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Introduction

Network functions virtualization (NFV) is significantly influencing the world of net-
working and changing how networks are designed, deployed, and managed.

NFV gives network service providers freedom of choice and allows separating the 
networking software from the hardware. This decoupling brings advantages such as 
cost savings in deploying and operating the network, rapid on-demand provisioning 
of new network functions, increased efficiency, and agile network scalability. These 
advantages open the door for new business opportunities, bring new services to mar-
ket quicker and have been attracting tremendous interest from cloud and Internet 
service providers, mobile operators, and enterprise market segments.

Who Should Read This Book?

The book is targeted towards network engineers, architects, planners, and operators 
with any level of experience in networking technologies who are ready to enter the 
world of network functions virtualization. It assumes basic networking knowledge 
but is meant to be an entry-level book when it comes to understanding NFV architec-
ture, deployment, management, and associated technologies.

Goals and Methods—How This Book Is Organized

It is critical to understand NFV (like any other disruptive technology) to maximize 
the benefits that it offers as well as to use it effectively and efficiently. This under-
standing of NFV requires learning new concepts and technologies and involves a 
learning curve for the engineers, architects, planners, designers, operators, and man-
agers of today’s networks. The motivation to write this book comes from the desire 
to facilitate learning about NFV technologies.

The goal of the book is to enable the reader to get a firm grasp on the NFV tech-
nologies and its building blocks. With the adaption of NFV, the roles in the network-
ing industry will evolve significantly. This book gets readers ready to enter the NFV 
era, arming them with the knowledge to design, deploy, monetize, and make 
informed decisions about adopting NFV solutions in their networks.
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The book takes the approach of building the concepts bottom-up, starting with 
the basic NFV concepts and discussing the advantages and design principles in 
depth, based on its applications. It gets the reader familiar with NFV orchestration, 
management, and use cases, then follow this with a discussion on the related tech-
nology of software-defined networking (SDN). It finishes with a discussion of the 
advanced NFV topics that glue everything together to complete the NFV canvas. The 
discussion is split into six chapters, each with its own goals.

Chapter 1: The Journey to Network Functions Virtualization (NFV) Era

The goal of this chapter is to understand the benefits of NFV and the market driv-
ers that are enabling its adaption. The chapter starts the journey towards NFV by 
analyzing the network evolution over the past decades. This chapter also focuses on 
building the foundation knowledge of NFV by introducing the architectural frame-
work and its components.

Chapter 2: Virtualization Concepts

This chapter focuses on the key technology that makes NFV possible— virtualization. 
The goal of this chapter is to get the reader very well acquainted with virtualization 
technologies and how they relate to NFV.

Chapter 3: Virtualization of Network Functions

This chapter takes a closer look at the design and deployment considerations for an 
NFV based network. The chapters also discuss the technical challenges that are 
expected when transforming today’s networks to adapt NFV. The chapter closes with 
a discussion of network functions and services that are adapting or can adapt NFV.

By the end of the first three chapter, the reader should be familiar with planning 
an NFV deployment, foreseeing the challenges and design issues that will need to be 
considered, and evaluating the advantages that this transformation will bring and 
how those advantages can be maximized.

Chapter 4: NFV Deployment in the Cloud

With the foundations and design challenges already laid out and discussed in the 
previous chapters, this chapter takes those concepts and applies them towards 
orchestrating, building, and deploying NFV networks and services. The chapter also 
visits the management and orchestration solutions available, both through vendors 
and the open source community.

By the end of this chapter, the reader should have a through understanding of the 
tools and techniques that can be used to deploy and manage an NFV network.
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Chapter 5: Software Defined Networking (SDN)

This chapter shifts to new topic and touches upon the concepts of SDN. The 
chapter covers the fundamentals of SDN and describes its correlation with NFV.

Chapter 6: Stitching It All Together

This chapter consolidates the knowledge gained from the previous chapters. 
Important considerations in an NFV network, such as security, programmability, 
performance, and function chaining, are discussed in this chapter. It also gives insight 
into the evolving NFV concepts that will shape the future of this technology.
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Network functions virtualization (NFV) is a fast-emerging technology area that is 
heavily influencing the world of networking. It is changing the way networks are 
designed, deployed, and managed, transforming the networking industry towards a 
virtualization approach and moving away from customized hardware with prepack-
aged software. 

This chapter walks you through the NFV journey and the market drivers behind 
it. It allows you to get acquainted with the concepts of NFV and examines the ongo-
ing efforts towards standardization. It lays the foundation which is instrumental in 
understanding networking industry transition to NFV. It explains how the industry 
is evolving from a hardware centric approach to a virtualized and software—based 
network approach in the effort to meet the need and feed of cloud-based services 
which demand open, scalable, elastic and agile networks. 

The main topics covered in this chapter are: 

 • Evolution from traditional network architecture to NFV

 • NFV standardization efforts and an overview of the NFV architectural 
framework

 • Benefits and market drivers behind NFV

The Evolution of Network Architecture

To appreciate the motivation and need behind the networking industry’s fast adop-
tion of NFV, it’s helpful to take a look at the history of networking and the chal-
lenges that it faces today. Data communication networks and devices have evolved 
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and improved over time. But while networks have become faster and more resilient 
with higher capacity, they still struggle to cope with the demands of the changing 
market. The networking industry is being driven by a new set of requirements and 
challenges brought forward by cloud-based services such as infrastructure to support 
those services and demands to make them work more efficient. Mega-scale data 
centers hosting computing and storage, a factorial increase in data-enabled devices, 
and Internet of Things (IoT) applications are just some of examples of areas that 
need to be addressed for improved throughput and latency in existing networks.

This section examines traditional networks and networking devices and identifies 
the reasons they have been unable to cope with the new types of demands. It also 
takes a look at the way NFV brings a fresh perspective and different solution to these 
market-driven needs. 

Traditional Network Architecture

The traditional phone network and perhaps even telegram networks are examples of 
the earliest data transport networks. Early on, the design criteria and quality bench-
mark by which networks were judged were latency, availability, throughput, and the 
capacity to carry data with minimal loss.

These factors directly influenced the development and requirements for the hard-
ware and equipment to transport the data (text and voice, in this case). Additionally, 
hardware systems were built for very specific use cases and targeted functions, ran 
tightly coupled proprietary operating systems on them, and were meant to perform 
only specific functions. With the advent of data transport networks, the require-
ments and factors that influence the network’s design and the devices’ efficiency 
stayed unchanged (for example, the network design should  achieve highest through-
put with minimum latency and jitter over extended distances with minimal loss). 

All the traditional networking devices were made for specific functions, and the 
data networks built were tailored and customized to meet these efficiency criteria 
effectively. The software or code running on these custom-designed hardware sys-
tems was tightly coupled to it, closely integrated with the silicon Field Programma-
ble and Customized Integrated Circuits and focused exclusively on performing the 
specific functions of the device.

Figure 1-1 illustrates some of the characteristics of traditional network devices 
deployed today. 

With the exponential increase in bandwidth demand, heavily driven by video, 
mobile, and IoT applications, service providers are constantly looking for ways to 
expand and scale their network services, preferably without significant increase in 
costs. The characteristics of traditional devices present a bottleneck to this require-
ment and create many constraints that limit the scalability, deployment costs, and 
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operational efficiency of the network. This situation forces the operators to consider 
alternatives that can remove the limitations. Let’s examine some of these limitations.

