets = 0;
 var subject = new Rx.Subject();
 var changeSetClient = subject
 .do
 (

Reactive Programming Using RxJS

[263]

 function (denominationSet) {
 console.log(
 'Processing Denominations: ',
 denominationSet);
 }
)
 .observeOn(Rx.Scheduler.default)
 .subscribe
 (
 function (denominationSet) {
 printChangeSet(denominationSet);
 },
 function (err) {
 console.log('Processing Error: ', err);
 },
 function () {
 console.log('Processing Completed!');
 changeSetClient.dispose(); //Disposal
 subject.dispose(); //Disposal
 }
);

As you can see in the preceding code, here we have a global function (in order to clearly set
a boundary on the global scope), which accepts the denominations (in an array) and the
amount as two independent attributes. Now, what is important here is the strategy we
employed to make the computation (or steps in the algorithm) asynchronous. For this, we
used the default scheduler (Rx.Scheduler.default), which never blocks the event loop.
In case you noticed, the resource cleanups are done in the onCompleted event:

 //This function prints the applicable denomination sets
 var printChangeSet = function (denominationSet) {
 var matchFactors = [],
 findCombinationSet = function (denominationIndex,
 cumilativeSum) {
 var transientSum = 0,
 i = 1,
 denomination = denominationSet[denominationIndex],
 factorCount = denominationSet.length;
 while (transientSum <= amount) {
 //Pretty Printing
 matchFactors[denominationIndex] = i.toString()
 + " x " + denomination.toString() + "c";
 transientSum = cumilativeSum + (denomination * i);
 if ((denominationIndex + 1) === factorCount) {
 if (transientSum === amount) {
 changeSets += 1;
 console.log(

Reactive Programming Using RxJS

[264]

 changeSets + ". " + matchFactors);
 }
 } else {
 findCombinationSet(denominationIndex + 1,
 transientSum);
 }
 i += 1;
 //---------------------Pretty Printing END
 }
 };
 findCombinationSet(0, 0);
 };

The printChangeSet function again creates a local scope, and further employs the
findCombinationSet function to shortlist the applicable changeSets out of the possible
currency combinations (based on the available denominations). Another important thing to
note here is the tail call optimization done for the recursion involving the
findCombinationSet function (see highlighted code) by passing accumulated transient
sums, thereby eliminating call-stack growth:

 // This function computes the possible denomination sets
 var generateChangeSets = function () {
 var bitcount = denominations.length,
 mask = Math.pow(2, bitcount),
 i = 1,
 j = 0,
 k = 1,
 denominationSet = null,
 denominationSum = 0;
 while (i < mask) {
 j = 0;
 denominationSet = [];
 denominationSum = 0;
 while (j < bitcount) {
 if ((i & (k << j)) > 0) {
 denominationSet.push(denominations[j]);
 denominationSum += denominations[j];
 }
 j += 1;
 }
 if (denominationSum <= amount) {
 subject.onNext(denominationSet);
 }
 i += 1;
 }
 subject.onCompleted();
 };

Reactive Programming Using RxJS

[265]

 generateChangeSets();
 };

In case you are wondering about this generateChangeSets function, you guessed it right.
This is the JS equivalent of the C# subset generation code we saw in Chapter 9, Functional
Programming Techniques for Better State Management. So, by now you would have got a hang
on the algorithm employed here, which can be explained as follows:

Generate all possible subsets (possibly denomination combinations).1.
Try to determine possible counts per denomination.2.
If step 2 is successful, do pretty printing, as shown in the following output for3.
calculateChange([1, 5, 10, 25], 25):

changeSetClient Processing Denominations: [1]
changeSetClient Processing Denominations: [5]
changeSetClient Processing Denominations: [1, 5]
changeSetClient Processing Denominations: [10]
changeSetClient Processing Denominations: [1, 10]
changeSetClient Processing Denominations: [5, 10]
changeSetClient Processing Denominations: [1, 5, 10]
changeSetClient Processing Denominations: [25]
1. 25 x 1c
2. 5 x 5c
3. 5 x 1c,4 x 5c
4. 10 x 1c,3 x 5c
5. 15 x 1c,2 x 5c
6. 20 x 1c,1 x 5c
7. 5 x 1c,2 x 10c
8. 15 x 1c,1 x 10c
9. 1 x 5c,2 x 10c
10. 3 x 5c,1 x 10c
11. 5 x 1c,2 x 5c,1 x 10c
12. 10 x 1c,1 x 5c,1 x 10c
13. 1 x 25c
changeSetClient Processing Completed!

In case you didn't notice, the console logs appear first before the results are printed, clearly
indicating that step 2 and beyond are asynchronous!

Reactive Programming Using RxJS

[266]

Summary
By now you must have understood how reactive programming is employed for modeling
solutions the way the world exists. The principle has been applied for various mainstream
programming languages, as thought leaders such as Erik Meijer found this too natural to
express and compose. And we got lucky in this discovery process. We believe, as
developers, you must have have started appreciating the world of functional and reactive
programming beyond OOP. In the next chapter, we will be specifying, in brief, some
important topics which could not be covered in the book, such as polyglot programming,
domain specific languages (DSLs), ontology, and AntiPatterns.

14
A Road Ahead

It has been a whirlwind journey on various topics through our book. If you have reached
this point, you might have come across some new concepts, or might have had a fresh look
at some things that you already knew. Broadly speaking, the theme of this book can be
divided into the following four sections:

Putting patterns into perspective (Chapter 1 and 2)
GoF in action (Chapter 3 through 7)
Object/functional programming (Chapter 8 to 10)
(Functional) reactive programming (Chapter 11, 12, and 13)

Patterns are an interesting topic, and they have helped software developers to address
complex business problems by providing proven and time-tested solutions. It has also
improved communication between developers and their stakeholders. By learning patterns,
as a developer, you get distilled knowledge and experience of those master programmers
who cataloged these patterns. But there are some more topics that you should know in your
journey as a developer or an architect. The authors of this book consider the following four
topics of great interest to a professional (as a continuation of the topics covered in this
book):

Polyglot programming and design (multi paradigm programming)
Domain-specific languages
Ontology
AntiPatterns

A Road Ahead

[268]

Polyglot programming and design
Modern applications are complex to develop as they might have the following:

Service layer with a database for persistence (SQL or NoSQL)
The UI code has to be responsive and calibrated for different form factor devices
The frontend code is mostly based on some kind of Single Page Architecture
(SPA) architecture
In some cases, there can be desktop and mobile native frontends

A developer who has been hired for such a project should have the following skills:

Java, C#, PHP, Ruby, or Grails for writing service layers (skills in one or more)
For writing UI code, they should be familiar with CSS libraries and JavaScript
(e.JQuery)
For web-based responsive frontend, TypeScript/JavaScript using Angular,
ReactJs, or any other JavaScript-based framework
For writing desktop applications, the choices are C#, C++, Objective C/C++,
Python, or Java
For mobile application development (native), choices are C#, Java, or Objective
C/Swift

The bottom line here is that one should be comfortable with at least more than half a dozen
programming languages to be in a position to work with modern projects. If you add skills
in PowerShell, Bash shell, JSP/HTML/template engines, XML, JSON, and so on, we are
indeed living in a world where a person has to be really conversant in as many languages as
possible.

