
NetTLP: A Development Platform for
PCIe Devices in Software Interacting with Hardware

Yohei Kuga (The University of Tokyo)
Ryo Nakamura (The University of Tokyo)

Takeshi Matsuya (Keio University)
Yuji Sekiya (The University of Tokyo)

1

PCI Express-Based Heterogeneous Computing
• PCI Express (PCIe) is the most popular

interconnect standard for
communicating between accelerator,
storage, and network devices

• PCIe is a packet-based protocol
• PCIe topology is flexible
• PCIe switch and root complex

forward PCIe packets to other
PCIe devices

• PCIe devices can communicate
directly by using the PCIe switch

2

CPU Memory

Root ComplexPCIe Switch

GPU RDMA
HCA

Accelerator Accelerator

CPUMemory

Root Complex

RDMA
HCA NVMe

CPU-to-Device
Device-to-Device
Remote DMA

Problem: Lack of Productivity and Observability on PCIe

• Why can’t we develop PCIe the same way as IP networking
• Although both PCIe and IP are packet-based data communication standards

• Prototyping a PCIe device by FPGA still requires significant effort
• Such as in the NetFPGA project

• Observing PCIe transactions is also difficult
• Because they are confined in hardware and require special analyzers

3

IP networks PCI Express

Type of data communication Packet-based Packet-based

Components Software and hardware Hardware

Analyzing by tcpdump, Wireshark, etc FPGA, special hardware

Gap between Software and Hardware

Goal

4

PCIe device
Software Hardware

Root complex Software QEMU -
Hardware NetTLP FPGA/ASIC

• Bridge the gap between hardware and software for PCIe
• QEMU performs everything in software but without actual PCIe protocols
• FPGA and ASIC handle actual PCIe transactions in hardware,

but developing them is still hard compared with software-based platforms

NetTLP provides high productivity and observability for PCIe developments
by connecting software PCIe devices to hardware root complexes

NetTLP approach

• Separating the PCIe transaction layer into software
• Software PCIe devices communicate with hardware root complexes on

the PCIe transaction layer

• Bridging the software transaction layer with hardware data link layer
by delivering TLPs over Ethernet

• It is possible because both use packet-based data communication

5

Transaction Layer

Data Link Layer

Physical Layer
TX RX

Data Link Layer

Physical Layer
TX RX

Software-Hardware bridge

PCIe link

Root Complex PCIe device
TLP Software-based

Transaction LayerTLP manipulation platform
• [ExpEther HOTI’06]
• [Thunderclap NDSS’19]
NetTLP target
• Software PCIe device

NetTLP Overview

6

PCIe devices work as Linux commands
NetTLP is composed of two hosts:
• Adapter host has the NetTLP

adapter which bridges a PCIe link
and an Ethernet link

• Device host has LibTLP-based
application that performs the role of
the NetTLP adapter

Device HostNetTLP Adapter

IP
 N

et
w

or
k

St
ac

k

Userspcae
Applications
./dma_read

./msix
./memory

etc

Root Complex

PCIe
Device CPU Memory

LibTLP

Linux kernel

Adapter Host Et
he

rn
et

 N
IC

10
G

 E
th

er
ne

t P
H

Y

PCIe config
space

BAR Addresses
MSI-X registers

BAR0: Adapter
Configs

Requester ID
Encap Addresses

PCIe Interface

BAR4
BAR2: MSI-X table

UDP-
encaped
TLPs

A PCIe device that
you can develop in software

NetTLP Adapter: Encap/Decap
TLPs in IP headers

LibTLP: A software library
performing PCIe Transaction Layer

Ethernet
IP

UDP
NetTLP

TLP
TLP data

Example 1: DMA Read by Software from the Device Host

7

Device HostNetTLP Adapter

IP
 N

et
w

or
k

St
ac

k

Userspcae
Applications

./dma_read

Root Complex

PCIe
Device CPU Memory

LibTLP

Linux kernel

A PCIe device

Adapter Host Et
he

rn
et

 N
IC

10
G

 E
th

er
ne

t P
H

Y

tcpdump
can see the
TLPs here!

1. ./dma_read sends a DMA read TLP over UDP
2. The NetTLP adapter decaps it and

sends the inner DMA read TLP to
the root complex

3. The root complex sends the reply TLP
(completion TLP) to the ./dma_read
via the NetTLP adapter

PCIe config
space

BAR Addresses
MSI-X registers

BAR0: Adapter
Configs

Requester ID
Encap Addresses

PCIe Interface

BAR4
BAR2: MSI-X table

UDP-
encaped
TLPs

Example 2: Generating MSI-X Interrupts in NetTLP Platform

1. Interrupt controller sets MSI-X table data
2. ./msix gets the MSI-X registers of

the NetTLP adapter and MSI-X
message address and data from
the MSI-X table in BAR2

