
NETPLIER: Probabilistic Network Protocol Reverse
Engineering from Message Traces

Yapeng Ye, Zhuo Zhang, Fei Wang, Xiangyu Zhang, Dongyan Xu
Department of Computer Science, Purdue University
{ye203, zhan3299, feiwang, xyzhang, dxu}@purdue.edu

Abstract—Network protocol reverse engineering is an impor-
tant challenge with many security applications. A popular kind
of method leverages network message traces. These methods
rely on pair-wise sequence alignment and/or tokenization. They
have various limitations such as difficulties of handling a large
number of messages and dealing with inherent uncertainty. In this
paper, we propose a novel probabilistic method for network trace
based protocol reverse engineering. It first makes use of multiple
sequence alignment to align all messages and then reduces the
problem to identifying the keyword field from the set of aligned
fields. The keyword field determines the type of a message. The
identification is probabilistic, using random variables to indicate
the likelihood of each field (being the true keyword). A joint
distribution is constructed among the random variables and
the observations of the messages. Probabilistic inference is then
performed to determine the most likely keyword field, which
allows messages to be properly clustered by their true types and
enables the recovery of message format and state machine. Our
evaluation on 10 protocols shows that our technique substantially
outperforms the state-of-the-art and our case studies show the
unique advantages of our technique in IoT protocol reverse
engineering and malware analysis.

I. INTRODUCTION

Network protocol reverse engineering is an important
challenge to cyber-security. Many applications that are of
interest for security analysts often have their own undocu-
mented communication protocols. For example, autonomous
vehicles utilize CAN bus and FlexRay, control systems use
Modbus and DNP3, online chatting/conferencing applications
have their customized protocols. Many security analysis such
as static/symbolic vulnerability scanning [40], [24], exploit
generation [79], [19], fuzzing [65], [43], [44], [31], attack
detection [15], [29], and malware behavior analysis [75], [18]
require precise modeling of the network protocol. For instance,
knowing the protocol of a networking application is critical
to seed input generation in fuzzing; malware analysis often
requires composing well-formed messages to the Command
and Control (C&C) server so that hidden behaviors can be
triggered by the appropriate server responses [23], [83]; and
static/symbolic analysis needs to properly model networking
functions otherwise a lot of false positives may be generated.

Existing protocol reverse engineering techniques fall into
a few categories. The first category leverages program anal-

ysis [28], [57], [82], [33], [59], [32]. By analyzing the rich
semantics of the application implementation (e.g., how input
buffer is accessed), these techniques may achieve high accu-
racy in reverse engineering. However, most of these techniques
require access to program binaries, which is often infeasible in
practice. For example, some IoT firmware is not accessible due
to their protection mechanism; it is hard to conduct dynamic
analysis if the binaries are packed or obfuscated. Even if the
binaries for a client application were available, its counterpart
on the server side would be much more difficult to acquire.
Therefore, the other category focuses on using network traces,
which could be acquired by eavesdropping on the network.
There are two main techniques for network trace based reverse
engineering: alignment based (e.g., PIP [22], ScritGen [55],
and Netzob [26]) and token based (e.g., Veritas [81] and
Discoverer [35]). The former leverages various sequence align-
ment algorithms to align message pairs and compute similarity
scores. Messages are clustered based on such scores. Formats
are then derived by analyzing the commonality of messages
within clusters. However, the diversity of message contents
substantially degrades the quality of alignment, causing prob-
lems for downstream analysis. Token based methods propose
to first tokenize the messages (e.g., to textual fields and binary
fields) before alignment to reduce variations. However, these
techniques often require delimiters to identify tokens (which
may not exist for binary protocols) or generate excessive
clusters as tokenization is based on deterministic heuristics.
That is, ad-hoc rules are used to perform tokenization and
these rules may not hold in many cases. Existing techniques
do not model such uncertainty and hence often yield incorrect
results. More discussion of such limitations can be found in
Section II.

We observe that the key to network protocol reverse engi-
neering is to identify the keyword field that determines the type
of a message. While there are many heuristics to help locating
such keywords, these heuristics are largely uncertain. The
reverse engineering of both the client side and the server side
can be coupled to achieve synergy because they have strong
correspondences. Based on these observations, we propose a
novel probabilistic approach to reverse engineering network
protocols. Our technique is completely network trace based and
does not require access to source code or binary code. Specifi-
cally, it leverages multiple sequence alignment (MSA) [39] that
is widely used in biometrics to avoid the expensive pair-wise
alignment in existing work. The alignment is conservative and
initially performed on all the messages. As such, the common
structure shared by all messages can be disclosed and such
structure ought to include the keyword field as the parser needs
to parse the keyword field before it can perform type-specific

Network and Distributed Systems Security (NDSS) Symposium 2021
21-24 February 2021
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24531
www.ndss-symposium.org

parsing. After the alignment, a probabilistic method is used to
determine which (aligned) field is the keyword. To model the
inherent uncertainty, we introduce a random boolean variable
that predicates if a field is the keyword. We speculatively
classify all the messages based on the values of the tentative
keyword. Observations can be made from the clustering results,
such as if messages within a cluster have similarity and if the
corresponding messages from the client side and the server
side fall into corresponding clusters. Random variables are
introduced to denote the confidence of these observations. A
joint probability distributions is constituted by considering the
correlations between the keyword variable and observation
variables. Posterior marginal probabilities can be computed
for keyword variables to indicate the likelihood of individual
fields being the true keyword. Once the keyword is identified,
messages are clustered based on the keyword values and type
specific structures can be disclosed by aligning and analyzing
messages in clusters.

Our contributions are summarized as follows.

• We address a key challenge in network protocol
reverse engineering – keyword identification, which
allows correctly clustering network messages and en-
ables high precision in downstream analysis such as
field identification and state machine reconstruction.

• We formulate keyword identification as a probabilistic
inference problem, which allows us to naturally model
the inherent uncertainty.

• We build an end-to-end system NETPLIER, which
stands for “Probabilistic NETwork ProtocoL Reverse
EngIneERing”. It takes network traces as input and
produces the final message format.

• We evaluate NETPLIER on 10 protocols commonly
used in competitor projects. Our results show that
NETPLIER can achieve 100% homogeneity and 97.9%
completeness, whereas the state-of-the-art techniques
can only achieve around 92% homogeneity and 52.3%
completeness. To validate generality, we use NET-
PLIER to reverse engineer wireless physical-layer pro-
tocols and multiple unknown protocols used in real
IoT devices. We also perform two case studies: (i)
reverse engineering the protocol for Google Nest, a
real world IoT smart app, allowing us to manipulate
the A/C unit controlled by the app, and (ii) reserve
engineering the C&C protocol for a recent malware,
allowing us to expose its hidden malicious behaviors.
NETPLIER and data are publicly available at [6].

II. MOTIVATION

In this section, we use an example to illustrate the limi-
tations of existing network trace based protocol reverse engi-
neering methods and motivate our technique.

A. Motivation Example

The trace snippet in Figure 1 contains a sequence of
messages of Distributed Network Protocol 3 (DNP3), which is
a communication protocol used in industrial control systems.
The trace records information about sent time, IP addresses and
ports of the source and destination, and data for each message.

The message data includes contents of protocols ranging from
application layer to physical layer. Each protocol’s message
data is composed of several fields. Consider the message
data of DNP3 in Figure 1. The bytes in bold are a specific
field denoting message type. It is also called the keyword.
Each message type has its own format, which defines the
syntax of this type. The sending and receiving of messages are
stateful within a network session. State transitions are usually
described by a state machine. To be specific, when a client
or server receives a new message, it determines its message
type by the keyword, parses the remaining fields following
the format of this type, and then takes actions according to
the state machine. For example in Figure 1, there are four
communication connections, which start with an Unsolicited
Response message mc0 , mc2 , mc3 , and mc4 from the client and
a corresponding Confirm message ms0 , ms2 , ms3 , and ms4
from the server, respectively. After a connection is established,
the server could make requests with different commands, e.g.,
to Write like ms1 , ms5 , and ms6 or to Read like ms7 , and the
client would confirm with the Response messages (e.g., mc1 ,
mc5 , mc6 , and mc7).

The main goal of protocol reverse engineering is to infer
a protocol’s syntax and semantics. The first step of protocol
reverse engineering is to group messages of the same type into
a cluster. Clustering is a crucial step as its results determine
the accuracy of further format and state machine inference.
Existing works usually consider messages from different di-
rections separately. In the following, we use messages from
the client as an example (mc0−mc7) and discuss how existing
techniques and our technique conduct clustering. The ideal
clustering result is to put messages mc0 ,mc2 ,mc3 ,mc4 into
a cluster, and messages mc1 ,mc5 ,mc6 , and mc7 . into another
cluster.

B. Alignment-based Clustering

Sequence alignment algorithms, such as Needleman &
Wunsch [64], are originally used in Biology for the purpose
of arranging DNA, RNA, and protein sequences to identify
regions of similarity. This idea was borrowed by a large body
of existing network trace based protocol reverse engineering
methods, such as PIP [22], ScriptGen [55], and Netzob [26].
They use pairwise sequence alignment algorithms to align
each pair of messages and compute a similarity score by the
alignment results. After constructing a similarity matrix, the
messages/clusters with the highest similarity are recursively
merged by a clustering algorithm, such as UPGMA [74].
Protocol format and state machine are then derived from the
clustering results.

The alignment-based clustering methods work on an as-
sumption that messages are of the same type if they have
similar sequences of values. However, this assumption is not
true all the time. For messages of the same type, they may
have different values for same fields. For messages of different
types, they may share some common fields and have the same
values. Figure 2a shows the alignment results of message pair
〈mc0 ,mc2〉 and 〈mc0 ,mc1〉. The red bytes are the same value
aligned together. We can see that although mc0 and mc2 are
of the same type, their similarity is lower than mc0 and mc1 ,
which are of different types (illustrated by the shade). Based on
this weak assumption, the clustering results are problematic.

2

ID Time (s) SRC IP : Port DST IP : Port Data Type
!"# 0.00 10.0.0.3:20000 10.0.0.8:2789 05 64 0A 44 03 00 04 00 7C AE E6 F7 82 10 00 4F BD Unsolicited Response
!$# 3.04 10.0.0.8:2789 10.0.0.3:20000 05 64 08 C4 04 00 03 00 B4 B8 C0 D7 00 7A CE Confirm
!$% 3.04 10.0.0.8:2789 10.0.0.3:20000 05 64 12 C4 04 00 03 00 1E 7C C1 C1 02 32 01 07 01 EB E4 5A 87 FF 00 28 01 Write
!"% 3.06 10.0.0.3:20000 10.0.0.8:2789 05 64 0A 44 03 00 04 00 7C AE E7 C1 81 00 00 3B DB Response
!"& 2256.60 10.0.0.3:20000 10.0.0.8:2828 05 64 4C 44 03 00 04 00 D8 6B CC F3 82 00 00 33 01 07 01 E2 43 7D 87 FF 00 02 F8 C3 Unsolicited Response
!$& 2256.66 10.0.0.8:2828 10.0.0.3:20000 05 64 08 C4 04 00 03 00 B4 B8 C3 D3 00 78 D3 Confirm
!"' 2258.06 10.0.0.3:20000 10.0.0.8:2828 05 64 47 44 03 00 04 00 54 62 CD F4 82 00 00 33 01 07 01 D5 47 7D 87 FF 00 02 49 5C Unsolicited Response
!$' 2258.07 10.0.0.8:2828 10.0.0.3:20000 05 64 08 C4 04 00 03 00 B4 B8 C4 D4 00 31 18 Confirm
!"(5847.38 10.0.0.3:20000 10.0.0.8:1086 05 64 0A 44 03 00 04 00 7C AE C0 F0 82 90 00 43 A2 Unsolicited Response
!$(5850.02 10.0.0.8:1086 10.0.0.3:20000 05 64 08 C4 04 00 03 00 B4 B8 C0 D0 00 1B 49 Confirm
!$) 5850.57 10.0.0.8:1086 10.0.0.3:20000 05 64 12 C4 04 00 03 00 1E 7C C4 C4 02 32 01 07 01 5B 1E B4 87 FF 00 DA 67 Write
!") 5850.66 10.0.0.3:20000 10.0.0.8:1086 05 64 0A 44 03 00 04 00 7C AE C4 C4 81 80 00 80 A3 Response
!$* 5850.91 10.0.0.8:1086 10.0.0.3:20000 05 64 0E C4 04 00 03 00 6D D3 C6 C6 02 50 01 00 07 07 00 34 61 Write
!"* 5850.98 10.0.0.3:20000 10.0.0.8:1086 05 64 0A 44 03 00 04 00 7C AE C6 C6 81 00 00 0A 36 Response
!$+ 5851.20 10.0.0.8:1086 10.0.0.3:20000 05 64 14 C4 04 00 03 00 C7 17 C7 C7 01 3C 02 06 3C 03 06 3C 04 06 3C 01 06 6B AE Read
!"+ 5851.29 10.0.0.3:20000 10.0.0.8:1086 05 64 4E 44 03 00 04 00 6F 4D C7 C7 81 00 00 01 01 00 00 05 19 0A 02 00 00 05 C3 47 Response

Fig. 1: Motivation example: establishing multiple DNP3 (an industrial control protocol) connections and performing some data
transfer; plain and shaded messages originate from the client and server side, respectively.

