
 1

Network Analysis of Nintendo DS Traffic

A Major Qualifying Project Report:
submitted to the faculty

of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science
by

Matthew K Brennan

Robert M Shaw III

Nate Gershaneck

Date: March 02, 2006

Approved:

Mark Claypool

1. networks

2. handheld gaming

3. wireless

 2

Abstract
This paper studies the characteristics and behaviors of wireless networks utilized

by the Nintendo DS during multiplayer gaming. The nature of DS wireless multiplayer is

explored. By setting up a PC to sniff wireless traffic, we were able to perform carefully

designed experiments that would allow for a comparative analysis of two, three, and four

players. The resulting data was used to discuss scalability and network architecture.

 3

ii List of Illustrations

Figure 3.2.1 Wireless network configuration in Fossil Lab
Figure 4.1.1 Sample Packet Capture
Figure 4.1.2 Broadcast Packet
Figure 4.1.3 Host Data Packet
Figure 4.1.4 Host Feedback Packet
Figure 4.1.5 Client Data Packets
Figure 4.1.6 Malformed SNA Packet
Figure 4.2.1 Overall Bandwidth: Super Mario 64 DS – 2 Player
Figure 4.2.2 Overall Bandwidth: GoldenEye: Rogue Agent – 3 Player
Figure 4.2.3 Overall Bandwidth: GoldenEye: Rogue Agent – 3 Player
Figure 4.2.4 Overall Bandwidth: Advance War: Dual Strike – 2 Player
Figure 4.2.5 Overall Bandwidth: Pictochat – 2 Player
Figure 4.3.1 Overall Bandwidth: Super Mario 64 DS – 3 Players
Figure 4.3.2 GoldenEye: Rogue Agent - 3 Player – Boring
Figure 4.3.3 GoldenEye: Rogue Agent - 3 Player - Wigging Out
Figure 4.3.4 Advance Wars Dual Strike – 3 Player
Figure 4.3.5 Pictochat - 3 Player
Figure 4.3.6 Linear Trends across Player Counts
Figure 4.3.7 GoldenEye: Rogue Agent - 3 Player
Figure 4.3.8 GoldenEye: Rogue Agent - 2 Player
Figure 4.3.9 GoldenEye: Rogue Agent - 4 Player
Figure 4.3.10 Linear Trends of Data Flows
Figure 4.3.11 Advance Wars: Dual Strike - 2 Player
Figure 4.3.12 Advance Wars: Dual Strike - 4 Player
Figure 4.4.1 Cumulative Distribution Function across Player Counts: Super Mario 64 DS
Figure 4.4.2 Cumulative Distribution Function for Total Bandwidth: All Games
Figure 4.4.3 Cumulative Distribution Function for Data Flows: Super Mario 64 DS
Figure 4.4.4 Cumulative Distribution Function for Data Flows: GoldenEye: Rogue Agent
Figure 4.4.5 Cumulative Distribution Function for Data Flows: Pictochat
Figure 4.4.6 Cumulative Distribution Function for Data Flows: Advance War: Dual Strike

 4

iii List of Tables
Table 3.3.1 Test Cases
Table 4.2.1 Average Bandwidth for Each Phase – All Games
Table 4.3.1 Statistical Data of 3 Player Captures
Table 4.3.2 Statistical Data between Player Counts
Table 4.3.3 Statistical information of Specific Data Flows
Table 4.3.4 Statistical Data Regarding Data Flows across Player Counts of GoldenEye: Rogue Agent

 5

iv Table of Contents
i Abstract
ii List of Illustrations
iii List of Tables
iv Tables of Contents
1 Introduction... 6
2 Background... 11

2.1 Nintendo DS.. 11
2.2 802.11.. 12

2.2.1 Anomaly of 802.11 ... 13
2.2.2 LLC... 13
2.2.3 SNA... 14
2.2.4 Wireless Sniffing .. 15

3 Methodology... 16
3.1 Goals ... 16

3.1.1 Early Goals.. 18
3.2 Preparation .. 19

3.2.1 Hardware... 20
3.2.2 Software .. 20

3.3 Experimentation.. 21
3.3.1 Test Cases ... 21
3.3.2 Procedure .. 23

4 Data and Analysis ... 25
4.1 Data flows ... 25
4.2 Phases.. 29
4.3 Time Slices.. 34

4.3.1 Overall Bandwidth .. 34
4.3.2 Bandwidth Breakdown.. 41

4.4 Frame Analysis ... 47
4.5 Quality of Connection... 52

5 Conclusions and Further Work ... 53
5.1 Two Players vs. Three+ Players ... 53
5.2 Network Architecture.. 54
5.3 Impact of the Nintendo Low Latency Protocol... 56
5.4 Future Work .. 58

5.4.1 Connection Quality ... 58
5.4.2 Even More Players.. 58
5.4.3 Impact of Architecture .. 59
5.4.4 What Truly is SNA/LLC?... 59
5.4.5 Analysis of TCP/IP Stack Games ... 59
5.4.6 Two DS Networks Occupying the Same Airspace 60
5.4.7 DS Network Impact on Other 802.11 Networks....................................... 60

6 Bibliography ... 61

 6

1 Introduction
With the limitations of wired networking, companies and consumers alike are

looking for better ways to get connected and stay connected as they move around.

Wireless networking has seeped into many different markets. Home owners now opt for

wireless routers instead of threading Ethernet cables throughout their homes. Some cities,

like Philadelphia, plan to implement city-wide wireless access (Reuters 2005). The

networks utilizing the IEEE 802.11 wireless LAN standard have been integrating

themselves into society for several years now. The next big step for 802.11 to take is into

the gaming world.

Some of the most popular of the current generation of handheld gaming systems

are the Nintendo DS and the Sony PSP. Both Nintendo and Sony heavily market the

included wireless capabilities. The capability to connect wirelessly makes multiplayer

gaming an easier and less burdensome experience than it has been in the past. Previously,

multiplayer on handheld systems like the original Gameboy was only achievable via a

link cable. The link cable is a wire that can tangibly connect a maximum of two systems.

In the new generation of handheld gaming, devices can connect with other like devices

(no cross-platform connecting) just by being in range (30-100 ft.); there is no need for

networking the devices with a link cable. In addition, more than two players can connect

via wireless networking. Finally, there is also the prospect that a player can sit in the

middle of a busy area and join games hosted by strangers, since wireless multiplayer

games advertise their presence to other systems in the area. This feature allows players to

easily find other gamers in the area and start up a game with little to no hassle.

 7

From a player’s standpoint, wireless sounds fantastic. Many business

opportunities are being created in the gaming industry and consumers are clearly excited

about the technologies being used in the DS and PSP. Although there are many questions

about the business and social aspects of wireless functionality in the DS and PSP, we

were fueled by technical questions.

What protocols did Nintendo employ? We were interested to determine whether

the Nintendo DS adhered to the IEEE 802.11 standard. The Nintendo DS might utilize

the more widely accepted variants 802.11a, 802.11b, or 802.11g, but it is also possible

that the DS could exploit the newer variants such as 802.11b+ or 802.11e. There is also

the possibility that Nintendo strayed from the IEEE standards entirely and developed a

proprietary network design.

What sort of architecture would we see? A further point of curiosity lied within

the architecture of the multiplayer games. The server/client architecture, where one

system hosts for the benefit of the client, has been the typical architecture exploited by

multiplayer games. However, the ad-hoc aspect of wireless networking might encourage

a non-centralized architecture to be adopted by the Nintendo DS.

Does the architecture shift when more devices are communicating? Another topic

we considered was whether or not the DS would alternate from one type of architecture

to another depending on the number of systems involved. One possible benefit of doing

so could be to avoid high bandwidth consumption, if one type of architecture scales better.

Another possible benefit would be to exploit the collective power, either processing

power, broadcasting power, or even transmission range of the DSes involved by

switching to whichever architecture provides the best infrastructure for the given scenario.

 8

How scalable are the networks? One of the biggest concerns in multiplayer game

development is scalability. In order to allow many players to play together, the game

needs to scale well from 2 players to 4 players to 5+ players. Since the Nintendo DS is

one of the first gaming systems to include wireless functionality, it may set a lot of

precedents and trends for future systems. Therefore, understanding the scalability of the

games is important. Will adding a third player double the data rate, or will we see a more

efficient algorithm?

 What general network characteristics are shared across games and

across player counts? In order to offer any viable conclusions about the general behavior

of the Nintendo DS, it is important to understand what traits are common to most of the

scenarios we can test. If every game has completely unique network behavior, the only

conclusions we can draw would be game specific. Overall, we expect to see

characteristics shared between the games, and even across the player counts. Scalability,

bandwidth usage, architecture, and network phases are all possible traits that may be

shared.

In order to offer answers to these questions, first we must understand what

inherent troubles occur with wireless networking. One dilemma that occurs in wireless is

turbulence. Turbulence, in terms of a network, refers to the size and distribution of

packets over time. In general, the larger the variation is over time for both the size and

distribution of packets, the higher the turbulence is within the network. Previous work

(Claypool 2005) has analyzed games from several different genres and their network

traffic behavior was characterized to show the overall similarities and differences. It was

 9

shown that the PSP games had a larger variance in bit-rates compared to the DS offerings

while the overall bit-rates for the DS were higher. DS games were also found to have

similar network behavior when compared to each other while PSP games “[varied]

considerably in bitrate, frame size, frame frequency, and fraction of broadcast traffic.” By

revealing the widely varying traffic patterns of games from various genres, the

groundwork for which to build knowledge of wireless multiplayer gaming is formed.