Flexibility Limitations 
Vendors design and develop their equipment with a generic set of requirements and 
offer the functionality as a combination of specific hardware and software. The 
hardware and software are packaged as a unit and limited to the vendor’s implemen-
tation. This restricts the choices of feature combinations and hardware capabilities 
that can be deployed. The lack of flexibility and customization to meet fast-changing 
requirements results in inefficient use of resources.

Proprietary Software:
Designed to Run on Custom Hardware

Separate Appliance for each Function

Proprietary Hardware:
Custom FPGA/ASIC/Optics/CPU …

Fixed Network Function

Limited Scalability: 
Physical Space and Power Limitations

Figure 1-1 Traditional Network Devices
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Scalability Constraints 
Physical network devices have scalability limitations in both hardware and software. 
The hardware requires power and space, which can become a constraint in densely 
populated areas. The lack of these resources may limit the hardware that can be 
deployed. On the software side, these traditional devices may not be able to keep up 
with the scale of changes in the data network, such as number of routes or labels. Each 
device is designed to handle a limited multi-dimensional scale, and once that ceiling is 
hit, the operator has a very limited set of options aside from upgrading the device. 

Time-to-Market Challenges 
As requirements grow and change over time, equipment isn’t always able to quickly 
keep up with these changes. Service providers often delay offering new services to 
meet the shift in the market requirements. Implementing new services requires 
upgrading the networking equipment. This leads to complex decisions to choose the 
appropriate migration path. This route may imply re-evaluation of new equipment, 
redesign of the network, or possibly new vendors that may be more suitable to meet 
the new needs. This increases the cost of ownership and longer timeline to offer new 
services to customers, resulting in loss of business and revenue. 

Manageability Issues 
Monitoring tools employed in the networks implement standardized monitoring 
protocols such as a Simple Network Management Protocol (SNMP), NetFlow, sys-
log, or similar systems for gathering device state and information. However, for 
monitoring vendor-specific parameters, relying on standard protocols may not suf-
fice. For example, a vendor may be using nonstandard MIB or vendor-defined syslog 
messages. For such in-depth level of monitoring and control the management tools 
become very specific and tailored for the vendor’s implementation. Whether these 
management tools are built in-house or offered directly by the vendors, it is some-
times not feasible to port these to a different vendor’s devices. 

High Operational Costs 
The operational costs are high because of the need to have highly trained teams for 
each vendor-specific system being deployed in the network. This also tends to lock 
the provider into a specific vendor, because switching to a different vendor would 
mean additional costs to retrain operational staff and revamp operational tools.

Migration Considerations 
Devices and networks need to be upgraded or reoptimized over a period of time. 
This requires physical access and on-site personnel to deploy new hardware, 
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reconfigure physical connectivity, and upgrade facilities at the site. This creates a 
cost barrier for migration and network upgrade decisions, slowing down the offering 
of new services.

Capacity Over-Provisioning 
Short- and long-term network capacity demands are hard to predict, and as a result 
networks are built with excess capacity and are often more than 50% undersubscribed. 
Underutilized and overprovisioned networks result in lower return on investment. 

Interoperability
For faster time to market and deployment, some vendors try to implement new net-
working  functionality before it is fully standardized. In many cases, this implemen-
tation becomes proprietary, which creates inter-operability challenges that require 
service providers to validate interoperability before deploying it in production 
environment.

Introducing NFV

In data centers, the server virtualization approach is already proven technology, 
where stacks of independent server hardware systems have mostly been replaced by 
virtualized servers running on shared hardware. 

NFV builds on this concept of server virtualization. It expands the concept 
beyond servers, widening the scope to include network devices. It also allows the eco-
system to manage, provision, monitor, and deploy these virtualized network entities. 

The acronym NFV is used as a blanket term to reference the overall ecosystem 
that comprises the virtual network devices, the management tools, and the infra-
structure that integrates these software pieces with computer hardware. However, 
NFV is more accurately defined as the method and technology that enables you to 
replace physical network devices performing specific network functions with one 
or more software programs executing the same network functions while running on 
generic computer hardware. One example is replacing a physical firewall appliance 
with a software-based virtual machine. This virtual machine provides the firewall 
functions, runs the same operating system, and has the same look and feel—but on 
non-dedicated, shared, and generic hardware. 

With NFV, the network functions can be implemented on any generic hard-
ware that offers the basic resources for processing, storage, and data transmission. 
 Virtualization has matured to the point that it can mask the physical device, mak-
ing it possible to use commercial off the shelf (COTS) hardware to provide the 
 infrastructure for NFV.
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COTS

Commercial off the shelf (COTS) refers to any product or service that is developed 
and marketed commercially. COTS hardware refers to general-purpose computing, 
storage, and networking gear that is built and sold for any use case that requires 
these resources. It doesn’t enforce usage of a proprietary hardware or software.  

Figure 1-2 shows the transition from traditional network devices to NFV. 

Proprietary Software:
Designed to Run on Custom Hardware

Separate Appliance for each Function

Proprietary Hardware:
Custom FPGA/ASIC/Optics/CPU …

Fixed Network Function

Limited Scalability: 
Physical Space and Power Limitations

Software with Open APIs
Designed to Run on Generic Hardware

Virtualized Function on High Capacity Device

Generic (COTS) Hardware:
Standard FPGA/ASIC/Optics/CPU …

Flexible Network Function
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Cloud Scale: 
Span Across Multiple Locations

Figure 1-2 Transition to NFV

In traditional network architecture, vendors are not concerned about the hard-
ware on which their code will run, because that hardware is developed, customized, 
and deployed as dedicated equipment for the specific network function. They have 
complete control over both the hardware and the software running on the device. 
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That allows the vendors flexibility to design the hardware and its performance fac-
tors based on the roles these devices will play in the network. For example, a device 
designed for the network core will have carrier-class resiliency built into it, while a 
device designed for the network edge will be kept simpler and will not offer high 
availability to keep its cost low. In this context, many of the capabilities of these 
devices are made possible with the tight integration of hardware and software. This 
changes with NFV. 

In the case of virtualized network functions, it is not realistic to make assump-
tions about the capabilities that hardware has to offer, nor is it possible to very tightly 
integrate with the bare hardware. NFV decouples the software from hardware, and 
boasts to offer the ability to use any commercially available hardware to implement 
the virtualized flavor of very specific network functions. 

Virtualization of networks opens up new possibilities in how networks can be 
deployed and managed. The flexibility, agility, capital and operational cost savings 
and scalability that is made possible with NFV opens up new innovation, design par-
adigm and enables new network architectures.

NFV Architectural Framework

The architecture that defines traditional network devices is fairly basic, because both 
the hardware and software are customized and tightly integrated. In contrast, NFV 
allows software developed by the vendors to run on generic shared hardware, creat-
ing multiple touch points for management. 

The NFV architectural framework is developed to ensure that these touch points 
are standardized and compatible between the implementations of different vendors. 
This section provides a comprehensive discussion on the framework and the ration-
ale behind its blocks. Understanding the framework enables readers to envision the 
flexibility and freedom of choice that NFV has to offer. 