05 64 0A 44 03 00 04 00 7C AE E6 F7 82 10 00 4F BD -- -- -- -- -- -- -- -- -- -- --

05 64 4C 44 03 00 04 00 D8 6B CC F3 82 00 00 33 01 07 01 E2 43 7D 87 FF 00 02 F8 C3

05 64 0A 44 03 00 04 00 7C AE E6 F7 82 10 00 4F BD

05 64 0A 44 03 00 04 00 7C AE E7 C1 81 00 00 3B DB

!"#
!"$

!"#
!"%

(a) Pairwise sequence alignment example

!"#

Cluster 1

!"$!"%!"&!"' !"(!") !"*

Cluster 2

(b) Clustering results

Fig. 2: Clustering by Netzob. Plain-text and shaded messages
belong to two respective types

Figure 2b shows the clustering results by Netzob. It generates
two clusters and both contain messages of different types.
Based on the wrong clustering results, the further format and
state machine inference will also be inaccurate.

Another limitation of alignment-based clustering methods
is that it requires a threshold of similarity score to decide which
clusters should be merged together in the recursive clustering
step when using algorithms such as UPGMA. The clustering
results are sensitive to this threshold and different protocols
should use different thresholds. However, when reverse engi-
neering an unknown protocol, it is hard to compute the optimal
threshold without the ground truth. Normally, we can only use
a general threshold trained from other well studied protocols.
As such, the clustering accuracy likely degenerates.

C. Token-based Clustering

Token-based clustering methods split a message into tokens
and then group messages by specific token values or token
types. Most methods in this line, such as ASAP [52], Veri-
tas [81], Prisma [51], and ProDecoder [80], rely on predefined
delimiters or n-grams to split messages into tokens, and then
search for the ones with the most frequent values which can
be further used to cluster messages.

Another token-based clustering strategy is to use token
type patterns. Discoverer [35], the state-of-the-art token based

method, uses token type patterns to conduct initial clustering,
followed by a combination of representative token values and
sequence alignment algorithms to improve clustering results.
Figure 3a shows the tokenization results by Discoverer. It
considers consecutive bytes with printable ASCII values as
a text token, leveraging the observation that the same type of
network messages have the same mixture of binary sequences
and textual strings. So the second to the fourth bytes in
mc2 , mc3 , and mc7 are marked as a text token T, and the
other individual bytes are marked as binary tokens B. After
tokenization, it observes two different token patterns, sequence
“BBBB ... B” for mc0 , mc1 , mc4 , etc. and sequence “BTBB
... B” for mc2 , mc3 , and mc7 . The differences of the two
patterns are highlighted in red. As such, Discoverer produces
two initial clusters as shown in Figure 3b. Then it divides each
cluster into sub-clusters by values of potential representative
(PR). Finally, it utilizes message alignment to merge some of
the sub-clusters to a larger cluster to avoid over-partitioning.
For example, in the first cluster (mc0 , mc4 , mc1 , mc5 , mc6),
the token in red (‘B’) contains only two different values (81
and 82), which could be considered as a representative token
and used to obtain new sub-clusters (Cluster 1 and Cluster 2
in Figure 3c).

Finally it produces four clusters as shown in Figure 3c.
Although there is only one type in each cluster, each ground-
truth type (denoted by shade or no-shade) is suboptimally
divided into two smaller types (clusters). There are many
reasons causing this issue. First, there are no clear delimiters
in binary protocols. Hence most bytes are considered as
individual tokens, diminishing the value of tokenization as little
structural information is exposed. Also, the values of binary
tokens sometimes lie in the range of text tokens so that these
binary tokens could be mistaken for text tokens (e.g., the text
tokens in Figure 3a). A text string shorter than the minimum
length (for qualifying as a text token) is also wrongly marked
as binary tokens. Another problem is that there could be
multiple representative tokens found in the recursive clustering
and merging step. All these reasons lead to excessive token
types. In our experiments (Section V), Discoverer always
suffers from redundant clusters, which indicates its clustering
results are not concise.

3

B B B B B B B B B B B B B B B B B
B B B B B B B B B B B B B B B B B
B T B
B T B
B B B B B B B B B B B B B B B B B
B B B B B B B B B B B B B B B B B
B B B B B B B B B B B B B B B B B
B T B

!"#
!"$
!"%
!"&
!"'
!"(
!")
!"*

(a) Tokenization

PR: BBBBBBBBBBBBBBBBB PR: BTBBBBBBBBBBBBBBBBBBBBBBBB

!"# !"$!"%!"&!"' !"(!") !"*

Initial Cluster 1 Initial Cluster 2

(b) Initial clustering

!"#

Cluster 1

!"$!"%!"& !"'!"(!") !"*

Cluster 2 Cluster 3 Cluster 4

(c) Clustering results

Fig. 3: Clustering by Discoverer

D. Our Technique

Insights. From the above discussion, we observe that both
alignment-based clustering and token-based clustering rely on
the assumption that messages are of the same type if they
have similar values or patterns. However, in many cases this
assumption does not hold and incurs inaccurate clustering. In
fact when a client or a server receives a message, it determines
the message type only by the keyword. Thus, if we can infer
the field denoting the keyword, we would obtain the ideal clus-
tering results. Note that although some token-based clustering
methods use representative tokens for clustering [35], [80],
they only search for such tokens by statistics such as frequency,
which usually generates more than one representative token
and then leads to redundant clustering.

Another insight is to take better advantage of network
traces, which are the only input for trace based methods.
Existing works only analyze message data from one side (the
client side or the server side) to study the aforementioned hints.
However, we could observe more hints if we consider the mes-
sage traces from both sides, especially their correspondence.
For example, in Figure 1 we can see that all the Unsolicited
Response messages mc0 , mc2 , mc3 , and mc4 from the client
side have the Confirm messages ms0 , ms2 , ms3 , and ms4 from
the server as the response (for setting up a new connection).
Also, the Write messages ms1 , ms5 , and ms6 sent by the
server always trigger Response messages, i.e., mc1 , mc5 , and
mc6 from the client. These additional hints could be used to
improve and validate clustering results.

As we already know that all these hints have inherent
uncertainty as arbitrary byte sequences could appear as hints,
the results may be incorrect/contradictory if we only consider
few hints for clustering. For example, alignment-based clus-
tering methods only use the hint that messages with high
similarity are of the same type. Inspired by the application
of probabilistic inference in specification extraction [60], [34]
and program analysis [84], a more reasonable solution is to

05 64 0A 44 03 00 04 00 7C AE E6 F7 82 10 00 4F BD -- -- -- -- -- -- -- -- -- -- --
05 64 0A 44 03 00 04 00 7C AE E7 C1 81 00 00 3B DB -- -- -- -- -- -- -- -- -- -- --
05 64 4C 44 03 00 04 00 D8 6B CC F3 82 00 00 33 01 07 01 E2 43 7D 87 FF 00 02 F8 C3
05 64 47 44 03 00 04 00 54 62 CD F4 82 00 00 33 01 07 01 D5 47 7D 87 FF 00 02 49 5C
05 64 0A 44 03 00 04 00 7C AE C0 F0 82 90 00 43 A2 -- -- -- -- -- -- -- -- -- -- --
05 64 0A 44 03 00 04 00 7C AE C4 C4 81 80 00 80 A3 -- -- -- -- -- -- -- -- -- -- --
05 64 0A 44 03 00 04 00 7C AE C6 C6 81 00 00 0A 36 -- -- -- -- -- -- -- -- -- -- --
05 64 4E 44 03 00 04 00 6F 4D C7 C7 81 00 00 01 01 00 00 05 19 0A 02 00 00 05 C3 47

!"#
!"$
!"%
!"&
!"'
!"(
!")
!"*

+# +$ +% +& +' +(+) +* +, +- +$# +$$ +$%

(a) Multiple sequence alignment and keyword inference

!"#

Cluster 1

!"$!"%!"& !"' !"(!") !"*

Cluster 2

(b) Clustering results

Fig. 4: Clustering by NETPLIER

combine various kinds of hints together in a probabilistic
fashion. Specifically, a prior probability is assigned to each
hint denoting its uncertainty instead of making a simple deter-
ministic call. Probabilistic inference aggregates these hints and
computes a posterior distribution from which we can derive the
most likely keywords and clustering.

Our Idea. We use multiple sequence alignment (MSA) al-
gorithms on messages from both the client and server sides
and partition messages into a list of fields. MSA tends to
be conservative and only produces a comprehensive list of
fields, which provides a solid starting point. For each field, we
introduce a random variable to denote the probability of being
the keyword. Assume a field is the keyword, messages could be
grouped into different clusters by the value of the field, and
these clusters would satisfy some constraints, e.g., message
similarity constraints, remote coupling constraints, structure
coherence constraints, and dimension constraints. For each
constraint, We compute probabilities to serve as the degree
of compliance that we observe. With these probabilities, we
then perform probabilistic inference to derive the posterior
probability of random variables that denote our assumption,
i.e., the current field is the keyword. After checking all fields,
we can pick the one with the highest probability as the
keyword, and use it to cluster messages. In the motivation
example, we generate 12 fields from the MSA results of client
messages, as shown in Figure 4a. After probabilistic inference,
field f7 is chosen as the keyword with the highest posterior
probability. Then we can generate two correct clusters by the
values of f7, which is show in Figure 4b.

III. SYSTEM DESIGN

In this section, we discuss the system design, including
preprocessing, keyword field candidate generation, probabilis-
tic keyword identification, iterative alignment and clustering,
and format and state machine inference. Figure 5 shows the
workflow of NETPLIER.

A. Preprocessing

The input of NETPLIER is network traces which could be
captured by packet analyzers such as tcpdump. The packets in
traces follow the network layer models. The unknown proto-
cols we aim to reverse engineer are usually in the application
layer. Based on the knowledge of other existing protocols,

4

Traces

Iterative Alignment and Clustering

M

101
011

Messages

Keyword Field
Candidate Generation

F

Fields

C
Clusters

Probabilistic Keyword
Identification

Clustering

Format
Inference

State-machine
Inference

Preprocessing

Fig. 5: System design

we can reconstruct messages in these protocols, extract useful
information (e.g., port numbers from the network layer), and
discard data in irrelevant protocols. Finally, we standardize
network messages to include the following information: times-
tamp, IP address(es), port number(s), and data of the target
protocol. An example of such standardized messages can be
found in Figure 1.

By timestamp, IP address, and port number, we can
group messages into communication sessions. For exam-
ple, there are three sessions in the example shown in Fig-
ure 1, where mc0 ,ms0 ,ms1 ,mc1 belong to the first session,
mc2 ,ms2 ,mc3 ,ms3 belong to the second session, and the other
messages belong to the third session. The session information
will be used in the probabilistic inference and state machine
inference stages.

B. Keyword Field Candidate Generation

As mentioned earlier, identifying keywords (in network
messages) is critical. In this stage, we identify a set of fields
that are candidates for keywords.

Message data is composed of multiple fields. For the
example in Figure 1, all messages have similar field structures
and these fields are of the same length (except the last field).
Hence we can easily acquire the value of a field by its
position. However, for complex protocols, messages may have
different structures and some fields may have a variable length,
which makes a field appear at different positions in different
messages. For example, messages in Figure 6a have a field
for user name, which has a variable length. Intuitively, the
idea of recognizing such fields is to identify the fixed length
fields that bound fields of a variable length, by message
alignment. We observe that messages tend to share some
common values, especially for fixed length fields, e.g., “user”
and “age” in Figure 6a. Hence we can align messages to
expose such common sequences across messages, and then
identify the variable-length field(s) in between them. If mul-
tiple consecutive variable-length fields are present in between
two bounding fixed-length fields, NETPLIER may recognize
these variable-length fields as one monolithic variable-length
field. In practice, we rarely see such cases. Note that this is a
generally hard problem for any trace based revere engineering
techniques to precisely separate them.