The groundwork thus far consists only of our knowledge of two player wireless

network traffic. What changes can we see in the network behavior when more players are

added? How does bandwidth scale as more players are added? The architecture behind

the wireless communications would reveal much in terms of the scalability of network

traffic and help develop network infrastructure with the effects of wireless hand-held

gaming systems in mind.

This study looks into 802.11 WLAN traffic generated by multiple (2+) Nintendo

DSes. Our study was conducted across several different games in order to develop a more

generalized sense of DS network behavior and architecture. We gathered data that

allowed us to examine the trends and patterns between different games and different

player counts. This data also allowed us to define specific phases in the network

communications as well as understand the behavior of the specific frames. After

examining the data, we were able to develop conclusions that discuss shared

characteristics between test cases, scalability, and network architecture. We will discuss

models and analyses that will be both interesting on their own but also applicable to

future work done in this field of research.

 10

We need to first talk about the background information relevant to our research in

section 2. In the background section, we will explain some of the technologies we have

worked with, as well as other work done in this field of study. Afterwards, we will

outline the methodology we used to gather useful and reliable data to study in section 3.

This section includes the test cases included in our study, and also the experimentation

procedures. In section 4, we will present our data and give detailed analyses of it. We will

then take the observations that we make and state conclusions based on our data in

section 5. In the same section, we will finish this paper by detailing several paths that

seem viable for future work in this area of study.

 11

2 Background
With the advent of wireless portable hand-held game consoles, the amount of data

being transferred through the air around us is increasing. The Nintendo Dual Screen (DS)

and Sony Playstation Portable (PSP) both utilize wireless transmissions to communicate

with other units that may be within proximity. Previous research into the wireless traffic

of home networks and these game consoles reveals certain problems that need to be

addressed in the near future in order to better utilize the bandwidth provided by the

802.11 protocol.

Several games from various genres have already had their network traffic behavior

characterized (Claypool 2005), revealing their underlying architectures for

communication. In most cases, the communications analyzed were limited to two devices

at once, ignoring possible situations of three of more players participating in a game. The

effect of more than two players on the network was left unexplored, creating a gap in our

knowledge of how the wireless bandwidth is utilized when incorporating additional

players to a network.

2.1 Nintendo DS
The Nintendo Dual Screen (DS) is capable of communicating with other DSes that

are within proximity via a proprietary protocol known as the “Nintendo Low Latency

Protocol.” (Nintendo of America Inc.) While this protocol is said not to be 802.11b, it is

still operating in the same 2.4 GHz bandwidth that 802.11 does, therefore possibly

affecting any 802.11 transmissions that might be sent. The DS does not contain a TCP/IP

stack but it is still capable of communicating with a wireless router. The typical data rate

for transmissions is either 1 Mbps or 2 Mbps.

 12

 The DS has the capability of allowing cartridge sharing. Cartridge sharing is a

mechanism by which one person who owns a copy of a DS game can share the game with

other DS owners who do not have the game themselves. This sharing is achieved by

allowing players without the game to download the necessary game data from the person

with the game cartridge. This feature allowed us to easily run multiplayer tests with only

a single copy of each game.

 Currently, Nintendo has plans of allowing DSes to connect to each other not just

in an ad-hoc mode, a mode not requiring a base station to communicate between devices,

but also through the Internet itself via wireless hotspots and home routers (Bramwell

2003). Since the DS does not have a TCP/IP stack, games must program in their own

stack in order to work across the Internet. Most of the early releases for the system did

not program in a TCP/IP stack so they are only capable of multiplayer gaming in ad-hoc

mode. Nintendo is also releasing a wireless USB adapter that can be plugged into a home

computer if the owner does not own a wireless router.

 The baseband/media access control processor of the wireless module is a Mitsumi

MM3155 (Yomogita 2005). It is accompanied by an RF transceiver IC from RF Micro

Devices, an intermediate frequency (IF) surface acoustic wave (SAW) filter and a radio

frequency (RF) bandpass filter. It is currently unknown if the module is capable of

RTS/CTS (Request to Send / Clear to Send) which would allow for better, uninterrupted

transmissions between devices under certain network conditions.

2.2 802.11
802.11 is an IEEE standard governing wireless networks. The operating frequency

band of 802.11 communication is either 2.4 GHz or 5 GHz depending on the specific

 13

802.11 standard being used. There are several variations of the 802.11 standard being

used at the moment. 802.11a, 802.11b, and 802.11g are all variations that you can find

included in market-available products. Because 802.11 traffic utilizes radio waves as its

communication medium, there are many interesting problems that arise in wireless

networks, such as the ‘anomaly of 802.11’.

2.2.1 Anomaly of 802.11
802.11b is capable of transmitting data up to 11 Mbps but will drop the bit rate

down to 5.5, 2, or 1 Mbps if it detects unsuccessful frame transmissions. While this is

ideal for the computer, allowing it to keep successfully transmitting with reduced frame

loss, it has been shown that the wireless network as a whole will suffer if there is more

than one computer connected to a wireless access point (Heusse et al 2003). When one

computer begins to communicate with the wireless router at a lower bit-rate than all the

other computers, it begins to affect the throughput of all the other computers, forcing

them to wait on the slow system to transmit since all hosts have an equal probability of

channel access. The reason for this observed anomaly is the use of the CSMA/CA

channel access method; CSMA/CA “guarantees an equal long term channel access

probability to all hosts.” So when one host locks up the channel with a low bit-rate, the

other systems have no choice but to wait for the slow transmissions.

2.2.2 LLC
Logical Link Control, or LLC, is a term used under the IEEE 802 networking

standards to denote a portion of the data link layer (Wikipedia 802.11). Considered an

upper sub-layer, LLC operates on top of the MAC protocol. LLC is primarily concerned

with identifying the specific IP protocol that should be used at the source and destination

 14

for processing a network frame. It can also be used to provide flow control, or detection

and retransmission of dropped packets, although this functionality is optional.

During the course of analyzing Nintendo DS wireless network traffic, a

significant portion of the packets were reported by Ethereal as being LLC. Our

observations of the nature of the DS communications led us to consider the possibility,

however, that the packets are detected as LLC, but are actually something else. Since the

Nintendo DS does not utilize standard 802.11 wireless protocols for much of its traffic,

we consider it possible that it is a coincidence that some of the packets appear to be LLC.

2.2.3 SNA
System Network Architecture, or SNA, is a proprietary networking architecture

owned by IBM and developed in the 1970s (Wikipedia SNA). Although SNA is still in

use in certain specialized areas of business and government networks, one of the primary

pieces of networking hardware for use with SNA networks is no longer being produced.

In addition, IBM is expected to drop support for SNA sometime in the near future. Under

SNA, link control is not managed by network applications themselves, but is instead dealt

with by a Network Control Program. This has several effects on the ease of implementing

networking capabilities in an application and on the process of debugging networking

errors.

In our tests, we found that the Nintendo DS occasionally sends packets which are

reported by Ethereal as SNA protocol packets. However, usage of SNA does not seem to

logically fit with the rest of the transmissions sent by the DS. These SNA packets are

reported as malformed, with very unusual information regarding the sending and

receiving devices. Since Nintendo claims to be using a proprietary wireless network

 15

protocol, and SNA is a proprietary architecture for which they would have had to pay

royalties to IBM, we consider it almost certain that the packets detected as SNA serve a

different purpose. It is far more likely that certain packet structures in the Nintendo Low-

Latency Protocol share similar headers to SNA packets, and trigger Ethereal to recognize

them as such.

2.2.4 Wireless Sniffing
Wireless sniffing presents some unique problems that do not arise when sniffing

on wired networks. The techniques used by (Jardosh et al 2005) provide much

information on these potential problems that can be encountered when capturing wireless

traffic. The first problem is a result of the positioning of the devices and the sniffer. The

only data that can be analyzed is the data that the sniffer successfully captures. If the

sniffer is too far from one of the devices, a sizable amount of data can potentially be

missed in the capture. Therefore, the location of the sniffer cannot be haphazardly chosen,

but must be carefully considered before any testing can begin.

The second problem that occurs in wireless sniffing is the issue of uncaptured

frames. When we have two or more devices communicating wirelessly, the sniffer has to

keep up with the traffic. If the devices being monitored are sending more information

than the sniffer’s hardware is capable of capturing, then there will be a notable

percentage of lost frames. A second contribution to the inability to capture all frames is

congestion in wireless networks. With numerous signals inhabiting the same air space, it

is possible for signals to interfere with one another, resulting in garbled and unreadable

frames.

 16

When sniffing wireless networks, it is important to consider the previously

mentioned problems. If a large enough percentage of the overall data is lost due to one

reason or another, the final results of the study can be inaccurate and erroneous. In order

to test our configuration, we first preformed a capture under conditions of heavy traffic.

No packets were reported to be dropped by our system. This result suggested that neither

problem asserted itself in a significant way during the course of this study.

3 Methodology
Our primary focus was to measure the behavior of 802.11 wireless network traffic

between multiple Nintendo DSes. Within this focus are several different paths of study

that we intended to explore. Some of our work echoes the work done by (Claypool 2005),

but takes a different approach by involving upwards of three Nintendo DSes. This

alteration is a fundamental difference, even though the goals and methodology remained

noticeably similar. By exploring scenarios with varying numbers of players, we hoped to

better understand the nature of multiplayer gaming with the Nintendo DS. Previous

papers did not investigate scalability or network architecture.

3.1 Goals
Although the physical hardware was of interest to us, our attention was centered

more on the implementation of networking. We found ourselves intrigued by the topics of

scalability, network architecture, bandwidth usage, and network characteristics. The

subject of Nintendo DS networking lent itself to a multitude of questions.