Let us trace the evolution of this state of affairs by quickly chronicling the history of
development under the PC platform. The programming landscape has changed quite a lot
in the last decade. When the GoF pattern book was written, programming languages such
as Java and C# had not been born. The dominant object-oriented programming language in
those days, for all practical purpose was C++. Even for C++, the ANSI standards were not
ratified (it happened only in 1998). Other than C++, languages such as Delphi (Object
Pascal),Visual Basic, PowerBuilder, and various xBase dialects (Clipper, FoxPro, and the
like) were widely used by programmers of that era. Platforms such as Microsoft Windows
were just evolving. Various flavors of UNIX and MS-DOS were the primary platforms (even
GNU Linux had not reached a critical mass in those times!).

A Road Ahead

[269]

Even in the early years of programming, it was realized that one cannot build solutions
using a single programing language. We need to mix and match programming languages
that are apt for the context. At one point in time, most numerical libraries were written in
Fortran, and those libraries were interfaced with the C language for writing systems, which
are numerically intensive. In the early years of programming, people used to write code in a
high-level language, and interface their code with routines written in C and assembler.
Thus, a programmer needs to know a high-level language, C programing language, and the
syntax of the assembly language of the environment in which the program was developed
and deployed. The process of developing a large system using different programming
languages for writing different subsystems and composing them to create a larger system is
called polyglot programming. Designing such systems, where there is a multitude of
programming languages and technology stacks, is called polyglot design. To design such a
system, developers should be able to think in a language-and-platform-agnostic manner.

The movement towards polyglot programming started in the early years of programming
on the IBM PC platform. Polyglot programming was mostly an affair of interfacing routines
written in the C programming language to a high-level language chosen for writing the
system.

Polyglot programming with C/C++
When people programmed in various languages other than C/C++, there were options
available for interfacing with C/C++, code packaged as DLLs or .so in Windows and
Unix/Linux, respectively. In MS-DOS, all xBase languages offered an interface mechanism
to interact with the native code written in C/C++ and Assembler/. In the Microsoft Windows
platform, Visual Basic offered a mechanism to call routines written in C/C++/. Using this
mechanism, people consumed a vast amount of Windows API functions provided by
Microsoft. People began to program Windows using Visual Basic and Visual C++. The
visual development environments such as Delphi and PowerBuilder also provided similar
mechanisms to consume code written in C/C++. This can be considered as the beginning of
programming systems using multiple languages, and is nowadays called Polyglot
programming.

With the advent of the Java programming language, the promise of platform-neutral
programming became a buzzword in the Industry. The write once, run everywhere
(WORE) mantra came to the fore, and it did not prevent the implementers of Java to give a
mechanism to interact with native code written in C/C++. The interface was called Java
Native Interface (JNI). Using this mechanism, people wrote wrappers around technologies
such as Direct3D and OpenGL to create libraries like Java 3D. The popular computer vision
system, OpenCV, is interfaced with Java software using JNI.

A Road Ahead

[270]

The .NET platform was unveiled in the year 2001, and it gave two interfaces to interface
with the native code. The first one was PInvoke, a mechanism to interface with Win2/Win64
calls exported out of DLLs. Microsoft also gave a mechanism to call C++-based COM
components called COM interoperability. They named it COM callable wrapper. To
demonstrate the use of P/Invoke, here is a small C/C++ code snippet (compiled into a DLL)
interfaced with C# code:

 #include <stdio.h>
 #include <cstring>
 #include <Windows.h>

 using namespace std;
 //A C/C++ Windows DLL which exports a Function
 //ListOfSquares to be consumed from C# programming
 //language. The DLL is compiled using Minimalist
 //GNU for Windows (MINGW),which is freely downloadable
 //
 //Compile and Link
 //----------------
 // gcc -c -o add_basic.o cpp_code.cpp
 // gcc -o add_basic.dll -s -shared add_basic.o -Wl,
 // --subsystem,windows
 //

 extern "C" __declspec(dllexport) void __stdcall
 ListOfSquares(
 long (__stdcall *square_callback) (int rs))

 {
 for (int i = 0; i<10; ++i) {
 //---- Call the C# routine which handles the
 //---- integer and returns square.
 //---- This is a blocking call!

 double ret = (*square_callback)(i);
 printf("Printing from C/C++ ... %g\n", ret);
 }
 }

We can compile the preceding code using the Visual C++ compiler or MinGW compiler
(GCC under Windows) to create a DLL. We have used the MinGW 32-bit compiler to
generate the Win32 DLL. The DLL can be interfaced with C# code written using Visual
Studio or Mono compiler under Windows. If you know how to build a shared library (.so)
under Mac OS X or GNU Linux, we can run the code on those platforms as well. The C#
code can be used to invoke the DLL written previously:

A Road Ahead

[271]

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Runtime.InteropServices;
 using System.Text;
 using System.Threading.Tasks;

 namespace entrypoint
 {
 class Program
 {
 //--- Now you know, a C/C++ Function Pointer
 //--- is indeed a delegate!
 public delegate long CallBack(int i);
 //--- Declare the Function Prototype of the Function
 //--- We are planning to call from C/C++
 [DllImport("D:\\DLL_FOR_DEMO\\add_basic.dll")]
 private static extern long ListOfSquares(CallBack a);

 public static long SpitConsole(int i)
 {
 Console.WriteLine("Printing from C# {0}", i * i);
 return i * i;
 }

 static void Main(string[] args)
 {
 /////////////////////////////
 // CallBack Demo
 // Will print Square from C# and C++
 ListOfSquares(SpitConsole);
 }
 }
 }

The polyglot web programming
The World Wide Web (WWW) reached critical mass roughly in the year 1995, and the
programming landscape changed all of a sudden. People who learned to program desktop
systems using Windows API and X/Windows API found themselves in a position of great
difficulty, forced to grapple with the complexities of the Common Gateway Interface
(CGI), NSAPI, and ISAPI programming model to generate dynamic web pages. The
languages of choice were Perl and TCL for CGI, and C/C++ for NSAPI/ISAPI.