As discussed earlier, pairwise alignment algorithms are
widely used by existing methods. However, pairwise alignment
only compares two sequences at one time, which substantially
affects scalability when the number of samples is large. There-
fore, we leverage multiple sequence alignment [39], which is

useraliceage20
userbobage25
usercarolage30

!"
!#
!$

(a) Original messages

u s e r a l i c e a g e 2 0
u s e r - - b o b a g e 2 5
u s e r c a r o l a g e 3 0

!"
!#
!$

(b) Alignment results

Fig. 6: Examples with variable-length fields

an extension of pairwise alignment in Bioinformatics and could
align all sequences at a time. There are various strategies used
to reduce computational complexity and improve accuracy for
multiple sequence alignment. Here, we use a combination
of progressive methods [39] and iterative refinement [62].
Progressive methods align the most similar sequences first and
then progressively add other sequences to the alignment re-
sults. Iterative refinement methods iteratively realign sequence
subsets of initial global alignment results to improve the
accuracy. Figure 6b shows the result after multiple sequence
alignment. Gaps (i.e., ‘-’) are inserted into the variable-length
fields in order to demonstrate alignment results.

Based on the initial alignment results (on all messages), we
partition message data into fields. For text data, we can use
predefined delimiters, such as a space character, to partition
message data into fields. However, binary data do not have
specific delimiters and its fields are usually a few bytes long.
We need to use the alignment results in a very conservative
way such that it considers every possible candidate of a field.
First, we consider each (aligned) byte as a single unit field. A
unit field is marked as static if all message data have the same
value for the field, otherwise dynamic. Then consecutive static
unit fields are merged to a larger unit field. For example, in
Figure 4a, fields f0, f2, and f9 are static unit fields, and the
others are dynamic (this may not be true as we only show a
short snippet with some fields elided due to the space limita-
tion). These unit fields denote a conservative list of candidates
for real fields, meaning that a field in the real specification is
a unit field or a concatenation of multiple unit fields. At the
end of this stage, we generate a list that includes all the unit
fields and their compositions that are shorter than a threshold
(i.e., 10 bytes in this paper). The compositions are also called
compound fields. The list denotes candidates for keyword fields
and is subject to the downstream probabilistic analysis. We
bound the size in order to reduce the number of candidate
fields to analyze. Note that in f12 we combine a sequence
of bytes as it is empty for some messages, which means it
could not be the keyword field and could be ignored. Although
most protocols use similar formats for both client side and
server side, some protocols may have substantially different
field structures. We hence generate fields for client side and
server side separately (while considering their correspondence
in probabilistic analysis). Note that although field candidate
generation is not complex, it ought to be conservative and
include the real (keyword) fields. NETPLIER relies on the later
probabilistic analysis to recognize the keyword fields with high
accuracy, which in turn allows identifying the other fields and
pruning the bogus ones.

5

C. Probabilistic Keyword Identification

Given a list of keyword candidate fields for both sides,
we use a probabilistic method to infer which fields are most
likely the keywords. With keyword fields identified, messages
of the same type (i.e., having the same keyword value) can be
identified and further alignment and analysis can be performed
on these messages.

Let fields fc and fs be the potential keywords from the
client and the server sides, respectively. Client-side messages
are speculatively grouped into clusters (tc0 , tc1 , . . .) by fc and
server-side messages are grouped to (ts0 , ts1 , . . .) by fs. In
the example shown in Figure 1, the list of candidate fields
for client side messages are shown in Figure 4a. The server
side messages have a very similar list. Figure 7a shows the
clustering results of considering f1 the keyword for messages
on both the client and the server sides and Figure 7b shows
the results of considering f7 the keyword. For example, with
f1 the keyword, mc0 , mc1 , mc4 , mc5 , and mc6 belong to a
cluster as their f1 fields all have value A0, whereas ms0 , ms2 ,
ms3 , and ms4 belong to a cluster as their f1 values are 08
(see traces in Figure 1).

If the keyword speculation is true, i.e., the messages in
a cluster (grouped by the keyword values) are indeed of the
same type, we should have the following observations from
the generated clusters.

Observation 1. Messages in the same cluster should be more
similar than messages in different clusters.

Observation 2. Clusters on the client side and the server
side should have correspondence. In other words, messages
belonging to a cluster on one side (e.g., requests from the
client side) very likely have their counterparts on the other
side (e.g., corresponding responses from the server side) in a
cluster too.

Observation 3. Messages in the same cluster follow the same
field structure.

Observation 4. There should not be too many clusters. In each
cluster, there should be enough number of messages.

These observations may have uncertainty. In other words,
true clusters may not demonstrate such observations and their
presence does not necessarily imply true clustering either.
Therefore, we introduce a random variable (with boolean
value) to indicate if a candidate is the true keyword. The
variables (for all the candidates from both client and server)
and the observations form a joint probability distribution. We
hence formulate keyword identification as a probabilistic infer-
ence problem computing the marginal posterior probabilities of
keyword random variables given the observations. As we will
explain in Section IV, the inference rules may be directional
(i.e., Bayesian inference [27]) or un-directional (Markov ran-
dom fields [48]). We leverage a general graph model called
factor graph that supports both types. After inference, the
random variable with the largest posterior probability indicates
the most likely keyword pair.

D. Iterative Alignment and Clustering

MSA may not produce the intended alignment in the first
place as it is inherently uncertain as well. As a result, the field

client messages

!"# $"%,$"#,$"' ,$"(,$")
!"* $"*
!"+ $"+
!"' $",

server messages

!-# $-%,$-*,$-+,$-'
!-* $-#,$-(
!-+ $-)
!-' $-,

(a) Clustering results of f1

client messages

!"# $"%,$"',$"(,$")
!"' $"#,$"*,$"+,$",

server messages

!-# $-%,$-',$-(,$-)
!-' $-#,$-*,$-+
!-($-,

(b) Clustering results of f7

Fig. 7: Clustering results of different fields

separation may be problematic, rendering erroneous down-
stream results. We resort to iterative alignment and clustering
to address the problem. Intuitively, assume MSA does not
align properly and hence the keyword cannot be correctly
identified. Nonetheless, the probabilistic inference and clus-
tering are likely to reduce structural divergence of messages
within clusters. As such, for each cluster, we perform MSA and
the probabilistic keyword identification. We then compare the
resulted keywords with the original ones. If the new keywords
can lead to better global partitioning of all the messages
(evaluated by metrics derived from the aforementioned four
observations), we replace the original keywords with the new
ones. The process repeats until no better keywords can be
identified. As shown in Section V, the strategy is particularly
effective for protocols that have substantial message length
variation such as DHCP.

E. Format and State Machine Inference

As discussed earlier, each message is split into several
aligned fields after multiple sequence alignment (e.g., Fig-
ure 4a). After iterative alignment and clustering, the format
for each type can be directly recovered by summarizing the
fields of all messages in the same cluster. The format includes
fields defined with length (L), value (V), and field type (S:
static field with a specific value; ’D’: dynamic field with
a list of potential values). For example, in Figure 4a, field
f0 can be denoted as S(V =′ 0504′); field f7 can be
D(L = 1, V = [′82′,′ 81′]), which is a dynamic field with
two potential values; and field f12 can be D(L = (0, 11)),
which is a variable-length field or optional field as it is empty
for some messages. New messages could be generated based
on the formats.

In addition, we make use of an existing technique [25] to
infer state machine. The technique works well when message
types are properly defined. The basic idea is to derive message
type sequences for each session (in the traces) and aggregate
such sequences to form a state machine. Details are elided as
it is not our contribution.

Note that full format and state machine inference are not
the focus of this paper, which are only provided to evaluate
clustering results (Section V-C and Section V-D). More precise

6

inference could be generated if prior knowledge is used to
detect some common fields first [26], [54], [69], e.g., length
field or address field. This is beyond the scope of this paper.

IV. PROBABILISTIC KEYWORD IDENTIFICATION

A key step in our technique is to model uncertainty in
keyword identification as a joint distribution of observations
and a set of random variables, each denoting if a candidate
field is the keyword of messages. In this section, we discuss
the details of how to model the uncertainty with probabilities
and conduct probabilistic inference with a graphical model.

A. Random Variables and Probabilistic Constraints

The first three columns of Table I define the predicates,
their symbols, and descriptions. A predicate has a boolean
value and is associated with a random variable in our system.
In the rest of the paper, we do not distinguish the terms
random variable and predicate. Particularly, the keyword pred-
icate K(f) asserts if field f is the keyword field. The other
predicates assert the observations. M(f, c) asserts that the
messages in a cluster c by keyword f have higher similar-
ity among themselves than with messages in other clusters;
R(f, c) asserts that for the messages in c, their corresponding
messages on the other side should belong to a same cluster;
S(f, c) asserts that the messages in c should have similar field
structure; and D(f) is a global assertion (i.e., not specific to
a cluster), asserting that keyword f does not lead to too many
clusters and each cluster shall have sufficient messages.

The last column in Table I presents the set of constraints
related to the predicates. Intuitively, they denote the correla-
tions of the random variables, which can be considered as
joint distributions of these variables. Each predicate has two
kinds of constraints. The first kind is called the observation
constraint that associates predicates with prior probabilities.
They are sub-scripted with a single symbol denoting the asso-
ciated predicate. For example, constraint Cm is the observation
constraint for the message similarity predicate M(f, c). Its
body M(f, c) = 1(pm) means the following “the predicate
M(f, c) has the prior probability of pm to be true”. The other
observation constraints are similarly defined. We will explain
how the prior probabilities are systematically derived later in
this section.

The second kind of constraints is called the inference
constraints. They are sub-scripted with an implication relation.
The implication could proceed in two ways: from an obser-
vation predicate to a keyword predicate or from a keyword
predicate to an observation predicate. They are probabilistic,
regulated by an implication probability. For example, Ck→m :
K(f)

pm→−−−→ M(f, c) in the third row, fourth column of Table I
denotes that if f is the keyword, there is pm→ chance that the
messages in cluster c (formed using f as the keyword) have
higher inner-cluster similarity than inter-cluster similarity. The
following constraint Ck←m represents the opposite direction
of reasoning. Intuitively, the two constraints describe the
uncertainty of the relations between K and M . For example,
even if f is the true keyword, it is still possible that messages
of the same type do not have high similarity. Theoretically, the
uncertainty, denoted by the implication probabilities, e.g., pm→

TABLE I: Predicate/random variable and constraint definition

Predicate Symbol Definition Related Constraints

Keyword K(f) Field f is the keyword.

Message
Similarity

Messages in cluster c have Cm :M(f, c) = 1 (pm)

M(f, c) higher inner similarity than Ck→m :K(f)
pm→−−−−→M(f, c)

inter similarity. Ck←m :K(f)
pm←←−−−−M(f, c)

Remote
Coupling

The corresponding messages Cr : R(f, c) = 1 (pr)

R(f, c) of those in cluster c Ck→r : K(f)
pr→−−−→ R(f, c)

belong to a same cluster. Ck←r : K(f)
pr←←−−− R(f, c)

Structure
Coherence

Messages in cluster c have
similar field structure.

Cs : S(f, c) = 1 (ps)

S(f, c) Ck→s : K(f)
ps→−−−→ S(f, c)

Ck←s : K(f)
ps←←−−− S(f, c)

There are not an excessive number Cd : D(f) = 1 (pd)

Dimension D(f) of clusters and each cluster has Ck→d : K(f)
pd→−−−→ D(f)

enough number of messages. Ck←d : K(f)
pd←←−−− D(f)

and pm←, follow some normal distribution that can be approxi-
mated using predefined constants based on domain knowledge.
In practice, existing literature of probability inference typically
makes use of pre-defined prior probability values derived from
domain knowledge [84], [45], [36], [58], [21], [60], [50].
Existing studies also show that inference results are usually
not sensitive to these values due to the iterative nature of
inference algorithm. We follow the same practice such as using
0.95 for likely and 0.1 for unlikely, and adjust the implication
probabilities based on these two values according to the level
of uncertainty of individual observations. For example, the
implication probability pr→ for the remote coupling constraint
Ck→r (from the keyword to the coupling predicate) is 0.9 as
there is little uncertainty. That is, the response messages of
the same kind of request messages highly likely belong to the
same kind. However, along the opposite direction, pr← = 0.8
denotes that if corresponding messages on the two sides belong
to two respective clusters, we cannot be so confident that f is
the right keyword, as such perfect coupling could be by chance.
The implication probabilities for message similarity are lower
than those for remote coupling as they are more uncertain.
In NETPLIER, probabilities p→ are set to be 0.8 for message
similarity constraints and 0.9 for the others. Probabilities p←
lies in [0.6, 0.8] depending on cluster sizes. In Section V, we
validate these implication probabilities in small datasets (100
messages). We notice that our system is not sensitive to these
parameters, consistent with the literature.