Need for a Framework

The architecture that defines the traditional network devices is fairly basic since both 
the hardware and software are customized and tightly integrated. In contrast, NFV 
allows software developed by the vendors to run on generic shared hardware creating 
multiple touch points for management. In the NFV jargon the virtual implementa-
tion of the network functions is referred to as virtualized network function (VNF). 
A VNF is meant to perform a certain network function e.g. router, switch, firewall, 
load-balancer, etc. and a combination of these VNFs may be required to implement 
the complete network segment that is being virtualized.
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VNF

VNF (virtualized network function) replaces a vendor’s specialized hardware with 
systems  performing the same function, yet running on a generic hardware.  

Different vendors may offer these VNFs, and the service providers can choose a 
combination of vendors and functions that best suit their needs. This freedom of 
choice creates the need for a standardized method of communication between the 
VNFs as well as a way to manage them in the virtual environment. The management 
of NFV needs to take into account the following considerations:

 • multivendor implementations of VNFs

 • managing the life cycles and interactions of these functions 

 • managing the hardware resource allocations

 • monitoring the utilization

 • configuration of the VNFs

 • interconnection of the virtualized functions to implement the service

 • interaction with the billing and operational support systems

To implement these management roles and keep the system open and non- 
proprietary, a framework must be defined for standardization. This standard frame-
work should ensure that the VNF deployed is not tied to specific hardware and does not 
need to be especially tailored for any environment. It should offer vendors a  reference 
architecture that they can follow for consistency and uniformity in the deployment 
methodologies of any VNF they implement. Additionally, it needs to ensure that the 
management of these VNFs and the hardware they run upon does not have a depend-
ency on any vendor. There should be no special tweaking required to implement 
the network functions in this heterogeneous ecosystem. Essentially, this framework 
must provide the architectural foundations that allow the VNFs, hardware, and the 
 management systems to work seamlessly within the well defined boundaries. 

ETSI Framework for NFV

NFV was first introduced at the SDN OpenFlow World Congress in 2012 by a con-
sortium of key service providers. They referenced the major challenges faced by net-
work operators, especially their dependency on introducing new hardware for 
enabling innovative services to their customers. The group highlighted the challenges 
associated with the following concepts:
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 • design changes around the new equipment

 • deployment cost and physical constraints 

 • need for expertise to manage and operate the new proprietary hardware and 
software

 • dealing with hardware complexity in the new proprietary equipment 

 • the short lifecycle that makes this equipment become obsolete rapidly

 • restarting the cycle before the returns from the capital expenses and  investments 
are fully realized

The group proposed NFV as a way to tackle these challenges and improve effi-
ciency by “leveraging standard IT virtualization technology to consolidate many 
network equipment types onto industry standard high volume servers, switches and 
storage, which could be located in Datacentres, Network Nodes and in the end user 
premises.” [3]

To realize this goal and define a set of specifications that would make it possible 
to move from the traditional vendor and network centric approach to an NFV-based 
network, seven of these leading telecom operators formed an Internet  specification 
group (ISG)—under an independent standardization organization called the European 
Telecommunications Standards Institute (ETSI). [1]

This group formally started in early 2013, working towards defining requirements 
and an architectural framework that can support the virtualized implementation of 
network functions performed by custom hardware devices from vendors.

This group used three key criteria for coming up with the recommendations: 

 • Decoupling: complete separation of hardware and software

 • Flexibility: automated and scalable deployment of the network functions

 • Dynamic operations: control of  the operational parameters of  the net-
work functions through granular control and monitoring of  the state of 
network

Based on these criteria, a high-level architectural framework was established, 
defining distinct areas of focus as shown in Figure 1-3.  

This architectural framework forms the basis of the standardization and devel-
opment work and is commonly referred to as the ETSI NFV framework. At a high 
level, the framework encompasses management of VNFs, relationships and interde-
pendencies, data flow between VNFs, and resource allocation. ETSI ISG categorized 
these roles into three high-level blocks, namely the infrastructure block, virtualized 
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functions block, and management block. In ETSI’s definition, the formal names of 
these blocks are defined as:

 • Network Functions Virtualization Infrastructure (NFVI) block: This block 
forms the foundation of the overall architecture. The hardware to host the 
 virtual machines, the software to make virtualization possible, and the Virtual-
ized resources are grouped into this block.

 • Virtualized Network Function (VNF) block: The VNF block uses the virtual 
machines offered by NFVI and builds on top of them by adding the software 
implementing the virtualized network functions. 

 • Management and Orchestration (MANO) block: MANO is defined as a 
separate block in the architecture, which interacts with both the NFVI and 
VNF blocks. The framework delegates to the MANO layer the management 
of all the resources in the infrastructure layer; in addition, this layer creates and 
deletes resources and manages their allocation of  the VNFs.

Understanding the ETSI Framework

The ETSI framework and the thought process behind its high-level blocks can be 
 better understood if you examine the building process that led to this framework. 
Let’s begin with the fundamental concept of NFV, such as virtualizing the function 
of a network device. This is achieved through VNFs. 

VNF #2
(NAT)

VNF #1
(FW)

VNF #3
(RTR)

Virtualized Network Functions (VNFs)

NFV Management and
Orchestration (MANO)

Virtual Compute Virtual Storage Virtual Network

Virtualization Layer

Computing and Storage Hardware Network Hardware

Network Functions Virtualization Infrastructure (NFVI)

• • • • • • • • •

• • • • • • • • •

Figure 1-3 High-Level ETSI NFV Framework
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To implement the network service, VNFs may be deployed either as standalone 
entities or as a combination of multiple VNFs. The protocols associated with the 
function that is being virtualized within a VNF do not need to be aware of the vir-
tualized implementation. As shown in the Figure 1-4 the VNF implementing the 
firewall service (FW), NAT device (NAT), and routing (RTR) communicate to each 
other without the knowledge that they are not physically connected or running on 
dedicated physical devices.  

Since there isn’t dedicated or custom hardware designed to run these VNF, a 
general-purpose hardware device with generic hardware resources such as a proces-
sor (CPU), storage, memory, and network interfaces can be used to run these VNFs. 
This can be made possible by using COTS hardware. It doesn’t need to be a single 
COTS device; it can be an integrated hardware solution providing any combination 
of the required hardware resources to run the VNFs. Virtualization technologies can 
be used to share the hardware among multiple VNFs. These technologies, such as 
hypervisor-based virtualization or container-based virtualization, have been used in 
data centers for some time and have become fairly mature. These details are covered 
in Chapter 2, “Virtualization Concepts.” 

Virtualization of hardware offers an infrastructure for the VNF to run upon. This 
NFV infrastructure (NFVI) can use COTS hardware as a common pool of resources 
and carve out subsets of these resources creating “virtualized” compute, storage, and 
network pools that can be allocated as required by the VNFs, as shown Figure 1-5. 

The vendor for the VNF recommends a minimum requirement for the resources 
that its implementation should have available to it, but the vendor can’t control or 
optimize these hardware parameters. For instance, the vendor can make a recom-
mendation on the CPU cores necessary to execute the code or the storage space and 
memory the VNF will need—but the vendors no longer get a free hand to design 

Virtualized Network Functions (VNFs)

VNF# 2
(NAT)

VNF# 1
(FW)

VNF# 3
(RTR)

Figure 1-4 Network Functions Working Together as VNFs
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the hardware around their specific requirements. The virtualization layer using the 
physical hardware can cater to the VNF resource request. The VNF doesn’t have any 
visibility into this process, nor is that VNF aware of the existences of other VNFs 
that may be sharing the physical hardware with them. 

