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MODULE-I 

Resonance: Series and Parallel resonance 

SERIES RESONANT CIRCUIT 

A resonant circuit (series or parallel) must have an inductive and a capacitive 

element. A resistive element will always be present due to the internal 

resistance of the source (Rs), the internal resistance of the inductor (Rl), and any 

added resistance to control the shape of the response curve (Rdesign). The basic 

configuration for the series resonant circuit appears in Fig with the resistive 

elements listed above. 

 
The total impedance of this network at any frequency is determined by  

ZT=R +j XL-j XC= R +j (XL- XC) 

The resonant conditions described in the introduction will occur when  

XL= XC 

Removing the reactive component from the total impedance equation. The total 

impedance at resonance is then simply 

ZTs=R 

Representing the minimum value of ZT at any frequency. The subscript s will be 

employed to indicate series resonant conditions. The resonant frequency can be 

determined in terms of the inductance and capacitance by examining the 

defining equation for resonance- 

XL= XC 

𝑓 =
1

2𝜋√𝐿𝐶
 

which you will note is the maximum current for the circuit of Fig for an applied 

voltage E since Z is a minimum value. Consider also that the input voltage and 

current are in phase at resonance. 

QUALITY FACTOR: 

The quality factor Q of a series resonant circuit is defined as the ratio of the 

reactive power of either the inductor or the capacitor to the average power of the 

resistor at resonance; that is 

𝑄 =
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑤𝑒𝑟
 



 

The quality factor is also an indication of how much energy is placed in storage 

(continual transfer from one reactive element to the other) compared to that 

dissipated. The lower the level of dissipation for the same reactive power, the 

large the Q, factor and the more concentrated and intense the region of 

resonance.  Substituting for an inductive reactance in Eq. (20.8) at resonance 

gives us 

𝑄 =
𝑋𝐿

𝑅
=
𝜔𝐿

𝑅
 

 

Since the quality factor of a coil is typically the information provided by 

manufacturers of inductors, it is often given the symbol Q without an associated 

subscript. It would appear that Q will increase linearly with frequency since XL 

=2πfL. That is, if the frequency doubles, then Ql will also increase by a factor of 

2. This is approximately true for the low range to the mid-range of frequencies. 

Unfortunately, however, as the frequency increases, the effective resistance of 

the coil will also increase, due primarily to skin effect phenomena, and the 

resulting Q will decrease. In addition, the capacitive effects between the 

windings will increase, further reducing the Ql of the coil. For this reason, Q 

must be specified for a particular frequency or frequency range. For wide 

frequency applications, a plot of Q versus frequency is often provided. 

 

SELECTIVITY 

plot the magnitude of the current I=E/ZT versus frequency for a fixed applied 

voltage E, we obtain the curve shown in Fig, which rises from zero to a 

maximum value of E/R (where ZT is a minimum) and then drops toward zero (as 

Z increases) at a slower rate than it rose to its peak value. The curve is actually 

the inverse of the impedance-versus-frequency curve. Since the ZT curve is not 

absolutely symmetrical about the resonant frequency, the curve of the current 

versus frequency has the same property. 

 



 

There is a definite range of frequencies at which the current is near its maximum 

value and the impedance is at a minimum. Those frequencies corresponding to 

0.707 of the maximum current are called the band frequencies, cutoff 

frequencies, or half-power frequencies. They are indicated by f1 and f2 in Fig. 

The range of frequencies between the two is referred to as the bandwidth 

(abbreviated BW) of the resonant circuit. 

 

EXAMPLE  

The bandwidth of a series resonant circuit is 400 Hz. 

a. If the resonant frequency is 4000 Hz, what is the value of Q? 

b. If R _ 10 _, what is the value of Xat resonance? 

c. Find the inductance L and capacitance C of the circuit. 

Solutions: 

a. BW =
𝑓

𝑄
 𝑜𝑟 𝑄 =

𝑓

𝐵𝑊
=

4000𝐻𝑧

400𝐻𝑧
= 10 

b. Q=
𝑋𝐿

𝑅
 𝑜𝑟 𝑋𝐿 = 𝑄𝑅 = 10 ∗ 10𝑜𝑚 = 100𝑜𝑚 

c. XL=2πfL or L=
𝑋𝐿

2𝜋𝑓
=

100𝑜𝑚

2𝜋∗4000
= 3.98𝑚𝐻 

XC=
1

2𝜋𝑓𝐶
 𝑜𝑟 𝐶 =

1

2𝜋𝑓𝑋𝐶
=

1

2𝜋∗4000∗100𝑜𝑚
= 0.398𝜇𝐹 

 

 

PARALLEL RESONANT CIRCUIT 

 

The basic format of the series resonant circuit is a series R-L-C combination in 

series with an applied voltage source. The parallel resonant circuit has the basic 

configuration of Fig. 20.21, a parallel R-L-C combination in parallel with an 

applied current source. For the series circuit, the impedance was a minimum at 

resonance, producing a significant current that resulted in a high output voltage 

for VC and VL . For the parallel resonant circuit, the impedance is relatively 

high at resonance, producing a significant voltage for VC and VL through the 

Ohm’s law relationship (VC = IZT). For the network of Fig below, resonance 

will occur when XL=XC, and the resonant frequency will have the same format 

obtained for series resonance.  

 If the practical equivalent of Fig below had the format the analysis would 

be as direct and lucid as that experienced for series resonance. However, in the 

practical world, the internal resistance of the coil must be placed in series with 

the inductor. The resistance R can no longer be included in a simple series or 



 

parallel combination with the source resistance and any other resistance added 

for design purpose. 

         
 

 

 

Loop and node variable analysis 

Mesh analysis for phasor-domain circuits should be apparent from the 

presentation of mesh analysis for dc circuits. Preferably all current sources are 

transformed to voltage sources, then  clockwise-referenced mesh currents are 

assigned, and finally KVL is applied to each mesh. 

 

 
where I1Z2 (I1 - I3)Z2, and (I1 - I2)Z3 are the voltage drops across the 

impedances Z,, Z,, and V, + V, - V, Z,. Of course, is the sum of the voltage 

rises from voltage sources in mesh 1. As a memory aid, a source voltage is 

added if it ―aids‖ current flow -that is, if the principal current has a direction out 

of the positive terminal of the source. Otherwise, the source voltage is 

subtracted. This equation simplifies to  

(Z1 + Z2 + Z3 )I1 – Z3I2 – Z2I3 = V1 + V2 – V3  

The coefficient of I, is the self-impedance of mesh 1, which is the sum of the 

impedances of mesh 1. The -Z, coefficient of I, is the negative of the impedance 

in the branch common to meshes 1 and 2. This impedance Z, is a mutual 

impedance, it is mutual to meshes 1 and 2. Likewise, the -Z, coefficient of I, is 

the negative of the impedance in the branch mutual to meshes 1 and 3, and so Z, 



 

is also a mutual impedance. It is important to remember in mesh analysis that 

the mutual terms have initial negative signs. 

It is, of course, easier to write mesh equations using self-impedances and 

mutual impedances than it is to directly apply KVL. Doing this for meshes 2 

and 3 results in  

--Z3I1 + (Z3+ Z4 + Z5)I2 - Z413 = V3 + V4 – V5  

and 

-Z211 - Z412 + (Z2+ Z4 + Z6)13 = -V2 – V4 + V6  

Placing the equations together shows the symmetry of the I coefficients about 

the principal diagonal 

 
Usually, there is no such symmetry if the corresponding circuit has dependent 

sources. Also, some of the off-diagonal coefficients may not have initial 

negative signs. This symmetry of the coefficients is even better seen with the 

equations written in matrix form: 

 
Loop analysis is similar except that the paths around which KVL is applied are 

not necessarily meshes, and the loop currents may not all be referenced 

clockwise. So, even if a circuit has no dependent sources, some of the mutual 

impedance coefficients may not have initial negative signs. Preferably, the loop 

current paths are selected such that each current source has just one loop current 

through it. Then, these loop currents become known quantities with the result 

that it is unnecessary to write KVL equations for the loops or to transform any 

current sources to voltage sources. 

 

Node Analysis: 

Nodal analysis for phasor-domain circuits is similar to nodal analysis for dc 

circuits. Preferably, all voltage sources are transformed to current sources. 

Then, a reference node is selected and all other nodes are referenced positive in 

potential with respect to this reference node. Finally, KCL is applied to each 

non reference node. Often the polarity signs for the node voltages are not shown 



 

because of the convention to reference these voltages positive with respect to 

the reference node. 

For an illustration 

of nodal analysis applied to a phasor-domain circuit, consider the circuit shown. 

The KCL equation for node 1 is  

v1y1 + (v1 – V2)y2 + (v1 - v3)y6= 11 + I2 - 16  

where V1Y1 ,(V1 – V2)Y2 and (V1 - v3)Y6 are the currents flowing away from 

node 1 through the admittances Y1 ,Y2 and Y6. Of course, I1 + I2 – I6 is the sum 

of the currents flowing into node 1 from current sources. 

 
 

This equation simplifies to  

(Y1 + Y2 + Y6)V1 - Y2V2 – Y6V3 = I1 + I2 – I6  

The coefficient Y1 + Y2 + Y6 of V1 is the self-admittance of node 1, which is the 

sum of the admittances connected to node 1. The coefficient –Y2 of V2 is the  

negative of the admittance connected between nodes 1 and 2. So, Y2 is a mutual 

admittance. Similarly, the coefficient – Y6 of V3 is the negative of the 

admittance connected between nodes 1 and 3, and so Y6 is also a mutual 

admittance. 

It is, of course, easier to write nodal equations using self-admittances and 

mutual admittances than, it is to directly apply KCL. Doing this for nodes 2 and 

3 produces 

 
Usually, there is no such symmetry if the corresponding circuit has dependent 

sources. Also, some of the off-diagonal coefficients may not have initial -ve 

signs. In matrix form these equations are 



 

 
 

Waveform Synthesis-The Shifted Unit Step 

THE UNIT STEP FUNCTION: 

Definition: The unit step function, u(t), is defined as 

u(t)={01t<0t>0 

That is, u is a function of time t, and u has value zero when time is negative and 

value one when time is positive 

 

In many circuits, waveforms are applied at specified intervals other than t=0. 

Such a function may be described using the shifted (aka delayed) unit step 

function. 

Definition of Shifted Unit Step Function 

A function which has value 0 up to the time t=a and thereafter has value 1, is 

written:  

u(t−a)={01ifift<at>a 

Example 1 - Shifted Unit Step Function 

f(t)=u(t−3)  

The equation means f(t) has value of 0 when t<3 and 1 when t>3. 



 

The sketch of the waveform is as follows: 

 
 

The Initial and Final Value Theorems,  The Convolution Integral. 

 

INITIAL VALUE THEOREM 

The initial value theorem is a theorem used to relate frequency domain 

expressions to the time domain behavior as time approaches zero 

Let 

 

be the (one-sided) Laplace transform of ƒ(t). The initial value theorem then says 

 

Based on the definition of Laplace transform of derivative we have: 

 

thus: 

 

But is indeterminate between t=0
-
 to t=0

+
; to avoid this, the integration 

can be performed in two intervals: 

 

http://en.wikipedia.org/wiki/Frequency_domain
http://en.wikipedia.org/wiki/Time_domain
http://en.wikipedia.org/wiki/Zero
http://en.wikipedia.org/wiki/Laplace_transform


 

In the first expression where 0
-
<t<0

+
, e

-st
=1. In the second expression, the order 

of integration and limit-taking can be changed. Also where 0
+
<t<∞ 

is zero. Therefore, 

 

By substitution of this result in the main equation we get: 

 
 

FINAL VALUE THEOREM 

The final value theorem (FVT) is one of several similar theorems used to relate 

frequency domain expressions to the time domain behavior as time approaches 

infinity. A final value theorem allows the time domain behavior to be directly 

calculated by taking a limit of a frequency domain expression, as opposed to 

converting to a time domain expression and taking its limit, 

Mathematically, if 

 

has a finite limit, then 

 

where is the (unilateral) Laplace transform of .  