First, our goal was to derive a network model of a typical DS multiplayer game.

Although previous work (Claypool 2005) talks about common network phases seen in 2

 17

player games, we wanted to explore 3 and 4 player cases to see if the phases remained the

same. Robust network models would help us begin to flesh out our understanding of what

the DSes were doing in regard to their communication. As we developed these models,

we looked to define distinct phases of the game session. (Claypool 2005) showed there

were several phases mentioned such as the download phase, play phase, etc. We wanted

to verify and annotate these phases for the games we were working with as well as for

different numbers of players. We were hoping to see common phenomena between

different games and different scenarios.

Next, we wanted to delve deeper into the data and look at the specific

communication from each device. Our goal here was to determine what sort of

architecture the DS uses for multiplayer gaming. By understanding whether sever/client

or peer-to-peer architecture was used, we would be able to make some assumptions about

network behavior. We would also be able to make better sense of the system-specific data

we gathered.

 Our third goal flowed naturally out of looking at the outputs for each device.

After understanding the communications between two DSes, we wanted to increase the

player count to see what effects it would have on the network. We had two topics of

interest in this area of study. The first was to begin to answer the questions we had about

how well the DS networks scaled. The second topic of interest was to compare the third

DS to the original two. We were curious to see what characteristics were shared between

all three systems, as well as the characteristics that we only common to two of the three.

The overall motivation for our project was to attempt to answer each of the

questions stated in the introduction (section 1), and also to express a sound understanding

 18

of DS wireless networking. We wanted to build up an expertise of not only DS networks

but also of 802.11 networks and wireless communication in general.

3.1.1 Early Goals
The original concept for our research was to examine network behavior under

varying wireless connection qualities. During the course of our analysis of standard game

play captures and host to client communication, our focus shifted towards network

behavior under varied quantities of players. Our first step was to perform some of the

tests used in 'On the 802.11 Turbulence of Nintendo DS and Sony PSP Hand-held

Network Games' and apply them to three Nintendo DSes. These tests included two-player

captures of Pictochat and Super Mario 64 DS. While performing these tests, we sought to

explore two separate and distinct scenarios: the network traffic when only one device has

a poor connection and the network traffic when all devices share an equally poor

connection.

A large factor on the way the network traffic performs is how hosting works. We

spent time looking into the communication between the host device and the other devices.

What happens when the host has a poor connection, while the other two sit literally next

to each other? Will the host drop a connection entirely in order to preserve the quality of

the game play for the others connected?

Lastly, we wanted to answer several questions about the nature of the 802.11

network that the Nintendo DS uses. Currently, we do not have any information indicating

whether the DS uses RTS/CTS as a method of collision avoidance. It is known that the

planned Nintendo Gameboy Advance wireless adapter will probably use TDMA (time

division multiple access), which uses time division multiplexing in order to support

 19

multiple simultaneous channels on the same frequency. We do not know whether or not

this technology is implemented on the Nintendo DS.

3.2 Preparation
 We used

multiple Nintendo DS systems

and a selection of games from

different categories, with the

idea being that different types

of game applications might

exhibit different network

behavior. The test cases

included different games

and different player counts. All of our testing took place in the Fossil Lab (FL B17) in

Fuller Laboratories on the WPI campus. This lab has a coating of a copper-based paint

which was intended to isolate the room from outside wireless interference. After testing,

we found that the room was not fully isolated, but was still less flooded with wireless

traffic than other possible test sites. A nearby computer system inside the lab was

equipped with an 802.11 wireless NIC with sniffing capability. Figure 3.2.1 shows the

positioning used for most of our testing, where node 1 denotes the sniffing system and

nodes A, B, and C are the DSes. Our system was placed in the corner of the lab where

there seemed to be the most shielding from wireless traffic. The remainder of the room

consisted of PCs without wireless capabilities. Due to their lack of impact on our study,

Figure 3.2.1 Wireless network configuration in Fossil Lab

 20

they are not pictured in the diagram. Wireless network activity was monitored and logged

by the Ethereal program running on the wireless sniffer for later analysis.

3.2.1 Hardware
 The hardware used was a 735 MHz Pentium Celeron processor with 256 MB of

RAM. The wireless Ethernet card was manufactured by Linksys and contained an

ISL38xx chip that was capable of capturing packets in a promiscuous mode. Although

sometimes the system processing seemed delayed, no packets were dropped during

testing as a result of buffer overflows. We used four different Nintendo DSes throughout

our research.

3.2.2 Software
 The operating system used was SuSE 9.2, a Linux distribution known for good

driver support and usability. In order to use the wireless card to capture packets, we used

the drivers from the Prism54 project to setup the card in promiscuous mode. Ethereal [v

0.10.12] and its text-based version, Tethereal [v 0.10.12], were used to capture packets

and save them for later analysis. The games used for testing and analysis were: Pictochat,

Super Mario 64 DS, Advance Wars: Dual Strike, and GoldenEye: Rogue Agent. We also

developed a piece of software to perform calculations on the raw captured packet

information.

We gathered data for four games: Pictochat, GoldenEye: Rogue Agent, Super

Mario 64 DS, and Advance Wars: Dual Strike. We chose these games based on the varied

game play elements in each. Pictochat, by Nintendo, is the chat program that comes pre-

installed on the DS, an application that should show intermittent burst of activity.

GoldenEye: Rogue Agent, by Electronic Arts, is a First-Person Shooter, which will

 21

usually contain a steady flow of data with brief pauses after a player’s death. Super Mario

64 DS, by Nintendo, is an Action-Platformer that experiences constant player movement

and brief intermittent interactions between players. Advance Wars: Dual Strike, by

Nintendo, is both a Turn-Based and Real-Time Strategy game but only the Real-Time

game is available for multiplayer mode; the game play involves constant player

movement and actions.

3.3 Experimentation
The foundation for any reliable research is reliable data. In order to generate

reproducible data, it is important to develop test cases and procedures that give us

controlled and reproducible results. In the case of our research, we needed to construct

test cases that would allow us compare behaviors of different games. We also needed to

create test cases that would give us the ability to compare scenarios involving varying

numbers of players. Finally, in order to make these data sets comparable, we needed a

standardized data collection system.

3.3.1 Test Cases
Our focus was primarily on the traffic of different Nintendo DS games with

varying numbers of players. For each game, the number of players participating varied

from two to four. We also looked at some of the games with periods of no game activity

during actual game play mixed with a brief burst of high game activity.

In total we took 28 captures. Each capture spanned a complete game session, from

connection to game play to disconnect. The captures, numbers, and conditions are shown

in Table 3.3.1.

 22

Game Player
Count

Captures
Taken Special Conditions

3 2 1 No cartridge during play
3 1

Advance Wars:
Dual Strike

4 3

2 3
3

3 1 No capture filter
Super Mario 64

DS
4 2

1 2 1 Varying connection quality
3 1 Pictochat

4 1 Controlled activity variation
2 1

2

1 No activity during play 3
1 Controlled activity variation

GoldenEye:
Rogue Agent

4 2

 Each game has a different amount of captures depending on the viability of the

data and special conditions we wanted to test. Several captures had channel switching or

in-game phenomena that resulted in misleading data and were therefore excluded from

deeper analyses. Advance Wars: Dual Strike and GoldenEye: Rogue Agent both

experienced channel switching during many captures. The channel switching only

produced a completely unusable capture in one of the Advance Wars: Dual Strike 2

player captures.

In the case of Advance Wars: Dual Strike, we preformed a capture in which the

player with the game cartridge shared the game with two other DSes, then did not

participate in the actual game. Early in our testing, we did a capture of Super Mario 64

DS without any Ethereal capture filters. The idea behind this test was to check to see if

there was any additional useful information that was being filtered out. We concluded

Table 3.3.1 Test Cases

 23

that our filtered did not exclude any useful information. Pictochat had two special

captures. In “varying connection quality”, one DS was stationary while another moved

around the lab in order to create differing levels of connection quality. In “controlled

activity variation”, we refrained from sending messages with the exception of specific

times. The goal was to verify transmission behavior in Pictochat. GoldenEye: Rogue

agent had two complimenting special cases. In the first, we started a game but did not

actively play. Each player merely stood motionless at their spawn points. In the second

special capture, we echoed the same behavior, except for a minute where we tried to

generate as much activity as possible. These captures will be explored in more depth later

on.

3.3.2 Procedure

We needed a standardized method for capturing the network activity and converting

it to a format the can be easily analyzed and graphed. First, the DS containing the

cartridge for the game under analysis was booted up and sent into multiplayer mode. We

refer to this DS as the host. This terminology is not meant to imply a host/client network

architecture, only that one DS has the game cartridge. After the host began transmitting

broadcast packets to announce the game it was hosting, we alternated our sniffer between

channels 1, 6, and 11 to find which wireless channel the game was being hosted on.

Typically, we found that the channel the broadcast was sent on was the same channel

used through most or all of the rest of the game session. Next, we began capturing and

logging packets. Then the other DSes started a search for available multiplayer games.

These DSes are referred to as clients. As with our usage of ‘host,’ the usage of ‘client’ is

not intended to imply network architecture. The clients selected the host’s game and

 24

began to download it from the host. The players then did all necessary pre-game setup,

ranging from character to map selection. When everyone had completed this setup, the

host started the actual game, which was then played through by the players. After game

play was done, the clients would disconnect from the host and the capture would be

stopped.