A Road Ahead

[272]

The situation continued for some time, and it all changed all of a sudden when Microsoft
brought out Active Server Pages (ASP) for creating dynamic web pages. Soon, Sun
Microsystems came up with Java Servlet API. The Servlet API was a low-level API like C++-
based ISAPI, and Sun soon brought out JavaServer Pages (JSP), a technology that
embedded Java code inside markups. The JSPs were converted to Servlet code on the fly
using the Java Compiler system available on the executing machine. There were
technologies such as ColdFusion, which leveraged custom markups to write extensible
applications, and had the capacity to interact with code written in Java. The Web
programming model mandated people to learn C++, Java, Visual Basic, and ASP to write
dynamic web pages. On the Microsoft platform, people began to write VBScript code
interspersed with calls to COM/ActiveX objects written in C++ and Visual Basic. In fact, the
emergence of web-based application delivery forced programmers to become a true
polyglot.

The JavaScript evolution
The emergence of JavaScript was another thing that forced developers to learn yet another
language to add a bit of interactivity to their web pages. In those times, people were mostly
comfortable with statically typed languages, and found JavaScript to be a weird language.
JavaScript remained in relative obscurity for a long time, until someone found out a clever
way to mix JavaScript with IE ActiveX plugin. In the early years of the twenty-first century,
people began to write user interfaces by embedding browser controls inside a desktop
container, and used JavaScript as a glue language to interact with the ActiveX controls
embedded in those pages. JavaScript picked up momentum, and people began to consider it
as a first class programming language after the advent of Google's V8 engine and the
Node.js platform. Another shot in the arm was the support for functional style
programming using the JavaScript language, and the emergence of libraries such as JQuery,
Angular, ReactJS, and the like. In the last decade, knowledge of the JavaScript
programming language became essential for all programmers, whether they wrote server
code or client code. JavaScript is another language that programmers were forced to learn.

Dynamic/scripting languages
The emergence of Perl, Python, PHP, Ruby, TCL, and Groovy for writing command line,
GUI, and web applications forced developers to master some of them in their day-to-day
job. PERL is still widely used for writing CGI applications, automation scripts, and even
GUI applications (Perl/TK) all across the world. The Python programming language is the
de-facto programming language for writing (or at least learning) machine learning
programs because of the libraries available in that language, and they are widely used for
writing web applications with some MVC frameworks.

A Road Ahead

[273]

Both Ruby on Rails and Groovy and Grails ushered in a rapid development lifecycle era to
make their penetration in the start-up ecosystem. PHP is the most popular web
development system in the world, and it is especially suited for writing front-facing
applications. The sheer number of content management systems available with the platform
is another attraction. Architecting solutions with PHP for front-facing pages, Java for
Service logic, and Silverlight for frontend (for interactive parts) became popular in some
circles! The popularity of the REST paradigm has made writing the server-side logic to be in
whatever language one chooses to. As long as the URI is consistent, the routing system
makes sure that it resolves the correct handler logic to get executed.

Emergence of functional programming
As mentioned in the first chapter, Herb Sutter's seminal article titled, The Free Lunch Is Over,
rekindled interest in functional programming, which was mostly relegated to academic
circles. The FP model was well suited for exploiting the many-core processing world. The
stateless computation model of the FP helps to scale an application from a single core to
dozens of cores without any additional programming effort. The emergence of Scala, F#,
Clojure, Haskell (in some niche areas), and so on, and the availability of them in the JVM
and CLR world made them a viable choice for writing some applications. In the Microsoft
world, people began to write code in C# and F#, to bundle the code inside the same system.
Learning a functional language (one or more) became absolutely essential for modern-day
programmers. Another excuse to become a polyglot!

Mobile revolution
Some competence in mobile application development is necessary for every software
developer in the world. Apple's iOS, Google's Android, and Microsoft's Windows Phone
are the leading platforms in this arena. Unfortunately, native application development
languages in these platforms are Objective C/Swift (iOS), Java (Android), and C# (Windows
Phone). A .NET developer has to learn Java, Objective C, or Swift to write native
applications for these platforms. If you want to avoid this, you might have to use hybrid
application development with JavaScript as a programming language. Anyway, you need
to be a Polyglot!

A Road Ahead

[274]

A quick note on polyglot persistence
For a long time, the Relational database management systems (RDBMSs) became the
backbone of every business application ever developed. The Oracle Server, Microsoft SQL
Server, MYSQL, and Postgres systems were the de-facto choice for persisting data. The
emergence of the NoSQL movement gave us different types of databases suitable for
distributed programs, which should scale well. They are listed as follows:

Columnar databases
Key/value databases
Document databases
Graph databases

NoSQL is a vast and varied topic, and the reader is expected to search Google to
understand it, as a fair treatment of it warrants many books. So, a modern web-based
application might store data in various persistence technologies available, based on the
application context. A typical use case could be any one of the following:

An RDBMS for storing transactional data
A key/value database for storing master data (for faster lookup)
A graph database for storing relationship between entities
A columnar database for data that is part of analytical queries

By choosing the appropriate backend technologies, the application can ensure throughput
and scalability for large-scale applications development. The process of using different
persistence technologies in an application is called polyglot persistence. A developer
should be really familiar with this paradigm along with polyglot programming.

How to become a polyglot programmer?
From a programming paradigm perspective, there are only three types of programming
languages in this world, which are as follows:

Functional languages (based on lambda calculus)
Logic languages (based on predicate logic)
Imperative languages (based on Turing machines)

A Road Ahead

[275]

To be a contemporary developer, one needs to master a couple of languages from each
family. To be competent in FP, the language options available are F#, Clojure, and Scala.
The logic programming languages are Prolog and Datalog. Learning them will help on
improving design skills, especially in building hierarchical data structures. The type
inference algorithm available with F#, Scala, and C# uses the unification algorithm, which
forms the backbone of the Prolog language. Thus, understanding the Prolog machine model
helps you to appreciate and exploit the rich type systems available with the modern
programming languages. Most of the popular languages are imperative in nature, and
mastering a couple of object/functional languages (such as C#, Java 8, and Scala) really
helps. Once you learn a representative language from each of the aforementioned families,
you have made the cognitive leap to understanding every programming language ever
created or going to be created in the near future!