Likewise, in discrete time 

 

where is the (unilateral) Z-transform of  

By integrating from the definition of Laplace transform of a derivative we have: 

 

If the infinite integral on LHS exists, then the limit of integral can be written as 

integral of limit, therefore,  

http://en.wikipedia.org/wiki/Frequency_domain
http://en.wikipedia.org/wiki/Time_domain
http://en.wikipedia.org/wiki/Laplace_transform
http://en.wikipedia.org/wiki/Z-transform


 

 

By equating RHSs of previous equations and canceling f(0) on both sides: 

 

 

CONVOLUTION INTEGRAL 

The convolution of f and g is written f∗g, using an asterisk or star. It is defined 

as the integral of the product of the two functions after one is reversed and 

shifted. As such, it is a particular kind of integral transform: 

  
 

       (commutativity) 

While the symbol t is used above, it need not represent the time domain. But in 

that context, the convolution formula can be described as a weighted average of 

the function f(τ) at the moment t where the weighting is given by g(−τ) simply 

shifted by amount t. As t changes, the weighting function emphasizes different 

parts of the input function. 

For functions f, g supported on only (i.e., zero for negative arguments), 

the integration limits can be truncated, resulting in 

 

In this case, the Laplace transform is more appropriate than the Fourier 

transform below and boundary terms become relevant. 

 

 

 

 

http://en.wikipedia.org/wiki/Asterisk
http://en.wikipedia.org/wiki/Integral_transform
http://en.wikipedia.org/wiki/Convolution#Properties
http://en.wikipedia.org/wiki/Support_%28mathematics%29
http://en.wikipedia.org/wiki/Laplace_transform
http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Fourier_transform


 

MODULE II 

Series and parallel Combination of Elements  

series-parallel networks are networks that contain both series and parallel circuit configurations. 

 

General Approach 
1. Take a moment to study the problem ―in total‖ and make a brief mental sketch of the overall approach you  

plan to use. The result may be time- and energy-saving shortcuts. 

2. Next examine each region of the network independently before tying them together in series-parallel 

combinations. This will usually simplify the network and possibly reveal a direct approach toward obtaining one 

or more desired unknowns. It also eliminates many of the errors that might result due to the lack of a systematic 

approach. 

3. Redraw the network as often as possible with the reduced branches and undisturbed unknown quantities to 

maintain clarity and provide the reduced networks for the trip back to unknown quantities from the source. 

4. When you have a solution, check that it is reasonable by considering the magnitudes of the energy source and 

the elements in the network. If it does not seem reasonable, either solve the circuit using another approach or 

check over your work very carefully. 

 

For many single source, series-parallel networks, the analysis is one that works back to the source, determines 

the source current, and then finds its way to the desired unknown. In Fig (a), for instance, the voltage V4 is 

desired. The absence of a single series or parallel path to V4 from the source immediately reveals that the 

methods introduced in the last two chapters cannot be applied here. First, series and parallel elements must be 

combined to establish the reduced circuit of Fig (b). Then series elements are combined to form the simplest of 

configurations in Fig.(c). The source current can now be determined using Ohm’s law, and we can proceed back 

through the network as shown in Fig (d). The voltage V2 can be determined and then the original network can be 

redrawn, as shown in Fig (e). Since V2 is now known, the voltage divider rule can be used to find the desired 

voltage V4. Because of the similarities between the networks of Figs (a) and (e), and between (b) and (d), the 

networks drawn during the reduction phase are often used for the return path. 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

The block diagram approach will be employed throughout to emphasize the fact that combinations of elements, 

not simply single resistive elements, can be in series or parallel. The approach will also reveal the number of 

seemingly different networks that have the same basic structure and therefore can involve similar analysis 

techniques. 

In Fig. blocks B and C are in parallel (points b and c in common), and the voltage source E is in series with 

block A (point a in common). The parallel combination of B and C is also in series with A and the voltage source 

E due to the common points b and c, respectively. 

To ensure that the analysis to follow is as clear and uncluttered as possible, the following notation will be used 

for series and parallel combinations of elements. For series resistors R1 and R2, a comma will be inserted 

between their subscript notations, as shown here: 

                                                            R1,2 = R1 + R2 

For parallel resistors R1 and R2, the parallel symbol will be inserted between their subscript notations, as follows: 

               

                                               R1║2=R1‖R2=
𝑅1𝑅2

𝑅1+𝑅2
 

 

 

 

 

 

 

 

 

 
 

 

 



 

 

 
 

 

 

SUPERPOSITION THEOREM  
The superposition theorem states the following:  

 

The current through, or voltage across, an element in a linear bilateral network is equal to the algebraic sum of 

the currents or voltages produced independently by each source. 

 

When one is applying the theorem, it is possible to consider the effects of two sources at the same time and  

reduce the number of networks that have to be analyzed, but, in general,  

 

                       

                               Number of networks to be analyzed   =  Number of  independent sources 

 

   To consider the effects of each source independently requires that sources be removed and replaced without 

affecting the final result. To remove a voltage source when applying this theorem, the difference in potential 

between the terminals of the voltage source must be set to zero (short circuit); removing a current source 

requires that its terminals be opened (open circuit). Any internal resistance or conductance associated with the 

displaced sources is not eliminated but must still be considered. 

 

Figure reviews the various substitutions required when removing an ideal source and Figure reviews the 

substitutions with practical sources that have an internal resistance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

The total current through any portion of the network is equal to the algebraic sum of the currents produced 

independently by each source. That is, for a two-source network, if the current produced by one source is in one 

direction, while that produced by the other is in the opposite direction through the same resistor, the resulting 

current is the difference of the two and has the direction of the larger. If the individual currents are in the same 

direction, the resulting current is the sum of two in the direction of either current. This rule holds true for the 

voltage across a portion of a network as determined by polarities, and it can be extended to networks with any 

number of sources. The superposition principle is not applicable to power effects since the power loss in a 

resistor varies as the square (nonlinear) of the current or voltage. 

 

For instance, the current through the resistor R of Fig below is I1 due to one source of a two-source network. The 

current through the same resistor due to the other source is I2 as shown in Fig. (b). Applying the superposition 

theorem, the total current through the resistor due to both sources is IT,  as shown in Fig. (c) 

with     IT =I1 +I2  

   

 
 

 

The power delivered to the resistor in Fig. is  P1 =𝐼1
2R , while the power delivered to the same resistor in Fig. (b) 

is P2 =𝐼2
2R. If we assume that the total power delivered in Fig.(c) can be obtained by simply adding the power 

delivered due to each source, we find that                                                                             

                                                                       PT= P1 +P2= 𝐼1
2R+𝐼2

2R=𝐼𝑇
2𝑅    

or    

𝐼𝑇
2 = 𝐼1

2 + 𝐼2
2 

 

This final relationship between current levels is incorrect, however, as can be demonstrated by taking the total 

current determined by the superposition theorem and squaring it as follows:  

𝐼𝑇
2 = (𝐼1 + 𝐼2)2 = 𝐼1

2 + 𝐼2
2 + 2𝐼1𝐼2  

which is certainly different from the expression obtained from the addition of power levels. 

In general, therefore, 

the total power delivered to a resistive element must be determined using the total current through or the total 

voltage across the element and cannot be determined by a simple sum of the power levels established by each 

source. 

 

 



 

 
 

 

RECIPROCITY THEOREM  
       The reciprocity theorem is applicable only to single-source networks. It is, therefore, not a theorem 

employed in the analysis of multisource networks described thus far. The theorem states the following: 

 

The current I in any branch of a network, due to a single voltage source E anywhere else in the network, will 

equal the current through the branch in which the source was originally located if the source is placed in the 

branch in which the current I was originally measured. 

 

      In other words, the location of the voltage source and the resulting current may be interchanged without a 

change in current. The theorem requires that the polarity of the voltage source have the same correspondence 

with the direction of the branch current in each position.  

     In the representative network of Fig., the current I due to the voltage source E was determined. If the position 

of each is interchanged as shown in Fig., the current I will be the same value as indicated. To demonstrate the 

validity of this statement and the theorem, consider the network of Fig. , in which values for the elements of Fig.  

have been assigned.  

    The total resistance is 

 

 
 

 
  

RT = R1 +R2 ‖(R3 +R4) =12 Ω+6Ω‖ (2Ω+4Ω)=15Ω 

                             



 

 
 

 
 

 

THEVENIN’S THEOREM  

 
Thévenin’s theorem states the following: 

       Any two-terminal, linear bilateral dc network can be replaced by an equivalent circuit consisting of a 

voltage source and a series resistor, as shown in Fig. 

       In Fig., for example, the network within the container has only two terminals available to the outside world, 

labeled a and b. It is possible using Thévenin’s theorem to replace everything in the container with one source 

and one resistor, as shown in Fig., and maintain the same terminal characteristics at terminals a and b. That is, 

any load connected to terminals a and b will not know whether it is hooked up to the network of Fig. or Fig.. 

The load will receive the same current, voltage, and power from either configuration of Fig.. Throughout the 

discussion to follow, however, always keep in mind that the Thévenin equivalent circuit provides an equivalence 

at the terminals only—the internal construction and characteristics of the original network and the Thévenin 

equivalent are usually quite different.  

                                                           



 

In most cases, other elements will be connected to the right of terminals a and b in Fig.. To apply the theorem, 

however, the network to be reduced to the Thévenin equivalent form must be isolated as shown in Fig., and the 

two ―holding‖ terminals identified. Once the proper Thévenin equivalent circuit has been  determined, the 

voltage, current, or resistance readings between the two ―holding‖ terminals will be the same whether the 

original or the Thévenin equivalent circuit is connected to the left of terminals a and b in Fig.. Any load 

connected to the right of terminals a and b of Fig. will receive the same voltage or current with either network. 

This theorem achieves two important objectives. First, as was true for all the methods previously described, it 

allows us to find any particular voltage or current in a linear network with one, two, or any other number of 

sources. Second, we can concentrate on a specific portion of a network by replacing the remaining network with 

an equivalent circuit. In Fig., for example, by finding the Thévenin equivalent circuit for the network in the 

shaded area, we can quickly calculate the change in current through or voltage across the variable resistor RL for 

the various values that it may assume. 

                                                    
Before we examine the steps involved in applying this theorem, it is important that an additional word be  

included here to ensure that the implications of the Thévenin equivalent circuit are clear. In Fig., the entire 

network, except RL, is to be replaced by a single series resistor and battery as shown in Fig.. The values of these 

two elements of the Thévenin equivalent circuit must be chosen to ensure that the resistor RL will react to the 

network of Fig., in the same manner as to the network of Fig.. In other words, the current through or voltage 

across RL must be the same for either network for any value of RL. 

The following sequence of steps will lead to the proper value of RTh and ETh. 

Preliminary: 
1. Remove that portion of the network across which the Thévenin equivalent circuit is to be found. In Fig., this 

requires that the load resistor RL be temporarily removed from the network.  

2. Mark the terminals of the remaining two-terminal network. (The importance of this step will become obvious 

as we progress through some complex networks.) 

RTh: 

3. Calculate RTh by first setting all sources to zero (voltage sources are replaced by short circuits, and current 

sources by open circuits) and then finding the resultant resistance between the two marked terminals. (If the 

internal resistance of the voltage and/or current sources is included in the original network, it must remain 

when the sources are set to zero.) 

ETh: 

4. Calculate ETh by first returning all sources to their original position and finding the open-circuit voltage 

between the marked terminals. (This step is invariably the one that will lead to the most confusion and errors. In 

all cases, keep in mind that it is the open-circuit potential between the two terminals marked in step 2.) 

Conclusion: 

5. Draw the Thévenin equivalent circuit with the portion of the circuit previously removed replaced between the 

terminals of the equivalent circuit. This step is indicated by the placement of the resistor RL between the 

terminals of the Thévenin equivalent circuit as shown in Fig.. 

 

EXAMPLE : Find the Thévenin equivalent circuit for the network in the shaded area of the network of Fig.. 

                                                              
 

 



 

Solution: 

Steps 1 and 2 are shown in Fig.  

                                                    
Step 3 is shown in Fig.. The current source has been replaced with an open-circuit equivalent, and the resistance 

determined between terminals a and b.In this case an ohmmeter connected between terminals a and b 

would send out a sensing current that would flow directly through R1 and R2 (at the same level). The result is that 

R1 and R2 are in series and the Thévenin resistance is the sum of the two. 

                                                     RTh = R1 +R2 =4Ω+2Ω=6Ω 

Step 4 : In this case, since an open circuit exists between the two marked terminals, the current is zero between 

these terminals and through the 2-_ resistor. The voltage drop across R2 is, therefore, 

 

                                      
NORTON’S THEOREM  
It was demonstrated that every voltage source with a series internal resistance has a current source equivalent.  