Each capture was saved using a standard naming convention consisting of the games

name, the date the capture was made, the quality of the link between the DSes and the

iteration number. The captures then needed to be run through Tethereal, the command-

line program that outputs Ethereal captures to text. Since the resulting files contained

every packet captured, they were usually too large to work with when we wanted to

analyze the data. We used a parser written in C++ that could quickly perform the

necessary calculations on a capture after is was processed by Tethereal. This parser

would output the important statistics in a comma-separated values file using a specified

time interval value. The information in these files could then be easily examined and

graphed using Microsoft Excel. We graphed numerous values for each capture, including

breakdowns based on both the entire capture as well as subsections thereof.

 25

4 Data and Analysis
In order to develop an understanding of the behaviors and patterns of the wireless

networks generated by the Nintendo DS, we need to interpret the large amounts of data

we gathered throughout our research. Through various analyses of our data, we can

decipher many common patterns and traits across different scenarios.

In order to better understand our data, there were several different analyses we were

looking to use. The first was to observe the characteristics of the network traffic and

communication for entire captures. Such an examination would give us insight into what

phases are common to all DS games. We also wanted to compare behavior during play

for each game and determine what likenesses were shared.

Since our focus is on the changes in the network behavior as we add or subtract

players from the game, we needed to look at communications from each specific device.

In addition to looking at the overall bandwidth, we broke down the traffic based on the

source and the destination. By performing this analysis, we hoped to gain insight into the

network architecture and scalability of the DS networks. When breaking down the

bandwidth, we also wanted to look at the characteristics of the specific frames.

4.1 Data flows
During the course of our study of the wireless behavior of the Nintendo DS, we

came to understand that the various interactions between different machines could be

divided into several categories. The communications between DSes do not conform to

conventional wireless transmission characteristics. The DSes utilize MAC addresses that

are not specific to the device hardware for any of the systems under examination. We

theorize that these addresses correspond to virtual MACs that are not dropped by the DS

 26

hardware. Although there are a small number of packets that do not use these virtual

addresses, they make up an insignificant portion of the data. The remaining packets make

possible all the communication necessary for gameplay. Figure 4.1.1 is an excerpt of a

wireless packet capture and demonstrates the various types of packets that make up what

we came to term as DS data flows. Our captures were formatted to display the sequence

number first, then the time index, the source and destination addresses, the protocol, and

finally the frame size.

Figure 4.1.1 Sample Packet Capture

First, there were what appear to be standard IEEE 802.11 broadcast packets, an

example of which is given in Figure 4.1.2. Sent to all systems on the wireless channel,

these packets do not seem to differ from those sent from a conventional 802.11 device.

These packets were only observed emanating from the DS hosting a multiplayer game;

never from one of the other DSes that joined such a game.

Figure 4.1.2 Broadcast Packet

Next, there was what we termed the host data flow. A packet on this flow is

shown in Figure 4.1.3. The DS that initiated a multiplayer game was the only device that

ever sent packets on this flow. This flow was characterized by being sent to the MAC

address 03:09:bf:00:00:00 and was classified as either a generic IP packet or as LLC by

 27

Ethereal. Our belief is that this functions as a DS-specific broadcast protocol, since only

one packet of this type is sent, rather than one to each client. The MAC address is also

one of the virtual MAC addresses discussed earlier.

Figure 4.1.3 Host Data Packet

The game initiator was also solely responsible for a second flow, this one being

what we called the host feedback. Figure 4.1.4 shows a typical packet of this sort. Similar

in several ways to the host data flow, this flow was also sent to a MAC for which there

was no DS, in this case 03:09:bf:00:00:03. The protocol detected for this packet was LLC,

but as discussed earlier we do not think this is an accurate descriptor for these packets.

Our hypothesis for this flow is that it is used for responses to transmissions from clients,

in effect acting as no more than a system for sending acknowledgements.

Figure 4.1.4 Host Feedback Packet

The clients only were directly detected as being responsible for one type of flow,

several examples of which can be seen in Figure 4.1.5. We called this the client data flow.

Each DS acting as a client would be responsible for sending a flow of this type, while the

host never sends this type of packet. These packets were among those detected as

malformed SNA packets, as mentioned in section 2, but they are also sometimes

classified as IP, IPX or LLC. They are sent from one of the clients to the (again

nonexistent) MAC 03:09:bf:00:00:10. This MAC address was always the destination

used by this flow, regardless of the game or hosting DS. We determined that this flow

utilizes the same quasi-broadcasting characteristics as the flows sent by the host.

 28

Figure 4.1.5 Client Data Packets

The last type of flow may not be a flow at all. A packet of this sort is shown in

Figure 4.1.6, although the exact sources and destinations in these packets are not always

the same. Certain packets were detected, again as malformed SNA frames, but had

completely incomprehensible source and destination information. For example, the

source and destination might both be read as ‘0000,’ which is neither an actual device nor

even a valid form of expressing a MAC address. The actual MAC addresses involved

appeared in a different place within the packet. Since they were malformed for the

detected protocol type, this output was difficult to interpret. We do not know whether

these packets make up a flow all their own, or whether they are actually parts of other

flows and are not detected as such because of how they are sent. In fact, due to the

extremely erratic network behavior of these sorts of packets, we have no idea what

purpose they serve. We do know, although, that these packets are apart of the DS traffic.

Ethereal did not filter out these packets even though we configured Ethereal to filter out

any packets that did not emanate from any of the MAC addresses specific to our DSes.

When we looked at the information included in these packets, there was still a reference

to the address of the DS that sent it. Furthermore, the occurrence of SNA packets in our

captures seemed reliable and constant. This behavior further implies that the SNA traffic

is correlated to the DSes.

 29

Figure 4.1.6 Malformed SNA Packet

4.2 Phases
Our bandwidth analyses made clear that usage of the wireless network by the DS

is not uniform throughout the entirety of a gaming session. Intuitively we would assume

that there would be points of high activity and points of low or no activity. Previous

research had divided gaming sessions into a series of distinct phases, and we adopted a

similar scheme for our own data presentation.

Our data depicted four discrete phases of network activity present in most of the

games. There was an initial phase of broadcast packets in which the host is announcing

the game that they have available. Once a client chooses to download the game, the host

then begins to send the game data to the client. The download phase always has the

highest bandwidth for each of the games. After the download phase is the setup phase,

where the host and players choose from the options available. This phase generally

exhibited extremely low bandwidth usage. The final phase is the play phase, in which the

host and clients play out the game. This phase usually has a fairly constant bandwidth

usage with occasionally large spikes of activity on some games. In the graphs of our

captures included below, it should be noted that the capture is cut off at 180 seconds. The

data not included consists only of additional play phase information that demonstrates

minimal variation from that which is shown. The figures shown in this section clearly

demonstrate the breakdown of the captures into these phases.

 30

 The first game

examined was Super Mario

64 DS with two players

(Figure 4.2.1). The

beginning of the graph

shows no activity; this is

before the initial phase

begins at time 5 seconds.

Small bandwidth use is then seen before a large jump in activity when the clients connect

to download the game from the host. This is the start of the download phase, at time 12

seconds. Super Mario 64 DS appears to exhibit two halves to its download phase. Initial

data is sent to the client, probably enough to let it show the waiting screen with the

players’ characters. During this waiting screen, more data is downloaded to the clients,

which is most likely the actual game data and maps. The overall average bandwidth for

the download phase in this case is around 43834 bytes/sec. Once all the data has been

sent, the bandwidth drops back down to around 9798 bytes/sec while the setup phase

takes place. This phase shift can be observed at time 60 seconds. Once the play phase

begins at time 72 seconds, the bandwidth then begins to varying from 1200 bytes/sec to

11660 bytes/sec. There was a sharp jump in bandwidth at the start of a game which

actually helped to delineate between the setup phase and the play phase.

GoldenEye: Rogue Agent is the next game that we investigate (Figure 4.2.2). This

figure shows the initial phase at the start followed by the download phase. After the

download phase there is no activity from 30 seconds to 65 seconds and then the play

Figure 4.2.1 Overall Bandwidth: Super Mario 64 DS – 2 Player

 31

phase starts. The missing data encompasses both the second half of the download phase

and the entire setup phase. During this period of supposed inactivity, the client screens

indicate that they are downloading game data from the host.

Figure 4.2.2 Overall Bandwidth: GoldenEye: Rogue Agent – 3 Player

If we look at another GoldenEye: Rogue Agent capture (Figure 4.2.3), there does

appear to be activity during this time period. In Figure 4.2.2, we believe this data is

present but is being sent on a different channel than the one we were monitoring. We

noticed occasionally that DS games would switch channels between phases and it seems

that in this case they switched channels in the middle of the download phase.

 32

 Advance War: Dual Strike proved to be the most difficult of all the games to

capture the game phases. The game would typically change channels after downloading

or starting a game. We did manage to take one capture where the game stayed

transmitting on the same channel (Figure 4.2.4). In this capture, the initial broadcast

phase followed by the download phase is clearly visible. The setup phase correlates to the

period of no network activity from 37 seconds to 74 seconds is when the players were

choosing their characters and units for play. At 74 seconds, the units each player had

chosen were transmitted

to the other players and

the game was initialized.

Actual play started

when the bandwidth

jumped up to around

9000 bytes/sec.

Figure 4.2.4 Overall Bandwidth: Advance War: Dual Strike – 2 Player

Figure 4.2.3 Overall Bandwidth: GoldenEye: Rogue Agent – 3 Player

 33

Pictochat was the only differing factor in terms of overall phases as there was no

need for the clients to download it before connecting to a chat session. The only real

phases for Pictochat were the broadcast phase and the play phase, as shown in Figure

4.2.5. The play phase

for Pictochat clearly

showed the points

where chat messages

were being transmitted

between the DSes.