B. Determining Prior Observation Probabilities

In the following, we discuss in details how to compute
the prior probabilities for observation constraints pm, pr, ps
and pd. Different from implication probabilities that denote
reasoning uncertainty and are largely stable, these probabilities
describe observation data and vary a lot with the field f we
use to cluster messages.

Message Similarity Constraints.

Based on the MSA results, we can compute the similarity
score of a pair of aligned messages:

s =
Number of identical bytes

Sum of total bytes of the two messages

7

Threshold

E
rr
or
R
at
e

EER

FNMRFMR

Fig. 8: Example of EER

field1 field2 field3

field3field1

!"

!# - - - -

Fig. 9: Example of Structure Coherence Constraints. m1 and
m2 belong to different message types with different field
structure.

After obtaining similarity scores of all message pairs, a simi-
larity score matrix is constructed. For each keyword candidate
field f , we can divide all similarity scores into two classes
based on its clustering results: inner scores, where the two
messages are from the same cluster, and inter scores, where
the two messages are from different clusters.

Ideally, message similarity constraints require that all inner
scores are higher than inter scores. If so, this constraint would
be observed with full confidence, we would hence set pm to 1.
However, the distributions of the two kinds of scores usually
overlap, indicating the errors of false match and false non-
match. These terms are drawn from biometrics [68] where
multiple sequence alignment is widely used. Intuitively in our
context, the former indicates messages of different kinds are
undesirably grouped into a cluster, whereas the later indicates
messages of the same kind are undesirably placed in different
clusters. We quantify the overlap by computing the two errors.
Smaller error values lead to a higher prior probability of
message similarity constraints.

Specifically, for a threshold t ranging from 0 to 1, we can
compute the False Match Rate (FMR) and False Non-Match
Rate (FNMR) as follows.

FMR =
Number of inter scores which are greater than t

Number of inter scores

FNMR =
Number of inner scores which are smaller than t

Number of inner scores
Considering all t in [0, 1], we can draw the curves of FMR and
FNMR, as shown in Figure 8. Observe that when t increases,
FMR decreases and FNMR increases. To describe the similar-
ity constraints, we need to consider both FMR and FNMR at
the same time. Following the practice in biometrics [30], we
choose the intersection of the two curves, which balances both
FMR and FNMR. The error rate value at the intersection is also
called Equal Error Rate (EER), which describes the overall
accuracy of the clustering results and we have the following.

pm = 1− EER

It means that the lower the EER, the higher confidence we
have for the message similarity constraint M .

TABLE II: Example of remote coupling constraints. The
arrows “→” and “←” denote from client to server and server
to client, respectively

Message pairs Message type
pairs of f1

Message type
pairs of f7

Traces Pairs Traces Pairs Traces Pairs

Se
ss

io
n

1 mc0
→ 〈

mc0 ,ms0

〉 tc1 → 〈
tc1 , ts1

〉 tc1 → 〈
tc1 , ts1

〉
←ms0 ← ts1 ← ts1
←ms1

〈
ms1

,mc1

〉 ← ts2
〈
ts2 , tc1

〉 ← ts2
〈
ts2 , tc2

〉
mc1

→ tc1 → tc2 →

Se
ss

io
n

2 mc2
→ 〈

mc2
,ms2

〉 tc2 → 〈
tc2 , ts1

〉 tc1 → 〈
tc1 , ts1

〉
←ms2

← ts1 ← ts1
mc3 → 〈

mc3
,ms3

〉 tc3 → 〈
tc3 , ts1

〉 tc1 → 〈
tc1 , ts1

〉
←ms3

← ts1 ← ts1

Se
ss

io
n

3

mc4 → 〈
mc4

,ms4

〉 tc1 → 〈
tc1 , ts1

〉 tc1 → 〈
tc1 , ts1

〉
←ms4

← ts1 ← ts1
←ms5

〈
ms5 ,mc5

〉 ← ts2
〈
ts2 , tc1

〉 ← ts2
〈
ts2 , tc2

〉
mc5 → tc1 → tc2 →

←ms6
〈
ms6

,mc6

〉 ← ts3
〈
ts3 , tc1

〉 ← ts2
〈
ts2 , tc2

〉
mc6

→ tc1 → tc2 →
←ms7

〈
ms6

,mc6

〉 ← ts4
〈
ts4 , tc4

〉 ← ts2
〈
ts2 , tc2

〉
mc7 → tc4 → tc2 ←

As discussed in Section II-B, alignment-based clustering
methods also utilize similarity scores. However, they have to
train a fixed threshold for all protocols, which cannot avoid
errors due to the overlap and different score distributions
of different protocols. In contrast, We use EER to describe
the distribution of similarity scores and do not need a fixed
threshold.

Remote Coupling Constraints. In the preprocessing step,
we split original traces into sessions, in which we can group
messages from client side and server side into pairs by their
timestamps, IP, and port numbers. For example in Figure 1,
we can generate message pairs as shown in Table II. After
clustering by the candidate keywords of both sides, messages
can be replaced with clusters they belong to and message
pairs are transformed to cluster pairs. The right two columns
show the cluster pairs we generate by fields f1 and f7,
respectively. For a cluster on one side with size N , we count
the largest number of corresponding messages on the other
side that belong to a same cluster, denoted by M , and have
the following.

pr =
M

N

For example, for the message type pairs of f1, there are four
clusters (in red) paired up with ts1 , two of which are tc1 . As
such, the pr for cluster ts1 is 0.50. In Table II for f7, there
are only two unique cluster pairs, i.e., 〈tc1 , ts1〉 and 〈ts2 , tc2〉.
Therefore, all clusters have their pr = 1, suggesting better
clustering quality than using f1.

Structure Coherence Constraints. Structure coherence con-
straints state that messages of the same type share similar field
structure. For messages of different types, they may share some
common fields, separated by their unique fields. When aligning
these messages, alignment gaps are formed due to these type-
specific fields. For example in Figure 9, the two messages
are of different types with different field structure. If they are
wrongly put into a cluster, a lot of gaps (‘-’) will be inserted
to make their common fields aligned. Although gaps also exist
in the alignment for messages of the same type (due to data
variation), the former case usually results in more gaps. Hence,

8

after clustering with the candidate field, we align messages
in the same cluster again and count the average number of
alignment gaps. The proportion of gaps is used as the prior
probability of coherence constraints.

ps = 1− Average number of gaps in a message
Total length of an (aligned) message

For example, there are 4 messages mc0 , mc2 , mc3 , and mc4
in cluster tc1 of field f7 in Figure 7b. Based on the MSA
results shown in Figure 4a, messages mc0 and mc4 have 11
gaps after alignment, denoted by the symbols ‘-’ inserted at
the tail after alignment. In contrast, mc2 and mc3 have no
gap. After alignment (and gap insertion), all the four messages
have the length of 28. Hence the average number of gaps is
(11 + 0 + 0 + 11)/4 = 5.5 for tc1 and ps for the cluster is
computed as 1− 5.5/28.

Dimension Constraints. We consider two metrics in dimen-
sion constraints: the total number of clusters and the number
of single-message clusters, in which there is only a single
message.

The first metric is defined as follows.

rdistinct value =
Number of distinct field values

Number of messages

We compare it with a threshold tvalue, which is conservatively
set to 0.5 in this paper. If the metric is greater than the
threshold, it means that the candidate field generates too many
clusters, which is less likely to be a true keyword. Note that
a true keyword usually has only a small number of distinct
values. Thus 0.5 is a very conservative value to make sure
the true keyword will not be ignored and it doesn’t affect the
number of generated clusters.

The second metric is the proportion of single-message
clusters over the total number of clusters.

rsingle cluster =
Number of single-message clusters

Number of clusters
It is also compared against a threshold tsingle, which is 0.5
as well in this paper. If both values are smaller than their
thresholds, the dimension constraint is given a high probability,
e.g., 0.95. Otherwise it is set a low probability, e.g., 0.1.

pd =

0.95,
if rdistinct value < tvalue
and rsingle cluster < tsingle

0.1, otherwise

From the clustering results shown in Figure 7, we can decide
that rsingle cluster for field f1 is 5/8, thus its pd is 0.1, whereas
f7 satisfies both conditions and its pd is 0.95.

Normalization. As discussed above, the four observation
constraints are represented by different metrics, which do not
mean general probabilities and may have different distribu-
tions. For example, EER is usually in range [0.3, 0.6], while
the computed pr for remote coupling constraints could be as
high as 1. If probabilities of one type of observation constraint
are limited in a small range, this type of observation constraint
may play a less important role compared with others. To
avoid this issue, we normalize probabilities of the same type
of constraints for all candidate fields to the same range, e.g.,
[0.1, 0.95], before further probabilistic inference.

C. Probabilistic Inference

In this stage, all the constraints are considered together to
form a joint distribution. Let boolean variable k denote the
keyword predicate and xi denote the observation predicates in
Table I. Then all constraints can be represented as probabilistic
functions with boolean variables. Specifically, an observation
constraint xi = 1(p) is translated as follows.

f(xi) =

{
p, if xi is true
1− p, otherwise

And an inference constraint k
p→−−→ xi is translated as follows.

f(k, xi) =

{
p→, if k → xi is true
1− p→, otherwise

Inference constraint k
p←←−− xi is similarly transformed. Then

the conjunction of all the constraints can be denoted as the
product of all the corresponding probabilistic functions:

f(k, x1, x2, . . . , xn) = f1 × f2 × · · · × fm

The joint probability function is defined as follows [53].

p(k, x1, x2, . . . , xn) =
f1 × f2 × · · · × fm∑

k,x1,...,xn
(f1 × f2 × · · · × fm)

Our interest is the marginal probability of the assumption
k, which is the sum over all observation variables. This
value represents the probability that the candidate field is the
keyword.

p(k) =
∑

x1,...,xn

p(k, x1, x2, . . . , xn)

Factor Graph. Due to the large number of constraints, the
computation of the marginal probability is very expensive.
We use a graphical model, factor graph [86], to represent
all probabilistic functions and conduct efficient computation.
A factor graph is a bipartite graph with two kinds of nodes,
i.e., factor nodes and variable nodes. Factor nodes represent
probabilistic functions. Variable nodes represent the variables
used in probabilistic functions with edges connected to the
corresponding factor nodes. Then the sum-product belief
propagation algorithm [53] is used to compute the marginal
probability of a node by iterative message passing in an
efficient way. Intuitively, one can consider this as a rumor
spreading procedure. The observations are initial rumors. In
each iteration, each variable (think of it as a person) collects
all the rumors about itself from its neighbors, aggregates them,
and passes the aggregated rumor on to the connected factors.
Each factor (involving multiple variables) collects the rumors
of its variables and computes marginal probabilities based on
the conditional probabilities denoted by the factor and then
propagates the computed probabilities to its variables. The
process repeats until convergence. We are using an off-the-
shelf factor graph engine [17]. The details are hence elided.

V. EVALUATION

A few protocol reverse engineering works have been pro-
posed to cluster messages based on network traces. However,
their evaluation studies are inadequate in a number of places.
Most works only conduct experiments on a small number of

9

protocols with the focus on text protocols. As discussed earlier,
it is usually more difficult to cluster binary protocols. Most
works rely on sensitive parameters which need to be adjusted
for different protocols. Hence, they ought to be evaluated
against more protocols to illustrate effectiveness and generality.
Another common issue is that most existing works do not
make their systems publicly available, nor do they use public
datasets. This makes it hard to validate these methods or
conduct comparative studies.

As binary analysis and network trace based techniques have
different application scenarios and none of binary analysis
techniques is publicly available, it is difficult to compare NET-
PLIER with binary analysis techniques. Hence, our compara-
tive studies focus on existing network trace based techniques.
In this section, we compare NETPLIER with two state-of-the-
art methods, Netzob and Discoverer, and show the advantage
of NETPLIER with experiments on clustering of different
protocols and datasets of different sizes, format inference, and
state machine inference (Section V-A - Section V-D).

Internet of Things (IoT) devices are increasingly popular
today. The evaluation of existing protocol reverse engineering
works usually focus on well-known application layer protocols,
while IoT devices often have customized or self-defined pro-
tocols for wireless communication. To validate the generality
of NETPLIER, we also compare with AWRE [69], a recent
work for the physical layer of proprietary wireless protocols
(Section V-E), and conduct evaluation with multiple unknown
protocols used in real IoT devices (Section V-F).