In this virtualized network’s architecture, there are now multiple resources to 
 manage and operate at various levels. In comparison, today’s network architecture 
management is vendor specific and has limited knobs and data points offered by ven-
dors. Any new requirements or enhancements in management capabilities are possi-
ble only with vendor support. With NFV it is possible to manage the entities at a more 
granular and individual level. The NFV architecture, therefore, wouldn’t be complete 
without defining the methodologies to manage, automate, coordinate, and intercon-
nect these layers and functional blocks in an agile, scalable, and automated way. 

This requirement leads us to add another functional block to the framework 
that communicates with and manages both the VNF and NFVI blocks, as shown in 
 Figure 1-6. This block manages the deployment and interconnections of the VNFs 
on the COTS hardware and allocates the hardware resources to these VNFs.  

Since the MANO block is meant to have full visibility of the entities and is 
responsible for managing them, it is fully aware of the utilization, operational state, 
and usage statistics of them. That makes MANO the most suitable interface for the 
operational and billing systems to gather the utilization data.

This completes the step-by-step understanding of the three high-level blocks—
NFVI, VNF, and MANO—and captures the reasoning behind defining and  positioning 
these blocks in the ETSI framework. 

VNF #1 VNF #2 VNF #3

Virtualization Layer

Physical Hardware (NFVI)
CPU, ASICs, NIC,

Consoles, Memory, HDD

Virtual Hardware Virtual HardwareVirtual Hardware

Figure 1-5 Virtual Computing, Storage, and Networking Resources Provided to VNF
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A Closer Look at ETSI’s NFV Framework

The previous section provides a high-level view of the ETSI NFV architecture 
framework and its basic building blocks. The framework defined by ETSI goes 
deeper into each of these blocks and defines individual functional blocks with dis-
tinct role and responsibility for each of them. The high-level blocks, therefore, com-
prise multiple functional blocks. For instance, the management block (MANO) is 
defined as a  combination of three functional blocks:  the Virtualized Infrastructure 
Manager (VIM), Virtualized Network Function Manager (VNFM), and NFV Orches-
trator (NFVO).

The architecture also defines reference points for the functional blocks to interact, 
communicate and work with each other. Figure 1-7 shows the detailed view of the 
framework as defined by ETSI.   

This section takes a deeper look into this framework and reviews the suggested 
functions, the interworking of each of these functional blocks, and their interlinking 
through the reference points. 

For convenience of understanding, these functional blocks are grouped into 
 layers, where each layer deals with a particular aspect of NFV implementation. 
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Figure 1-6 Management and Orchestration Block for NFV
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Infrastructure Layer
The VNFs rely on the availability of virtual hardware, emulated by software 
resources running on physical hardware. In the ETSI NFV framework, this is made 
possible by the infrastructure block (NFVI). This infrastructure block comprises 
physical hardware resources, the virtualization layer, and the virtual resources, as 
shown in Figure 1-8.  

ETSI framework splits the hardware resources into three main categories – 
 computing, storage, and network. The computing hardware includes both the CPU 
and memory, which may be pooled between hosts using cluster-computing tech-
niques. Storage can be locally attached or distributed with devices such as network-
attached storage (NAS) or devices connected using SAN technologies. Networking 
hardware comprises pools of network interface cards and ports that can be used by 
the VNFs. None of this hardware is purposely built for any particular network func-
tion, but all items are instead generic hardware devices available off the shelf hard-
ware (COTS). These functional blocks can span and scale across multiple devices 
and interconnected locations, and are not confined to a single physical host, location 
or point of presence (POP).

It must be mentioned that the networking hardware within the physical loca-
tion interconnecting the storage and compute devices, or interconnecting multiple 
locations (such as switches, routers, optical transponders, wireless communication 
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Figure 1-7 Low Level View of  the ETSI NFV Framework
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equipment, etc.) is also considered part of NFVI. However, these network devices are 
not part of the pool that is allocated as a virtual resource to VNF.

The virtualization layer is another function block that is part of NFVI. It  interacts 
directly with the pool of hardware devices, making them available to VNFs as a vir-
tual machine. The virtual machine offers the virtualized computing, storage, and 
networking resources to any software that it hosts (VNF in this case) and presents 
these resources to the VNF as if they were dedicated physical hardware devices. 

 

VM

Virtual machine or VM is a commonly used terminology for the virtualized 
resource pool, which may be shared hardware resources working independently 
and isolated from each other.  

In summary, it is the virtualization-layer that is decoupling the software for net-
work function (i.e., VNF) from the hardware while provident them isolation from 
other VNFs and acting as an interface to the physical hardware. 

 

Abstraction

The technique of decoupling hardware and software layers by providing a common 
independent interface to the software for accessing the hardware resources is 
referred to as “hardware abstraction”, or more simply as “abstraction.”  

To manage NFVI, ETSI defines a management functional block called the Vir-
tualized Infrastructure Manager (VIM). VIM is part of MANO (Management and 
Orchestration blocks), and the framework delegates to it the responsibility for man-
aging the computing, storage, and networking hardware, the software that is imple-
menting the virtualization layer, and the virtualized hardware. Because VIM directly 
manages the hardware resources, it has a full inventory of these resources and visibil-
ity into their operational attributes (such as power management, health status, and 
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Figure 1-8 Infrastructure Layer of  ETSI NFV Framework
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availability), as well as the capacity to monitor their performance attributes (such as 
utilization statistics). 

VIM also manages the virtualization layer and controls and influences how the 
virtualization layer uses the hardware. VIM is therefore responsible for the control 
of NFVI resources and works with other management functional blocks to deter-
mine the requirements and then manage the infrastructure resources to fulfill them. 
VIM’s management scope may be with the same NFVI-POP or spread across the 
entire domain spanned by the infrastructure. 

An instance of VIM may not be restricted to a single NFVI layer. It is possible that 
a single VIM implementation controls multiple NFVI blocks. Conversely, the frame-
work also allows for the possibility that multiple VIMs can function in parallel and 
control several separate hardware devices. These VIMs can be in a single location or 
different physical locations. 

Virtualized Network Functions (VNF) Layer
The VNF layer is where the virtualization of network function is implemented. It 
comprises the VNF-block and the functional block that manages it, called VNF-
Manager (VNFM). The VNF-block is defined as a combination of VNF and Ele-
ment Management (EM) blocks as shown in Figure 1-9.  

A virtualized implementation of a network function needs to be developed so 
it can run on any hardware that has sufficient computing, storage, and network 
interfaces. However, the details of the virtualized environment are transparent to 
the VNF, and it is expected to be unaware that the generic hardware it is running 
on is actually a virtual machine. The behavior and external interface of the VNF is 
expected to be identical to the physical implementation of the network function and 
device that it is virtualizing. 