These points are

discernable due to the

bandwidth spikes

shown. Each spike in overall bandwidth usage correlates to one of the players

transmitting a new message to the chat room.

The games exhibited some characteristically similar behaviors. The download

phase for Super Mario 64 DS, GoldenEye: Rogue Agent, and Advance War: Dual Strike

each showed a significant use of bandwidth compared to the rest of the capture. The setup

phases for each game differed, with Advance War using almost no bandwidth while

Mario used up a continual amount before the game was started. GoldenEye: Rogue

Agent’s setup phase is non-existent and the play phase started almost immediately after

download has been completed. Play phases for each game were fairly similar, with fairly

constant bit rates for the duration of the phase. Table 4.2.1 shows the average bandwidth

for the phases of each game.

Figure 4.2.5 Overall Bandwidth: Pictochat – 2 Player

 34

Game Initial Phase Download Phase Setup Phase Play Phase
Advance War:

Dual Strike
791 bytes/sec 37483 bytes/sec 788 bytes/sec 8118 bytes/sec

GoldenEye:
Rogue Agent

848 bytes/sec 56106 bytes/sec None 11870 bytes/sec

Pictochat 227 bytes/sec None None 41236 bytes/sec

Super Mario 64
DS

366 bytes/sec 43834 bytes/sec 9798 bytes/sec 6909 bytes/sec

4.3 Time Slices
Now that we have discussed the various phases involved in a typical start-to-finish

graph of a Nintendo DS game, we are going to concentrate on only the play phase. We

are most interested in the play phase due to that fact that most of any game session

consists of the play phase. The play phase also will be easiest to compare across games,

since the download phase will be heavily dependant on how much game information

needs to be downloaded to the other systems. The setup phase also is not interesting due

to the fact that there is typically low bandwidth usage as players configure the game.

Therefore, this entire section will only consider 60 second time slices of the play phase

for our captures. Since we see similar behavior in the phases between most DS games,

can we expect to see similar behavior within these phases?

4.3.1 Overall Bandwidth
First we will examine the overall bandwidth usage of Super Mario 64 DS with 3

players (Figure 4.3.1). This graph shows a 60 second subsection of the play phase. The x-

axis is the time (in seconds) relative to the beginning of this slice. In the case of this

specific time slice, the graph represents data recorded between the third and fourth

minute of the capture. The y-axis is the number of bytes being sent by all the DSes.

Table 4.2.1 Average Bandwidth for Each Phase – All Games

 35

This graph has a few interesting features. The most notable aspect of the

bandwidth usage in this graph is the y-range of the data. The minimum bytes/second on

this graph is 1240

bytes/second while

the maximum is

13740 bytes/second.

The range from the

minimum y-value to

the maximum y-value

was 12500

bytes/second, with an

average of 8034 bytes/second. The standard deviation was 2448 bytes/second. Network

behavior like this can be attributed to several different issues. The first issue we

considered was that the overall bandwidth usage is relative to what is specifically

occurring in game. For example, if all the players were in the same area, all interacting,

we would expect to see higher overall bandwidth usage as opposed to a scenario where

all the players were out of view of each other. The second issue that the variance might

be denoting is processor usage. In cases where there is a heavy burden on the device’s

processor, we may see a lower overall bandwidth.

In the interest of testing the bandwidth variation, we preformed two captures. The

first capture consisted of three players playing GoldenEye: Rogue Agent, in which none

of the players did anything at all (Figure 4.3.2). After the game started, the players idled

Figure 4.3.1 Overall Bandwidth: Super Mario 64 DS – 3 Players

 36

at whatever position they spawned at. We referred to this capture as “Boring”. This graph

depicts the same

variance behavior as

Figure 4.3.1.

The second

capture was the same

in the fact that we had

three players playing

GoldenEye: Rogue

Agent. The difference

in the second was that

we would idle for the first minute, cause as much activity as we could for a minute, then

go back to idling for the rest of the game. We referred to this capture as “Wigging out.”

Figure 4.3.3 is the

section of the play

phase in which we

cause as much

activity as possible.

In order to generate

activity, we tried to

move, shoot, pick up

items, and encounter

each other as frequently as possible.

Figure 4.3.3 GoldenEye: Rogue Agent - 3 Player - Wigging Out

Figure 4.3.2 GoldenEye: Rogue Agent - 3 Player - Boring

 37

We do not see an intuitive change between “Boring” and “Wigging out”.

“Wigging out” has both lower average bandwidth usage and also lower variance.

“Boring” has an average bandwidth usage of 17916 bytes/second and a standard

deviation of 2826. “Wigging out” has an average bandwidth usage of 15716 and a

standard deviation of 1748. The hypothesis that bandwidth usage is higher when there is

more interaction between the players is clearly not true. The hypothesis that bandwidth

usage is lower when there is more strain in the processor seems more likely.

4.3.1.1 Bandwidth Variation across Games
The next step is to look at the overall bandwidth for all our games under similar

conditions. Since each of our games involve different types of game-play, it will be

interesting to compare their overall bandwidth usage. When originally considering this

comparison, we made a few logical hypotheses. The first hypothesis was that we would

see widely different echelons of bandwidth usage between the different games. The

theory behind this hypothesis was that different genres would have different demands on

the network. For

example, a first

person shooter like

GoldenEye: Rogue

Agent would need

to constantly

transmit positions

and alignments of

players, while a Figure 4.3.4 Advance Wars Dual Strike – 3 Player

 38

chat program like Pictochat would only need to transmit new messages.

Super Mario 64 DS and GoldenEye: Rogue Agent have already been analysed in

the previous section. We see some similarities between the two as far as behavior, but

GoldenEye: Rogue Agent

sends much more data

than Super Mario 64 DS.

Figure 4.3.4 shows us

Advance Wars: Dual

Strike. Advance Wars:

Dual Strike consists of

constant bandwidth usage

with very little variance.

Such behavior can be a result of either the game-type, or the fact that the game itself

would not be processor intensive. Lastly, Figure 4.3.5 illustrates a three player Pictochat

session. It is important to note that figure 4.3.5 is on a different y-axis scale than the other

three graphs. The reason for this is that Pictochat sends significantly more data than the

other three games. Had the graphs been standardized to Pictochat’s scale, the non-

Pictochat games would have been effectively dwarfed. Pictochat has the most variation of

all the games due to the data spikes created when one of the DSes transmits a new

drawing.

We notice very little in common between these four graphs. Although each graph

has the same player count and the same quality of connection, there is no constant

behavior. Each game has a different average bandwidth, as well as a different standard

Figure 4.3.5 Pictochat - 3 Player

 39

deviation. Each game also has unique spiking and dropping of bandwidth usage. But this

variability can simply be a result of the different game types producing different demands

on communication.

 How about our hypothesis about

echelons of bandwidth usage? These

graphs do, in fact, depict each game has its

own echelon of bandwidth usage, which is

high-lighted further in Table 4.3.1. This

table reflects the 60 second time slices

discussed previously. The trick here is that there echelons are not intuitive to the game

type. In games that are dependant on the exact position of the players, we expected to see

a high, constant stream of information between the DSes. Looking at the graphs, we do

not see that behavior at all. Super Mario 64 DS displays the lowest average bandwidth,

while Pictochat displays the highest.

Another point of comparison is the bandwidth variance. Due to its bandwidth

spikes, Pictochat ended up with the highest standard deviation. When we examine Super

Mario 64 DS and GoldenEye: Rogue Agent, we see that these two games share similar

standard deviations even though their average bandwidth is far apart.

4.3.1.2 Scaling Based on Player Count
The next hypothesis we made about overall bandwidth was that we would most

likely see a fairly linear scaling as we introduced more DSes. The original thought was

that if two devices communicating were talking at 20,000 bytes per second, then the

introduction of a third would bring the overall bytes per second up to 30,000.

Game
Average

Bandwidth
(bytes/person)

Standard
Deviation

(bytes/person)
Advance Wars:

Dual Strike 12658 711

Super Mario 64
DS 8034 2448

Pictochat
 43493 9634

GoldenEye:
Rogue Agent 17916 2826

Table 4.3.1 Statistical Data of 3 Player Captures

 40

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5
Number of Players

B
yt

es
 p

er
 S

ec
on

d

Advance Wars: Dual Strike Super Mario 64 DS Pictochat GoldenEye: Rogue Agent

Figure 4.3.6 Linear Trends across Player Counts

 Table 4.3.2 helps us determine what the scaling behavior is. Once again, we find

that the logical hypothesis

is only half right. We see

linear scaling as more

players are added to each

game, but the scaling

proves to be more efficient

than originally anticipated.

Advance Wars: Dual Strike

serves as a good example. The two player capture averaged at 10480 bytes/second. When

we add on a third player, we see an increase of 2178 bytes/second. Adding on a fourth

player increases the average

overall bandwidth by 2160

bytes/second. Each time we

add a new player, we seem

to get a very similar

increase in the average

overall bandwidth. These

linear trends can be more easily

seen in Figure 4.3.6. If we were looking at unicast communication, such behavior would

simply not be possible. Now the question we are forced to ask, and answer, is “What is

the behavior of the communication between each specific device?”