A. Experiment Setup

Datasets. We construct our datasets from several publicly
available traces [66], [41], [9], [5], [11], [14]. We filter
messages of 10 common protocols from these traces with focus
on binary protocols. Note that we cover most protocols tested
by existing works, while each existing work usually only tested
a small part of these protocols. For each protocol, we filter at
least 1000 messages except TFTP due to the lack of enough
messages. Table III shows the statistical information of the
datasets. These protocols represent different categories. FTP is
a common text protocol. DHCP has complex field structures
which lead to low message similarities. ICMP and NTP are
simple in structure but may contain broadcast messages, which
leads to fewer coupling constraints. SMB and SMB2 are two
versions with different field structures and both have many
message types, as shown in Table III. TFTP is used for file
transfer and its messages may vary a lot in length. ZeroAccess
is a P2P botnet protocol, which is a representative of command
and control protocols. DNP3 and Modbus are two commonly
used protocols in industrial control systems. The variety of
these protocols shows the generality of our method.

Implementation. In NETPLIER, we use MAFFT [46] for
multiple sequence alignment and pgmpy [17] for probabilistic
inference. As mentioned before, most existing works are not
open-sourced. Hence we re-implement the two representa-
tive clustering methods discussed in Section II, Netzob and
Discoverer, for comparative studies. We implement Netzob
on its underlying framework [7] and implement Discoverer
based on a through study of its paper. The parameters are
chosen following Bossert’s work [25] and trained on small

TABLE III: Dataset information

Protocol # Message # Message Types # SessionClient Server Total Client Server

DHCP 523 477 1000 3 2 100
DNP3 460 540 1000 3 3 40
FTP 458 542 1000 14 15 30

ICMP 492 508 1000 1 2 73
Modbus 494 506 1000 4 4 13

NTP 678 322 1000 3 1 83
SMB 454 546 1000 9 10 89
SMB2 510 490 1000 14 15 242
TFTP 225 228 453 4 1 34

ZeroAccess 577 433 1000 1 1 278

datasets with 100 messages. As only partial data of Netzob
are public and Discoverer used proprietary datasets, it is
hard to compare with original works. However, we test our
implementations on the datasets used in Netzob and achieve
similar results, which provides validation of the correctness of
our re-implementation.

B. Evaluation of Clustering

Evaluation Metrics. Some non-keyword fields may play the
same role as a keyword and also generate correct clusters.
Thus, the evaluation is focused on the clustering results instead
of the keyword identification. Existing works use different
metrics in their experiments to evaluate clustering results and
most of them have similar meanings. In this paper, we use com-
mon objectives for clustering performance evaluation, which
are called homogeneity and completeness [71]. Homogeneity
means that each cluster contains only messages of a single
message type, while completeness means all messages of a
given type are assigned to the same cluster. We use two scores
to measure homogeneity and completeness, denoted as h and
c, respectively. The two scores are computed using conditional
entropy analysis. Specifically, let n denote the total number of
messages, nt and nc denote the number of messages belonging
to message type t and cluster c, and nt,c denote the number of
messages from type t assigned to cluster c. Then the entropy
of the types (H(T)) is defined as:

H(T) = −
|T |∑
t=1

nt

n
∗ log nt

n

And the conditional entropy of the types given the cluster
assignments is defined as:

H(T |C) = −
|T |∑
t=1

|C|∑
c=1

nt,c

n
∗ log nt,c

nc

The entropy of the clusters (H(C)) and the conditional entropy
of clusters given type (H(C|T)) are defined in a symmetric
way. Then scores h and c are computed as:

h = 1− H(T |C)

H(T)

c = 1− H(C|T)
H(C)

10

0.10

0.25

0.40

0.55

0.70

0.85

1.00

DH
CP DNP

3 FTP ICM
P
Mod

bus NTP SM
B
SM
B2 TFT

P

Zer
oAc
cess

Netzob Discoverer NetPlier
1.000

0.917
0.923

(a) Clustering results in homogeneity

0.10

0.25

0.40

0.55

0.70

0.85

1.00

DH
CP DNP

3 FTP ICM
P
Mod

bus NTP SM
B
SM
B2 TFT

P

Zer
oAc
cess

Netzob Discoverer NetPlier

0.979

0.489
0.557

(b) Clustering results in completeness

0.10

0.25

0.40

0.55

0.70

0.85

1.00

DH
CP DNP

3 FTP ICM
P
Mod

bus NTP SM
B
SM
B2 TFT

P

Zer
oAc
cess

Netzob Discoverer NetPlier
0.988

0.571
0.660

(c) Clustering results in V-measure

Fig. 10: Clustering result

0.10

0.25

0.40

0.55

0.70

0.85

1.00

0.1K 1K 10K 0.1K 1K 10K 0.1K 1K 10K 0.1K 1K 10K 0.1K 1K 10K

Netzob Discover NetPiler

DHCP DNP3 ICMP Modbus SMB

1.000
0.960

0.562

(a) Clustering results in homogeneity

0.10

0.25

0.40

0.55

0.70

0.85

1.00

0.1K 1K 10K 0.1K 1K 10K 0.1K 1K 10K 0.1K 1K 10K 0.1K 1K 10K

Netzob Discover NetPiler

DHCP DNP3 ICMP Modbus SMB

1.000

0.527

0.391

(b) Clustering results in completeness

0.10

0.25

0.40

0.55

0.70

0.85

1.00

0.1K 1K 10K 0.1K 1K 10K 0.1K 1K 10K 0.1K 1K 10K 0.1K 1K 10K

Netzob Discover NetPiler

DHCP DNP3 ICMP Modbus SMB

1.000

0.640

0.422

(c) Clustering results in V-measure

Fig. 11: Clustering result on datasets of different sizes

The two scores range from 0 to 1 and the higher the better.
To consider the two metrics together, we also introduce their
harmonic mean, which is called V-measure. The score of V-
measure (v) can be computed as:

v = 2 ∗ h ∗ c
h+ c

In the following experiments, we will compute the three
metrics to measure the clustering results.

Results of Different Protocols. We compare our method with
Netzob and Discoverer on different protocols. As Netzob and
Discoverer only consider messages from one side, we use them
to cluster messages of the client side and server side separately,
and then compute metrics with all clusters, while NETPLIER
infers the keywords of both sides at the same time and its
results consider all messages already.

NETPLIER identifies the keyword after two rounds of the
iterative alignment and clustering for DHCP, and uses only
one round for other protocols. This is due to the complex field
structures of DHCP, which causes some alignment errors in
the first round. The clustering results of different protocols
are shown in Figure 10. NETPLIER substantially outperforms
Netzob and Discoverer for all protocols. Homogeneity and
completeness are determined by correctly recovering message
types. Since NetPlier recognizes keywords correctly, both
metrics are 100%, which is the advantage of NetPlier. The
only exception is NTP, for which NETPLIER generates a few
more clusters and gets a completeness score of 0.788. This
is because NTP uses several bits representing its keyword,
while the minimal keyword candidate generated in NETPLIER
is a byte. Nonetheless, NETPLIER still outperforms Netzob
and Discoverer clearly. Netzob and Discoverer have similar
performance. Although they perform well in homogeneity,
their completeness scores are much lower. As we discussed
before, Netzob and Discoverer are not able to identify the exact
number of clusters. They are sensitive to their parameters and

make deterministic decisions in the presence of uncertainty,
which makes it hard to balance both homogeneity and com-
pleteness. Hence they usually generate more clusters to make
sure the accuracy, which leads to a low completeness score.

Datasets of Different Sizes. Besides different protocol types,
the protocol reverse engineering methods may also be affected
by the data sizes. To show the stability of NETPLIER, we
also compare the results of datasets with different sizes. We
choose five common protocols with enough messages and
construct three datasets with different sizes (100, 1000, and
10000 messages) for each protocol. Figure 11 shows the
clustering results on these datasets. We can see that NETPLIER
performs stably on different sizes with most scores being 1.
For DHCP of 10000 messages, NETPLIER’s performance on
completeness drops slightly (0.993) due to the complex option
fields. Note that Netzob could not handle the datasets of 10000
messages due to the exponential complexity and huge memory
consumption of its pair-wise alignment. In general, when the
number of messages increases, the homogeneity of Netzob and
Discoverer stays in the same level or increases slightly, while
the completeness decreases obviously. This shows that Netzob
and Discoverer are not stable for inputs of different sizes even
for the same protocol.

All experiments were conducted on a server equipped with
32-cores CPU (Intel R© XeonTM E5-2690 @ 2.90GHz) and
128G main memory. Table IV shows the execution time and
maximum memory on datasets of 1000 messages. NETPLIER
and Discoverer also generate formats of each cluster at the
same time, while Netzob only conducts clustering. NETPLIER
consumes similar memory resource to Discoverer and is much
less than Netzob. Note that Netzob consumes lots of memory
and it stops execution for datasets with 10000 messages as
shown in Figure 11. The bottleneck of NETPLIER lies in
MSA, as we use iterative refinement in MSA and constraints
generation. The time complexity of MSA could vary a lot for
different protocols. For well-formatted protocols, e.g., DNP3,

11

TABLE IV: Overhead measurement (The unit of Time is min and the unit of Memory is MB)

Protocol Netzob Discoverer NETPLIER
MSA Constraints Generation Probabilistic Inference

Time Memory Time Memory Time Memory Time Memory Time Memory

DHCP 17.092 124.420 0.034 13.973 82.555 0.059 4.645 14.882 9.996 5.411
DNP3 1.361 104.282 0.002 0.519 4.598 0.059 1.207 15.208 25.891 60.965
FTP 1.549 103.815 0.002 0.210 20.668 0.059 5.862 15.365 103.022 58.962

ICMP 1.735 102.543 0.005 0.995 6.780 0.059 0.385 14.829 2.055 8.919
Modbus 1.357 99.336 0.004 1.268 7.384 0.059 0.660 14.894 4.781 20.439

NTP 2.090 122.784 0.013 2.510 6.171 0.059 6.402 17.681 242.330 106.033
SMB 1.917 109.549 0.015 3.687 23.053 0.059 6.348 15.481 122.812 61.950

SMB2 5.803 114.231 0.017 4.176 39.392 0.059 9.628 15.048 37.799 31.890
TFTP 3.299 34.400 0.049 30.966 83.585 0.059 0.466 4.120 0.044 1.336

ZeroAccess 19.258 109.291 0.072 32.571 59.127 0.059 2.332 18.163 0.396 1.170

it is close to O(N ∗ L), where N is the number of messages
and L is the length of a message. However, for complex
protocols, e.g., with many variable-length fields, the worst case
is O(L ∗N2). The time complexity for constraints generation
is O(N2) as we need to compare each two messages for
similarity. The time for probabilistic inference is determined
by the number of fields which does not grow with the dataset
sizes. Although NETPLIER executes slower than the other two
baselines due to the need of aligning complex messages and
probabilistic inference in datasets of 1000 messages, we argue
that the overhead is reasonable as it is an offline technique and
hence one-time effort. Also, as discussed above, NETPLIER is
not sensitive to data sizes, which means the overhead could be
improved by executed on smaller datasets.

C. Evaluation of Format Inference

To show the benefits of our clustering results, we further
infer the field structures. The clustering results of Discover and
NETPLIER already contain the format information. Netzob’s
format inference is based on its pairwise alignment [25].
However, it has to consider the alignment results of all pairs in
a cluster at the same time. As such, its format inference can
handle fewer messages than the clustering stage. We utilize
tshark [12] to obtain the ground truth, i.e., the information
of true fields. Then for each inferred field, we compare its
boundaries and values with true fields. We consider an inferred
field as a correct one if the inferred field is part of a single true
field or combines several consecutive true fields. Specifically,
the field is accurate if it perfectly matches a true field.
However, an inferred field is considered to be incorrect if it
contains multiple incomplete true fields. It is also incorrect if a
dynamic field is mistaken as static. For example, as discussed
above, prior works usually generate more clusters to improve
the homogeneity, so messages of the same type may be placed
into multiple clusters. Some fields may be considered as static
as all messages in the cluster have the same value. However,
messages of the same type in other clusters may have different
values, which means they are actually dynamic fields. Note that
h, c, and v scores are common metrics used in clustering when
having ground truth labels. They cannot be directly applied to
measuring the results of format and state machine inferences.
Then two metrics, correctness and perfection, are computed to
measure the inferred formats, which are defined as follows:

correctness =
Number of correct fields

Number of total inferred fields

TABLE V: Evaluation of format inference

Protocol Netzob Discoverer NETPLIER
Corr. Perf. Corr. Perf. Corr. Perf.