Domain-specific languages
A language developed for expressing solutions to problems that are specific to a domain
such as finance, payroll, electronic circuit design, parser generators, input validations, and
so on is called a domain-specific language (DSL). Two common examples that are familiar
to most programmers are Structured Query Language (SQL) and regular expression (RE).
If we were to write imperative code for retrieving data from a database, it would have been
a difficult task and error prone. SQL gives you a declarative language to achieve the same
objective, and it has solid mathematical foundations. While searching strings, RE helps us to
give complicated patterns to match against a string. It helps to avoid writing tedious logic
for searching complicated string matches.

As a concrete example of a DSL, which is quite popular in the .NET and Java world, we are
pasting here a specification given to the ANTLR tool to write a very simple arithmetic
evaluator. The tool generates a lexical analyzer and parser automatically from this
specification. Please consult the ANTLR documentation to understand the semantics of the
following script:

 grammar Evaluator;

 options {
 language=CSharp3;
 }

 @lexer::namespace{AntlrExample}
 @parser::namespace{AntlrExample}
 public addop
 : mulop (('+' | '-') mulop)*;
 mulop

A Road Ahead

[276]

 : INTEGER (('*' | '/') INTEGER)*;
 /*
 * Lexical Analysis Rules
 */

 INTEGER : '0'..'9'+;
 WS : (' '|'\t'|'\r'|'\n')+ {Skip();} ;

The ANTLR tool will generate a lexical analyzer, a parser module, and even a tree walker to
process the expression. We can write parsers for C#, Java, and even C/C++ using this tool. In
the Unix and the Windows native programming world, the tool Lex (GNU Flex) and Yacc
(GNU Bison) is used for the same purpose.

As another case in point, authors worked in a DSL project, which evaluated a spreadsheet
for consistency. A code snippet from the turing complete DSL generated for the project is
given here:

 Boolean range_flag;
 NUMERIC sum_value;

 BEGIN

 //--- See whether B3 cell in the CONTROL worksheet
 //--- present in the Relational database
 VALIDATE LOOKUP($(CONTROL.B3),
 @(EI_SEGMENT_MAPPING.EI_SEGMENT_CODE))==TRUE;

 //---- The Sum of Range should be 100 or Zero
 range_flag = SUM_RANGE($(HOURLY_DISTRIBUTION.C2),
 $(HOURLY_DISTRIBUTION.C25)) == 100.0;
 range_flag = range_flag ||
 SUM_RANGE($(HOURLY_DISTRIBUTION.C2),
 $(HOURLY_DISTRIBUTION.C25)) == 0.0;

 //--- If false throw exception
 VALIDATE range_flag;

 EXCEPTION
 //----- on Exception execute this
 ErrorString = "FAILED WHILE VALIDATING CONTROL Sheet Or"
 ErrorString = ErroString +
 " WorkSheet Error in the range C2-C25";
 WRITELOG ErrorString;
 bResult = false;

 END

A Road Ahead

[277]

The preceding code snippet was parsed using a hand-coded recursive descent parser, and
an abstract syntax tree (AST) was generated. The tree was traversed in a depth-first manner
to generate a .NET IL code to generate a .NET assembly (DLL). The resulting assembly was
consumed as if the logic were written in C#!

The Extensible Stylesheet Language (XSL) is another domain-specific language, which is
very much familiar to most programmers. A small XSL snippet is given here for the sake of
completeness, and readers are expected to master this language for generating sites with
variant layouts:

 <?xml version="1.0"?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
 <xsl:output method="xml"/>
 <xsl:template match="*">
 <xsl:element name="{name()}">
 <xsl:for-each select="@*">
 <xsl:element name="{name()}">
 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:for-each>
 <xsl:apply-templates select="*|text()"/>
 </xsl:element>
 </xsl:template>
 </xsl:stylesheet>

The other popular DSLs are VHDL and Verilog (Digital Hardware Description Language),
CSS, and template languages available with different technology stacks, JBoss Drools, and
so on.

Writing and designing one's own DSL is a very vast topic, which cannot be covered in a
short chapter. Some things that one needs to take care of are as follows:

Designing an object model, which mimics domain concerns
Designing a linguistic abstraction and associated key words for arriving at
language elements and rules for composing elements to form compound
elements
Mapping language elements to the object model created
Deciding whether the DSL should be internal or external?
Deciding whether the DSL should be turing complete or not

A Road Ahead

[278]

The topic is well covered by Debasish Ghosh and Martin Fowler/Rebecca Parsons in their
wonderful books. Please consult the following books for a thorough understanding of the
same:

DSLs in Action by Debashish Ghosh (Manning)
Domain-Specific Languages by Martin Fowler and Rebecca Parsons (Addison
Wesley Martin Fowler signature series)

Ontology
In software engineering parlance, Ontology is the art, craft, and science of describing
entities (types), attributes (properties), and relationships that exist in a particular domain of
discourse. It can also be considered as a model for describing entities, attributes, their
relationship, and even standard behavior. An ontology really helps to come up with a
ubiquitous language (as in Domain-Driven Design (DDD)), where all stakeholders agree,
and which eases communication. It avoids confusion while developing multi-domain
software systems. An ontology defines and represents the basic terms and relations that
exist in a software engineering context.

From an information processing perspective, the following points are to be noted:

The propositional and predicate logic gives the rules of inference and formal
structures to encode facts
The ontology defines and helps to represent entities, their attributes, and the
relationship between the entities in an unambiguous manner
The computation helps to implement ontologies on a computer-it helps us go
beyond the philosophical ontology (first two steps)

To write non-trivial knowledge processing systems, a software engineer should acquire
skills in defining and interpreting ontologies. He should also be able to encode the ontology
and its associated rules on a computer to create working computation models of the
ontology in question. In software engineering, a well-defined ontology helps in the
following:

Sharing knowledge between stakeholders about problem/solutions domain using
a common terminology
Filtering the ontology to create models and meta models for application
development (projections of an ontology)
Computation using the elements defined in the ontology

A Road Ahead

[279]

There are different ways by which we can encode an ontology. All of them share common
elements, which are as follows:

Classes, types, or concepts
Relations, roles, or properties
Formal rules or axioms
Instances

The W3C Semantic Web has created an XML-based language called Web Ontology
Language (OWL) for describing ontologies in a structured manner. The OWL embeds
Resource Description Format (RDF) tags to define standard ontologies. A transportation
ontology from an IBM site goes as follows. These OWL markups specify that there are three
classes:

 <owl:Class rdf:ID="Winery"/>
 <owl:Class rdf:ID="Region"/>
 <owl:Class rdf:ID="ConsumableThing"/>

 <owl:Class rdf:ID="PotableLiquid">
 <rdfs:subClassOf rdf:resource="#ConsumableThing" />
 </owl:Class>

 <owl:Class rdf:ID="Wine">
 <rdfs:subClassOf rdf:resource="&food;PotableLiquid"/>
 <rdfs:label xml:lang="en">wine</rdfs:label>
 <rdfs:label xml:lang="fr">vin</rdfs:label>
 </owl:Class>

 <owl:Thing rdf:ID="CentralCoastRegion" />
 <owl:Thing rdf:about="#CentralCoastRegion">
 <rdf:type rdf:resource="#Region"/>
 </owl:Thing>

 <owl:Class rdf:ID="WineDescriptor" />
 <owl:Class rdf:ID="WineColor">
 <rdfs:subClassOf rdf:resource="#WineDescriptor" />
 </owl:Class>

 <owl:ObjectProperty rdf:ID="hasWineDescriptor">
 <rdfs:domain rdf:resource="#Wine" />
 <rdfs:range rdf:resource="#WineDescriptor" />
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasColor">
 <rdfs:subPropertyOf rdf:resource="#hasWineDescriptor" />
 <rdfs:range rdf:resource="#WineColor" />

A Road Ahead

[280]

 </owl:ObjectProperty>

This section was written to kindle interest in ontology for readers of this book. The DDD is
a topic very closely related to ontology, and people who have written object-oriented
systems can relate to them very fast. To get into the ontology-based software development
method, we would like to recommend a wonderful book written by John Sowa, titled,
Knowledge Representation: Logical, Philosophical and Computational Foundations. Chapter 2 of
that book deals with ontology as applied to software engineering. Also learn about the
semantic web initiative by the W3C, by visiting their site.

AntiPatterns
An AntiPattern is a solution to a problem that seems to produce gain initially, but turns out
to be counterproductive eventually. As patterns are named solutions, it might not be fit for
certain kind of scenarios, and end up being an AntiPattern. The context in which we apply
patterns is very important. AntiPatterns occur in various scenarios of a software
development life cycle. They are broadly classified into these three categories:

Software development AntiPatterns
Architectural AntiPatterns
Management (process) AntiPatterns

AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis by William J. Brown,
Raphael C. Malveau, Hays W. McCormick III, and Thomas J. Mowbray is a seminal work
on the AntiPattern.

For the sake of kick-starting the discussion, we would like to cover some of the AntiPatterns
that are ubiquitous and to which the readers of this book might be able to relate in their
context:

The Blob AntiPattern: This often happens when people from a procedural
programming language background design object-oriented systems. They create
a big class, which contains most of the logic, and the associated classes are just
containers of data. This AntiPattern results in making a class take a lion's share of
the responsibility, while the other classes execute trivial logic. The solution is to
refactor the class and distribute responsibilities.
The Lave Flow AntiPattern: This is also called dead code, and is often found in
systems that started out as POC, and incrementally morphed into a production
system. In this transformation, a lot of code is not used or never reached.

A Road Ahead

[281]

Functional Decomposition AntiPattern: An AntiPattern that emerges in
scenarios where primary designers of systems come from procedural languages
such as C or Fortran, and try to fit their time-tested techniques to an OOP
paradigm. Even after twenty years of OOP becoming mainstream, this is a
recurring pattern.
The Poltergeist (aka Gypsy): In the OOP context, sometimes, developers create
classes that have a short life cycle to kick-start the processing by core classes,
which have long duration. This can be eliminated by refactoring the code to
include the logic of these ghost classes to the hierarchy of classes created for the
solution of the problem.
The Golden Hammer: This AntiPattern emerges in the context where the
primary designers of the system might have a favorite technology, technique, or
methodology while solving problems. The old adage, For a person with hammer,
everything appears to be a nail clearly summarizes this mindset. The favorite tool is
unleashed in a context where it might fit remotely. As anecdotal evidence, one of
the author knows a person who will try to solve every problem through SNMP,
where an ordinary TCP/IP program would have done the job.
The Dead End: This often happens where a team might have leveraged a custom
control written by an ISV to speed up the development process. While in
production, the vendor might go bankrupt, or the product might not be
supported by the company that acquired the vendor. By this time, the code base
could get coupled with the custom control in question. Writing an isolation layer
with interfaces meant for the same could avert this problem. The authors have
come across dozens of such systems.
Resume-Driven Design: The majority of developers, especially in the software
services industry across the world, put their resume in front of the problem they
are trying to solve. The presence or absence of certain buzzword technologies
determines their compensation, and they use the latest technologies for situations
where it is not warranted. This is so common that it is very easy to detect, as
some simple scenarios will contain all the technologies currently in the hype
cycle. One of the authors found himself in a situation where the code base
happened to have an m framework, NoSQL database (a text file would have done
the trick), a plugin architecture based on Microsoft Managed Extensibility
Framework (MEF), a messaging system, and a cache manager for a system
that would have taken thirty lines of a transaction-script like code. The current
trend of converting projects that are running in production well to Angular
2/Typescript is another case of resume-driven design.

A Road Ahead

[282]

Spaghetti Code: This is an emergent phenomena in most systems, even in
systems that were well defined initially. There was a mistaken notion that
Spaghetti code was found only in procedural programming code base and
COBOL. In OOP systems, as the system evolves and initial developers move
away, the new developers who might not have much clue about the whole
system, might end up writing code in a spaghetti style. Recently, authors found a
Silverlight application, which used the MVVM pattern, and that had more
spaghetti style code than a mainframe COBOL program!
Cut and Paste Programming: This often happens in large systems where a new
developer who is given a tight deadline tries to leverage code written elsewhere
to speed up his development time. The developer cuts and pastes a large block of
code that implements similar functionality, and makes the necessary changes. In
the process, some residual code gets executed unnecessarily in the new content.
One of the authors, who worked with a large electronic CAD software, found
performance issues in the code as the developers resorted to the Cut and Paste
model development, leading to some nested loops running unnecessarily.
Because of the Spaghetti code acquired over a period of time, it happened at
multiple places.
The StovePipe System: In most enterprises, because of the evolutionary nature of
application development, software systems are integrated in an ad hoc manner.
Some software might use resource tier integration (using relational databases),
some might use transaction scripts (using a batch job engine) , point-to-point
integration using REST/SOAP services, and applications run on multiple
technology stacks through multiple messaging systems based on JMS and MSMQ
protocol. Due to mergers and acquisitions, and lack of unified enterprise strategy,
the whole scenario becomes a maintenance nightmare. By having an enterprise
integration strategy and internal standards, we can reduce the complexity of
integration.