The current source equivalent of the Thévenin network, can be determined by Norton’s theorem. 

The theorem states the following: 

Any two-terminal linear bilateral dc network can be replaced by an equivalent circuit consisting of a current 

source and a parallel resistor, as shown in Fig..  

The discussion of Thévenin’s theorem with respect to the equivalent circuit can also be applied to the Norton 

equivalent circuit. The steps leading to the proper values of IN and RN are now listed. 

 

 



 

Preliminary: 

1. Remove that portion of the network across which the Norton equivalent circuit is found. 

2. Mark the terminals of the remaining two-terminal network. 

RN: 

3. Calculate RN by first setting all sources to zero (voltage sources are replaced with short circuits, and current 

sources with open circuits) and then finding the resultant resistance between the two marked terminals. (If the 

internal resistance of the voltage and/or current sources is included in the original network, it must remain when 

the sources are set to zero.) Since RN = RTh, the procedure and value obtained using the approach described for 

Thévenin’s theorem will determine the proper value of RN. 

IN: 

4. Calculate IN by first returning all sources to their original position and then finding the short-circuit   current 

between the marked terminals. It is the same current that would be measured by an ammeter placed between the 

marked terminals. 

Conclusion: 

5. Draw the Norton equivalent circuit with the portion of the circuit previously removed replaced between the 

terminals of the equivalent circuit. 

The Norton and Thévenin equivalent circuits can also be found from each other by using the source  

transformation discussed earlier in this chapter and reproduced in Fig.  

 

 

 

 

 

 

 

 

 

 



 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Module III 

System Poles and Zeros: 

The transfer function provides a basis for determining important system response characteristics without solving 

the complete differential equation. As defined, the transfer function is a rational function in the complex 

variable s = σ + jω, that is 
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It is often convenient to factor the polynomials in the numerator and denominator, and to write the transfer 

function in terms of those factors 
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Where the numerator and denominator polynomials, N(s) and D(s), have real coefficients defined by the 

system’s differential equation and K = bm/an. As written in Eq. (2) the zi’s are the roots of the equation 

N(s) =0 

and are defined to be the system zeros, and the pi’s are the roots of the equation 

D(s) = 0, 

and are defined to be the system poles. In Eq. (2) the factors in the numerator and denominator are written so 

that when s = zi the numerator N(s) = 0 and the transfer function vanishes, that is 

lim ( ) 0
is z
H s


  

and similarly when s = pi the denominator polynomial D(s) = 0 and the value of the transfer function becomes 

unbounded, 

lim ( )
is p
H s


   

All of the coefficients of polynomials N(s) and D(s) are real, therefore the poles and zeros must be either purely 

real, or appear in complex conjugate pairs. In general for the poles, either pi = σi, or else pi, pi+1 = σi+jωi. The 

existence of a single complex pole without a corresponding conjugate pole would generate complex coefficients 

in the polynomial D(s). Similarly, the system zeros are either real or appear in complex conjugate pairs. 

 

 
 

Figure 1: The pole-zero plot for a typical third-order system with one real pole and a complex conjugate pole pair, and a single real zero. 

 

 

 

 

The Pole-Zero Plot 

 



 

A system is characterized by its poles and zeros in the sense that they allow reconstruction of the input/output 

differential equation. In general, the poles and zeros of a transfer function may be complex, and the system 

dynamics may be represented graphically by plotting their locations on the complex s-plane, whose axes 

represent the real and imaginary parts of the complex variable s. Such plots are known as pole-zero plots. It is 

usual to mark a zero location by a circle (◦) and a pole location a cross (×). The location of the poles and zeros 

provide qualitative insights into the response characteristics of a system.  

 

System Stability: 

 
The stability of a linear system may be determined directly from its transfer function. An nth order linear system 

is asymptotically stable only if all of the components in the homogeneous response from a finite set of initial 

conditions decay to zero as time increases, or 
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Where the pi are the system poles. In a stable system all components of the homogeneous response must decay 

to zero as time increases. If any pole has a positive real part there is a component in the output that increases 

without bound, causing the system to be unstable. 

 

In order for a linear system to be stable, all of its poles must have negative real parts that are they must all lie 

within the left-half of the s-plane. An ―unstable‖ pole, lying in the right half of the s-plane, generates a 

component in the system homogeneous response that increases without bound from any finite initial conditions. 

A system having one 

or more poles lying on the imaginary axis of the s-plane has non-decaying oscillatory components in its 

homogeneous response, and is defined to be marginally stable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

MODULE-IV 

TWO PORT NETWORK: 

 
A pair of terminals through which a current may enter or leave a network is known as a port. Two-terminal 

devices or elements (such as resistors, capacitors, and inductors) result in one-port networks. Most of the circuits 

we have dealt with so far are two-terminal or one-port circuits, represented in Figure 2(a). We have considered 

the voltage across or current through a single pair of terminals—such as the two terminals of a resistor, a 

capacitor, or an inductor. We have also studied four-terminal or two-port circuits involving op amps, transistors, 

and transformers, as shown in Figure 2(b). In general, a network may have n ports. A port is an access to the 

network and consists of a pair of terminals; the current entering one terminal leaves through the other terminal 

so that the net current entering 

the port equals zero. 

 
 

Figure 2: (a) One-port network, (b) two-port network. 

Thus, a two-port network has two terminal pairs acting as access points. As shown in Figure 2(b), the current 

entering one terminal of a pair leaves the other terminal in the pair. Three-terminal devices such as transistors 

can be configured into two-port networks. 

Our study of two-port networks is for at least two reasons. First, such networks are useful in communications, 

control systems, power systems, and electronics. For example, they are used in electronics to model transistors 

and to facilitate cascaded design. Second, knowing the parameters of a two-port network enables us to treat it as 

a ―black box‖ when embedded within a larger network. 

 

To characterize a two-port network requires that we relate the terminal quantities V1, V2, I1, and I2 in Figure 2 

(b), out of which two are independent. The various terms that relates these voltages and currents are called 

parameters. Our goal in this chapter is to derive six sets of these parameters. We will show the relationship 

between these parameters and how two-port networks can be connected in series, parallel, or cascade. As with 

op amps, we are only interested in the terminal behavior of the circuits. And we will assume that the two-port 

circuits contain no independent sources, although they can contain dependent sources. Finally, we will apply 

some of the concepts developed in this chapter to the analysis of transistor circuits and synthesis of ladder 

networks. 

IMPEDANCE PARAMETERS: 
 

Impedance and admittance parameters are commonly used in the synthesis of filters. They are also useful in the 

design and analysis of impedance-matching networks and power distribution networks. We discuss impedance 

parameters in this section and admittance parameters in the next section. 

 

A two-port network may be voltage-driven as in Figure 3 (a) or current-driven as in Figure 3(b). From either 

Figure 3(a) or (b), the terminal voltages can be related to the terminal currents as 

 

V1=Z11I1+Z12I2 

V2=Z21I1+Z22I2 

Or in matrix form as 

 



 

 
Where the z terms are called the impedance parameters, or simply z parameters, and have units of ohms. 

 
Figure 3: The linear two-port network: (a) driven by voltage sources, (b) driven by current 

 

The values of the parameters can be evaluated by setting I1 = 0 (input port open-circuited) or I2 = 0 (output port 

open-circuited).  

 
 

Since the z parameters are obtained by open-circuiting the input or output port, they are also called the open-

circuit impedance parameters. Specifically, 

 

z11 = Open-circuit input impedance 

z12 = Open-circuit transfer impedance from port 1 to port 2 

z21 = Open-circuit transfer impedance from port 2 to port 1 

z22 = Open-circuit output impedance 

 

We obtain z11 and z21 by connecting a voltage V1 (or a current source I1) to port 1 with port 2 open-circuited as 

in Figure 4 and finding I1 and V2; we then get 

 
Figure 4: Determination of the z parameters: (a) finding z11 and z21 (b) finding z12 and z22. 
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we obtain z12 and z22 by connecting a voltage V2 (or a current source I2) to port 2 with port 1 open-circuited as 

in Figure 4) and finding I2 and V1; we then get 
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The above procedure provides us with a means of calculating or measuring the z parameters. 

 

Sometimes z11 and z22 are called driving-point impedances, while z21 and z12 are called transfer impedances. A 

driving-point impedance is the input impedance of a two-terminal (one-port) device. Thus, z11 is the input 

driving-point impedance with the output port open-circuited, while z22 is the output driving-point impedance 

with the input port open circuited. 

When z11 = z22, the two-port network is said to be symmetrical. This implies that the network has mirror like 

symmetry about some center line; that is, a line can be found that divides the network into two similar 

halves.When the two-port network is linear and has no dependent sources, the transfer impedances are equal (z12 

= z21), and the two-port is said to be reciprocal. This means that if the points of excitation and response are 

interchanged, the transfer impedances remain the same. A two-port is reciprocal if interchanging an ideal 

voltage source at one port with an ideal ammeter at the other port gives the same ammeter reading.  

 

 

 

 

ADMITTANCE PARAMETERS: 

 
In the previous section we saw that impedance parameters may not exist for a two-port network. So there is a 

need for an alternative means of describing such a network. This need is met by the second set of parameters, 

which we obtain by expressing the terminal currents in terms of the terminal voltages. In either Figure 5(a) or 

(b), the terminal currents can be expressed in terms of the terminal voltages as 

 

 
Figure 5: Determination of the y parameters: (a) finding y11 and y21, (b) finding y12 and y22. 

 

I1=Y11V1+Y12V2 

I2=Y21V1+Y22V2 

Or in matrix form as 

 
The y terms are known as the admittance parameters (or, simply, y parameters) and have units of siemens. 

 



 

The values of the parameters can be determined by setting V1 = 0 (input port short-circuited) or V2 = 0 (output 

port short-circuited). Thus, 

 
 

Since the y parameters are obtained by short-circuiting the input or output port, they are also called the short-

circuit admittance parameters. Specifically, 

 

y11 = Short-circuit input admittance 

y12 = Short-circuit transfer admittance from port 2 to port 1 

y21 = Short-circuit transfer admittance from port 1 to port 2 

y22 = Short-circuit output admittance 

 

We obtain y11 and y21 by connecting a current I1 to port 1 and short-circuiting port 2 as in Figure 5(a), finding 

V1 

And I2, and then calculating 
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Similarly, we obtain y12 and y22 by connecting a current source I2 to port 2 and short-circuiting port 1 as in 

Figure 5(b), finding I1 and V2, and then getting 
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This procedure provides us with a means of calculating or measuring the y parameters. The impedance and 

admittance parameters are collectively referred to as immittance parameters. 

 

HYBRID PARAMETERS: 
The z and y parameters of a two-port network do not always exist. So there is a need for developing another set 

of parameters. This third set of parameters is based on making V1 and I2 the dependent variables. Thus, we 

obtain 

 

 
Or in matrix form, 

 
The h terms are known as the hybrid parameters (or, simply, h parameters) because they are a hybrid 

combination of ratios. They are very useful for describing electronic devices such as transistors; it is much 

easier to measure experimentally the h parameters of such devices than to measure their z or y parameters. The 

hybrid parameters are as follows. 



 

 
 

It is evident that the parameters h11, h12, h21, and h22 represent an impedance, a voltage gain, a current gain, and 

an admittance, respectively. This is why they are called the hybrid parameters. To be specific, 

 

h11 = Short-circuit input impedance 

h12 = Open-circuit reverse voltage gain 

h21 = Short-circuit forward current gain 

h22 = Open-circuit output admittance 

 

The procedure for calculating the h parameters is similar to that used for the z or y parameters. We apply a 

voltage or current source to the appropriate port, short-circuit or open-circuit the other port, depending on the 

parameter of interest, and perform regular circuit analysis.  

TRANSMISSION PARAMETERS: 

 
Since there are no restrictions on which terminal voltages and currents should be considered independent and 

which should be dependent variables, we expect to be able to generate many sets of parameters. Another set of 

parameters relates the variables at the input port to those at the output port. Thus, 

 
Or 

 
The above Equations are relating the input variables (V1 and I1) to the output variables (V2 and −I2). Notice that 

in computing the transmission parameters, −I2 is used rather than I2, because the current is considered to be 

leaving the network, as shown in Figure 6. This is done merely for conventional reasons; when you cascade 

two-ports (output to input), it is most logical to think of I2 as leaving the two-port. It is also customary in the 

power − industry to consider I2 as leaving the two-port. 