Game Player Count
Average

Bandwidth
(bytes/second)

Standard
Deviation

(bytes/person)
2 10480 535
3 12658 711

Advance Wars:
Dual Strike

 4 14817 657
2 6599 2107
3 8034 2448

Super Mario 64
DS

 4 10318 2272
2 41735 5198
3 43493 9634 Pictochat
4 48529 9570
2 10764 2157

3 Boring 17916 2826
3 Wigging Out 15716 1748

GoldenEye:
Rogue Agent

4 23312 2945

Table 4.3.2 Statistical Data between Player Counts

 41

4.3.2 Bandwidth Breakdown
Although observing the overall bandwidth gave us a lot of insight into the

behavior of the Nintendo DS wireless networks, there is still a deeper level to consider.

The next step is to examine what each device is doing.

In Figure 4.3.7, we took the same 60 second time slice of our GoldenEye: Rogue

Agent 3 player capture that we used in Figure 4.3.3. On this graph, there are four

different types of communication happening. As mentioned in section 4.1, we can see the

host data flow, the host feedback flow, and the data flows from each of the two clients.

The host data flow constantly sends much more data than any other flow, while the host

feedback flow sends much less than the other flow. The two clients seem to both level off

at the same intensity, but client 1 seems to have many small bandwidth spikes while

client 2 has bandwidth dips.

Figure 4.3.7 GoldenEye: Rogue Agent - 3 Player

 42

To better understand this

data, Table 4.3.3 displays some

statistical data of interest.

The host data flow averages

higher than both the client data

flow’s averages combined. If the network architecture was simply ad-hoc, we would not

see one DS sending at a higher rate than the other two. We will go further into network

architecture in section 5.2. Next, we note that the clients’ average bandwidth is separated

by 410 bytes/second. Although the clients shared a common steady level of

communication around 3100 bytes/second, client 1 seemed slightly more active due to its

frequent spikes. The cause of this noticeable difference may be related to the conditions

in the game. While playing, there was a much higher rate of interaction between the host

and client 2 and client 1 did not encounter the other players as frequently. We can

extrapolate that client 2’s overall bandwidth is lower due to the larger amount of

processing being done due to action occurring in close proximity to the player. Over the

entire play phase, the average bandwidth of client 1 was 4248 bytes/second, while the

average bandwidth of client 2 was 4109 bytes/second. This data suggests that the two

clients operated at similar bandwidths with the exception of the action intensive time

slice in question.

4.3.2.1 Flow Variation based on Player Count
The most intriguing aspect of the specific data flows was the behavior of the

clients. We saw that the two clients exhibited different qualities within the time slice, but

had a very similar average overall. We also observed some interesting scaling behavior

Flow Average Bandwidth
(bytes/second)

Standard
Deviation

(bytes/second)
Host Data 6940 1100

Host Feedback 1679 57
Client 1 Data 3361 530
Client 2 Data 2950 455

Table 4.3.3 Statistical information of Specific Data Flows

 43

when we were looking at the overall bandwidth between player counts. We now have

ample reason to compare and contrast the traits of each data flow in 2 player and 4 player

scenarios.

Figure 4.3.8 shows the 2 player capture of GoldenEye: Rogue Agent while figure

4.3.9 shows the 4 player capture. When visually comparing these two graphs, the most

apparent difference

between the two is

the activity of the

host data flow. In

the 2 player capture,

the host data flow is

only slightly above

the client data.

Meanwhile,

in the 4 player

capture, the host

data is significantly

higher than all the

client data. There is

also more variance

all around in the 2

player capture. The

typically constant host feedback flow is widely varied in the 2 player capture, relative to

Figure 4.3.8 GoldenEye: Rogue Agent - 2 Player

 44

the other captures. The client data flow is also more varied and does not contain any of

the constant segments noted in the other two captures. But what about the host data flow?

There appears to be less constant noise, but there is a sizable dip about a third of the way

into the time slice. Which graph depicts the most variance in the host data flow?

 Table 4.3.4 includes the

average bandwidth and standard

deviations of each flow from all

three captures. First, we must

answer the question we had about

the host data variance. Between

the three graphs, we see that the

host data varies most in the 4

player capture, followed by the 2

player capture and then the 3 player capture. This phenomenon is unexpected because we

clearly see that the 2 player capture has much higher variance in the host feedback flow

and the client data flow.

 It was apparent

from the graphs that the

host sent more bytes/second

depending on the number

of players involved, but

what about the clients?

Even though the clients in

Player
Count Flow

Average
Bandwidth

(bytes/second)

Standard
Deviation

(bytes/second)
Host Data 5585 1470

Host Feedback 1245 307 2
Client Data 3214 910
Host Data 6941 1100

Host Feedback 1679 57
Client 1 Data 3361 530 3

Client 2 Data 2950 455
Host Data 10146 1916

Host Feedback 1689 140
Client 1 Data 3331 553
Client 2 Data 4119 599

4

Client 3 Data 3164 300

Table 4.3.4 Statistical Data Regarding Data Flows across
Player Counts of GoldenEye: Rogue Agent

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5

Number of Players

B
yt

es
 p

er
 S

ec
on

d

Host Data Host Feedback Client Data

Figure 4.3.10 Linear Trends of Data Flows

 45

the three captures had a range of 1168 bytes/second, we can see that the clients typically

send around 3300 bytes/second. This behavior is better visualized in Figure 4.3.10. The

standard deviation also remains rather consistent between the three captures. We even see

similar behavior in the host feedback flow. It seems that, at least for GoldenEye: Rogue

Agent, the only flow that is affected by the player count is the host data flow.

4.3.2.2 Flow Variation across Games
When we were looking at the overall bandwidth graphs, we noted that there was

very little constant

behavior between the

games. Each game used

sizably different

amounts of bandwidth,

and also had very

different variance. Will

similar differences

assert themselves in the

specific flows?

Figure 4.3.11

shows a 2 player

capture of Advance

Wars: Dual Strike.

Compare this with

figure 4.3.12, a 4 player

Figure 4.3.11 Advance Wars: Dual Strike - 2 Player

Figure 4.3.12 Advance Wars: Dual Strike - 4 Player

 46

capture of Advance Wars: Dual Strike. In these graphs, there is an extra flow that shows

up here that did not show up in the play phases of other games. A certain amount of data

was reported to be using the SNA protocol. Apart from Advance War: Dual Strike, the

usage of this protocol was limited to inside the download phase. For an unknown reason,

Advance Wars: Dual Strike utilizes the SNA type packets as play phase transmissions.

When visually comparing the SNA traffic to other traffic, we see that the SNA traffic

behavior seems to inversely correlate with the behavior of the client data flows. In cases

where the client data flow is not constant and shows variation, we see usage of the SNA

flow spike. Such a dependant relationship may be evidence that the SNA flow might be

some form of retransmissions. More research would need to be done into the SNA data in

order to concretely understand what is happening.

Since nothing can reliably be concluded about the SNA flow, we will move on to

examining the other flows. Just like in the GoldenEye: Rogue Agent captures, we see that

the client data flows maintain a constant bandwidth usage regardless of the player count.

This trait is displayed even stronger in the Advance Wars: Dual Strike captures. The host

feedback flow also exhibits this behavior. There is a big difference between the two

games though. In Advance Wars: Dual Strike captures, when we compare the host data

flows, we see that they are utilizing the exact same amount of bandwidth. That behavior

is a clear departure from the increasing bandwidth usage in the GoldenEye: Rogue Agent

captures. Although we seem to have a standard for what to expect from the clients, we

have uncovered two distinct patterns in the host data flow. Which of the two patterns will

the other games demonstrate?

 47

Our observations of Super Mario 64 DS and Pictochat show that the more typical

behavior in DS games is for the host data flow to mirror the pattern seen in Advance

Wars: Dual Strike. In both games, the host data flow used almost the exact same

bandwidth regardless of the number of players involved. Of course, in the case of

Pictochat, the overall averages are dependant on the number of messages sent during a

capture. Another important note is that neither Super Mario 64 DS nor Pictochat had the

perfect consistency we saw in Advance Wars: Dual Strike. This result is not too

surprising due to the fact that Advance Wars: Dual Strike was eerily constant across the

board.

4.4 Frame Analysis
In order to better understand the network behavior of the Nintendo DS, we were

interested in characteristics of individual frames. To facilitate this analysis, we

constructed graphs of the cumulative distribution function. We had no expectations for

the makeup of individual

frames other than the fact

that a previous study

(Claypool 2005) had

noted a tendency toward

small packet sizes. These

analyses are based on the

entirety of each gaming

session as opposed to the

subsections we examined previously.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500 550

Frame Size (bytes)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

2 Players 3 Players 4 Players

Figure 4.4.1 Cumulative Distribution Function
across Player Counts: Super Mario 64 DS

 48

Each gaming session consists of different durations.

The previous section demonstrated that the host bandwidth usage did not change

significantly as the number of players increased. Figure 4.4.1 shows a comparison of the

cumulative distribution for the host data flow across varying numbers of players in Super

Mario 64 DS and shows that this trend is true of the packet sizes as well. In fact, we see

that the four player session under examination actually sent a higher proportion of small

packets than either of the sessions involving fewer players. The other data flows

displayed such similarity to an even greater degree, so this section will concentrate on the

trends displayed by comparing the behavior of different games.

Figure 4.4.2 shows a graph of the cumulative distribution function for total

bandwidth of all four

games we tested. A quick

look at this graph

demonstrates that the DS

relies on small packets.

While some larger ones

appear, around 90% of all

packets fall under 150

bytes for all four pieces

of software. Further, around 60% are approximately 25-30 bytes, again regardless of

which game is under inspection. While none of the games exhibit exactly identical

behavior, the general trends for all four are remarkably similar.