3. ./msix sends DMA write to the
MSI-X message address

8

Device HostNetTLP Adapter

IP
 N

et
w

or
k

St
ac

k

Userspcae
Applications

./msix

Root Complex

PCIe
Device CPU Memory

LibTLP

Linux kernel

A PCIe device

Adapter Host Et
he

rn
et

 N
IC

10
G

 E
th

er
ne

t P
H

Y

PCIe config
space

BAR Addresses
MSI-X registers

BAR0: Adapter
Configs

Requester ID
Encap Addresses

PCIe Interface

BAR4
BAR2: MSI-X table

1

UDP-
encaped
TLPs

2
3
2

1

Example 3: Capturing TLPs from Other PCIe Devices

9

Device HostNetTLP Adapter

IP
 N

et
w

or
k

St
ac

k

Userspcae
Applications

./memory

Root Complex

PCIe
Device CPU Memory

LibTLP

Linux kernel

A PCIe device

Adapter Host Et
he

rn
et

 N
IC

10
G

 E
th

er
ne

t P
H

Y

tcpdump
can see the
TLPs here!

1. ./memory performs a memory region
associating with BAR4 of the NetTLP adapter

2. Another PCIe device issues DMA read
and DMA write to the ./memory
instead of the main memory

3. The TLPs can be captured at
the device host by tcpdump

PCIe config
space

BAR Addresses
MSI-X registers

BAR0: Adapter
Configs

Requester ID
Encap Addresses

PCIe Interface

BAR4
BAR2: MSI-X table

UDP-
encaped
TLPs

Original DMA path

LibTLP Design: DMA APIs

• DMA APIs are inspired by read(2) and write(2) system calls
• dma_read() attempts to read up to `count` bytes into `buf`
• dma_write() writes up to `count` bytes from `buf`
• `addr` indicates a target address of DMA transaction
• The return values of the functions
• Success: the number of bytes read or written
• Error: returns -1 and sets errno

10

ssize_t dma_read(struct nettlp *nt, uintptr_t addr, void *buf, size_t count);
ssize_t dma_write(struct nettlp *nt, uintptr_t addr, void *buf, size_t count);

LibTLP Design: PIO APIs

• Register the functions receiving the request TLPs using callback API
• Call nettlp_run_cb() / nettlp_stop_cb() to start/stop the software device

11

struct nettlp_cb {
int (*mrd)(struct nettlp *nt, struct tlp_mr_hdr *mh, …);
int (*mwr)(struct nettlp *nt, struct tlp_mr_hdr *mh, …);
int (*cpl)(struct nettlp *nt, struct tlp_cpl_hdr *ch, …);
int (*cpld)(struct nettlp *nt, struct tlp_cpl_hdr *ch, …);
int (*other)(struct nettlp *nt, struct tlp_hdr *tlp, …);

};

Example) dma_read.c

• Programing PCIe devices in
the same manner as IP
packet processing with Linux

1. Set IP packet parameters
2. Set TLP header parameters
3. Call the DMA read API
4. Output DMA read results

12

#include <stdio.h>
#include <arpa/inet.h>
#include <libtlp.h>

int main(int argc, char **argv) {
uintptr_t addr = 0x0;
struct nettlp nt;
char buf[128];
int ret;

inet_pton(AF_INET, "192.168.10.1", &nt.remote_addr);
inet_pton(AF_INET, "192.168.10.3", &nt.local_addr);
nt.requester = (0x1a << 8 | 0x00);
nt.tag = 0;

nettlp_init(&nt);

ret = dma_read(&nt, addr, buf, sizeof(buf));
if (ret < 0) {

perror("dma_read");
return ret;

}

printf("DMA read: %d bytes from 0x%lx¥n", ret, addr);
return 0;

}

1
2

3

4

Observing Actual TLPs with Tcpdump and Wireshark!

13

Captured the DMA read
TLPs from the physical NIC

./memory replied with the
Completion TLPs to the NIC

Detail of TLP header
We’ve implemented an
FPGA-based NetTLP adapter
with 10Gbps Ethernet and
PCIe Gen2 interface

Challenge 1: Receiving Burst TLPs
• PCIe could momentarily send TLPs at Ethernet wire-speed

• PCIe endpoints use different TLP tag values to send consecutive
DMA read requests (split-transaction)

• The encapsulated DMA read TLP is 64 bytes = Ethernet short packet size
• LibTLP needs to receive such burst TLPs

DMA Read Requests for writing 8 blocks issued from
Samsung PM1725a NVMe (captured by NetTLP)

This NVMe sends 64
DMA read requests at a
time in this experiment

Challenge 1: Receiving Burst TLPs
• Exploiting multi-cores and multi-queues for PCIe transactions from software
• NetTLP adapter maps TLP tag values to UDP port numbers for encapsulation

• TLPs are delivered through different UDP flows based on the tag field
• LibTLP receives the flows by different NIC queues and CPU cores