 
Figure 6: Terminal variables used to define the ABCD parameters. 

 

The two-port parameters in above Eqs. provide a measure of how a circuit transmits voltage and current from a 

source to a load. They are useful in the analysis of transmission lines (such as cable and fiber) because they 



 

express sending-end variables (V1 and I1) in terms of the receiving-end variables (V2 and −I2). For this reason, 

they are called transmission parameters. They are also known as ABCD parameters. They are used in the design 

of telephone systems, microwave networks, and radars. 

The transmission parameters are determined as 

 
Thus, the transmission parameters are called, specifically, 

 

A = Open-circuit voltage ratio 

B = Negative short-circuit transfer impedance 

C = Open-circuit transfer admittance 

D = Negative short-circuit current ratio 

 

A and D are dimensionless, B is in ohms, and C is in siemens. Since the transmission parameters provide a 

direct relationship between input and output variables, they are very useful in cascaded networks. 

 

RELATIONSHIPS BETWEEN PARAMETERS: 

 
Since the six sets of parameters relate the same input and output terminal variables of the same two-port 

network, they should be interrelated. If two sets of parameters exist, we can relate one set to the other set. Let us 

demonstrate the process with two examples. 

Given the z parameters, let us obtain the y parameters.  

 

 
Comparing the above we have Y=[Z]

-1
. 

 



 

 
Table 1: Relation between parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

MODULE-V 
 

 

Network Functions: 
 

A network function is the Laplace transform of an impulse response. Its format is a ratio 

of two polynomials of the complex frequencies. Consider the general two-port network 

shown in Figure 2.2a. The terminal voltages and currents of the two-port can be related by 

two classes of network functions, namely, the driving point functions and the transfer 

functions. 

The driving point functions relate the voltage at a port to the current at the same port. 

Thus, these functions are a property of a single port. For the input port the driving 

point impedance function ZIN(s) is defined as: 

This function can be measured by observing the current IIN  when the input port is 

driven by a voltage source VIN (Figure 2.2b). The driving point admittance function 

YIN(s) is the reciprocal of the impedance function, and is given by: 

 

 

The output port driving point functions are denned in a similar way. The transfer functions 

of the two-port relate the voltage (or current) at one port to the voltage (or current) at the 

other port. The possible forms of transfer functions are: 

1. The voltage transfer function, which is a ratio of one voltage to another 

voltage. 



 

2. The current transfer function, which is a ratio of one current to another 

current. 

3. The transfer impedance function, which is the ratio of a voltage to a current. 

4.  The  transfer  admittance  function,  which  is  the  ratio  of  a  current  to  a 

voltage. 

The voltage transfer functions are defined with the output port an open circuit, as: 

 

To evaluate the voltage gain, for example, the output voltage VO is measured with the 

input port driven by a voltage source VIN (Figure 2.2c). The other three types of transfer 

functions can be defined in a similar manner. Of the four types of transfer functions, the 
voltage transfer function is the one most often specified in the design of filters. 

 The    functions    defined    above,    when    realized    using    resistors,    inductors, 

capacitors, and active devices, can be shown to be the ratios of polynomials in s with 

real coefficients. This is so because the network functions are obtained by solving  simple  

algebraic  node  equations,  which  involve  at  most  the  terms R, sL, sC and their 

reciprocals. The active device, if one exists, the solution still involves only the addition 

and multiplication of simple terms, which can only lead to a ratio of polynomials in s. In 

addition, all the coefficients of the numerator and denominator polynomials  will  be  real.  

Thus,  the  general  form  of  a  network function is: 

 

 

and all the coefficients ai and bi are real. If the numerator and denominator polynomials 
are factored, an alternate form of H(s) is obtained: 

 

 

 



 

 

 

In this expression z1, z2, ..., zn  are called the zeros of H(s), because H(s) = 0 when s = 
zi. The roots of the denominator pl, p2, ..., pm are called the poles of H(s). It can be 
seen that H(s) = ∞ at the poles, s = pi. 

The poles and zeros can be plotted on the complex s plane (s = σ + jω), which has the  

real  part  σ  for  the  abscissa,  and  the  imaginary  part  jω  for  the  ordinate (Figure 2.3). 

 

  Properties of all Network Functions: 

We have already seen that network functions are ratios of polynomials in s with real 

coefficients. A consequence of this property is that complex poles (and zeros) must occur 

in conjugate pairs. To demonstrate this fact consider a complex root at (s = -a – jb) 

which leads to the factor (s + a + jb) in the network function. The jb term will make 

some of the coefficients complex in the polynomial, unless the conjugate of the complex 

root at (s = -a + jb) is also present in the polynomial. The product of a complex factor and 

its conjugate is 

 

 

which can be seen to have real 

coefficients. 

Further important properties of network functions are obtained by restricting the networks 

to be stable, by which we mean that a bounded input excitation to the network must yield 

a  bounded  response.  Put differently, the output of a stable network cannot be made to 

increase indefinitely by the application of a bounded input excitation. Passive networks 

are stable by their very nature, since they do not contain energy sources that might inject 

additional energy into the network. Active networks, however, do contain energy sources 

that could join forces with the input excitation  to  make  the  output  increase  



 

indefinitely.  Such  unstable  networks, however, have no use in the world of practical 

filters and are therefore precluded from all our future discussions. 

A convenient way of determining the stability of the general network function H(s) 

is by considering its response to an impulse function, which is obtained by taking the 

inverse Laplace transform of the partial fraction expansion of the function. 

 If the network function has a simple pole on the real axis, the impulse response due 

to it (for t >= 0) will have the form: 

 

 

For  p1   positive,  the  impulse  response  is  seen  to  increase  exponentially  with time, 

corresponding to an unstable circuit. Thus, H(s) cannot have poles on the positive real 

axis. 

 Suppose H(s) has a pair of complex conjugate poles at s = a +/- jb. The 

contribution to the impulse response due to this pair of poles is 

 

       Now if a is positive, corresponding to poles in the right half s plane, the response is 

seen  to  be  an  exponentially  increasing  sinusoid  (Figure  2.4b).  Therefore,  H(s) cannot 

have poles in the right half s plane. An additional restriction on the poles of H(s) is that 

any poles on the imaginary axis must be simple.  

 Similarly, it can be shown that higher order poles on the jω axis will also 

cause the network to be unstable. From the above discussion we see that H(s) has 

the following factored form: 

 

 

 

where N(s) is the numerator polynomial and the constants associated with the denominator 

ai, ck, and dk  are real and nonnegative. The (s + ai) terms represent poles on the 

negative real axis and the second order terms represent complex conjugate poles in the left 

half s plane. It is easy to see that the product of these factors  can  only  lead  to  a  

polynomial,  all  of  whose  coefficients  are  real  and positive; moreover, none of the 

coefficients may be zero unless all the even or all the odd terms are missing. 

 



 

 

In summary, the network functions of all passive networks and all stable active 

   Must be rational functions in s with real coefficients. 

  May not have poles in the right half s plane. 

          May not have multiple poles on the  jω axis. 

 

Example: Check to see whether the following are stable network 

functions: 

 

 

The first function cannot be realized by a stable network because one of the coefficients in 

the denominator polynomial is negative. It can easily be verified that the poles are in the 

right half s plane. 

 



 

The second function is stable. The poles are on the jω axis (at s = +/- 2j) and are simple. 

Note that the function has a zero in the right half s plane; however, this does not 

violate any of the requirements on network functions. 

Properties of Driving Point (Positive Real) Functions: 

Positive Real 

Function: 

These conditions are required to satisfy to be positive realness 

 Y(s)  must  be  a  rational  function  in  s  with  real  coefficients,  i.e.,  the 

coefficients of the numerator and denominator polynomials is real and positive. 
 

 The poles and zeros of Y(s) have either negative or zero real parts, i.e., Y(s) not 

have poles or zeros in the right half s plane. 

 Poles of Y(s) on the imaginary axis must be simple and their residues must be 

real and positive, i.e., Y(s) not has multiple poles or zeros on the jω axis. The same 

statement applies to the poles of l/Y(s). 
 

 The  degrees  of  the  numerator  and  denominator  polynomials  in  Y(s) differ at 

most by 1. Thus the number of finite poles and finite zeros of Y(s) differ at 

most by 1. 

 The   terms   of   lowest   degree   in   the   numerator   and   denominator 

polynomials of Y(s) differ in degree at most by 1. So Y(s) has neither multiple 

poles nor zeros at the origin. 

 There be no missing terms in numerator and denominator polynomials unless 

all even or all odd terms are missing. 

 Test for necessary and sufficient conditions: 

   Y(s) must be real when s is real. 

   If Y(s) = p(s)/q(s), then p(s) + q(s) must be Hurwitz. This requires that: 

i. the continued fraction expansion of the Hurwitz test give only real and 

positive coefficients,  and 

ii. the continued fraction expansion not end prematurely. 

   In order that Re [Y(jω)] >= 0 for all ω, it is necessary and sufficient that 

 

 

 

have no real positive roots of odd multiplicity. This may be determined by 

factoring A(ω
2

) or by the use of Sturm's theorem. 

 



 

 

 

 

 

The inspection test reveals no obvious defects. Poles and zeros are clearly in the left half 

plane (from the quadratic formula), so that the residue test need not be carried out. It is 

only necessary to carry out the test: Re Y(jω) >= 0 for all ω 

 

This function is always positive or zero and the function is positive real. 

 

is slightly more complicated, but still passes the inspection test requirements. The 

poles are seen to be at s = +jl. The Hurwitz test is successful. 

 

 

 

 

 

 

 



 

The real part test shows that: 

 

 

which is always positive or zero as required.    All of the tests are successful and the 

function F(s) is positive real. 

Brune’s Positive Real Functions : 

The term positive-real function was originally defined by Otto Brune to describe any function 

Z(s) which 

 is rational (the quotient of two polynomials), 

 is real when s is real 

 has positive real part when s has a positive real part 

Properties of Positive Real 

 The sum of two PR functions is PR. 

 The composition of two PR functions is PR. In particular, if Z(s) is PR, then so are 

1/Z(s) and Z(1/s). 

 All the poles and zeros of a PR function are in the left half plane or on its boundary 

the imaginary axis. 

 Any poles and zeroes on the imaginary axis are simple (have a multiplicity of one). 

 Any poles on the imaginary axis have real strictly positive residues, and similarly at 

any zeroes on the imaginary axis, the function has a real strictly positive derivative. 

 Over the right half plane, the minimum value of the real part of a PR function occurs 

on the imaginary axis (because the real part of an analytic function constitutes a 

harmonic function over the plane, and therefore satisfies the maximum principle). 

 For a rational PR function, the number of poles and number of zeroes differ by at 

most one. 

Generalizations 

Irrational functions 

The irrational function Z(s) is PR if and only if 

 Z(s) is analytic in the open right half s-plane (Re[s] > 0) 

 Z(s) is real when s is positive and real 

 Re[Z(s)] ≥ 0 when Re[s] ≥ 0 

Matrix-valued functions 

A irrational matrix-valued function Z(s) is PR if and only if 

 Each element of Z(s) is analytic in the open right half s-plane (Re[s] > 0) 

 Each element of Z(s) is real when s is positive and real 

 The Hermitian part (Z(s) + Z
†
(s))/2 of Z(s) is positive semi-definite when Re[s] ≥ 0 

http://en.wikipedia.org/wiki/Otto_Brune
http://en.wikipedia.org/wiki/Rational_function
http://en.wikipedia.org/wiki/Polynomials
http://en.wikipedia.org/wiki/Function_composition
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http://en.wikipedia.org/wiki/Zero_%28complex_analysis%29#Multiplicity_of_a_zero
http://en.wikipedia.org/wiki/Multiplicity_%28mathematics%29
http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29
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http://en.wikipedia.org/wiki/Maximum_principle
http://en.wikipedia.org/wiki/Rational_function
http://en.wikipedia.org/wiki/Hermitian_matrix
http://en.wikipedia.org/wiki/Positive-definite_matrix


 

Maximum modulus principle : 

The maximum modulus principle in complex analysis states that if f is a holomorphic 

function, then the modulus cannot exhibit a true local maximum that is properly within 

the domain of f. In other words, either f is a constant function, or, for any point z0 inside the 

domain of f there exist other points arbitrarily close to z0 at which |f | takes larger values. 