The network service being virtualized may be implemented through a single VNF, 
or it may require multiple VNFs. When a group of VNF are collectively implement-
ing the network service, it is possible that some of the functions have dependencies 
on others, in which case the VNF needs to process the data in a specific sequence. 
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Figure 1-9 Virtualized Network Function Layer in ETSI NFV Framework
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When a group of VNFs doesn’t have any interdependency, then that group is referred 
to as a VNF set. An example of this is in a mobile virtual Evolved Packet Core 
(vEPC), where the Mobile Management Entity (MME) is responsible for authentica-
tion of the user and chooses the Service Gateway (SGW). The SGW runs indepen-
dently of the MME’s function and forwards user data packets. These VNFs work 
collectively to offer part of the functionality of vEPC but are independently imple-
menting their functions.

If, however, the network service requires VNFs to process the data in a spe-
cific sequence, then the connectivity between the VNFs needs to be defined and 
deployed to ensure it. This is referred to as VNF-Forwarding-Graph (VNF-FG) 
or service chaining. In the previous example of vEPC, if  you added another VNF 
that provides Packet Data Network Gateway (PGW) functionality, that PGW 
VNF should only process the data after the SGW. As shown in Figure 1-10, this 
interconnection between SGW, MME, and PGW in this specific order for packet 
flow makes a VNF-FG. This idea of service chaining is important in the NFV 
world and requires a more detailed discussion. This topic is covered in depth in 
Chapter 6, “Stitching It All Together.” 

Service
Gateway

(SGW) VNF
eNodeB

PDN
Gateway

(PGW) VNF

MME VNF

Figure 1-10 Virtual Evolved Packet Core (vEPC) using VNF-FG

In the ETSI framework, it is the VNFM’s responsibility to bring up the VNF 
and manage the scaling of its resources. When the VNFM must instantiate a new 
VNF or add or modify the resources available to a VNF (for example, more CPU 
or memory) it communicates that requirement to the VIM. In turn, it requests that 
the virtualization layer modify the resources allocated to the VM that is hosting 
the VNF. Since the VIM has visibility into the inventory, it can also determine if  it 
is possible for the current hardware to cater to these additional needs. Figure 1-11 
shows this flow of events.  
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The VNFM also has the responsibility for the FCAPS of the VNFs. It manages 
this directly by communicating with the VNFs or uses the Element Management 
(EM) functional block. 

 

FCAPS

FCAPS is a ISO telecommunications management network mode and is an 
abbreviation for the five main management parameters: fault, configuration, 
performance, accounting, and security.  

Element Management is another functional block defined in the ETSI framework 
and is meant to assist in implementing the management functions of one or more 
VNFs. The management scope of EM is analogous to the traditional element man-
agement system (EMS), which serves as a layer for interaction between the network 
management system and the devices performing network functions. EM interacts with 
the VNFs using proprietary methods while employing open standards to communicate 
with the VNFM. This provides a proxy to the VNFM for operations and management 
of the VNFs as shown in Figure 1-12. The FCAPS are still managed by VNFM, but it 
can take support from the EM to interact with the VNF for this aspect of management. 

The framework doesn’t restrict the implementation to a single VNFM to  manage 
all the VNFs. It is possible that the vendor that owns the VNF requires its own 
VNFM to manage that VNF. Therefore, there can be NFV deployments where multi-
ple VNFM are managing multiple VNFs or a single VNFM manages a single VNF, as 
shown in Figures 1-13 and 1-14.  
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Figure 1-11 VNFM Scaling Up VNF Resources
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Figure 1-12 VNFM Managing VNF Directly or through EM
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Figure 1-13 Single VNFM Managing Multiple VNFs

 Operational and Orchestration Layer
When moving from physical to virtual devices, network operators do not want to 
revamp the management tools and applications that may be deployed for operational 
and business support systems (OSS/BSS). The framework doesn’t require a change in 
these tools as part of transformation to NFV. It allows them to continue to manage the 
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operational and business aspects of the network and work with the devices even though 
the devices are replaced by VNFs. While this is in line with what is desired, using exist-
ing systems has its drawbacks, because it doesn’t fully reap the benefits of NFV and is 
not designed to communicate with NFV’s management functional blocks—VNFM and 
VIM. One path that providers can take is to enhance and evolve the existing tools and 
systems to use NFV management functional blocks and utilize the NFV benefits (like 
elasticity, agility, etc.). That’s a viable approach for some, but it is not a feasible option 
for others because these systems are traditionally built in-house or are proprietary 
implementations that do not allow for managing an open platform like NFV.

The solution that the ETSI framework offers is to use another functional block, 
NFV Orchestrator (NFVO). It extends the current OSS/BSS and manages the opera-
tional aspects and deployment of NFVI and VNF Figure 1-15 shows the two compo-
nents of the orchestration layer in the framework. 

The role of NFVO is not obvious up front and seems like an additional block buff-
ering between current operating tools and VIM and VFNM. NFVO, however, has a 
critical and important role in the framework by overlooking the end-to-end service 
deployment, parsing the bigger picture of service virtualization and communicating 
the needed pieces of information to VIM and VNFM for implementing that service. 

NFVO also works with the VIM(s) and has the full view of the resources that they 
are managing. As indicated previously, there can be multiple VIMs and each one of 
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Figure 1-14 Multiple VNFMs Managing Separate VNFs
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them has only visibility of the NFVI resources that it is managing. Since NFVO has 
the collective information from these VIMs, it can coordinate the resource allocation 
through the VIMs. 

 

Resource orchestration

The process of  allocating, deallocating, and managing NFVI resources to the 
VMs is referred to as resource orchestration.  

Similarly, the VNFM is independently managing the VNFs and doesn’t have vis-
ibility into any connection of the services between the VNFs and how the VNFs 
combine to form the end to the service path. This knowledge resides in the NFVO, 
and it’s the role of NFVO to work through the VNFM to create the end-to-end ser-
vice between the VNFs. It is therefore the NFVO that has visibility into the network 
topology formed by the VNFs for a service instance. 

 

Service Orchestration

The term Service Orchestration refers to defining the service using the VNFs and 
how these VNFs will interconnect as a topology to implement it.  

Despite not being a part of the NFV transformation, the existing OSS/BSS do 
bring value to management and therefore have a place in the framework. The frame-
work defines the reference points between the existing OSS/BSS and NFVO and 
defines NFVO as an extension of the OSS/BSS to manage the NFV deployment 
 without attempting to replace any of the roles of OSS/BSS in today’s networks. 

NFV Reference Points 
The ETSI framework defines reference points to identify the communication 
that must occur between the functional blocks. Identifying and defining these is 

NFV Management and
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NFV
OrchestratorOperational and Billing Support System

Figure 1-15 Operational and Orchestration Layer of  ETSI NFV Framework
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important to ensure that the flow of information is consistent across the vendor 
implementation for functional blocks. It also helps established an open and common 
way to exchange  information between the functional blocks. Figure 1-16 shows the 
reference points defined by the ETSI NFV framework.  

The list that follows describes these reference points in more detail.

 • Os-Ma-nfvo: This was originally labeled Os-Ma and is meant to define the 
communication between OSS/BSS and NFVO. This is the only reference point 
between OSS/BSS and the management block of NFV (MANO). 

 • Ve-Vnfm-vnf: This reference point defines the communication between 
VNFM and VNF. It is used by VNFM for VNF lifecycle management and to 
exchange configuration and state information with the VNF.