The other popular AntiPatterns are Vendor Lock-in, Design by Committee, Warm Bodies,
Architecture by Implication, Intellectual Violence, Analysis Paralysis, Smoke and Mirrors,
and so on.

AntiPatterns are a topic that is as important as the patterns. While patterns give you time-
trusted named solutions to common problems, AntiPatterns and their solutions avoid
pitfalls in your software engineering life cycle. This topic warrants a book of its own. We
have just given some brief descriptions here.

A Road Ahead

[283]

Summary
The chapter dealt with some pointers for the readers to further their study of software
engineering techniques. The topics covered include polyglot programming, DSL, ontology,
and AntiPatterns. We could only mention these topics briefly, as these topics require
multiple books to do justice to them. There is indeed good material available on these topics
in the form of YouTube videos, white papers, and books. Also try to understand more about
various pattern catalogs mentioned in the first chapter of this book to have a solid
foundation for architecting future systems.

Index

.

.NET BCL
 adapter pattern 127
 builder pattern 130
 decorator pattern 130
 facade pattern 135
 factory method pattern 133
 iterator pattern 136
 strategy pattern 128
.NET Framework
 composite pattern 135
.NET platform 20
.NET RCW
 bridge pattern 133
.NET Reactive Extensions (Rx)
 about 204, 205, 241
 foundations 244, 245, 248
 from Microsoft 211
 IEnumberable/IObservable duality support 212
 key data structures 211
 MVVM 227
 used, for creating unifying interface 221
.NET Reflection API 32

A
abstract syntax tree (AST) 88, 106, 112, 178, 277
Abstract Syntax Tree (AST) 177
Active Server Pages (ASP) 272
adapter class
 implementation 77
adapter pattern
 in .NET BCL 127
Adaptive Communication Environment (ACE) 10
ADO.NET library
 about 70
 abstract factory pattern 72

 adapter class, implementation 77
 adapter pattern powered API 77
 adapter, configuration 80
 client program 81
 object, instantiation 72
 ODBC, implementation 76
 Oracle, implementation 76
 requisites 68
 solutions, approach 69
 SQL server, implementation 73
 SQLite, implementation 74
Alonzo Church 168
AntiPattern 280, 281, 282
ANTLR tool 275
Application Programming Interface (API) 77, 126
archetypes 34
arrays
 observables from 251
ASP.net
 chain of responsibility pattern 131
Asynchronous Programming Model (APM) 140

B
Backus-Naur Form (BNF)
 about 117
 used, for grammar expressions 117
beta reduction 170
Blob AntiPattern 280
bridge pattern
 in .NET RCW 133
builder pattern
 about 123
 in .NET BCL 130
business applications
 requisites 107
 solutions 107

[285]

C
C# language 20, 25
cacophony 30
callbacks
 observables from 253
chain of responsibility pattern
 in ASP.net 131
Church-Turing thesis 169
client program
 DOM, leveraging 104
code
 refactoring, with generic factory method 63
Collection Pipeline pattern 231
Com Callable Wrapper (CCW) 133
Common Gateway Interface (CGI) 271
Common Language Runtime (CLR) 139
Common Object Request Broker Architecture

(CORBA) 9
comparator 193
Component Object Model (COM) 9, 133
composite pattern
 about 88, 89, 90, 94
 in .NET Framework 135
concurrency 141
Concurrency and Coordination Runtime (CCR)

140

concurrent programming
 versus parallel programming 140
consumer 159, 163
content, logging library
 content writers, implementing 51, 53
 GoF strategy pattern, implementing 57, 58
 log entry, writing to database 54
 log entry, writing to file stream 53
 log entry, writing to network stream 56
 template method pattern, implementing 51, 53
 writing, to media 50, 51
currying
 about 171
 applying 174
Cut and Paste Programming 282

D
Data Access Layer (DAL) 49

data transfer object (DTO) 31, 34
Database Access Library (DAL) 83
database
 log entry, writing to 54
Dead End 281
Decentralized Software Services (DSS) 140
decorator pattern
 in .NET BCL 130
degree of parallelism (DOP) 152
Dependency Inversion (DI) 30
Discrete Fourier Transform (DFT) 144
Distributed Component Object Model (DCOM) 20
document composition 94
Document Object Model (DOM) 85
Domain-Driven Design (DDD) 11, 278
domain-specific language (DSL) 19, 112, 178,

275, 277, 278
don't repeat yourself (DRY) 28

E
electronic spreadsheets 207
embarrassingly/conveniently parallel
 problems 143
 solutions 144
 solutions, addition 145
 solutions, carrying operation 145
 solutions, multiplication 145
Enterprise Application Integration (EAI) 16
Enterprise Integration Patterns (EIP) 15
entities
 converting, to streams 214
Entity Framework (EF) 69
entity object 34
events composition
 using, for spell checker 223
events
 converting, into stream (sequence) 215
 observables from 251
expression APIs 123
expression evaluator 112
expressions library
 requisites 107
 solutions 107
Extensible Stylesheet Language (XSL) 277

[286]

F
facade pattern
 about 123
 in .NET BCL 135
 used, for exposing computation API 46
factory method pattern
 generic factory method, implementing 60
 in .NET BCL 133
 instantiation 60
 prototype pattern, used for dynamic class loading

61

 singleton pattern, used for dynamic class loading
61

 using, for dynamic class loading 61
file stream
 log entry, writing to 53
first-class functions
 about 166
 function type 166
fork 152
Free Lunch 139
Functional Decomposition AntiPattern 281
Functional Programming (FP)
 about 165, 192
 constructs, using 194, 195
 observer pattern 203
 used, for implementation of strategy pattern 193
 using, for iterator pattern 195, 196, 197
 using, for template method pattern

implementation 199, 202
functional reactive programming
 about 209
 pull-based 209
 push-based 209
 reactive programming, principles 210

G
Gang of Four (GoF) 10
generic factory method
 code, refactoring 63
 implementation, writing 60
Golden Hammer 281
graph plotter application 108