• Our implementation with 16 core: DMA read 3.6 Gbps

LibTLPNIC

Fl
ow

 D
ire

ct
or

HW RX Queue
#0

HW RX Queue
#1

HW RX Queue
#2

N
et

w
or

k
st

ac
k

Thread
CPU #0

Thread
CPU #1

Thread
CPU #2

UDP port
0x3000

0x3001

0x3002

NetTLP
adapter

TLP tag
0

TLP tag
1

TLP tag
2 DMA read throughput from

NetTLP adapter to LibTLP

DMA read throughput from
LibTLP to the NetTLP adapter

1 2 4 6 8 10 12 14 16
number of cores

0

1

2

3

4

th
ro

ug
hp

ut
 (G

bp
s)

D0A 256B
D0A 512B
D0A 1024B

16 512 1024 1536 2048
request size (byte)

0

1

2

3

4

5

th
ro

ug
hp

ut
 (G

bp
s)

Challenge 2: Completion Timeout
• PCIe specification defines the completion timeout

• Minimal range is 50 us to 10 ms
• PCIe specification recommends that PCIe devices

do not expire in less than 10 ms
• Intel X520 NIC sets the range from 50 us to 50 ms

• Our software implementation result:
• 99% DMA read latency is less than 27 us

16

DMA read latency from
LibTLP to NetTLP adapter

27 us

Completion timeout of Intel X520 NIC

0 10 20 30 40
lDtency (usec)

0.0
0.2
0.4
0.6
0.8
1.0

CD
)

D0A 1B
D0A 256B
D0A 1024B

$ sudo lspci -vv
01:00.0 Ethernet controller: Intel Corporation 82599ES
DevCtl: MaxPayload 128 bytes, MaxReadReq 512 bytes
DevCtl2: Completion Timeout: 50us to 50ms,

Adapter Host

./memory

Use Case 1:
Observing Root Complex and PCIe Switch Behavior

17

• ./dma_read sends a 512B DMA read request
• Root complex splits the 512B DMA read into

eight 64B request TLPs and rebuilds two 256B
completion TLPs (MaxPayloadSize = 256B)

Root complex (Intel Core i9-9820X)

Root Complex /
PCIe Switch

Ethernet Switch

NetTLP
Adapter 1

NetTLP
Adapter 2

./dma_read

PC
Ie

Et
he

rn
et

Port mirror
and tcpdump

A software
PCIe device

A software
PCIe device

1 4 3 2

1

2 3

4

1

2 3

4

PCIe switch (PLX8747)

Use Case 2: A Nonexistent NIC
• To confirm the productivity of NetTLP, we implemented an Ethernet NIC

• Target NIC: simple-nic introduced by [pcie-bench SIGCOMM’18]
• A theoretical model of a simple Ethernet NIC

• ./simple-nic uses a tap interface as its Ethernet port

18

Device Host

Network Stack

PCIe
Interface

./simple-nic

Root Complex

CPU Memory

Linux kernel

Adapter Host

Ethernet NIC10
G

Et

he
rn

et

PH
YNetTLP

Adapter

LibTLP

An Ethernet NIC

eth0
tap0

The simple-nic model certainly works with a root complex

19

MWr, 3DW, WD, tc 0, flags [none], attrs [none], len 1, requester
00:00, tag 0x01, last 0x0, first 0xf, Addr 0xb0000010
MRd, 3DW, tc 0, flags [none], attrs [none], len 4, requester 1b:00,
tag 0x01, last 0xf, first 0xf, Addr 0x2f004000
CplD, 3DW, WD, tc 0, flags [none], attrs [none], len 4, completer
00:00, success, byte count 16, requester 1b:00, tag 0x01, lowaddr 0x00
MRd, 3DW, tc 0, flags [none], attrs [none], len 25, requester 1b:00,
tag 0x01, last 0x3, first 0xf, Addr 0x3bdc1000
CplD, 3DW, WD, tc 0, flags [none], attrs [none], len 25, completer
00:00, success, byte count 98, requester 1b:00, tag 0x01, lowaddr 0x00
MWr, 3DW, WD, tc 0, flags [none], attrs [none], len 1, requester
1b:00, tag 0x01, last 0x0, first 0xf, Addr 0xfee1a000

• ./simple-nic on the NetTLP platform can TX/RX packets
• All the PCIe interactions with the root complex can be observed by tcpdump
• The device code is 400 LoC in C

tcpdump outputs (packet info only) for sending an ICMP echo packet from the host

1. NIC driver updates TX queue tail pointer

2-3. NIC reads the TX queue descriptor
from the main memory

4-5. NIC reads the packet data to be sent
from the main memory
(Addr: 0x3bdc1000 is skb->data address)
6. NIC generates an interrupt to NIC driver
(Addr: 0xfee1a000 is MSI-X address)

Summary
• NetTLP enables developing PCIe devices in software with IP networking style

• NetTLP adapter is the bridge between PCIe and Ethernet links
• LibTLP enables software PCIe devices on top of IP network stacks

• In the results
• Observing actual TLPs with tcpdump and Wireshark
• Implemented the simple Ethernet NIC model in 400 lines of C code

• Benchmarks, other use cases (capturing TLPs from 4 product devices and
memory introspection), and their details are available in our paper

20

Source code and raw pcap data are available at https://haeena.dev/nettlp

https://haeena.dev/nettlp