 • Ve-Vnfm-em: This was originally defined together with Vn-Vnfm-vnf (jointly 
labeled Ve-Vnfm) but is now defined separately for communication between 
the VNFM and EM functional blocks. It supports VNF lifecycle management, 
fault and configuration management, and other functions, and it is only used 
if the EM is aware of virtualization.
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Figure 1-16 ETSI NFV Framework Reference Points
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 • Nf-Vi: This reference point defines the information exchange between VIM 
and the functional blocks in NFVI. VIM uses it to allocate, manage, and con-
trol the NFVI resources.

 • Or-Vnfm: Communication between NFVO and VNFM happens through this 
reference point, such as VNF instantiation and other VNF lifecycle-related 
information flow. 

 • Or-Vi: The NFV orchestrator (NFVO) is defined to have a direct way of 
communicating with VIM to influence the management of  the infrastruc-
ture resources, such as resource reservation for VMs or VNF software 
addition.

 • Vi-Vnfm: This reference point is meant to define the standards for information 
exchange between VIM and VNFM, such as resource update request for VM 
running a VNF. 

 • Vn-Nf: This is the only reference point that doesn’t have a management 
 functional block as one of its boundaries. This reference point is meant 
to  communicate performance and portability needs of the VNF to the 
 infrastructure block. 

Table 1-1 summarizes these reference point definitions:  

Putting it all Together
Let’s see how this model works end to end, taking the example of a simple network 
service and examining how the functional blocks defined in the ETSI framework col-
lectively interact to implement the service. Figure 1-17 shows a simplified version of 
the steps involved. 

The following steps depict this process:

 Step 1. The full view of the end-of-end topology is visible to the NFVO.

 Step 2. The NFVO instantiates the required VNFs and communicate this to the 
VNFM. 

 Step 3. VNFM determines the number of VMs needed as well as the resources that 
each of these will need and reverts back to NFVO with this requirement to 
be able to fulfill the VNF creation. 

 Step 4. Because NFVO has information about  the hardware resources, it validates 
if there are enough resources available for the VMs to be created. The 
NFVO now needs to initiate a request to have these VMs created. 



Table 1-1 ETSI NFV Framework Reference-Points

Reference Point Boundaries Use Defined in the Framework

Os-Ma-nfvo OSS/BSS<->NFVO  • Service description and VNF package management.

 • Network service lifecycle management (instantiation, query, update, scaling, 
and termination).

 • VNF life cycle management.

 • Policy management (access, authorization, etc.) for network service instances.

 • Querying network service and VNF instances from OSS/BSS. Forwarding events, 
usage, and performance of network service instances to OSS/BSS.

Ve-Vnfm-vnf VNFM<->VNF  • Instantiation, instance query, update, scaling up or down, and termination of the VMs.

 • Configuration and events regarding VNF, from VNFM to VNF.

 • Configuration and events from VNF to VNFM.

Ve-Vnmf-em VNFM<->EM  • Instantiation, instance query, update, scaling up or down, and termination of the VMs.

 • Configuration and events regarding VNF from VNFM to EM.

 • Configuration and events from EM to VNFM.

Nf-Vi NFVI<->VIM  • Allocate, update. migrate, terminate VMs.

 • Create, configure, remove inter-VM connections.

 • Failure events, usage records, configuration information to the VIM for NFVI 
resources (physical, software, virtual).

Or-Vnfm NFVO<->VNFM  • Instantiation, state query, update, scaling, termination and package query of the VNF.

 • Forwarding VNF events and state information.

Or-Vi NFVO<->VIM  • NFVI resource reservation, release, and update.

 • VNF software image allocation, deallocation, and update.

 • Configuration, usage, events, and results of NFVI to NFVO.

Vi-Vnfm VIM<->VNFM  • NFVI resource reservation, allocation, and release information.

 • Events, usage, measurement results, etc. for a NFVI resource used by a VNF.

Vn-Nf NFVI<->VNF  • Lifecycle, performance, and portability requirements of VNF.
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 Step 5. NFVO sends request to VIM to create the VMs and allocate the necessary 
resources to those VMs. 

 Step 6. VIM asks the virtualization layer to create these VMs. 

 Step 7. Once the VMs are successfully created, VIM acknowledges this back to 
NFVO.

 Step 8. NFVO notifies VNFM that the VMs it needs are available to bring up the 
VNFs. 

 Step 9. VNF now configures the VNFs with any specific parameters.

 Step 10. Upon successful configuration of the VNFs, VNFM communicates to 
NFVO that the VNFs are ready, configured, and available to use.

Figure 1-17 and the accompanying list depict a simplified flow as an example to 
help understand the framework. It intentionally doesn’t go into many more details 
associated with this process as well as possible variations. Though these are not 
being covered in this book, readers can refer to the ETSI document  (Section 5, in [2]) 
for additional details and scenarios. 
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Figure 1-17 End-to-End Flow in the ETSI NFV Framework
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NFV Framework Summary 

The goal of defining the framework and more specifically the individual functional 
blocks and the reference points is to eliminate (or more realistically, minimize) inter-
operability challenges and standardize the implementation. The purpose and scope 
of each of these blocks is well defined in the framework. Similarly, the interdepend-
encies and communications paths are defined through the reference-points and are 
meant to be open and standard methods. 

Vendors can independently develop these functions and deploy them to work 
smoothly with other functional blocks developed by other vendors. As long as these 
implementations adhere to the scope and role defined by the framework, communi-
cate with the other blocks using open methods at the reference points, the network 
can have a heterogeneous deployment of NFV. This means that the service provid-
ers will have complete flexibility to choose between vendors for different functional 
blocks. This is in contrast to the way networks have traditionally been deployed, 
where service providers were tied to the vendor’s hardware (and its limitations) and 
software (and the challenges to adapt to it for all operational needs), and they had to 
deal with the interoperability concerns of mixed vendor networks. NFV offers service 
providers the ability to overcome this limitation and deploy a scalable and agile net-
work using hardware and NFV functional blocks using any combination of vendors.

This doesn’t magically eliminate the higher-level protocol interoperability issues 
that may arise between VNFs implemented by different vendors. For example, a BGP 
implementation by a vendor of one VNF may have some issue when it is peering with 
another VNF developed by a different vendor. For these types of interoperability issues, 
a standardization process already exists and will continue to play a role. Also, NFV 
doesn’t mandate that vendors offer an open and standard way to manage the configu-
ration and monitoring of the VNFs. EM in the NFV framework compensates for that. 
But in an implementation closer to the ideal, the operations support system should be 
able to work with the VNFs using standard methods. This is happening through a par-
allel technology shift towards software-defined networking (SDN). Though NFV and 
SDN are not interdependent, together they are complementing the benefits and advan-
tages of each other. In this book, the focus is on NFV, but the picture is not complete 
without some discussion of SDN and how these two complement each other.

Though the NFV framework is well established, the standardization of NFV 
building blocks is an ongoing effort.

Benefits of NFV 

Earlier in this chapter the limitations associated with using the traditional network 
equipment were listed. Network functions virtualization directly addresses most of 
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these restrictions and brings many additional benefits. It offers a framework to 
 completely transform the way networks are architected, deployed, managed, and 
operated, while offering many layers of improvement and efficiency across all of 
these. Figure 1-18 lists a few of the benefits that NFV offers that are discussed in the 
sections that follow. 

Hardware Flexibility

Because NFV uses regular COTS hardware, network operators have the freedom to 
choose and build the hardware in the most efficient way to suit their needs and 
requirements. 