DHCP 0.089 0.000 0.768 0.016 0.994 0.014
DNP3 0.702 0.099 0.486 0.018 0.752 0.183
FTP 1.000 1.000 1.000 1.000 1.000 1.000

ICMP 0.571 0.144 0.259 0.102 0.972 0.090
Modbus 0.587 0.084 0.344 0.049 0.698 0.049

NTP 0.830 0.000 0.661 0.000 0.851 0.000
SMB 0.660 0.152 0.608 0.207 0.964 0.237

SMB2 0.349 0.003 0.793 0.041 0.923 0.069
TFTP 0.666 0.454 0.147 0.000 0.986 0.009

ZeroAccess N/A N/A 0.155 0.000 0.980 0.000

perfection =
Number of accurate fields
Number of total true fields

Table V shows the results of format inference. As textual
protocols could utilize delimiters to generate fields, all meth-
ods can achieve 100% correctness and perfection on FTP.
For binary protocols, we can see that our clustering results
obviously improve the correctness of format inference, which
means it is more likely to generate valid messages based on
our inferred formats. Due to the nature of network trace based
techniques, the perfection of all techniques tends to be low. For
example, all the ZeroAccess messages in our datasets have the
same value for some bytes in a true field. These bytes will
be separated as static fields, which is correct but not perfect.
So both Discover and our method achieve 0% perfection. The
largest ZeroAccess cluster generated by Netzob contains more
than 500 messages, which is beyond its handling capacity.
Thus Netzob fails to generate formats for ZeroAccess due to
timeout. Note that correct field formats can still generate valid
messages even if they are not accurate.

D. Evaluation of State Machine Inference

After clustering, we can further infer the finite state ma-
chine (FSM). The effectiveness of FSM inference is deter-
mined by the clustering results. Low completeness of clus-
tering leads to excessive states, making state machine too
complex to provide useful information. Table VI shows the
number of inferred FSM states. The ground truth is computed
from the specification. Compared with Netzob and Discoverer,

12

TABLE VI: Number of states

Protocol Groud truth Netzob Discoverer NETPLIER

DHCP 8 77 56 8
DNP3 11 11 11 11
FTP 11 20 11 11

ICMP 10 12 20 10
Modbus 42 42 90 42

NTP 69 152 179 137
SMB 16 89 58 16

SMB2 111 327 126 111
TFTP 4 4 4 4

ZeroAccess 6 12 97 6

NETPLIER always generates fewer states, and for most proto-
cols, it has the same number of states as the ground truth,
including those that are very complex. In contrast, Netzob
and Discoverer could generate 2 to 3 times more states. Note
the Discoverer identifies more keywords than those indicating
message types. As such, on one hand, it generates smaller
clusters that may denote message subtypes. On the other
hand, the overly fine-grained information creates troubles for
downstream applications such as format and state-machine
inference as suggested by our results. This indicates correctly
recognizing message types is critical. NETPLIER is designed
to serve that purpose.

E. Evaluation of Other Layer Protocols

As discussed earlier, existing protocol reverse engineering
works usually focus on application layer protocols. However,
in wireless communication, physical layer protocols could also
be proprietorially designed, where existing works cannot be
applied to as physical layer protocols are binary. AWRE [69] is
designed for field inference of physical layer protocols. It uses
prior semantic knowledge as heuristics to identify common
fields in physical layer, including the Preamble Field, Sync
Field, Length Field, Address Field, Sequence Number Field,
and Checksum Field. We compare our method with AWRE
on the eight physical layer protocols used in the paper. These
protocols vary a lot in their field structures and we list their
features in the second column of Table VII. The number of
messages for each protocol is set to 50, which can ensure the
accuracy of AWRE according to the paper. Compared with
above evaluation on well-known benchmarks, fewer messages
are used here as it is usually not easy to collect a large dataset
of IoT devices in reality.

Our method can be applied to these physical layer protocols
directly. The only difference is that the information from the
network layer (i.e., timestamps, IP addresses, and port numbers
as mentioned in Section III-A) is not available for physical
layer protocols. We simply consider consecutive messages with
different directions as a pair for remote coupling constraints.
Other constraints are the same as those on the application layer
protocols.

Table VII shows the clustering and format inference results
of AWRE and NETPLIER. Both methods generate perfect
clustering with 100% homogeneity and completeness on all
eight protocols. For format inference, AWRE achieves 100%
correctness and perfection for all protocols. NETPLIER also
performs well for correctness and only generates a few errors

AA 1337 0E DEAD BEEF 00 DF929BB8B4136B68

Preamble Sync Length SRC DST SEQ Payload

AA1337 0E DE AD BE EF 00 DF 92 9B B8 B4 13 6B 68
S D D D D D D D D D D D D D D

AWRE

NetPlier

Fig. 12: Example of format inference by AWRE and NET-
PLIER

(1)Trigger events

(2) Collect traces

(3) Format inference
(4) Generate messages

(5) Attack

NetPlier

22 3A 22 31 22 7D …
22 3A 22 30 22 7D …
22 3A 22 31 22 7D …
22 3A 22 30 22 7D …

S(L = 3, V = “22 3A 22”)
D(L = 1, V = [“30”, “31”])
S(L = 2, V = “22 7D”)

22 3A 22 30 22 7D …

22 3A 22 31 22 7D …

...

turn on, turn off ...

Fig. 13: Example of reverse engineering unknown protocols of
IoT devices

for Protocol 7. This is because a dynamic field has the same
prefix for all messages in the small dataset, and hence is
considered a static field and merged with the adjacent static
field. The merged one is considered incorrect following the
definition in Section V-C. These errors do not affect the
generation of valid messages and may be reduced if more
messages are used. Also, NETPLIER achieves lower perfection
than AWRE. For example in Figure 12, the inferred format
of AWRE perfectly matches the true format, because AWRE
assumes that the types of all fields are already known and
their semantics could be used in the inference. However,
NETPLIER is a general tool for all protocols and do not have
such prior knowledge. For example, the Preamble and Sync
fields usually have the same values shared by all messages.
Thus NETPLIER considers them together as a single static
field. Also, the values of dynamic fields, e.g., the Payload
field, in the test protocols are randomly generated. They are
hence recognized as multiple smaller fields by our method and
make the perfection low. Similarly, these inferred fields are
still correct and useful in practice. For example, our formats
can still generate valid Preamble and Sync fields. We also
validate the generated messages in Section V-F. In addition,
we optimize our format inference using the same assumptions
by AWRE, i.e., we model the semantics of those pre-defined
field types as additional constraints. After that, our method
could also achieve 100% correctness and perfection as shown
in the last two columns of Table VII. Note that AWRE is
only designed for physical layer protocols and could not be
applied to general application protocols as those evaluated in
Section V-B and Section V-C.

F. Evaluation of Unknown Protocols

An important application of protocol reverse engineering
is to study the customized/unknown protocols used by IoT
devices. As far as we know, existing works only focus on
well-known protocols as discussed in Section V-B and did

13

TABLE VII: Comparison with AWRE

Protocol AWRE NETPLIER

Comment # Msg. # Msg.
Types

Clustering Format Inference Clustering Format Inference
w/o Assumption w/ Assumption

h/c/v Corr. Perf. h/c/v Corr. Perf. Corr. Perf.

1 Common protocol 50 1 1/1/1 1.000 1.000 1/1/1 1.000 0.286 1.000 1.000
2 Unusual field sizes 50 1 1/1/1 1.000 1.000 1/1/1 1.000 0.143 1.000 1.000
3 Ack, CRC8 CCITT 50 2 1/1/1 1.000 1.000 1/1/1 1.000 0.385 1.000 1.000
4 Ack, CRC16 CCITT 50 3 1/1/1 1.000 1.000 1/1/1 1.000 0.167 1.000 1.000
5 3 participants with ack frame 50 2 1/1/1 1.000 1.000 1/1/1 1.000 0.273 1.000 1.000
6 Short address 50 1 1/1/1 1.000 1.000 1/1/1 1.000 0.800 1.000 1.000

7 4 participants
varying preamble size & sync 50 3 1/1/1 1.000 1.000 1/1/1 0.980 0.190 1.000 1.000

8 Nibble fields, LE 50 2 1/1/1 1.000 1.000 1/1/1 1.000 0.250 1.000 1.000

TABLE VIII: Evaluation on unknown IoT protocols

Device Event Message Format (Request & Response) # Triggered
Events

Nest Thermostat

Temperature
Up/Down

S(32) D(27) S(2) D(36) S(39) D(30) S(9) D(3) S(40) D(4) S(11)

4/4
S(86) D(62) S(24)

Fan On/Off
On: S(32) D(20) S(2) D(36) S(38) D(23) S(16) D(3) S(7)

Off: S(32) D(20) S(2) D(36) S(38) D(23) S(20)
S(77) D(62) S(29)

Nest Protect Emergency
Shutoff On/Off

S(77) D(4, 6) S(91) D(0, 5) S(25) D(4, 5) S(4) 2/2S(16) D(113) S(15)

Aqara Hub On/Off S(21) D(1) S(12) D(1) S(85) 2/2S(26) D(1) S(25) D(3) S(1) D(3) S(1) D(17) S(53)

Aqara Smart Plug On/Off S(19) D(1) S(12) D(1) S(85) 2/2S(24) D(1) S(25) D(3) S(1) D(3) S(1) D(17) S(53)

Aqara Contact Sensor Open/Closed S(9) D(1) S(40) D(6) S(18) 2/2S(50) D(13) S(10) D(1) S(351)

Aqara Motion Sensor Detected/
Not detected

S(9) D(1) S(40) D(6) S(18) 2/2S(52) D(13) S(10) D(1) S(53) D(13) S(10) D(1) S(52) D(13) S(10) D(1) S(331)

not evaluate on unknown protocols. In this section, we apply
NETPLIER to real IoT devices to evaluate its effectiveness.

There are several works studying the security issues of IoT
devices via public traces [70], [78]. However, as the ground
truth for unknown protocols is often absent, it is difficult to
use public datasets and evaluate the clustering results like
what we do in Section V-B. Instead, we have to conduct
active evaluation by communicating with real-time devices.
We set up a testbed with 6 popular IoT devices of different
functionalities, including a hub (with a light), three controllers
(a thermostat, a Nest Protect smoke detector, and a smart plug),
and two sensors (a contact sensor and a motion sensor).

Figure 13 shows the workflow of our evaluation on un-
known protocols. First, we collect the traces by manually
triggering various events of the devices, which are shown
in the second column of Table VIII. For the two sensors,
we take the corresponding actions, e.g., opening the door, to
change their states; for the other devices, we control them
using their official applications on the Android smartphone.
Each event is repeated for 50 times and traces are collected
with a label of the event. After having the traces, we apply
NETPLIER to infer the message formats of each event type as
discussed in Section III-E. The results are shown in the third
column of Table VIII. For each event type, we consider the

formats of both request and response messages. Specifically,
Nest Thermostat has two request messages for turning fan on
and off, respectively. Here, we only show the type (’S’ for
static fields and ’D’ for dynamic fields) and length of each
field, denoted as Type(Length). Then we use the inferred
formats to generate messages. For static fields, their values
are already fixed. The challenge is to decide the value of
dynamic fields. We consider both existing values (in the traces)
and random values. For example in Figure 13, we turn on
and off the light and collect four messages. After format
inference, we find three fields in a cluster of request messages,
including two static fields and a dynamic one. The dynamic
field has only two existing values, i.e., “30” and “31”, which
is highly likely to indicate the on/off status and could be used
to generate messages directly. In real traces, dynamic fields
may have many different values, e.g., the Sequence ID. We
generate random values for these fields. Finally, we validate
the results by checking if the generated (request) messages
could trigger the same events successfully, i.e., if we can turn
on or off the light by generated messages in this example. As
shown in the last column of Table VIII, all events could be
triggered successfully, which validates the formats inferred by
NETPLIER. In Section VI-A we show a detailed case study on
Nest Thermostat.

14

VI. APPLICATION

In this section, we demonstrate two applications of NET-
PLIER: Internet of Things (IoT) protocol reverse engineering
and malware behavior analysis.

A. IoT Protocol Reverse engineering

IoT protocol analysis becomes increasingly important for
IoT security. However, it is challenging to analyze IoT proto-
cols due to the lack of specification and the limited access
to source code. In this case study, we use NETPLIER to
analyze the protocol used by Google Nest Thermostat E [4],
a commercial smart thermostat. In particular, we fake an SSL
Certificate Authority (CA) and dump all Google Nest’s traces.
After decryption, NETPLIER is used to analyze the protocol
format. With the reverse engineered protocol, we successfully
hijacked Google Nest to perform malicious behaviors (e.g.,
setting a specific indoor temperature) via sending crafted
messages, which indicates the correctness of the recovered
protocol format. Note that we used a fake CA to decrypt
TLS data to focus our study on protocol reverse engineering.
Acquiring plain-text messages with other means is beyond the
scope of this paper.