Let f be a function holomorphic on some connected open subset D of the complex plane 

and taking complex values. If z0 is a point in D such that 

 

for all z in a neighborhood of z0, then the function f is constant on D. 

By switching to the reciprocal, we can get the minimum modulus principle. It states that if f 

is holomorphic within a bounded domain D, continuous up to the boundary of D, and non-

zero at all points, then |f (z)| takes its minimum value on the boundary of D. 

Alternatively, the maximum modulus principle can be viewed as a special case of the open 

mapping theorem, which states that a nonconstant holomorphic function maps open sets to 

open sets. If |f| attains a local maximum at z, then the image of a sufficiently small open 

neighborhood of z cannot be open. Therefore, f is constant. 

Applications 

The maximum modulus principle has many uses in complex analysis, and may be used to 

prove the following: 

 The fundamental theorem of algebra. 

 Schwarz's lemma, a result which in turn has many generalisations and applications in 

complex analysis. 

 The Phragmén–Lindelöf principle, an extension to unbounded domains. 

 The Borel–Carathéodory theorem, which bounds an analytic function in terms of its 

real part. 

 The Hadamard three-lines theorem, a result about the behaviour of bounded 

holomorphic functions on a line between two other parallel lines in the complex 

plane. 

  Hurwitz 

Polynomial: 

A polynomial p(s) is said to be Hurwitz if all the roots of p(s) are located in the open 

left half (LH) s-plane (not including the imaginary axis). 
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Let p(s) be the polynomial in question. Assume first that p(s) is neither an even nor an 

odd polynomial. To test whether such a polynomial p(s) is indeed a Hurwitz polynomial, 

we may use the Hurwitz test. 

 First  decompose   p(s)  into  its  even  and  odd  parts,  M(s)  and  N(s), 

respectively, as p(s) = M(s) + N(s). 

 Using M(s) and N(s) we form the test ratio T(s), whose numerator has a 

higher  degree  than  that  of  its  denominator.   Suppose  that  p(s)  is  a 

polynomial of degree d. Then 

 

 Next, we perform the continued fraction expansion  about infinity on the test 

ratio T(s), removing one pole at a time in the form of a quotient qs, resulting in: 

 

 

 

where qis is the ith quotient, and qi, is the associated coefficient. 

 If there is one or more quotients with negative coefficients,  then p(s) is 

neither a Hurwitz nor a modified Hurwitz polynomial. 

 On the other hand, if there are d quotients (d = d
^

) and every quotient has a 

positive coefficient, then p(s) is a Hurwitz polynomial. 

 Finally, if the number of quotient d
^ 

is less than d but every quotient has a 

positive coefficient, this means that there is a common factor k(s) between M(s) 

and N(s). Hence, we can write p(s) as: 



 

 

 Because all the d
^ 

quotients of T(s) have positive coefficients, the polyno- 

mial  p(s)  in  (4-10)  is  Hurwitz.  Thus,  if  k(s)  is  a  modified  Hurwitz 

polynomial [i.e., if all the roots of k(s) are simple and purely imaginary], 

then p(s) is a modified Hurwitz polynomial. 

 A  procedure  to  determine  if  k(s)  is  a  modified  Hurwitz  polynomial  is 

described in the following in conjunction with the case when p(s) is either an 

even or an odd polynomial. 

 Suppose now that p(s) is either an even or an odd polynomial of degree d. is a 

modified Hurwitz polynomial if and only if p(s) has only simple and imaginary 

axis roots (including the origin). 

    To determine if p(s) is a modified Hurwitz polynomial, we form a test ratio 

T
^

(s): 

 

and perform the continued fraction expansion about infinity on T
^

(s), as in (4-

9). Then p(s) is a modified Hurwitz polynomial if and only if there are d 

quotients in the expansion and each quotient has a positive coefficient. 

 In the case when p(s) is either an even or an odd polynomial, if there is one or 

more negative coefficient in the continued fraction expansion of T^(s), then 

p(s) has a RH s-plane root; and if all coefficients are positive but there are only 

d^ < d quotients, then all roots of p(s) are on the imaginary axis of the  s-plane,  

but  p(s)  has  non-simple  or  multiple  roots.  Either  situation implies that p(s) 

is not a modified Hurwitz polynomial. 

The following examples illustrate these testing procedures 

 

 

 



 

 

 

 

 



 

 

 

Routh–Hurwitz stability criterion: 

A tabular method can be used to determine the stability when the roots of a higher order 

characteristic polynomial are difficult to obtain. For an nth-degree polynomial 

  

the table has n + 1 rows and the following structure: 

   

 

 
  

 

 
  

 

 
  

 

   

 



 

where the elements and can be computed as follows: 

 

 

When completed, the number of sign changes in the first column will be the number of non-

negative poles. 

In the first column, there are two sign changes, thus there are two non-negative roots where 

the system is unstable. Sometimes the presence of poles on the imaginary axis creates a 

situation of marginal stability. The row of polynomial which is just above the row containing 

the zeroes is called "Auxiliary Polynomial". 

  

We have the following table: 

1 8 20 16 

2 12 16 0 

2 12 16 0 

0 0 0 0 

In such a case the Auxiliary polynomial is which is again 

equal to zero. The next step is to differentiate the above equation which yields the following 

polynomial. . The coefficients of the row containing zero now 

become "8" and "24". The process of Routh array is proceeded using these values which yield 

two points on the imaginary axis. These two points on the imaginary axis are the prime cause 

of marginal stability. 

Even and Odd functions : 

In mathematics, even functions and odd functions are functions which satisfy particular 

symmetry relations, with respect to taking additive inverses. They are important in many 

areas of mathematical analysis, especially the theory of power series and Fourier series. They 

are named for the parity of the powers of the power functions which satisfy each condition: 

the function f(x) = x
n
 is an even function if n is an even integer, and it is an odd function if n 

is an odd integer. 
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Definition and examples 

The concept of evenness or oddness is only defined for functions whose domain and range 

both have an additive inverse. This includes additive groups, all rings, all fields, and all 

vector spaces. Thus, for example, a real-valued function of a real variable could be even or 

odd, as could a complex-valued function of a vector variable, and so on. The examples are 

real-valued functions of a real variable, to illustrate the symmetry of their graphs. 

Even functions 

 

ƒ(x) = x
2
 is an example of an even function. 

Let f(x) be a real-valued function of a real variable. Then f is even if the following equation 

holds for all x and -x in the domain of f:
[1]

 

          

Geometrically speaking, the graph face of an even function is symmetric with respect to the 

y-axis, meaning that its graph remains unchanged after reflection about the y-axis. Examples 

of even functions are |x|, x
2
, x

4
, cos(x), and cosh(x). 

Odd functions 

 

ƒ(x) = x
3
 is an example of an odd function. 
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Again, let f(x) be a real-valued function of a real variable. Then f is odd if the following 

equation holds for all x and -x in the domain of f:
[2]

 

         

Geometrically, the graph of an odd function has rotational symmetry with respect to the 

origin, meaning that its graph remains unchanged after rotation of 180 degrees about the 

origin. Examples of odd functions are x, x
3
, sin(x), sinh(x), and erf(x). 

Continuity and differentiability 

A function's being odd or even does not imply differentiability, or even continuity. For 

example, the Dirichlet function is even, but is nowhere continuous. Properties involving 

Fourier series, Taylor series, derivatives and so on may only be used when they can be 

assumed to exist. 

Sturm's theorem : 

A Sturm chain or Sturm sequence is a finite sequence of polynomials  

of decreasing degree with these following properties: 

 p0 = p is square free (no square factors, i.e., no repeated roots); 

 if p(ξ) = 0, then sign(p1(ξ)) = sign(p′(ξ)); 

 if pi(ξ) = 0 for 0 < i < m then sign(pi−1(ξ)) = −sign(pi+1(ξ)); 

 pm does not change its sign. 

Sturm's sequence is a modification of Fourier's sequence. Let p = p0, ..., pm be a Sturm chain, 

where p is a square-free polynomial, and let σ(ξ) denote the number of sign changes (ignoring 

zeroes) in the sequence 

 

Sturm's theorem then states that for two real numbers a < b, the number of distinct roots of p 

in the half-open interval (a, b] is σ(a) − σ(b). Suppose we wish to find the number of roots in 

some range for the polynomial . So 

 

Using polynomial long division to divide p0 by p1 gives the remainder , 

and upon multiplying this remainder by −1 we obtain . Next 

dividing p1 by p2 and multiplying the remainder by −1, we obtain . 

And dividing p2 by p3 and multiplying the remainder by −1, we obtain . 
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Thus the complete chain of Sturm polynomials is: 

 

 

 

 

 

To find the number of roots between −∞ and ∞, first evaluate p0, p1, p2, p3, and p4 at −∞ and 

note the sequence of signs of the results: + − + + −, which contains three sign changes (+ to 

−, then − to +, then + to −). The same procedure for ∞ gives the sign sequence + + + − −, 

which contains just one sign change. Hence the number of roots of the original polynomial 

between −∞ and ∞ is 3 − 1 = 2. That this is correct can be seen by noting that p(x) = x
4
 + x

3
 − 

x − 1 can be factored as (x
2
 − 1)(x

2
 + x + 1), where it is readily verifiable that x

2
 − 1 has the 

two roots −1 and 1 while x
2
 + x + 1 has no real roots. In more complicated examples in which 

there is no advance knowledge of the roots because factoring is either impossible or 

impractical, one can experiment with various finite bounds for the range to be considered, 

thus narrowing down the locations of the roots. 

An alternative Test for Positive real functions: 

Sturm's theorem can be used to compute the total number of real roots of a polynomial. This 

may be done by choosing −a = b = M where M is larger than the absolute value of every root. 

For example, a bound due to Cauchy says that all real roots of a polynomial with coefficients 

ai are in the interval [−M, M], where 

 

Although theoretically the above approach is the simplest, in practice bounds on the positive 

(only) roots of polynomials are used and the positive roots are isolated and evaluated first; the 

negative roots are treated by first substituting x by −x, then compute a new (positive root) 

bound to isolate and evaluate the negative roots. Sturm's method and VCA need to compute 

only one bound to isolate the positive roots. In contrast, to isolate the positive roots VAS 

needs to compute various positive bounds, for the various polynomials that appear in the 

process.
[8][9]

 

Another method is computationally simpler. One can use the fact that for large x, the sign of 
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is sign(an), whereas sign(p(−x)) is (−1)
n
an. In this way, simply counting the sign changes in 

the leading coefficients in the Sturm chain readily gives the number of distinct real roots of a 

polynomial. 

Sturm's theorem allows also to determine the multiplicity of a given root, say ξ. Indeed, 

suppose that a < ξ < b, with σ(a) − σ(b) = 1. Then, ξ has multiplicity k precisely when ξ is a 

root with multiplicity k − 1 of pm (since it is the GCD of p and its derivative). Thus the 

multiplicity of ξ may be computed by recursively applying Sturm's theorem to pm. However, 

this method is rarely used, as square-free factorization is computationally more efficient for 

this purpose. 
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                                                  MODULE-VI 

LC Network Synthesis : 

By Kirchhoff's voltage law, the voltage across the capacitor, VC, plus the voltage across the 

inductor, VL must equal zero: 

 

Likewise, by Kirchhoff's current law, the current through the capacitor equals the current 

through the inductor: 

 

From the constitutive relations for the circuit elements, we also know that 

 

and 

 

Differential equation 

Rearranging and substituting gives the second order differential equation 

 

The parameter ω0, the resonant angular frequency, is defined as: 

 

Using this can simplify the differential equation 

 

The associated polynomial is 
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Thus,   where j is the imaginary unit. 

 

Series LC circuit 

 

Series LC circuit 

In the series configuration of the LC circuit, the inductor L and capacitor C are connected in 

series, as shown here. The total voltage v across the open terminals is simply the sum of the 

voltage across the inductor and the voltage across the capacitor. The current i into the positive 

terminal of the circuit is equal to the current through both the capacitor and the inductor. 