Hardware offered by traditional network vendors has very limited options for 
its computing, memory, storage, and networking capacities, and any modification 
leads to a hardware upgrade that costs time and money to the operators. With 
NFV, providers can now choose between many different vendors and have the flex-
ibility to select the hardware capacities that are optimal for their network architec-
ture and planning. For example, if  the Internet gateway being used is running out 
of capacity to store the full Internet table and needs a memory upgrade, in most 
current implementations they can achieve this only through a controller upgrade 
or full device upgrade. In NFV, the provider can allocate more memory to the VM 
hosting this VNF. 

NFV Benefits

Hardware
Flexibility

Faster
Service

Life Cycle

Scalability
and

Elasticity

Leveraging
Existing

Tools
Agility

Rapid
Development

Vendor
Independence

Easy
Validation

Amorphous
Service
Offering

Operational
Efficiency

Figure 1-18 Some Benefits of  Network Functions Virtualization
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Faster Service Life Cycle

New network services or features can now be deployed more quickly,  in an on-
demand and on-need basis, providing benefits for end users as well as the network 
providers. 

In contrast to physical hardware, the VNFs can be created and removed on the 
fly. The lifecycle of VNFs can be much shorter and dynamic compared to physical 
devices, since these functions can be added when needed, provisioned easily through 
automated software tools that do not require any on-site activity, and then torn down 
to free up resources as soon as the need is over. This is in contrast to the deployment 
effort needed when a new function has to be added to an existing network, which 
would have required an on-site physical installation, which can be time consuming 
and costly. The ability to rapidly add new network functions (deployment agility) 
is one of the biggest advantages of NFV. Services now can also be commissioned or 
decommissioned with the touch of a button without the need of a delivery truck, 
drastically reducing deployment times from weeks to minutes.

 

Agility 

The ability to rapidly deploy, terminate, reconfigure or change the topological 
location of a VNF is commonly referred to as deployment agility.  

Scalability and Elasticity

New services and capacity-hungry applications in today’s networks keep network 
operators, especially cloud providers, on their toes to keep up with the fast-increasing 
demands of consumers. The service providers have been playing catch-up with these 
requirements, for scaling up the traditional network equipment’s capacity takes time, 
planning, and money. This problem is solved by NFV, which allows capability 
changes by offering a means to expand and shrink the resources used by the VNFs. 
For instance, if any of the VNFs requires additional CPU, storage, or bandwidth, it 
can be requested from the VIM and allocated to the VNF from the hardware pool. In 
a traditional network device, it would require either a full device replacement or a 
hardware upgrade to alter any of these parameters. But since VNFs aren’t con-
strained by the limitations of customized physical hardware, they can offer this elas-
ticity. Therefore networks do not need to be substantially overprovisioned to 
accommodate changes in capacity requirements. 

Another way the NFV can implement elasticity is by offloading a VNF’s 
 workload and spinning off a new instance to implement the same network  function 
and split the load with an existing VNF. This too is not possible with traditional 
network equipment.  
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Elasticity

Elasticity is a  word very commonly used in the NFV context to refer to the capa-
bility of a VNF to expand and stretch resources or to shirk and scale them down, 
based on requirements. Also, this term is used to refer to the scenario when we 
create or remove additional VNFs to share the workload of an existing VNF.  

Leveraging Existing Tools

As NFV uses the same infrastructure as data centers, it can reuse and leverage the 
deployment and management tools already being used in data centers. Using a single 
centralized pane of glass for management of virtual network and virtual servers gives 
the advantage of quicker adaption for new deployments without the need for devel-
oping new tools and as a result eliminates the cost of deploying, familiarizing, and 
using new set of tools. 

Rapid Development and Vendor Independence

Because NFV provides the means to easily deploy a different vendor’s solution without 
the heavy costs associated with replacing an existing vendor’s deployment, it keeps 
network operators from being locked into a particular vendor. Operators can mix and 
match vendors and functions, and choose between them based on feature availability, 
cost of licensing the software, post deployment support model, roadmaps, etc. 

New solutions and features can be put into production rapidly, without waiting for 
the existing deployed vendor to develop and support them. Such rapid deployment is 
further facilitated by NFV’s inherent support for using open source tools and software. 

Validation of New Solutions 

Service providers often prefer to validate new solutions, services, and functions by 
deploying them in test setups, prior to introducing them in their production net-
works. Traditionally, they have had to replicate a subset of their production environ-
ment for in-house testing, which increased their operational budget. With NFV, 
building and managing such a test setups has become much more cost effective. The 
NFV-based test-setups can be dynamic and thus scaled and changed to meet the test 
and validation scenarios.

Amorphous Service Offering 

An NFV-based deployment is not confined to a one-time design and deployment. It 
can adapt to market specific needs and offer a targeted set of services to match 
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changing demands. Through a combination of elasticity and deployment agility, it’s 
possible to rapidly shift the location and capacities of network functions and achieve 
workload mobility. For example, providers can implement a “follow the sun net-
work” by using constantly moving virtual machines based on time of the day, and 
spinning up or expanding new VNFs to meet the network’s requirements for services 
and capacity as they change during peak and off-peak usage or when major events 
take place in any geographic region.

Operational Efficiency and Agility

With common hardware hosting different VNFs, tasks associated with running the 
business, such as inventory management, procurement process, can be centralized. 
This reduces the operational overhead compared to segregated deployments of dif-
ferent network services using multiple hardware devices. 

NFV is inherently automation friendly, and can increase the benefits that can be 
achieved through use of Machine to Machine (M2M) tools. For instance, its possible 
for an automation tool monitoring a device to determine the need for more memory 
in a network function. With NFV that tool can go ahead and request allocation of 
that memory—without involving any human intervention. 

Network maintenance related activates can also significantly benefit from NFV by 
reducing possible downtimes. NFV allows for spinning up a new VNF,  temporarily 
shift the workload to that VNF, and free up existing VNF for maintenance activities. 
This makes it possible to achieve In-Service-Software-Upgrade (ISSU), 24/7 self-healing 
networks, and minimize the operational loss of revenue due to  network outages.

 

Note

Upgrading to new software for introducing new features, scaling changes, bug 
fixes, etc. while maintaining a high uptime has traditionally been a challenge and 
sometimes a source of pain for network service providers. This problem becomes 
more critical in the network edge devices, for they are not generally deployed with 
physical redundancy. An In-Service Software Upgrade (ISSU) is if the term for one 
of the solutions offered by network vendors to enhance the upgrade procedure in a 
way that allows an upgrade to occur without disrupting the device’s  functionality. 
ISSU implementations may not always be completely without  disruptions, and 
they could potentially result in a very brief loss of traffic. However, this brief pos-
sibility of traffic loss is sometimes acceptable and preferred to the certain loss of 
service if the device was upgraded without ISSU.  
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NFV Market Drivers

NFV is more than a transformative technology. Like any new technology that brings 
major changes and new benefits, NFV has had to go through acceptance and adaption 
by the market. The market drivers for NFV are very significant, obvious, and promis-
ing. These have played a part in making NFV move beyond its infancy in research labs 
and bringing it into mainstream deployments in a very short span of time. 