Figure 4.4.2 Cumulative Distribution Function for
Total Bandwidth: All Games

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500 550

Frame Size (bytes)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

PictoChat Advance Wars Mario Rogue Agent

 49

Figure 4.4.3 Cumulative Distribution Function for
Data Flows: Super Mario 64 DS

In breaking the density information down further, it quickly becomes apparent

that certain data flows provide little insight into our area of interest. Regardless of which

game is looked at, 100% of all frames sent on the host feedback flow are 28 bytes.

Similarly, the broadcast and SNA flows demonstrate very little variation. While these

flows factor into the overall network behavior, the graphs that follow display only the

host and client data flows.

In Super Mario 64 DS, shown in Figure 4.4.3, it is readily apparent that the vast

majority of all packets

are quite small, in the

vicinity of 70 bytes or

less. The host does,

however, send a small

number of packets that

are notably larger,

ranging up to over 500

bytes each. These numbers

conform quite well to our phase analysis. During the download phase the host must

quickly distribute large amounts of data as fast as possible. Once gameplay begins,

packets are generally smaller, but there are far more of them, since actual gameplay

occupies the majority of the time spent on the wireless network. Super Mario 64 DS

exhibits the largest packets of any of the products we examined.

The CDF of GoldenEye: Rogue Agent, seen in Figure 4.4.4, again demonstrates

the regularity of the client transmissions. The client flows differ only slightly from those

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500 550

Frame Size (bytes)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Host Data Client1 Data Client2 Data Client3 Data

 50

in Super Mario 64 DS. However, the GoldenEye: Rogue Agent host is less consistent.

Although half of all the host’s packets are under 50 bytes, 15% are 250 bytes or so, and

another 20% are around 300 bytes. GoldenEye: Rogue Agent’s host demonstrated a

higher concentration

of large packets than

in any other game.

We believe

that the consistent

size of the client

transmissions is due

to the nature of the

information the client

needs to transmit. The client

likely always provides information about the activity of its player only. Therefore the

content of its frames would vary only in the specifics such as player position and

alignment, but not in

the type of

information it is

sending. The host,

conversely, must

coordinate all players

in addition to

environmental

Figure 4.4.4 Cumulative Distribution Function for
Data Flows: GoldenEye: Rogue Agent

Figure 4.4.5 Cumulative Distribution Function for Data Flows: Pictochat

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500 550

Frame Size (bytes)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Host Data Client1 Data Client2 Data Client3 Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500 550

Frame Size (bytes)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Host Data Client1 Data Client2 Data Client3 Data

 51

variables such as the spawning of weaponry.

Pictochat conforms to the general patterns that we have seen in other games.

Figure 4.4.5 shows the CDF of the frame behavior of Pictochat. We still see the clients

appearing nearly the same, and sending few large packets. The higher bandwidth

consumption of Pictochat mentioned earlier could be attributable to the host sending far

larger packets on average, as about 80% of the host data packets are around 140 bytes.

The remaining packets for both the client and the host might correspond to the message

spikes we saw in looking at bandwidth usage.

Advance Wars: Dual Strike depicted the least variance of any of the games. As

the CDF in Figure 4.4.6 shows, the packet size within each client flow are essentially

identical and show

virtually no variation.

The host also shows

very little variation,

with almost 90% of the

packets sent on its data

flow being

approximately 100

bytes. As compared to

the clients, the host sends significantly more data.

 Although no other game we analyzed demonstrated the lack of variation in frame

size seen in Advance Wars: Dual Strike, it typifies the general patterns we observe. The

first of these observations is that the clients all send packets that seem to be virtually

Figure 4.4.6 Cumulative Distribution Function for
Data Flows: Advance War: Dual Strike

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500 550

Frame Size (bytes)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Host Data Client1 Data Client2 Data Client3 Data

 52

identical in size. The second is that the host sends much more data in each packet than

any of the clients, but most of the packets, regardless of source, are fairly small.

These graphs make apparent that each individual game exercises a fair amount of

control over the specific makeup of the communications sent along each flow. This is the

case even during the download phase, which might have been supposed to be controlled

by the DS architecture.

4.5 Quality of Connection
We initially wanted to devote some attention to what happens to the network

traffic under connections of varying quality. Our focus shifted as we refined our areas of

interest, and we no longer had interest in extensively testing out different quality

connections for each game. We did make one capture of varying quality of a Pictochat

session to see if there was much visible difference. Different quality connection levels

were simulated by leaving one DS stationary next to the sniffer and having someone walk

out of the Fossil Lab and into the ADP lab. After analyzing the capture data, there

appeared to be no discernible points to indicate the DSes were compensating for a poor

signal. There was no observable increase in bandwidth usage and Ethereal did not report

a single retransmitted packet. While we could not see any noticeable difference between

the quality test capture and our other captures, there may still have been retransmissions

in the form of Nintendo’s own implementation. Since the frames sent by the DS often do

not conform to established IEEE standards, we suspect that they utilize an alternate

method of data assurance. Such alternate methods might exploit the data flows in order to

retransmit lost packets. If this is the case, this means that retransmissions are not

controlled by the data link layer, but are passed up to a different layer.

 53

5 Conclusions and Further Work
With console sales down and handheld game sales up in 2005 (Bylund 2005), it is

quite possible that the future of gaming is in the palm of our hands. Even if handhelds are

not exactly slated to replace console gaming, more and more people are jumping into

portable gaming. Because popularity and usage of handheld systems are increasing, it is

important to understand the behavior, patterns, trends, and overall effects of the wireless

traffic such devices generate.

5.1 Two Players vs. Three+ Players
When we were looking at graphs and tables comparing one scenario to another, we

see an enormous amount of interesting numbers and statistics. What we have been able to

derive from all these digits and calculations are some conclusions about the nature of

wireless multiplayer with the Nintendo DS. As we compared our four games, we saw

some similar behaviors along with some unique traits. In the case of Pictochat, we could

observe exactly when a new image was sent and who sent it just by looking at the

specific flows of bandwidth. If we saw an unlabeled graph of incredibly constant

bandwidth usage, we could most likely assume it was an Advance Wars: Dual Strike

capture. With all these differences, what conclusions can we offer?

Even though each game has its own, unique network model, there are many

similarities in the face of all the differences. The first similarity is that none of the DS

games exceed the 2 Mbps data rate echelon. The 802.11 IEEE wireless LAN standards

allow for a maximum data rate of 54 Mbps. Although the “Nintendo Low Latency

Protocol” seems only mildly based on 802.11b, it is certainly an achievement to keep

bandwidth usage relatively low. Designing a network to maintain a relatively low

 54

bandwidth usage is an achievement for several different reasons. The first is that it is cost

effective. Instead of paying high manufacturing prices for hardware that can broadcast as

54 Mbps, Nintendo can use a much cheaper model that has a much lower maximum data

rate. Less expensive hardware makes the system both easier to manufacture and cheaper

for the consumer. Another reason why maintaining a relatively low bandwidth usage can

be found when considering turbulence. Turbulence is a large concern in networking, and

the easiest way to avoid large amounts of turbulence is to not introduce large amounts of

traffic. Keeping the data rates low increases network reliability.

Even more importantly, adding additional players to the fray of almost any game

does not impact the bandwidth usage in an extreme manner. Scaling from a 2 player

scenario to a 3 player scenario does not increase bandwidth usage by a third. As a matter

of fact, there is a linear increase in bandwidth usage shown in most games. With the

exception of GoldenEye: Rogue Agent, we see overall bandwidth usage increase by the

same N number of bytes, regardless of whether the game is scaling from 2-to-3 players or

3-to-4 players. Even if we were playing an 8 player melee in Advance Wars: Dual Strike

or drawing caricatures of 15 other people in Pictochat, we anticipate that we would see

the same scaling behavior that we saw between the 2 player, 3 player, and 4 player test

cases.

5.2 Network Architecture
Based on the bandwidth behavior of the Nintendo DS during wireless gameplay,

there are a number of conclusions that can be drawn about architecture. First, until either

selecting the download game option from the main menu or the multiplayer hosting

functionality from within a game, the DS engages in no wireless activity whatsoever.

 55

Once a game is made available, the hosting DS sends standard 802.11 broadcasts

proclaiming the availability of the game on a certain wireless channel. Other DSes, when

looking for a game, appear to monitor multiple channels in order to locate games being

hosted.

Once a client selects a multiplayer game, the first part of the download phase

begins. Here data is sent by the host along the host data flow to the client, which the

client acknowledges on its corresponding data flow. Once the host player decides that

enough other players have arrived, he advances the game state and the second part of the

download phase kicks in. More data is transferred, in a similar fashion to the first portion

of the download. At this point, the network characteristics may vary depending on the

specific game. Once this part of the download phase begins, broadcast packets continue

to be sent, but are smaller and less frequent.

When gameplay begins, the host sends most of the game information on its data

flow, which functions as a limited, DS-specific broadcast. By using the virtual MAC

addresses, these communications are processed by DSes but dropped by other devices.

These DS-specific broadcasts are accessible by all involved DSes simultaneously, as

opposed to conventional IP traffic. DSes involved in the game send updates to the host

and the other clients. The uniformity of the packet sizes for the client data suggests that

these packets follow a standard format for each game. The host sends acknowledgements

along its feedback flow. There continues to be very minimal broadcast traffic during this

phase.

When a game ends, the DSes maintain minimal wireless connectivity, in case the

players want to start a new game. If such a selection is made, the play phase begins anew.

 56

If not, the wireless connection is terminated and generally the players must shut down

their DSes and restart them in order to be able to choose a new function.