 

 

Resonance 

Inductive reactance magnitude ( ) increases as frequency increases while capacitive 

reactance magnitude ( ) decreases with the increase in frequency. At one particular 

frequency, these two reactances are equal in magnitude but opposite in sign; that frequency is 

called the resonant frequency ( ) for the given circuit. 

Hence, at resonance: 

 

 

Solving for , we have 

 

which is defined as the resonant angular frequency of the circuit. 
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Converting angular frequency (in radians per second) into frequency (in hertz),one has 

 

In a series configuration, XC and XL cancel each other out. In real, rather than idealised 

components, the current is opposed, mostly by the resistance of the coil windings. Thus, the 

current supplied to a series resonant circuit is a maximum at resonance. 

 In the limit as current is maximum. Circuit impedance is minimum. In this state, 

a circuit is called an acceptor circuit 

 For , . Hence, the circuit is capacitive. 

 For , . Hence, the circuit is inductive. 

Impedance 

In the series configuration, resonance occurs when the complex electrical impedance of the 

circuit approaches zero. 

First consider the impedance of the series LC circuit. The total impedance is given by the 

sum of the inductive and capacitive impedances: 

 

Writing the inductive impedance as ZL = jωL and capacitive impedance as ZC = (jωC)
−1

 and 

substituting gives 

. 

Writing this expression under a common denominator gives 

. 

Finally, defining the natural angular frequency as 

, 

the impedance becomes 

. 
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The numerator implies that in the limit as , the total impedance Z will be zero 

and otherwise non-zero. Therefore the series LC circuit, when connected in series with a 

load, will act as a band-pass filter having zero impedance at the resonant frequency of the LC 

circuit. 

Parallel LC circuit 

 

Parallel LC Circuit 

In the parallel configuration, the inductor L and capacitor C are connected in parallel, as 

shown here. The voltage v across the open terminals is equal to both the voltage across the 

inductor and the voltage across the capacitor. The total current i flowing into the positive 

terminal of the circuit is equal to the sum of the current flowing through the inductor and the 

current flowing through the capacitor. 

 

 

Resonance 

Let R be the internal resistance of the coil. When XL equals XC, the reactive branch currents 

are equal and opposite. Hence they cancel out each other to give minimum current in the 

main line. Since total current is minimum, in this state the total impedance is maximum. 

Resonant frequency given by: . 

Note that any reactive branch current is not minimum at resonance, but each is given 

separately by dividing source voltage (V) by reactance (Z). Hence I=V/Z, as per Ohm's law. 

 At f0, line current is minimum. Total impedance is maximum. In this state a circuit is 

called a rejector circuit. 

 Below f0, circuit is inductive. 

 Above f0,circuit is capacitive. 

Impedance 
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The same analysis may be applied to the parallel LC circuit. The total impedance is then 

given by: 

 

and after substitution of and and simplification, gives 

 

which further simplifies to 

 

where 

 

Note that 

 

 but for all other values of the impedance is finite. The parallel LC circuit connected 

in series with a load will act as band-stop filter having infinite impedance at the resonant 

frequency of the LC circuit. The parallel LC circuit connected in parallel with a load will act 

as band-pass filter.  

RC  Network Synthesis: 

A resistor–capacitor circuit (RC circuit), or RC filter or RC network, is an electric circuit 

composed of resistors and capacitors driven by a voltage or current source. A first order RC 

circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit. 

RC circuits can be used to filter a signal by blocking certain frequencies and passing others. 

The two most common RC filters are the high-pass filters and low-pass filters; band-pass 

filters and band-stop filters usually require RLC filters, though crude ones can be made with 

RC filters. 

Introduction 

There are three basic, linear passive lumped analog circuit components: the resistor (R), the 

capacitor (C), and the inductor (L). These may be combined in the RC circuit, the RL circuit, 

the LC circuit, and the RLC circuit, with the abbreviations indicating which components are 
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used. These circuits, among them, exhibit a large number of important types of behaviour that 

are fundamental to much of analog electronics. In particular, they are able to act as passive 

filters. This article considers the RC circuit, in both series and parallel forms, as shown in the 

diagrams below. 

This article relies on knowledge of the complex impedance representation of 

capacitors and on knowledge of the frequency domain representation of signals. 

Natural response 

 

RC circuit 

The simplest RC circuit is a capacitor and a resistor in series. When a circuit consists of only 

a charged capacitor and a resistor, the capacitor will discharge its stored energy through the 

resistor. The voltage across the capacitor, which is time dependent, can be found by using 

Kirchhoff's current law, where the current charging the capacitor must equal the current 

through the resistor. This results in the linear differential equation 

. 

Solving this equation for V yields the formula for exponential decay: 

 

where V0 is the capacitor voltage at time t = 0. 

The time required for the voltage to fall to is called the RC time constant and is given by 
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Complex impedance 

The complex impedance, ZC (in ohms) of a capacitor with capacitance C (in farads) is 

 

The complex frequency s is, in general, a complex number, 

 

where 

 represents the imaginary unit: 

 

 is the exponential decay constant (in radians per second), and 

 is the sinusoidal angular frequency (also in radians per second). 

Series circuit 

 

Series RC circuit 

By viewing the circuit as a voltage divider, the voltage across the capacitor is: 

 

and the voltage across the resistor is: 

. 

Transfer functions 

The transfer function from the input voltage to the voltage across the capacitor is 
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. 

Similarly, the transfer function from the input to the voltage across the resistor is 

. 

Poles and zeros 

Both transfer functions have a single pole located at 

. 

In addition, the transfer function for the resistor has a zero located at the origin. 

Gain and phase 

The magnitude of the gains across the two components are: 

 

and 

, 

and the phase angles are: 

 

and 

. 

These expressions together may be substituted into the usual expression for the phasor 

representing the output: 
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. 

Current 

The current in the circuit is the same everywhere since the circuit is in series: 

 

Impulse response 

The impulse response for each voltage is the inverse Laplace transform of the corresponding 

transfer function. It represents the response of the circuit to an input voltage consisting of an 

impulse or Dirac delta function. 

The impulse response for the capacitor voltage is 

 

where u(t) is the Heaviside step function and 

 

is the time constant. 

Similarly, the impulse response for the resistor voltage is 

 

where δ(t) is the Dirac delta function 

Frequency-domain considerations 

These are frequency domain expressions. Analysis of them will show which frequencies the 

circuits (or filters) pass and reject. This analysis rests on a consideration of what happens to 

these gains as the frequency becomes very large and very small. 

As   . 

As : .This shows that, if the output is taken across the capacitor, 

high frequencies are attenuated (shorted to ground) and low frequencies are passed. Thus, the 

circuit behaves as a low-pass filter. If, though, the output is taken across the resistor, high 

frequencies are passed and low frequencies are attenuated (since the capacitor blocks the 

signal as its frequency approaches 0). In this configuration, the circuit behaves as a high-pass 

filter. 
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The range of frequencies that the filter passes is called its bandwidth. The point at which the 

filter attenuates the signal to half its unfiltered power is termed its cutoff frequency. This 

requires that the gain of the circuit be reduced to 

. 

Solving the above equation yields 

 

or 

 

which is the frequency that the filter will attenuate to half its original power. 

Clearly, the phases also depend on frequency, although this effect is less interesting generally 

than the gain variations. 

As : 

 

. 

As : 

 

 

So at DC (0 Hz), the capacitor voltage is in phase with the signal voltage while the resistor 

voltage leads it by 90°. As frequency increases, the capacitor voltage comes to have a 90° lag 

relative to the signal and the resistor voltage comes to be in-phase with the signal. 

Time-domain considerations 

The most straightforward way to derive the time domain behaviour is to use the Laplace 

transforms of the expressions for and given above. This effectively transforms 

. Assuming a step input (i.e. before and then 

afterwards): 
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and 

. 

 

Capacitor voltage step-response. 

 

Resistor voltage step-response. 

Partial fractions expansions and the inverse Laplace transform yield: 

 

. 

These equations are for calculating the voltage across the capacitor and resistor respectively 

while the capacitor is charging; for discharging, the equations are vice-versa. These equations 

can be rewritten in terms of charge and current using the relationships C=Q/V and V=IR (see 

Ohm's law). 
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Parallel circuit 

 

Parallel RC circuit 

The parallel RC circuit is generally of less interest than the series circuit. This is largely 

because the output voltage is equal to the input voltage — as a result, this circuit 

does not act as a filter on the input signal unless fed by a current source. 

With complex impedances: 

 

and 

. 

This shows that the capacitor current is 90° out of phase with the resistor (and source) 

current. Alternatively, the governing differential equations may be used: 

 

and 

. 

When fed by a current source, the transfer function of a parallel RC circuit is: 

. 

RL  Network Synthesis: 

A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit 

composed of resistors and inductors driven by a voltage or current source. A first order RL 

circuit is composed of one resistor and one inductor and is the simplest type of RL circuit. 
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The fundamental passive linear circuit elements are the resistor (R), capacitor (C) and 

inductor (L). These circuit elements can be combined to form an electrical circuit in four 

distinct ways: the RC circuit, the RL circuit, the LC circuit and the RLC circuit with the 

abbreviations indicating which components are used. These circuits exhibit important types 

of behaviour that are fundamental to analogue electronics. In particular, they are able to act as 

passive filters. This article considers the RL circuit in both series and parallel as shown in the 

diagrams. 

In practice, however, capacitors (and RC circuits) are usually preferred to inductors since 

they can be more easily manufactured and are generally physically smaller, particularly for 

higher values of components. 

Both RC and RL circuits form a single-pole filter. Depending on whether the reactive 

element (C or L) is in series with the load, or parallel with the load will dictate whether the 

filter is low-pass or high-pass. 

Frequently RL circuits are used for DC power supplies to RF amplifiers, where the inductor 

is used to pass DC bias current and block the RF getting back into the power supply. 

 

Complex impedance 

The complex impedance ZL (in ohms) of an inductor with inductance L (in henries) is 

 

The complex frequency s is a complex number, 

 

where 

 j represents the imaginary unit: 

 

 is the exponential decay constant (in radians per second), and 

 is the angular frequency (in radians per second). 

Eigenfunctions 

The complex-valued eigenfunctions of any linear time-invariant (LTI) system are of the 

following forms: 
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From Euler's formula, the real-part of these eigenfunctions are exponentially-decaying 

sinusoids: 

 

Sinusoidal steady state 

Sinusoidal steady state is a special case in which the input voltage consists of a pure sinusoid 

(with no exponential decay). As a result, 

 

and the evaluation of s becomes 

 

Series circuit 

 

Series RL circuit 

By viewing the circuit as a voltage divider, we see that the voltage across the inductor is: 

 

and the voltage across the resistor is: 

 

Current 

The current in the circuit is the same everywhere since the circuit is in series: 
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Transfer functions 

The transfer function for the inductor is 

 

Similarly, the transfer function for the resistor is 

 

Poles and zeros 

Both transfer functions have a single pole located at 

 

In addition, the transfer function for the inductor has a zero located at the origin. 

Gain and phase angle 

The gains across the two components are found by taking the magnitudes of the above 

expressions: 

 

and 

 

and the phase angles are: 

 

and 
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Phasor notation 

These expressions together may be substituted into the usual expression for the phasor 

representing the output: 

 

Impulse response 

The impulse response for each voltage is the inverse Laplace transform of the corresponding 

transfer function. It represents the response of the circuit to an input voltage consisting of an 

impulse or Dirac delta function. 

The impulse response for the inductor voltage is 

 

where u(t) is the Heaviside step function and 

 

is the time constant. 

Similarly, the impulse response for the resistor voltage is 

 

Zero input response (ZIR) 

The Zero input response, also called the natural response, of an RL circuit describes the 

behavior of the circuit after it has reached constant voltages and currents and is disconnected 

from any power source. It is called the zero-input response because it requires no input. 

The ZIR of an RL circuit is: 

 

Frequency domain considerations 
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These are frequency domain expressions. Analysis of them will show which frequencies the 

circuits (or filters) pass and reject. This analysis rests on a consideration of what happens to 

these gains as the frequency becomes very large and very small. 

As : 

 

As : 

 

This shows that, if the output is taken across the inductor, high frequencies are passed and 

low frequencies are attenuated (rejected). Thus, the circuit behaves as a high-pass filter. If, 

though, the output is taken across the resistor, high frequencies are rejected and low 

frequencies are passed. In this configuration, the circuit behaves as a low-pass filter. Compare 

this with the behaviour of the resistor output in an RC circuit, where the reverse is the case. 