Access to the Internet and the trend toward digital services across the world are 
creating a big market for the network service providers. The scale and the bandwidth 
needs are already straining the existing network infrastructure. Upgrading this tradi-
tional network infrastructure requires high levels of time, money, and resources from 
the providers. This has forced the providers to rethink the network architecture and 
use new innovations that could keep up with the new cloud and digitalization world. 
One of the main drivers is the movement to cloud technology coupled with the uti-
lization of the matured technology such as the virtualization and COTS hardware. 
Network providers are now using the same cloud infrastructure such as the comput-
ers (servers) and storage devices and adding the network function to these elements 
to provide services for new market requirements. By taking this approach, they gain  
major cost savings, the ability to bring new services to market faster and capacity to 
adapt quickly to any change in the market landscape.

The NFV market drivers that bring new business opportunities have made net-
work operators eager to transition to NFV. Figure 1-19 lists some of these market 
drivers, which are described in the sections that follow. 

Movement to Cloud

With the advent of new smart devices, bandwidth-hungry applications, the new 
breed of connected devices, and Internet of things (IoT) technologies, the demand 
for and usage of networks has been increasing exponentially. These recent changes 
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have created market demand for services being provided anytime, anywhere, and on 
any device. To meet this market shift, providers are looking to build and offer cloud-
based services that can satisfy the new requirements.

Research publications forecast that between 2015 and 2020, the NFV market will  
grow to beyond $9B with a compound annual growth rate (CAGR) of 83.1% [4]. This is a 
huge market for the traditional providers to miss, and many new providers are now jump-
ing into this market, such as cloud providers, service providers, enterprise, startups, etc.

New Business Services

Consumption-based growth ensures that the network resources grow in close corre-
lation with demand. With the use of traditional network equipment, network growth 
occurred in jumps, resulting in first overprovisioned and later underprovisioned net-
work capacities, as depicted in Figure 1-20. The use of NFV avoids wastage of time 
and resource that would have been spent in continuously reprovisioning and decom-
missioning the network capacity. 

One of the new business opportunities made possible by NFV is to offer hosting 
of network and IT services using massive server deployments. This type of service 
offering has been picking up pace and is proving to be a high-revenue business.

Instead of investing in network and data infrastructure, many enterprises are now 
opting to lease it as a service through the cloud providers. This is commonly refer-
enced as Infrastructure as a Service (IaaS). 
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With NFV, providers can offer network services on demand like a shopping-cart 
experience, allowing consumers to add or delete services and devices through self-
managed portals. Since the services will use NFV, these new services can get deployed 
automatically and become available instantaneously. In this case, if a customer wants 
to add a new firewall to a branch location, the customer  can use such a portal to buy 
this service with few clicks, and the back-end at the provider will spin off a new vir-
tual machine and deploy the firewall VNF on it as well as connect that VNF to the 
existing devices for that branch office. 

These are just a few examples of NFV’s ability to offer new set of business ser-
vices that can be deployed on-demand and brought up in a short time span. The 
new breed of services that NFV can make possible are already gaining popularity 
and creating market enthusiasm. Providers are also offering new business models 
that utilize consumption-based growth, on-demand deployment, pay- as-you-grow 
and pay-as-you-use services, and better monetization for the network resources.

Capital Expense Savings

The hardware innovations required in traditional network hardware are costly for 
vendors to develop and produce. These devices have a small market and are there-
fore sold in low volume. These two factors are reflected in the cost to the network 
operators. On top of that, vendors of traditional network equipment have been 
able to keep the margins high by exploiting the fact that limited alternatives were 
available to the network operators. NFV revolutionizes this situation by using 
standard high-volume hardware such as the servers, switches, and storage 
components. 

COTS hardware devices are already mass produced and sold at a reasonable price 
due to their use in data centers, and the use of off-the-shelf components keeps devel-
opment costs low and competitive. The low manufacturing cost, combined with eco-
nomics of scale and efficiency, results in equipment costs that are much  less than 
those of purpose-built hardware.

Operational Expense Savings 

With NFV’s push for standardized framework, the proprietary aspect of the existing 
network’s vendor-specific hardware and software combination is eliminated or mini-
mized. NFV encourages and supports the use of open standards within its functional 
blocks as well as their interaction with existing management tools. This makes NFV 
deploy and operate networks using many existing vendor independent tools from 
server and data-center space, without new investments.
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Virtualized network can share the infrastructure between the network functions 
as well as applications running on the network, data centers and server farms. The 
power and space consumed by the infrastructure can therefore be shared and more 
efficiently used.

Barrier of Entry

With traditional network devices, it’s difficult for new vendors or new service 
 providers to enter the market. The development costs for the vendors and the infra-
structure costs for the providers present a barrier that is challenging to penetrate. 
With NFV, which uses open software implementing various network functions and 
has lower hardware costs, this barrier has been removed. This opens up doors for 
new vendors and providers to enter the market, bringing innovations and challeng-
ing the current vendors by offering lower priced and higher performing implemen-
tations of network functions.

Summary

The goal of this chapter is to get the readers acquainted with NFV concepts, stand-
ards and benefits. It examines how NFV is transforming the networking industry. It 
describes how networks evolved from early days of data communication to today’s 
sophisticated networks carrying voice, data, and video traffic. The drawbacks and 
challenges of traditional network architectures and the ways NFV can help address 
these issues are discussed. The chapter introduces NFV and examines how it com-
pares with today’s networks. It focuses on the importance of understanding the 
standardization process for NFV. This chapter also provides a detailed study of 
ETSI’s NFV framework. The major advantages of NFV and the market drivers 
behind it are also covered in this chapter. 
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Review Questions

Use the questions here to review what you learned in the chapter. The correct answers 
are found in Appendix A, “Answers to Review Questions.”

 1. Which organization is driving the framework for NFV

a. European Telecommunications Standards Institute (ETSI)

b. Internet Engineering Task Force (IETF)

c. International Telecommunication Union (ITU)

d. Open Network Consortium (ONC)

 2. What are the three major blocks of the NFV architecture?

a.  VIM, NFVO, and VNFM

b.  ETSI, MANO, and VNF

c.  NF, NFVI, and MANO 

d.  OSS, BSS, and VNF

 3. VNFM is responsible for which of the following?

a.  managing the infrastructure hardware and controlling its allocation to the 
VNFs

b.  managing the lifecycle of the VNF (instantiation, scaling up or down, ter-
mination) as well as FCAPS management of the VNF

c.  deploying the end-to-end service in the NFV architecture

d.  gathering the FCAPS information of the physical hardware from VIM and 
passing them to NFVO so that the resources can be appropriately managed 
by the upper layers for the ETSI framework

 4. Which management functional block facilitates running multiple virtual 
machines/VNFs on the same hardware?

a. Virtualized Network Function Manager (VNFM)

b.  Virtualization Infrastructure Manager (VIM)

c.  Element Manager (EM)

d.  Network functions virtualization Orchestrator (NFVO)

 5. Communication between different functional blocks such as VIM to VNFM, 
VNFM to NFVO in the ETSI architecture is called?

a. communication end points

b. open network interconnects
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c. FCAPS data points

d. reference points

 6. List three benefits of NFV compared to traditional network devices:

a. deployment agility

b.  hardware-centric

c.  elasticity 

d.  vendor independence

 7. The abbreviation “COTS” stands for

a. custom option to service

b.  commodity-oriented technical solution

c.  commercial off the shelf

d.  commercially offered technical solution
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