In essence, the wireless communication between Nintendo DSes can be described

as a client/server architecture. The notable deviation from the typical implementation of

such a system is the usage of multicasting. In most cases where client/server architecture

is utilized, we see unicast behavior, where the server sends unique data to each specific

client. In multicasting, the server can send out one piece of data to all the clients. The

host consistently has the highest bandwidth consumption of any device involved in the

game due to the fact that the host must coordinate the entire game. The clients send less

information, and each client’s output is very similar to that of the other clients.

Furthermore, the host packets are, on average, larger than those sent by the clients.

5.3 Impact of the Nintendo Low Latency Protocol
We have discussed, in detail, the behavior of the networks utilized by the Nintendo

DS. Scaling based on player count, the similarities between games, the network

architecture, and many other topics were examined. The data we gathered allowed us to

answer many questions about traits and characteristics of the Nintendo Low Latency

Protocol implemented by Nintendo. However, it is also important to take the technical

answers and expand them. What does all this mean to the average gamer and to the

average 802.11 user?

We looked into how scalable the DS games were as we included additional players.

The results showed that the network expanded in a very efficient manner due to the

multicasting exploited by the DS networking. Also, even though our analysis was rather

shallow, we did not see a huge impact on bandwidth consumption as quality varied from

 57

great to poor. Consider the scenario of a gaming café where DS owners could meet and

play with each other; it is clear that these attributes would come into play. Our studies

only looked at a maximum of 4 players in a game, but in a gaming café, games could

easily reach 8 or 16 players when supported. Because of the efficient scaling and low-

impact of quality, the airspace would remain less cluttered than we would otherwise

observe with typical 802.11 traffic.

These qualities will also play a huge roll in the future as more powerful handheld

systems are released. As handheld systems become more powerful, companies will

undoubtedly increase the maximum number of players supported in a single game.

Imagine connecting with 31 other people to play Counter Strike: Portable. As demands

on the wireless networks increase, it is important to have an efficient backbone like what

we see in the Nintendo Low Latency Protocol.

Another important feature unveiled in our research was the host/client network

architecture employed by the Nintendo DS games. In this architecture, one system is

responsible for coordinating the players and the environment while the other systems are

only responsible for communicating activities of their respective player. When we

consider the relatively low-powered Nintendo DS processor, it would have been

interesting to see a distributed processing approach to multiplayer gaming, especially

since we saw that processor usage was restrictive to the communication in several games.

Host/client architecture can be rather limiting in the handheld world. Low-powered

processors limit the amount of work a system can do, so developers have to be careful not

to include too much activity in the game. The effects on the handheld gamers are fewer

players, simpler graphics, and less involved environments. The host/client architecture

 58

also carries another weakness with it. As any gamer will attest, no one likes a laggy

server. If the host of our Super Mario 64 DS session begins experiencing poor

connectivity, all players will suffer. Although we did no specific testing in regard to this

behavior, it is a typical occurrence in host/client architecture.

The research we have done and the conclusions we have drawn from our data show

that the Nintendo Low Latency Protocol is an efficient execution of wireless networking.

As computer scientists often prove, there is always room for improvement. But as the

first generation of wireless gaming, the Nintendo DS offers strong foundations for future

development in this area. Even if the Nintendo Low Latency Protocol does not survive to

the next generation of handheld systems, we will surely see many of the traits refined and

echoed.

5.4 Future Work

5.4.1 Connection Quality
One topic our group had originally talked about doing was analyzing the network

traffic under varying connection qualities. While we managed to take one capture with a

varying connection quality, there were no significant differences between this capture and

a typical capture. We looked for retransmitted packets in the capture of varying quality

but could not find any. However, the absence of retransmitted packets doesn’t mean there

really weren’t any. There may be more to the Nintendo Low Latency Protocol than we

have found out so far, and this may be a topic worthy of further research.

5.4.2 Even More Players
Our captures involved anywhere from 2 to 4 players yet some games are capable

of supporting up to 8 players. What happens to the network behavior with the maximum

 59

number of players straining the wireless bandwidth? How well are the games capable of

scaling when the maximum number of players is added?

5.4.3 Impact of Architecture
The research we did asserted that the DSes utilize host/client architecture instead

of peer-to-peer or some other variant. A possible path of research would be to look into

which systems are important to network quality. Does the host require a good connection

to all clients in order to offer a lag-free game? If the host loses its connection with the

clients, will one of the clients adopt the role of host? Does a client relay information

between the host and another client of the other two systems are not in each others range?

5.4.4 What Truly is SNA/LLC?
Our analysis of the captured data led us to believe that the SNA and LLC packets

that Ethereal outputted were not really what they were. Almost all of the SNA packets

observed were labeled as malformed and SNA is fairly obsolete at this point. Since

Nintendo claims the DSes are communicating via their proprietary Nintendo Low

Latency Protocol, these SNA and LLC packets may just be packets mislabeled by

Ethereal. If this is the case, what are the SNA and LLC packets in DS communications?

5.4.5 Analysis of TCP/IP Stack Games
Nintendo has recently released several games for the DS capable of multiplayer

competition over the Internet. Most DS games communicate via an ad-hoc network, when

the devices communicate directly with one another. This ad-hoc behavior means that the

DS does not need to implement a TCP/IP stack. Games such as Mario Kart DS and

Animal Crossing: Wild World implement a TCP/IP stack within the application in order

to send and receive packets over the Internet. Players not within direct wireless contact

 60

could play a game as long as both have a connection to the Internet. Is the network

behavior much different for games with TCP/IP stacks than for ones that must

communicate directly?

5.4.6 Two DS Networks Occupying the Same Airspace
All our captures were taken with a single DS network game occurring at a time.

Since we did observe some of the games switching wireless channels, this could mean

that a DS network makes accommodations for the wireless traffic currently in the vicinity.

Since the DS infrastructure is based on the DS-specific broadcast, what would happen if

multiple DS network games were being played within close proximity to one another?

Would they interfere with one another or would they be able to avoid this problem with

channel switching?

5.4.7 DS Network Impact on Other 802.11 Networks
It is well known that congestion is a large issue in networking. In 802.11 wireless

networks, congestion can play a drastic role in the viability of any networks utilizing the

airspace. Even though Nintendo DSes operate using either 1Mbps or 2 Mbps, they can

still contribute sizably to congestion. Future research would be possible in this area and

researchers would want to explore how big of an effect DS traffic has on other 802.11

devices within the same airspace.

 61

6 Bibliography
A. Bylund, Ars Technica, Console Sales Down, Handheld Games Sales Up in 2005 –
1/15/2006, http://arstechnica.com/news.ars/post/20060115-5983.html, Ars Technica,
LLC, Copyright 1998

A. Jardosh, K. Ramachandran, K. Almeroth, E. Belding-Royer, Understanding Link-
Layer Behavior in Highly Congested IEEE 802.11b Wireless Networks - Proceedings of
the ACM SIGCOMM Internet Measurement Workshop (IMW), University of California,
Santa Barbara, November 2005

H. Yomogita, Nintendo DS: The Secret Within - February 2005 Issue,
http://neasia.nikkeibp.com/neasia/000260, Nikkei Business Publications Asia Ltd
Copyright 1996

J. Gretarsson, F. Li, M. Li, A. Samant, H. Wu, M. Claypool and R. Kinicki, Performance
Analysis of the Intertwined Effects between Network Layers for 802.11g Transmissions –
Wireless Multimedia Networking and Performance Modeling, Montreal, Canada,
October 2005

J. Smed, T. Kaukoranta, and H. Hakonen, Aspects of Networking in Multiplayer
Computer Games - Volume 20, pages 87-97, The Electronic Library, Copyright 2002

M. Claypool, On the 802.11 Turbulence of Nintendo DS and Sony PSP Hand-held
Network Games –Proceedings of the 4th ACM Network and System Support for Games
(NetGames), Hawthorne, NY, USA, October 2005

M. Heusse, F. Rousseau, G. Berger-Sabbatel and A. Duda, Performance Anomaly of
802.11b –Proceedings of IEEE INFOCOM, Grenoble, France, 2003

M. Wright, In the Game?, 6/9/2005, http://www.edn.com/article/CA605509.html, EDN
Copyright 1997

M. Yarvis, K. Papagiannaki, and W. S. Conner., Characterization of 802.11 Wireless
Networks in the Home., In Proceedings of 1st workshop on Wireless Network
Measurements (WiNMee), Riva del Garda, Italy, Apr. 2005

Nintendo of America Inc., Customer Service email correspondent, 2005

Reuters, U.S. cities set up wireless networks, 5/4/2005,
http://www.cnn.com/2005/TECH/internet/05/04/life.wireless.reut/, Reuters Copyright
2005

S. Zander and G. Armitage, A Traffic Model for the Xbox Game Halo 2 –Proceedings of
International Workshop on Network and Operating System Support for Digital Audio and
Video (NOSSDAV), Stevenson, Washington, USA , June 2005

 62

T. Bramwell, Nintendo Plans Wireless GBA Adapter, 09/26/2003,
http://gamesindustry.net/content_page.php?section_name=pub&aid=2309, Eurogamer
Network Ltd. Copyright 2002

W. Feng, F. Chang, and J. Walpole Provisioning On-line Games: A Traffic Analysis of a
Busy Counter-Strike Server –, Proceedings of the ACM SIGCOMM Internet
Measurement Workshop (IMW), Marseille, France, November 2005

Wikipedia, IEEE 802.11, http://en.wikipedia.org/wiki/IEEE_802, accessed February 26,
2006

Wikipedia, Systems Network Achitecture,
http://en.wikipedia.org/wiki/Systems_Network_Architecture, accessed February 26, 2006