The range of frequencies that the filter passes is called its bandwidth. The point at which the 

filter attenuates the signal to half its unfiltered power is termed its cutoff frequency. This 

requires that the gain of the circuit be reduced to 

. 

Solving the above equation yields 

rad/s 

or 

Hz 

which is the frequency that the filter will attenuate to half its original power. 

Clearly, the phases also depend on frequency, although this effect is less interesting generally 

than the gain variations. 

As : 
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As : 

 

So at DC (0 Hz), the resistor voltage is in phase with the signal voltage while the inductor 

voltage leads it by 90°. As frequency increases, the resistor voltage comes to have a 90° lag 

relative to the signal and the inductor voltage comes to be in-phase with the signal. 

Time domain considerations 

The most straightforward way to derive the time domain behaviour is to use the Laplace 

transforms of the expressions for and given above. This effectively transforms . 

Assuming a step input (i.e., before and then afterwards): 

 

 

Inductor voltage step-response. 
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Resistor voltage step-response. 

Partial fractions expansions and the inverse Laplace transform yield: 

 

Thus, the voltage across the inductor tends towards 0 as time passes, while the voltage across 

the resistor tends towards V, as shown in the figures. This is in keeping with the intuitive 

point that the inductor will only have a voltage across as long as the current in the circuit is 

changing — as the circuit reaches its steady-state, there is no further current change and 

ultimately no inductor voltage. 

These equations show that a series RL circuit has a time constant, usually denoted 

being the time it takes the voltage across the component to either fall (across L) or rise 

(across R) to within of its final value. That is, is the time it takes to reach and 

to reach . 

The rate of change is a fractional per . Thus, in going from to , 

the voltage will have moved about 63% of the way from its level at toward its final 

value. So the voltage across L will have dropped to about 37% after , and essentially to zero 

(0.7%) after about . Kirchhoff's voltage law implies that the voltage across the resistor will 

rise at the same rate. When the voltage source is then replaced with a short-circuit, the 

voltage across R drops exponentially with t from towards 0. R will be discharged to about 

37% after , and essentially fully discharged (0.7%) after about . Note that the current, , 

in the circuit behaves as the voltage across R does, via Ohm's Law. 

The delay in the rise/fall time of the circuit is in this case caused by the back-EMF from the 

inductor which, as the current flowing through it tries to change, prevents the current (and 

hence the voltage across the resistor) from rising or falling much faster than the time-constant 

of the circuit. Since all wires have some self-inductance and resistance, all circuits have a 

time constant. As a result, when the power supply is switched on, the current does not 

instantaneously reach its steady-state value, . The rise instead takes several time-constants 

to complete. If this were not the case, and the current were to reach steady-state immediately, 

extremely strong inductive electric fields would be generated by the sharp change in the 

magnetic field — this would lead to breakdown of the air in the circuit and electric arcing, 

probably damaging components (and users). 

These results may also be derived by solving the differential equation describing the circuit: 
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The first equation is solved by using an integrating factor and yields the current which must 

be differentiated to give ; the second equation is straightforward. The solutions are exactly 

the same as those obtained via Laplace transforms. 

Parallel circuit 

 

Parallel RL circuit 

The parallel RL circuit is generally of less interest than the series circuit unless fed by a 

current source. This is largely because the output voltage is equal to the input voltage 

—as a result, this circuit does not act as a filter for a voltage input signal. 

With complex impedances: 

 

This shows that the inductor lags the resistor (and source) current by 90°. 

The parallel circuit is seen on the output of many amplifier circuits, and is used to isolate the 

amplifier from capacitive loading effects at high frequencies. Because of the phase shift 

introduced by capacitance, some amplifiers become unstable at very high frequencies, and 

tend to oscillate. This affects sound quality and component life (especially the transistors), 

and is to be avoided. 

RLC  Network Synthesis: 
 

 

 

A series RLC circuit: a resistor, inductor, and a capacitor 
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An RLC circuit (the letters R, L and C can be in other orders) is an electrical circuit 

consisting of a resistor, an inductor, and a capacitor, connected in series or in parallel. The 

RLC part of the name is due to those letters being the usual electrical symbols for resistance, 

inductance and capacitance respectively. The circuit forms a harmonic oscillator for current 

and will resonate in a similar way as an LC circuit will. The main difference that the presence 

of the resistor makes is that any oscillation induced in the circuit will die away over time if it 

is not kept going by a source. This effect of the resistor is called damping. The presence of 

the resistance also reduces the peak resonant frequency somewhat. Some resistance is 

unavoidable in real circuits, even if a resistor is not specifically included as a component. An 

ideal, pure LC circuit is an abstraction for the purpose of theory. 

There are many applications for this circuit. They are used in many different types of 

oscillator circuits. Another important application is for tuning, such as in radio receivers or 

television sets, where they are used to select a narrow range of frequencies from the ambient 

radio waves. In this role the circuit is often referred to as a tuned circuit. An RLC circuit can 

be used as a band-pass filter, band-stop filter, low-pass filter or high-pass filter. The tuning 

application, for instance, is an example of band-pass filtering. The RLC filter is described as 

a second-order circuit, meaning that any voltage or current in the circuit can be described by 

a second-order differential equation in circuit analysis. 

The three circuit elements can be combined in a number of different topologies. All three 

elements in series or all three elements in parallel are the simplest in concept and the most 

straightforward to analyse. There are, however, other arrangements, some with practical 

importance in real circuits. One issue often encountered is the need to take into account 

inductor resistance. Inductors are typically constructed from coils of wire, the resistance of 

which is not usually desirable, but it often has a significant effect on the circuit. 

Resonance 

An important property of this circuit is its ability to resonate at a specific frequency, the 

resonance frequency, . Frequencies are measured in units of hertz. In this article, however, 

angular frequency, , is used which is more mathematically convenient. This is measured 

in radians per second. They are related to each other by a simple proportion, 

 

Resonance occurs because energy is stored in two different ways: in an electric field as the 

capacitor is charged and in a magnetic field as current flows through the inductor. Energy can 

be transferred from one to the other within the circuit and this can be oscillatory. A 

mechanical analogy is a weight suspended on a spring which will oscillate up and down when 

released. This is no passing metaphor; a weight on a spring is described by exactly the same 

second order differential equation as an RLC circuit and for all the properties of the one 

system there will be found an analogous property of the other. The mechanical property 

answering to the resistor in the circuit is friction in the spring/weight system. Friction will 

slowly bring any oscillation to a halt if there is no external force driving it. Likewise, the 

resistance in an RLC circuit will "damp" the oscillation, diminishing it with time if there is no 

driving AC power source in the circuit. 

The resonance frequency is defined as the frequency at which the impedance of the circuit is 

at a minimum. Equivalently, it can be defined as the frequency at which the impedance is 

http://en.wikipedia.org/wiki/Electrical_circuit
http://en.wikipedia.org/wiki/Resistor
http://en.wikipedia.org/wiki/Inductor
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Electrical_resistance
http://en.wikipedia.org/wiki/Inductance
http://en.wikipedia.org/wiki/Capacitance
http://en.wikipedia.org/wiki/Harmonic_oscillator
http://en.wikipedia.org/wiki/Resonance
http://en.wikipedia.org/wiki/LC_circuit
http://en.wikipedia.org/wiki/Damping
http://en.wikipedia.org/wiki/Electronic_oscillator
http://en.wikipedia.org/wiki/Tuner_%28electronics%29
http://en.wikipedia.org/wiki/Receiver_%28radio%29
http://en.wikipedia.org/wiki/Television_set
http://en.wikipedia.org/wiki/Band-pass_filter
http://en.wikipedia.org/wiki/Band-stop_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/High-pass_filter
http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Topology_%28electronics%29
http://en.wikipedia.org/wiki/Electrical_resonance
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Angular_frequency
http://en.wikipedia.org/wiki/Radian
http://en.wikipedia.org/wiki/Resonance
http://en.wikipedia.org/wiki/Electrical_impedance


 

purely real (that is, purely resistive). This occurs because the impedances of the inductor and 

capacitor at resonance are equal but of opposite sign and cancel out. Circuits where L and C 

are in parallel rather than series actually have a maximum impedance rather than a minimum 

impedance. For this reason they are often described as antiresonators, it is still usual, 

however, to name the frequency at which this occurs as the resonance frequency. 

Natural frequency 

The resonance frequency is defined in terms of the impedance presented to a driving source. 

It is still possible for the circuit to carry on oscillating (for a time) after the driving source has 

been removed or it is subjected to a step in voltage (including a step down to zero). This is 

similar to the way that a tuning fork will carry on ringing after it has been struck, and the 

effect is often called ringing. This effect is the peak natural resonance frequency of the circuit 

and in general is not exactly the same as the driven resonance frequency, although the two 

will usually be quite close to each other. Various terms are used by different authors to 

distinguish the two, but resonance frequency unqualified usually means the driven resonance 

frequency. The driven frequency may be called the undamped resonance frequency or 

undamped natural frequency and the peak frequency may be called the damped resonance 

frequency or the damped natural frequency. The reason for this terminology is that the driven 

resonance frequency in a series or parallel resonant circuit has the value
[1]

 

 

This is exactly the same as the resonance frequency of an LC circuit, that is, one with no 

resistor present. The resonant frequency for an RLC circuit is the same as a circuit in which 

there is no damping, hence undamped resonance frequency. The peak resonance frequency, 

on the other hand, depends on the value of the resistor and is described as the damped 

resonant frequency. A highly damped circuit will fail to resonate at all when not driven. A 

circuit with a value of resistor that causes it to be just on the edge of ringing is called 

critically damped. Either side of critically damped are described as underdamped (ringing 

happens) and overdamped (ringing is suppressed). 

Circuits with topologies more complex than straightforward series or parallel (some examples 

described later in the article) have a driven resonance frequency that deviates from 

and for those the undamped resonance frequency, damped resonance frequency and driven 

resonance frequency can all be different. 

Damping 

Damping is caused by the resistance in the circuit. It determines whether or not the circuit 

will resonate naturally (that is, without a driving source). Circuits which will resonate in this 

way are described as underdamped and those that will not are overdamped. Damping 

attenuation (symbol α) is measured in nepers per second. However, the unitless damping 

factor (symbol ζ, zeta) is often a more useful measure, which is related to α by 
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The special case of ζ = 1 is called critical damping and represents the case of a circuit that is 

just on the border of oscillation. It is the minimum damping that can be applied without 

causing oscillation. 

Bandwidth 

The resonance effect can be used for filtering, the rapid change in impedance near resonance 

can be used to pass or block signals close to the resonance frequency. Both band-pass and 

band-stop filters can be constructed and some filter circuits are shown later in the article. A 

key parameter in filter design is bandwidth. The bandwidth is measured between the 3dB-

points, that is, the frequencies at which the power passed through the circuit has fallen to half 

the value passed at resonance. There are two of these half-power frequencies, one above, and 

one below the resonance frequency 

 

where is the bandwidth, is the lower half-power frequency and is the upper half-

power frequency. The bandwidth is related to attenuation by, 

 

when the units are radians per second and nepers per second respectively
[citation needed]

. Other 

units may require a conversion factor. A more general measure of bandwidth is the fractional 

bandwidth, which expresses the bandwidth as a fraction of the resonance frequency and is 

given by 

 

The fractional bandwidth is also often stated as a percentage. The damping of filter circuits is 

adjusted to result in the required bandwidth. A narrow band filter, such as a notch filter, 

requires low damping. A wide band filter requires high damping. 

Q factor 

The Q factor is a widespread measure used to characterise resonators. It is defined as the peak 

energy stored in the circuit divided by the average energy dissipated in it per radian at 

resonance. Low Q circuits are therefore damped and lossy and high Q circuits are 

underdamped. Q is related to bandwidth; low Q circuits are wide band and high Q circuits are 

narrow band. In fact, it happens that Q is the inverse of fractional bandwidth 

 

Q factor is directly proportional to selectivity, as Q factor depends inversely on bandwidth. 

For a series resonant circuit, the Q factor can be calculated as follows:
[2]
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Scaled parameters 

The parameters ζ, Fb, and Q are all scaled to ω0. This means that circuits which have similar 

parameters share similar characteristics regardless of whether or not they are operating in the 

same frequency band. 