H
higher-order functions
 about 166
 function type 167
Hollywood principle 30
HTMLVisitor
 using, for HTML generation 103

I
income tax computation
 application. communicating to engine 38
 archetypes 34
 business archetype patterns 34
 case study 33
 computation engine 36
 data transfer object (DTO) 34
 entity object 34
 factory method pattern 39, 40, 41, 43
 plugin system 39
 plugins 39, 40, 41, 43
 value object 34
Interface Segregation Principle (ISP) 29
Internal rate of return (IRR) 199
interpreter pattern 112
Inverse Discrete Fourier Transform (IDFT) 144
iterator pattern
 about 245
 in .NET BCL 136
 with FP/OOP 195, 196, 197
iTextSharp library
 about 85
 PDF output 87
 reference link 87
 requisites 85
 solutions, approaching 86

J
Java Native Interface (JNI) 269
JavaScript (JS)
 about 242, 244
 generator function, capabilities 245
JavaServer Pages (JSP) 272
join 152
JSbin 251

[287]

L
Lambda (λ) calculus
 about 168
 anonymous functions 169
 closures 170
 currying 171
 currying, applying 174
 expression trees 177
 partial application 171, 173
 partial application, applying 174
Language Integrated Query (LINQ)
 about 140, 164
 anonymous types 190
 extension methods 190
 lambda expression and functions 190
 type inference 190
 working 189
Lave Flow AntiPattern 280
lexical analysis 117, 118
Liskov Substitution Principle (LSP) 29
log entry
 writing, to database 54
 writing, to file stream 53
 writing, to network stream 56
log server
 using, for network logging 63
logging library
 about 49
 requisites 50
 solutions 50
 testing, client program used 65, 66
logging
 asynchronous feature 232
low coupling 28

M
Managed Extensibility Framework (MEF) 281
mapping 197
MapReduce programming model 197
master 152
Microsoft
 .NET Reactive Extensions (Rx) 211
Model-view-controller (MVC) 35, 51
Model-View-ViewModel (MVVM)

 about 208
 on Rx 227

N
near real-time dashboard 235
network logging
 log server, using 63
network stream
 log entry, writing to 56
NHibernate 69
Node.js 244
NuGet package 228

O
Object Management Group (OMG) 10
object-oriented programming (OOP)
 about 7
 history 8
 using, for implementation of strategy pattern 193
 using, for iterator pattern 195, 196, 197
 using, for template method pattern 199
observables
 about 250
 from arrays 251
 from callbacks 253
 from events 251
 pipeline 253
observer pattern 245
 about 203
 in WPF 134
 UI events 109, 110
observers 250
ODBC
 implementation 76
ontology 278, 279
Open Close Principle (OCP) 29
operations level agreement (OLA) 210
Oracle
 implementation 76

P
Parallel Extensions (PFX) 140
Parallel LINQ (PLINQ) 140
parallel programming
 common patterns 142

[288]

 conveniently parallel 143
 embarrassingly parallel 143
 fork/join 152
 master/worker 152
 versus concurrent programming 140
parallelization 141
parser module 118
partial application
 about 171
 applying 174
pattern catalogs
 about 12
 Arlow pattern 17
 DDD-based patterns 17
 EIP catalog 15
 GoF patterns 12
 J2EE design 16
 Nuestadt pattern 17
 POEAA catalog 14
 POSA catalog 13
 usage 19
pattern diarrhoea 19
pattern movement 10
Pattern-Oriented Software Architecture (POSA) 10
Patterns of Enterprise Application Architecture

(POEAA) 11
patterns
 about 10
 usage 30
PDFVisitor
 using, for PDF generation 100
Poltergeist (aka Gypsy) 281
polyglot design 268, 269
polyglot persistence 274
polyglot programmer 274, 275
polyglot programming
 about 268, 269
 polyglot persistence 274
 polyglot programmer 274, 275
 polyglot web programming 271, 272
 with C/C++ 269, 270
polyglot web programming
 about 271, 272
 dynamic language 272, 273
 functional programming, emergence 273

 JavaScript evolution 272
 mobile revolution 273
 scripting language 272, 273
Portable Document Format (PDF)
 about 85
 iTextSharp library 87
printed circuit board (PCB) 206
producer 159, 163
prototype pattern
 used, for dynamic class loading 61

Q
Quality of Service (QoS) 210

R
reactive 206
Reactive Extensions for JavaScript (RxJS)
 about 250
 changes 262
 observables 250
 observables, from arrays 251
 observables, from callbacks 253
 observables, from events 251
 observables, pipeline 253
 observers 250
 real-time file watcher 261
 samples 256, 257, 259
 schedulers 256
 subject 254
reactive programming
 about 205, 208
 philosophy 219
 principles 210
real-time file watcher 261
recursion 178
referential transparency 165
regular expression (RE) 275
relational database management system (RDBMS)

68, 274
Resource Description Format (RDF) 279
Resume-Driven Design 281
Reverse Polish Notation (RPN) 91
Runtime Callable Wrapper (RCW) 133

[289]

S
sample programs, Functional Programming (FP)
 about 180
 spell checker 180
sample programs
 subset generation 185
schedulers 256
Separation of Concerns 227
service level agreement (SLA) 210
sigma 196
Single Page Architecture (SPA) 268
Single Responsibility Principle (SRP) 29
singleton pattern
 about 25
 used, for dynamic class loading 61
Smalltalk system 8
software development kit (SDK) 211
software development
 principles 28
SOLID principles
 reference link 30
solution
 design by contract, incorporating 44
 facade pattern, used for exposing computation

API 46
 finalizing 44
 template method pattern 44
Spaghetti Code 282
speculative execution
 about 156
 consumer 159, 163
 producer 159, 163
spell checker
 about 180
 events composition, using 223
spelling corrector
 reference link 181
SQL server
 implementation 73
SQLite
 implementation 74
 reference link 74
static constructor 25
StovePipe System 282

strategy pattern
 implementation, using FP/OOP 193
 in .NET BCL 128
streams (sequences)
 aggregation 217
 combining 218
 entities, converting to 214
 events, converting to 215
 reduction 216
 reviewing 217
 transformation 217, 218
Structured Query Language (SQL) 275
subjects, Reactive Extensions for JavaScript

(RxJS) 254
subset generation 185
System.Linq.Expressions Namespace 178

T
TAO (The ACE ORB) 10
Task Parallel Library (TPL) 51, 140
TaxParams 35
template method pattern
 about 44, 53
 implementation, using FP/OOP 199
trampolining 179