Figure 14 presents a temperature-setting message in hex
format. The original message has 351 bytes. Here we only
present part of it and highlight the interesting fields. The
keyword lies in the green field and has a variable length,
which is the first dynamic field (D(27)) in the formats of
Nest Thermostat shown in Table VIII. After alignment and
inference, NETPLIER precisely identifies the keyword field.
NETPLIER’s correct clustering results further help us observe
a one-to-one relation between the temperature and the yellow
field (D(4) in red in Table VIII), allowing us to determine
the semantics of the yellow field, i.e., the temperature that a
user wants to set. In our experiment, manipulating this field
allowed us to directly change the indoor temperature. We also
successfully created messages to instruct Google Nest to turn
on/off the fan and perform other human-observable behaviors.

B. Malware Analysis

The proliferation of new strains of malware every year
poses a prominent security threat and renders the importance
of malware analysis. A popular approach to understanding
malware is to run it in a sandbox. However, handling command
and control (C&C) behavior is a well-known challenge, as this
kind of behavior is triggered by remote servers’ commands
and beyond analysts’ control [76]. On the other hand, most
malware is equipped with C&C capabilities [42]. Hence,
researchers tried to utilize protocol reverse engineering to
analyze malware network trace, hoping to interpret malicious
behavior [72]. We conducted a case study on leveraging
NETPLIER to enhance the analysis of a typical C&C botnet
client (MD5: 03cfe768a8b4ffbe0bb0fdef986389dc) which was
recently reported to VirusTotal [13]. Note that the malware
is packed and obfuscated, so it is difficult to analyze its
behavior via static approaches. We used NETPLIER to analyze
its network traces (acquired by Tencent Habo [10]) and recover
its state machine. Based on the recovered state machine, we
simulated a client to communicate with the remote server. The
procedure was iterative as the more communication is triggered

2a41bd48120d052201083b0a41

392d6437613039323835241a73676e69

747465735f65727574617265706d6574

5f7465677261741b1232413543333930

d483db000000800d0000002401640000

· · · · · ·

· · · · · ·
· · · · · ·

Keyword

Target Temperature

Fig. 14: The snippet of a Google Nest’s temperature-setting
message

Start Waiting
Stage

Send UID

Receive UID

Send UID

Timeout

Working
Stage

Send PONG
Receive PING

Malicious
Stage

Unknown
Stage 1

Unknown
Stage 2

Ti
m

eo
ut

Send MODE

Receive 376
Receive 422

Unknown
Stage n

Receive PRIVMSG

Timeout

DDoS
Stage

R
eceive FLO

O
DD

D
oS

 D
on

e

RCE
Stage

Receive RCECMD

Exec done

Fig. 15: Recovered state machine of the botnet client

between the client and the server, the more of the protocol
can be discovered by NETPLIER, which in turns allows us to
trigger more.

Figure 15 demonstrates the finite state machine NETPLIER
recovered. Each circle denotes a state, and each direct edge
denotes the transition between two states. Transition is labeled
with i

j where i is the precondition of transition and j is the
message sent by the client. Note that for ease of understanding,
we manually annotated the states after analyzing the collected
syscalls in each state. The green states are those not causing di-
rect damages, the red states are the ones containing dangerous
syscalls, and the yellow ones belong to the transition period.
As shown in Figure 15, when the botnet malware starts, it
sends its unique id to the remote server and transits to the
waiting stage. After the server verifies the id, a ping-and-
pong handshake is set up to check the connection, and then
the client transits to the operation stage. After that, various
functionalities can be performed based on the instructions from
the server. Some of the instructions are not damaging and
used to setup the environment. Their details are elided. A
special kind of messages with keyword PRIVMSG can trigger
the botnet to move to the malicious stage. A few malicious
behaviors like remote code execution and internal network
DDoS are observed after the client is at this state.

VII. DISCUSSION

Limitations. Datasets of low quality are a common challenge
for network trace based techniques. Information that is not
included in a small dataset could not be discovered, e.g.,
unused message types. However, we argue that NetPlier can
make better use of traces by considering multiple constraints.
In Section V-B, all the datasets are collected from real-world
systems, which are considered more challenging. Also, we
show that NETPLIER is stable even on datasets of small sizes.

Network trace based protocol reverse engineering methods
are limited to unencrypted traces. A possible solution is to

15

use a man in the middle proxy with trusted credentials, e.g.,
Fiddler [3] and Burp Suite [1]. It could also be combined with
program analysis based protocol reverse engineering methods.

Another limitation of NETPLIER is the growing complexity
and potential errors of multiple sequence alignment algorithms
for larger data. Some heuristic solutions have been proposed
to improve the execution speed, e.g., the combination of
progressive alignment and iterative refinement [20], [77]. Also,
as discussed in Section V-B, NETPLIER performs stably on
different sizes and achieves similar results, which means that
the speed and accuracy could be improved by using NETPLIER
in several small datasets instead of the whole large one. We
leave this improvement to future work.

Generality. Most network trace-based techniques are designed
for textual protocols at the application layer. In Section V, we
show that our method works well for binary protocols, physical
layer protocols where network layer information is missing,
and unknown protocols used in real IoT devices.

We address the problem of clustering by identifying key-
words in bytes. Some protocols may use sub-byte fields as
the keyword, e.g., NTP. Our results in Section V-B shows that
the homogeneity of NetPlier is not affected by such fields and
the completeness degrades a little. It still outperforms others.
Such keyword fields could be better handled by detecting if
sub-byte fields are used in the preprocessing stage. If so, the
granularity of keyword candidates could be set to bits instead
of bytes. We leave it to future work.

Some protocols may include uni-direction messages, e.g.,
broadcast messages without response, where the remote cou-
pling constraints would be ineffective. In our experience,
without using two-way messages, we will encounter some
degradation in the results. However, NetPiler still outperforms
the baselines due to its way of aggregating other constraints.

Future Work. We focus on clustering and only use a simple
strategy for format inference. Heuristics for semantic infor-
mation could be introduced to improve the results of format
inference [26], [54], [69]. We could also apply probabilistic
inference in this stage, for example, to infer potential field
boundaries of consecutive variable-length fields with proba-
bilistic constraints (e.g., that expose fields dictating runtime
length values). We leave it to future work.

VIII. RELATED WORK

Protocol Reverse Engineering. Protocol reverse engineering
targets at inferring the specification of unknown network proto-
cols for further security evaluation [56], [63], [37], [73]. There
are two main categories, either by program analysis [28], [57],
[82], [33], [59], [32] or by network traces [22], [55], [35], [52],
[81], [51], [80], [26], [38], [47]. Network trace methods are
usually based on sequence alignment algorithms [64] or token
patterns, and are limited for their low accuracy or conciseness.
In this paper, we conduct comparative studies to show the
obvious improvement of NETPLIER. Token-based methods
[35], [80] search for representative tokens by statistics and use
them for clustering. It was shown that Discoverer outperforms
these techniques as they tend to generate redundant tokens and
hence clusters. IoT protocol fingerprinting technique such as

PINGPONG [78] is different from protocol reverse engineer-
ing. The former leverages meta data while the latter aims to
recognize message types, formats, and state machine. In fact,
PINGPONG collects fingerprints on encrypted messages.

Probabilistic Inference in Security Applications. In re-
cent years, probabilistic techniques [16], [85] have been in-
creasingly used in security applications. Lin et al. introduce
probabilistic inference into reverse engineering [58]. Differ-
ent from us, they focus on memory forensic. Dietz et al.
also leverage probabilistic inference to localize source code
bugs [36]. Besides, probabilistic techniques are widely used for
binary analysis [87], [61], physical unit security [45], program
enhancement [49], and vulnerability detection [36], [58]. To
the best of our knowledge, NETPLIER is the first approach that
enforces probabilistic analysis on protocol reverse engineering.
Unlike previous methods using deterministic techniques, NET-
PLIER gathers all possible hints from protocol behaviors and
uses a systematic way of integrating them in the presence of
uncertainty.

Malware Analysis. The proliferation of malware in the past
years raises researchers’ attention on detecting, analyzing,
and preventing malware. Mainstream malware analysis tech-
niques, including VirusTotal [13], Cuckoo [2], Habo [10],
Padawan [8], and X-Force [67], [85], leverage the sandbox-
based execution technique to obtain malicious behaviors. How-
ever, traditional behavioral-based approaches are limited on
low-level syscall tracing and can rarely understand high-level
semantics behaviors (e.g., performing as a backdoor). NET-
PLIER, on the other hand, works on collected network trace
and is able to recover informative state machines, benefiting
future analysis. We believe NETPLIER is complementary to
these existing works.

IX. CONCLUSION

We propose a novel probabilistic network trace based
protocol reverse engineering technique. It models the inherent
uncertainty of the problem by introducing random variables
to denote the likelihood of individual fields representing the
message type. A joint distribution can be formed between
these random variables and observations made from the mes-
sage samples. Probabilistic inference is used to compute the
marginal posterior probabilities, allowing us to identify the
message type. Messages are then precisely clustered by their
types, leading to high quality reverse engineering results. Our
experiments show that our technique substantially outperofrms
two state-of-the-art techniques Netzob and Discoverer and
facilitates IoT protocol analysis and malware analysis.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
comments and suggestions. We also thank Guannan Wei
for his help in illustration. This research was supported in
part by NSF 1901242 and 1910300, ONR N000141712045,
N000141410468 and N000141712947, and IARPA TrojAI
W911NF-19-S-0012. Any opinions, findings, and conclusions
in this paper are those of the authors only and do not
necessarily reflect the views of our sponsors.

16

REFERENCES

[1] “Burp suite,” https://portswigger.net/burp.
[2] “Cuckoo,” https://cuckoosandbox.org/.
[3] “Fiddler,” https://www.telerik.com/fiddler.
[4] “Google,” https://store.google.com/product/nest thermostat e.
[5] “Modbus trace,” https://github.com/ITI/ICS-Security-

Tools/blob/master/pcaps/bro/modbus/modbus.pcap.
[6] “Netplier,” https://github.com/netplier-tool/NetPlier.
[7] “Netzob,” https://github.com/netzob/netzob.
[8] “Padawan,” https://padawan.s3.eurecom.fr/about.
[9] “Smia2011,” ftp://download.iwlab.foi.se/dataset/smia2011/.

[10] “Tencent habo,” https://habo.qq.com/.
[11] “Tftp trace,” https://asecuritysite.com/forensics/pcap?infile=tftp.pcap.
[12] “Tshark,” https://www.wireshark.org/docs/man-pages/tshark.html.
[13] “Virustotal,” https://www.virustotal.com/gui/home/upload.
[14] “Zeroaccess trace,” http://contagiodump.blogspot.com/ .
[15] A. Abdou, D. Barrera, and P. C. Van Oorschot, “What lies beneath? an-

alyzing automated ssh bruteforce attacks,” in International Conference
on PASSWORDS, 2015, pp. 72–91.

[16] A. Aguirre, G. Barthe, L. Birkedal, A. Bizjak, M. Gaboardi, and
D. Garg, “Relational reasoning for markov chains in a probabilistic
guarded lambda calculus,” in European Symposium on Programming,
2018, pp. 214–241.

[17] A. Ankan and A. Panda, “pgmpy: Probabilistic graphical models using
python,” in Proceedings of the 14th Python in Science Conference
(SCIPY), 2015.

[18] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in 26th USENIX Security
Symposium (USENIX Security), 2017, pp. 1093–1110.

[19] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley, “Your exploit
is mine: Automatic shellcode transplant for remote exploits,” in 2017
IEEE Symposium on Security and Privacy (SP), 2017, pp. 824–839.

[20] G. J. Barton and M. J. Sternberg, “A strategy for the rapid multiple
alignment of protein sequences: confidence levels from tertiary structure
comparisons,” Journal of Molecular Biology, vol. 198, no. 2, pp. 327–
337, 1987.

[21] N. E. Beckman and A. V. Nori, “Probabilistic, modular and scalable
inference of typestate specifications,” in Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2011, pp. 211–221.

[22] M. A. Beddoe, “Network protocol analysis using bioinformatics algo-
rithms,” Toorcon, 2004.

[23] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel, “Dis-
closure: detecting botnet command and control servers through large-
scale netflow analysis,” in Proceedings of the 28th Annual Computer
Security Applications Conference, 2012, pp. 129–138.