The article next gives the analysis for the series RLC circuit in detail. Other configurations 

are not described in such detail, but the key differences from the series case are given. The 

general form of the differential equations given in the series circuit section are applicable to 

all second order circuits and can be used to describe the voltage or current in any element of 

each circuit. 

Series RLC circuit 

 

Figure : RLC series circuit 

V – the voltage of the power source 

I – the current in the circuit 

R – the resistance of the resistor 

L – the inductance of the inductor 

C – the capacitance of the capacitor 

In this circuit, the three components are all in series with the voltage source. The governing 

differential equation can be found by substituting into Kirchhoff's voltage law (KVL) the 

constitutive equation for each of the three elements. From KVL, 

 

where are the voltages across R, L and C respectively and is the time 

varying voltage from the source. Substituting in the constitutive equations, 
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For the case where the source is an unchanging voltage, differentiating and dividing by L 

leads to the second order differential equation: 

 

This can usefully be expressed in a more generally applicable form: 

 

and are both in units of angular frequency. is called the neper frequency, or 

attenuation, and is a measure of how fast the transient response of the circuit will die away 

after the stimulus has been removed. Neper occurs in the name because the units can also be 

considered to be nepers per second, neper being a unit of attenuation. is the angular 

resonance frequency.
[3]

 

For the case of the series RLC circuit these two parameters are given by:
[4]

 

and  

A useful parameter is the damping factor, which is defined as the ratio of these two, 

 

In the case of the series RLC circuit, the damping factor is given by, 

 

The value of the damping factor determines the type of transient that the circuit will exhibit.
[5]

 

Some authors do not use and call the damping factor.
[6]
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Transient response 

 

Plot showing underdamped and overdamped responses of a series RLC circuit. The critical 

damping plot is the bold red curve. The plots are normalised for L = 1, C = 1 and  

The differential equation for the circuit solves in three different ways depending on the value 

of . These are underdamped ( ), overdamped ( ) and critically damped ( ). The 

differential equation has the characteristic equation,
[7]

 

 

The roots of the equation in s are,
[7]

 

 

 

The general solution of the differential equation is an exponential in either root or a linear 

superposition of both, 

 

The coefficients A1 and A2 are determined by the boundary conditions of the specific problem 

being analysed. That is, they are set by the values of the currents and voltages in the circuit at 

the onset of the transient and the presumed value they will settle to after infinite time.
[8]

 

Overdamped response 

The overdamped response ( ) is,
[9]
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The overdamped response is a decay of the transient current without oscillation.
[10]

 

Underdamped response 

The underdamped response ( ) is,
[11]

 

 

By applying standard trigonometric identities the two trigonometric functions may be 

expressed as a single sinusoid with phase shift,
[12]

 

 

The underdamped response is a decaying oscillation at frequency . The oscillation decays 

at a rate determined by the attenuation . The exponential in describes the envelope of the 

oscillation. B1 and B2 (or B3 and the phase shift in the second form) are arbitrary constants 

determined by boundary conditions. The frequency is given by,
[11]

 

 

This is called the damped resonance frequency or the damped natural frequency. It is the 

frequency the circuit will naturally oscillate at if not driven by an external source. The 

resonance frequency, , which is the frequency at which the circuit will resonate when 

driven by an external oscillation, may often be referred to as the undamped resonance 

frequency to distinguish it.
[13]

 

Critically damped response 

The critically damped response ( ) is,
[14]

 

 

The critically damped response represents the circuit response that decays in the fastest 

possible time without going into oscillation. This consideration is important in control 

systems where it is required to reach the desired state as quickly as possible without 

overshooting. D1 and D2 are arbitrary constants determined by boundary conditions.
[15]

 

Laplace domain 

The series RLC can be analyzed for both transient and steady AC state behavior using the 

Laplace transform.
[16]

 If the voltage source above produces a waveform with Laplace-

transformed V(s) (where s is the complex frequency ), KVL can be applied in 

the Laplace domain: 
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where I(s) is the Laplace-transformed current through all components. Solving for I(s): 

 

And rearranging, we have that 

 

Laplace admittance 

Solving for the Laplace admittance Y(s): 

 

Simplifying using parameters α and ωo defined in the previous section, we have 

 

Poles and zeros 

The zeros of Y(s) are those values of s such that : 

 

The poles of Y(s) are those values of s such that . By the quadratic formula, we 

find 

 

The poles of Y(s) are identical to the roots and of the characteristic polynomial of the 

differential equation in the section above. 

General solution 

For an arbitrary E(t), the solution obtained by inverse transform of I(s) is: 
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where , and cosh and sinh are the usual hyperbolic functions. 

Sinusoidal steady state 

Sinusoidal steady state is represented by letting , where is the imaginary unit. 

Taking the magnitude of the above equation with this substitution: 

 

and the current as a function of ω can be found from 

 

There is a peak value of . The value of ω at this peak is, in this particular case, equal 

to the undamped natural resonance frequency:
[17]

 

 

Parallel RLC circuit 

 

Figure  RLC parallel circuit 

 

V – the voltage of the power source 

I – the current in the circuit 

R – the resistance of the resistor 

L – the inductance of the inductor 

C – the capacitance of the capacitor 
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The properties of the parallel RLC circuit can be obtained from the duality relationship of 

electrical circuits and considering that the parallel RLC is the dual impedance of a series 

RLC. Considering this it becomes clear that the differential equations describing this circuit 

are identical to the general form of those describing a series RLC. 

For the parallel circuit, the attenuation α is given by
[18]

 

 

and the damping factor is consequently 

 

Likewise, the other scaled parameters, fractional bandwidth and Q are also the inverse of 

each other. This means that a wide band, low Q circuit in one topology will become a narrow 

band, high Q circuit in the other topology when constructed from components with identical 

values. The Q and fractional bandwidth of the parallel circuit are given by 

 

 

 

Figure  Sinusoidal steady-state analysis 

normalised to R = 1 ohm, C = 1 farad, L = 1 henry, and V = 1.0 volt 

The complex admittance of this circuit is given by adding up the admittances of the 

components: 
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The change from a series arrangement to a parallel arrangement results in the circuit having a 

peak in impedance at resonance rather than a minimum, so the circuit is an antiresonator. 

The graph opposite shows that there is a minimum in the frequency response of the current at 

the resonance frequency when the circuit is driven by a constant voltage. On 

the other hand, if driven by a constant current, there would be a maximum in the voltage 

which would follow the same curve as the current in the series circuit. 

Other configurations 

 

Fig.  RLC parallel circuit with resistance in series with the inductor 

 

Fig.  RLC series circuit with resistance in parallel with the capacitor 

A series resistor with the inductor in a parallel LC circuit as shown in figure 7 is a topology 

commonly encountered where there is a need to take into account the resistance of the coil 

winding. Parallel LC circuits are frequently used for bandpass filtering and the Q is largely 

governed by this resistance. The resonant frequency of this circuit is,
[19]

 

 

This is the resonant frequency of the circuit defined as the frequency at which the admittance 

has zero imaginary part. The frequency that appears in the generalised form of the 

characteristic equation (which is the same for this circuit as previously) 
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is not the same frequency. In this case it is the natural undamped resonant frequency
[20]

 

 

The frequency at which the impedance magnitude is maximum is given by,
[21]

 

 

where is the quality factor of the coil. This can be well approximated by,
[21]

 

. 

Furthermore, the exact maximum impedance magnitude is given by,
[21]

 

. 

For values of greater than unity, this can be well approximated by,
[21]

 

. 

In the same vein, a resistor in parallel with the capacitor in a series LC circuit can be used to 

represent a capacitor with a lossy dielectric. This configuration is shown in figure 8. The 

resonant frequency (frequency at which the impedance has zero imaginary part) in this case is 

given by,
[22]

 

 

while the frequency at which the impedance magnitude is maximum is given by 

 

where  
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Applications 

Variable tuned circuits 

A very frequent use of these circuits is in the tuning circuits of analogue radios. Adjustable 

tuning is commonly achieved with a parallel plate variable capacitor which allows the value 

of C to be changed and tune to stations on different frequencies. For the IF stage in the radio 

where the tuning is preset in the factory the more usual solution is an adjustable core in the 

inductor to adjust L. In this design the core (made of a high permeability material that has the 

effect of increasing inductance) is threaded so that it can  

be screwed further in, or screwed further out of the inductor winding as required. 

 

Fig.  RLC circuit as a low-pass filter 

 

Fig.  RLC circuit as a high-pass filter 

 

Fig.  RLC circuit as a series band-pass filter in 

series with the line 

 

Fig.  RLC circuit as a parallel band-pass 

filter in shunt across the line 

 

Fig.  RLC circuit as a series band-stop filter in 

shunt across the line 

 

Fig. RLC circuit as a parallel band-stop 

filter in series with the line 
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Foster's reactance theorem: 
 

Network synthesis involves the methods used to determine an electric circuit that satisfy 

certain specifications. Given an impulse response there are many techniques that can be used 

to synthesize a circuit with the specified response. Different methods may also be used to 

synthesize circuits, all of which may be optimal. Hence the solution to a network synthesis 

problem is never unique. 

 

Many applications today use digital processing in lieu of analog processing and the GHz 

spectrum is finding increasing use in applications such as wireless communications. 

However, operation at high frequencies requires analog filtering and processing circuits 

simply because using digital techniques is neither realistic nor economical. Another 

advantage that analog devices have over their digital counterparts is their ability to operate 

with wide instantaneous bandwidths and moderately high dynamic ranges at microwave 

frequencies. 

For a Foster 1 realisation the component values are given by the partial fraction expansion 

 

While for the Foster 2 form the values are given by the alternative partial fraction expansion 

 

For the Cauer 1 realization the component values are given by a continued fraction 

expansion around infinity 

 

The Cauer 2 values are given by a continued fraction expansion around zero 



 

 

Foster and Cauer network realisations. These allow simple determination of the Required 

component values by continued and partial fraction expansions 

 

 

 

Foster's reactance theorem is an important theorem in the fields of electrical network 

analysis and synthesis. The theorem states that the reactance of a passive, lossless two-

terminal (one-port) network always strictly monotonically increases with frequency. It is 

easily seen that the reactances of inductors and capacitors individually increase with 

frequency and from that basis a proof for passive lossless networks generally can be 

constructed. The proof of the theorem was presented by Ronald Martin Foster in 1924, 
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although the principle had been published earlier by Foster's colleagues at American 

Telephone & Telegraph. 

The theorem can be extended to admittances and the encompassing concept of immittances. 

A consequence of Foster's theorem is that poles and zeroes of the reactance must alternate 

with frequency. Foster used this property to develop two canonical forms for realising these 

networks. Foster's work was an important starting point for the development of network 

synthesis. 

It is possible to construct non-Foster networks using active components such as amplifiers. 

These can generate an impedance equivalent to a negative inductance or capacitance. The 

negative impedance converter is an example of such a circuit. 
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     MODULE-VII 

LC ladder networks : 

Analog circuits with passive elements are generally preferred unlike active components, as 

they do not require an excitation source. Passive LC networks are also more Advantageous as 

compared to active networks since they have a high tolerance to 

Component variances and are simple. Also analog passive circuits can be used as prototypes 

for designing active networks, interface circuits, transmission lines and other complex 

networks with discrete components or on chips.  

Most importantly, passive LC circuits generally operate in the range of 102 to 109 Hz . As we 

will be dealing with high frequency applications (of the order of GHz) in this project, we felt 

that it was best to use analog passive LC circuits. 

 

 

 

 

Where N(s) is an even function and D(s) is a strictly Hurwitz polynomial. Separating D(s) 

into its odd Do(s) and even De(s) parts 



 

v 

 

RC circuit applications:  RC ladder. 

  Networks having capacitances and inductances will have both frequency and phase 

response, both of which may be advantageous to the engineer in circuit applications. The 

simple cascaded networks are in the form of a ―ladder topology‖, which can be RC, RL, or 

RLC constructs. 

 

 

Z2                        Z3                          Z6                                                    
ZN 

Impedance ladder topology 

 

 

The elements within the ladder can be a string of simple components, or each impedance 

can be a more complex option of RLC constructs and active components.  For this 

experiment we will confine the analysis of the ladder to simple RC cascaded options, and 

determine frequency and phase characteristics to the ladder, node-by-node and stage-by-

stage. 