U
UI events
 observer pattern 109, 110
universal identifier (UID) 34

V
value object 34
visitor pattern
 about 88, 89, 90
 document, traversing 99, 100
 HTMLVisitor, using for HTML generation 103
 PDFVisitor, using for PDF generation 100

W
Web Ontology Language (OWL) 279
Windows Communication Foundation (WCF) 15
Windows DNA 20
Windows Presentation Foundation (WPF)

 about 15, 106
 observer pattern 134
Windows Presentation Framework (WPF) 227
Windows Workflow Foundation (WF) 21
worker 152
World Wide Web (WWW) 271
write everything twice (WET) 28

write once, run everywhere (WORE) mantra 269

Y
YieldJS
 reference link 245
you aren't gonna need it (YAGNI) principle 28

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: An Introduction to Patterns and Pattern Catalogs
	OOP – A short history
	Patterns and pattern movement
	Key pattern catalogs
	GoF patterns
	POSA catalog
	POEAA catalog
	EIP catalog
	J2EE design patterns catalog
	DDD-based patterns
	Arlow/Nuestadt patterns

	Should we use all of these?
	The C# language and the .NET platform
	C# language and the singleton pattern
	Summary

	Chapter 2: Why We Need Design Patterns?
	Some principles of software development
	Why are patterns required?
	A quick foray into the .NET Reflection API
	Personal income tax computation – A case study
	Archetypes and business archetype patterns
	Entity, value, and data transfer objects
	A computation engine
	The application to engine communication
	The plugin system to make system extensible
	Factory method pattern and plugins

	Finalizing the solution
	Design by contract and template method pattern
	Using the Facade pattern to expose the computation API

	Summary

	Chapter 3: A Logging Library
	Requirements for the library
	Solutions approach
	Writing content to a media
	Template method pattern and content writers
	Writing a log entry to a file stream
	Writing a log entry to a database
	Writing a log entry to a network stream
	Logging strategy atop the strategy pattern

	The factory method pattern for instantiation
	Writing a generic factory method implementation
	Factory method, singleton, and prototype pattern for dynamic class loading
	Refactoring the code with the generic factory method

	A log server for network logging
	A simple client program to test the library
	Summary

	Chapter 4: Targeting Multiple Databases
	Requirements for the library
	Solutions approach
	A quick primer on ADO.net
	The abstract factory pattern and object instantiation
	The SQL server implementation
	The SQLite implementation
	The Oracle and ODBC implementation
	The adapter pattern powered API
	The adapter class Implementation
	The adapter configuration
	The client program

	Summary

	Chapter 5: Producing Tabular Reports
	Requirements for the library
	Solutions approach
	iTextSharp for the PDF output
	Composite and visitor pattern – A quick primer
	The composite pattern and document composition
	Visitor pattern for document traversal
	PDFVisitor for PDF generation
	HTMLVisitor for HTML generation

	The client program
	Summary

	Chapter 6: Plotting Mathematical Expressions
	Requirements for the expressions library and app
	Solutions approach
	The graph plotter application
	The observer pattern for UI events
	The expression evaluator and interpreter pattern
	The abstract syntax tree (AST)
	The grammar of expressions
	Lexical analysis
	The parser module
	The builder, facade, and expression APIs
	Summary

	Chapter 7: Patterns in the .NET Base Class Library
	Adapter pattern in the .NET BCL
	Strategy pattern in the .NET BCL
	Builder pattern in the .NET BCL
	Decorator pattern in the .NET BCL
	Chain of responsibility pattern in ASP.net
	Bridge pattern in the .NET RCW
	Factory pattern in the .NET BCL
	Observer pattern in the WPF
	Composite pattern in the .NET Framework
	Facade pattern in the .NET BCL
	Iterator pattern in the .NET BCL
	Summary

	Chapter 8: Concurrent and Parallel Programming under .NET
	Days of Free Lunch
	Days of Sponsored Lunch
	Concurrent versus parallel
	Some common patterns of parallel programming
	Embarrassingly or conveniently parallel
	Problem statement
	Solutions approach
	Step 1
	Step 2
	Step 3

	Fork/join or master/worker

	Speculative execution
	Producer/consumer

	Summary

	Chapter 9: Functional Programming Techniques for Better State Management
	Being functional
	Referential transparency
	First-class and higher-order functions
	Function type

	Lambda (λ) calculus
	Anonymous functions
	Closures
	Currying and partial application
	Currying
	Partial application
	Applying currying and partial application

	Expression trees

	Recursion
	Sample programs
	Spell checker
	Subset generation

	How does LINQ work?
	Summary

	Chapter 10: Pattern Implementation Using Object/Functional Programming
	A strategy pattern implementation using FP/OOP
	Using FP constructs to make the code better

	A fresh look at the iterator pattern using FP/OOP
	MapReduce programming idiom
	A new spin on the template method pattern using FP/OOP
	Using FP for the template method pattern implementation
	A quick note on the observer pattern
	Does FP replace GoF patterns?

	Summary

	Chapter 11: What is Reactive Programming?
	Being reactive
	Electronic spread sheets – A quintessential example
	Reactive programming model
	Functional reactive programming
	Reactive programming principles

	Rx from Microsoft
	Key data structures of Rx
	IEnumberable/IObservable duality

	Converting entities to streams (IObservable<T>)
	Converting events into stream
	Reduction of streams (sequences)
	Inspection of streams (sequences)
	Aggregation of streams (sequences)
	Transformation of streams (sequences)
	Combining streams (sequences)

	A philosophy for reactive programming
	Summary

	Chapter 12: Reactive Programming Using .NET Rx Extensions
	Streams as a way of life
	Spell checker using events composition
	MVVM on Rx
	An asynchronous logger
	Near real-time visualizer/dashboard
	Summary

	Chapter 13: Reactive Programming Using RxJS
	The JS world
	Rx foundations
	RxJS formalism
	Observables and observers
	Observables from arrays
	Observables from events
	Observables from callbacks
	Observable pipeline
	Subject et al.
	Schedulers

	RxJS samples
	Real-time file watcher
	Change galore

	Summary

	Chapter 14: A Road Ahead
	Polyglot programming and design
	Polyglot programming with C/C++
	The polyglot web programming
	The JavaScript evolution
	Dynamic/scripting languages
	Emergence of functional programming
	Mobile revolution

	A quick note on polyglot persistence
	How to become a polyglot programmer?

	Domain-specific languages
	Ontology
	AntiPatterns
	Summary

	Index