[24] K. Borgolte, C. Kruegel, and G. Vigna, “Delta: automatic identification
of unknown web-based infection campaigns,” in Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications
Security, 2013, pp. 109–120.

[25] G. Bossert, “Exploiting semantic for the automatic reverse engineering
of communication protocols,” Ph.D. dissertation, 2014.

[26] G. Bossert, F. Guihéry, and G. Hiet, “Towards automated protocol
reverse engineering using semantic information,” in Proceedings of the
9th ACM Symposium on Information, Computer and Communications
Security, 2014, pp. 51–62.

[27] G. E. Box and G. C. Tiao, Bayesian inference in statistical analysis.
John Wiley & Sons, 2011, vol. 40.

[28] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic
extraction of protocol message format using dynamic binary analysis,”
in Proceedings of the 14th ACM Conference on Computer and Com-
munications Security, 2007, pp. 317–329.

[29] Y. Cao, Y. Shoshitaishvili, K. Borgolte, C. Kruegel, G. Vigna, and
Y. Chen, “Protecting web-based single sign-on protocols against relying
party impersonation attacks through a dedicated bi-directional authen-

ticated secure channel,” in International Workshop on Recent Advances
in Intrusion Detection, 2014, pp. 276–298.

[30] R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain,
“Performance evaluation of fingerprint verification systems,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28,
no. 1, pp. 3–18, 2005.

[31] Y. Chen, D. Mu, J. Xu, Z. Sun, W. Shen, X. Xing, L. Lu, and
B. Mao, “Ptrix: Efficient hardware-assisted fuzzing for cots binary,”
in Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security, 2019, pp. 633–645.

[32] C. Y. Cho, D. Babic, P. Poosankam, K. Z. Chen, E. X. Wu, and D. Song,
“Mace: Model-inference-assisted concolic exploration for protocol and
vulnerability discovery,” in 20th USENIX Security Symposium (USENIX
Security), vol. 139, 2011.

[33] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex:
Protocol specification extraction,” in 30th IEEE Symposium on Security
and Privacy (SP), 2009, pp. 110–125.

[34] A. Cozzie, F. Stratton, H. Xue, and S. T. King, “Digging for data
structures,” in 8th USENIX Symposium on Operating Systems Design
and Implementation, vol. 8, 2008, pp. 255–266.

[35] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol
reverse engineering from network traces,” in 16th USENIX Security
Symposium (USENIX Security), 2007, pp. 1–14.

[36] L. Dietz, V. Dallmeier, A. Zeller, and T. Scheffer, “Localizing bugs
in program executions with graphical models,” in Advances in Neural
Information Processing Systems, 2009, pp. 468–476.

[37] J. Duchene, C. Le Guernic, E. Alata, V. Nicomette, and M. Kaâniche,
“State of the art of network protocol reverse engineering tools,” Journal
of Computer Virology and Hacking Techniques, vol. 14, no. 1, pp. 53–
68, 2018.

[38] O. Esoul and N. Walkinshaw, “Using segment-based alignment to ex-
tract packet structures from network traces,” in 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS), 2017,
pp. 398–409.

[39] D.-F. Feng and R. F. Doolittle, “Progressive sequence alignment as
a prerequisitetto correct phylogenetic trees,” Journal of Molecular
Evolution, vol. 25, no. 4, pp. 351–360, 1987.

[40] E. Hoque, O. Chowdhury, S. Y. Chau, C. Nita-Rotaru, and N. Li, “An-
alyzing operational behavior of stateful protocol implementations for
detecting semantic bugs,” in 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2017, pp.
627–638.

[41] O. Igbe, I. Darwish, and T. Saadawi, “Deterministic dendritic cell
algorithm application to smart grid cyber-attack detection,” in 2017
IEEE 4th International Conference on Cyber Security and Cloud
Computing (CSCloud), 2017, pp. 199–204.

[42] A. Islam and Z. Bu, “Classifying sets of malicious indicators for detect-
ing command and control communications associated with malware,”
Apr. 25 2017, US Patent 9,635,039.

[43] V. Jain, S. Rawat, C. Giuffrida, and H. Bos, “Tiff: using input type
inference to improve fuzzing,” in Proceedings of the 34th Annual
Computer Security Applications Conference, 2018, pp. 505–517.

[44] S. Jero, M. L. Pacheco, D. Goldwasser, and C. Nita-Rotaru, “Leveraging
textual specifications for grammar-based fuzzing of network protocols,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, 2019, pp. 9478–9483.

[45] S. Kate, J.-P. Ore, X. Zhang, S. Elbaum, and Z. Xu, “Phys: probabilistic
physical unit assignment and inconsistency detection,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, 2018, pp. 563–573.

[46] K. Katoh, K. Misawa, K.-i. Kuma, and T. Miyata, “Mafft: a novel
method for rapid multiple sequence alignment based on fast fourier
transform,” Nucleic Acids Research, vol. 30, no. 14, pp. 3059–3066,
2002.

[47] S. Kleber, H. Kopp, and F. Kargl, “Nemesys: Network message syntax
reverse engineering by analysis of the intrinsic structure of individ-
ual messages,” in 12th USENIX Workshop on Offensive Technologies
(WOOT), 2018.

17

[48] P. Kohli and P. H. Torr, “Dynamic graph cuts for efficient inference
in markov random fields,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 29, no. 12, pp. 2079–2088, 2007.

[49] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis,
“Compiler-assisted code randomization,” in 2018 IEEE Symposium on
Security and Privacy (SP), 2018, pp. 461–477.

[50] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler, “From uncer-
tainty to belief: Inferring the specification within,” in 7th Symposium
on Operating Systems Design and Implementation, 2006, pp. 161–176.

[51] T. Krueger, H. Gascon, N. Krämer, and K. Rieck, “Learning stateful
models for network honeypots,” in Proceedings of the 5th ACM Work-
shop on Security and Artificial Intelligence, 2012, pp. 37–48.

[52] T. Krueger, N. Krämer, and K. Rieck, “Asap: Automatic semantics-
aware analysis of network payloads,” in International Workshop on
Privacy and Security Issues in Data Mining and Machine Learning,
2010, pp. 50–63.

[53] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, 2001.

[54] G. Ládi, L. Buttyán, and T. Holczer, “Message format and field
semantics inference for binary protocols using recorded network traffic,”
in 2018 26th International Conference on Software, Telecommunications
and Computer Networks (SoftCOM), 2018, pp. 1–6.

[55] C. Leita, K. Mermoud, and M. Dacier, “Scriptgen: an automated
script generation tool for honeyd,” in 21st Annual Computer Security
Applications Conference (ACSAC), 2005, pp. 12–pp.

[56] X. Li and L. Chen, “A survey on methods of automatic protocol
reverse engineering,” in 2011 Seventh International Conference on
Computational Intelligence and Security, 2011, pp. 685–689.

[57] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol format
reverse engineering through context-aware monitored execution,” in
Proceedings of the Network and Distributed System Security Symposium
(NDSS), vol. 8, 2008, pp. 1–15.

[58] Z. Lin, J. Rhee, C. Wu, X. Zhang, and X. Dongyan, “Discovering
semantic data of interest from un-mappable memory with confidence,”
in Proceedings of the 19th Network and Distributed System Security
Symposium (NDSS), vol. 12, 2012.

[59] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Proceedings of the 11th Annual
Information Security Symposium, 2010, pp. 1–1.

[60] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee, “Merlin:
specification inference for explicit information flow problems,” ACM
Sigplan Notices, vol. 44, no. 6, pp. 75–86, 2009.

[61] K. Miller, Y. Kwon, Y. Sun, Z. Zhang, X. Zhang, and Z. Lin, “Proba-
bilistic disassembly,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), 2019, pp. 1187–1198.

[62] D. W. Mount, Bioinformatics: sequence and genome analysis. Cold
Spring Harbor Laboratory Press, 2004.

[63] J. Narayan, S. K. Shukla, and T. C. Clancy, “A survey of automatic
protocol reverse engineering tools,” ACM Computing Surveys (CSUR),
vol. 48, no. 3, pp. 1–26, 2015.

[64] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970.

[65] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “Parmesan:
Sanitizer-guided greybox fuzzing,” in 29th USENIX Security Symposium
(USENIX Security), 2020, pp. 2289–2306.

[66] R. Pang and V. Paxson, “A high-level programming environment for
packet trace anonymization and transformation,” in Proceedings of
the 2003 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, 2003, pp. 339–351.

[67] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: Force-
executing binary programs for security applications,” in 23rd USENIX
Security Symposium (USENIX Security), 2014, pp. 829–844.

[68] P. J. Phillips, A. Martin, C. L. Wilson, and M. Przybocki, “An
introduction evaluating biometric systems,” Computer, vol. 33, no. 2,
pp. 56–63, 2000.

[69] J. Pohl and A. Noack, “Automatic wireless protocol reverse engineer-
ing,” in 13th USENIX Workshop on Offensive Technologies, 2019.

[70] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and
H. Haddadi, “Information exposure from consumer iot devices: A multi-
dimensional, network-informed measurement approach,” in Proceedings
of the Internet Measurement Conference, 2019, pp. 267–279.

[71] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-
based external cluster evaluation measure,” in Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-
CoNLL), 2007, pp. 410–420.

[72] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse engi-
neering of malware emulators,” in 30th IEEE Symposium on Security
and Privacy (SP), 2009, pp. 94–109.

[73] B. D. Sija, Y.-H. Goo, K.-S. Shim, H. Hasanova, and M.-S. Kim, “A
survey of automatic protocol reverse engineering approaches, methods,
and tools on the inputs and outputs view,” Security and Communication
Networks, vol. 2018, 2018.

[74] R. R. Sokal, “A statistical method for evaluating systematic relation-
ships,” Univ. Kansas, Sci. Bull., vol. 38, pp. 1409–1438, 1958.

[75] G. Starnberger, C. Kruegel, and E. Kirda, “Overbot: a botnet protocol
based on kademlia,” in Proceedings of the 4th International Conference
on Security and Privacy in Communication Netowrks, 2008, pp. 1–9.

[76] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna, “Your botnet is my botnet:
analysis of a botnet takeover,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security, 2009, pp. 635–
647.

[77] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “Clustal w: improving
the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix
choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994.

[78] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky,
“Packet-level signatures for smart home devices,” in 27th Annual
Network and Distributed System Security Symposium (NDSS). The
Internet Society, 2020.

[79] M. von Hippel, C. Vick, S. Tripakis, and C. Nita-Rotaru, “Auto-
mated attacker synthesis for distributed protocols,” arXiv preprint
arXiv:2004.01220, 2020.

[80] Y. Wang, X. Yun, M. Z. Shafiq, L. Wang, A. X. Liu, Z. Zhang,
D. Yao, Y. Zhang, and L. Guo, “A semantics aware approach to
automated reverse engineering unknown protocols,” in 2012 20th IEEE
International Conference on Network Protocols (ICNP), 2012, pp. 1–10.

[81] Y. Wang, Z. Zhang, D. D. Yao, B. Qu, and L. Guo, “Inferring
protocol state machine from network traces: a probabilistic approach,”
in International Conference on Applied Cryptography and Network
Security, 2011, pp. 1–18.

[82] G. Wondracek, P. M. Comparetti, C. Kruegel, E. Kirda, and S. S. S.
Anna, “Automatic network protocol analysis,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), vol. 8,
2008, pp. 1–14.

[83] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda,
“Automatically generating models for botnet detection,” in European
Symposium on Research in Computer Security, 2009, pp. 232–249.

[84] Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python probabilistic
type inference with natural language support,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2016, pp. 607–618.

[85] W. You, Z. Zhang, Y. Kwon, Y. Aafer, F. Peng, Y. Shi, C. Harmon,
and X. Zhang, “Pmp: Cost-effective forced execution with probabilistic
memory pre-planning,” in 2020 IEEE Symposium on Security and
Privacy (SP), 2020, pp. 18–20.

[86] S. Zarrin and T. J. Lim, “Belief propagation on factor graphs for
cooperative spectrum sensing in cognitive radio,” in 2008 3rd IEEE
Symposium on New Frontiers in Dynamic Spectrum Access Networks,
2008, pp. 1–9.

[87] Z. Zhang, W. You, G. Tao, G. Wei, Y. Kwon, and X. Zhang, “Bda:
practical dependence analysis for binary executables by unbiased whole-
program path sampling and per-path abstract interpretation,” Proceed-
ings of the ACM on Programming Languages, vol. 3, no. OOPSLA, pp.
1–31, 2019.

18

