
electronics

Article

Network-Oriented Real-Time Embedded System
Considering Synchronous Joint Space Motion for an
Omnidirectional Mobile Robot

Raimarius Delgado and Byoung Wook Choi *

Department of Electrical and Information Engineering, Seoul National University of Science and Technology,
Seoul 01811, Korea; raim223@seoultech.ac.kr
* Correspondence: bwchoi@seoultech.ac.kr; Tel.: +82-02-970-6412

Received: 8 February 2019; Accepted: 8 March 2019; Published: 13 March 2019
����������
�������

Abstract: This paper proposes a real-time embedded system for joint space control of omnidirectional
mobile robots. Actuators driving an omnidirectional mobile robot are connected in a line topology
which requires synchronization to move simultaneously in translation and rotation. We employ
EtherCAT, a real-time Ethernet network, to control servo controllers for the mobile robot. The first
part of this study focuses on the design of a low-cost embedded system utilizing an open-source
EtherCAT master. Although satisfying real-time constraints is critical, a desired trajectory on the
center of the mobile robot should be decomposed into the joint space to drive the servo controllers.
For the center of the robot, a convolution-based path planner and a corresponding joint space control
algorithm are presented considering its physical limits. To avoid obstacles that introduce geometric
constraints on the curved path, a trajectory generation algorithm considering high curvature turning
points is adapted for an omnidirectional mobile robot. Tracking a high curvature path increases
mathematical complexity, which requires precise synchronization between the actuators of the mobile
robot. An improvement of the distributed clock—the synchronization mechanism of EtherCAT
for slaves—is presented and applied to the joint controllers of the mobile robot. The local time of
the EtherCAT master is dynamically adjusted according to the drift of the reference slave, which
minimizes the synchronization error between each joint. Experiments are conducted on our own
developed four-wheeled omnidirectional mobile robot. The experiment results confirm that the
proposed system is very effective in real-time control applications for precise motion control of the
robot even for tracking high curvature paths.

Keywords: network-oriented system; real-time embedded controller; Xenomai; EtherCAT;
synchronous joint space motion

1. Introduction

As one of the most renowned topics in the field of robotics, mobile robots are drawing a great deal
of attention from researchers because of their high demand in sophisticated applications, especially
in a cyberphysical system. Mobile robots are currently integrated in physical world environments,
interacting efficiently with human beings to perform delicate tasks in military exercises, factory
automation, and education [1–3]. For instance, an ongoing research suggests using a mobile robot for
clinical telepresence, which eliminates the travel distance between physicians and patients performing
medical examinations inside a coexistent space [4]. These studies employed conventional-wheeled
mobile robots which required meticulous path planning and navigation schemes to track a desired
path. Although recent advancements in navigation have enabled conventional-wheeled mobile
robots to accurately track curved paths with smooth trajectories, a considerable amount of lateral

Electronics 2019, 8, 317; doi:10.3390/electronics8030317 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-6759-4240
https://orcid.org/0000-0002-2404-7415
http://dx.doi.org/10.3390/electronics8030317
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/3/317?type=check_update&version=2

Electronics 2019, 8, 317 2 of 19

and longitudinal slip (nonholonomic constraints) constricts movement in all possible directions.
Comparatively, omnidirectional mobile robots are capable of arbitrary motion in any direction without
reconfiguration of the wheels at any point in time. Motion in arbitrary directions is possible by
employing specially designed wheels including sliding rollers [5], active casters [6], and Mecanum
wheels [7,8]. To this end, we aim to develop a motion control system for a Mecanum-wheeled
omnidirectional mobile robot.

To interact with the working environment, robots must be equipped with a motion control system
consisting of three essential components: the main controller, servo drives, and actuators. The main
controller is responsible for the calculation of motion commands and the collection of feedback from
the other components. It also handles all communication and network-related functions. Conventional
motion control systems consist of powerful main controllers based on industrial computers running
proprietary software, which are very expensive and bulky in size [9,10]. These are mostly found in
control systems for industrial and humanoid robots [11–13]. However, main controllers for mobile
robots should be smaller to increase portability as they are required to move easily within the
environment. Several studies proposed embedded systems to address this issue. Al Mamun et al. [14]
presented an embedded system for an omnidirectional mobile robot participating in the RoboCup-SSL
soccer competition. Although they were able to deal with portability, their software is not easily
accessible, making it difficult for redistribution. Arvin et al. [15] and López-Rodríguez et al. [16]
both presented widely distributable open-source educational mobile robot systems. However, these
innovative approaches shared a common drawback: the inability to track a desired path with accuracy.
This is due to the failure of meeting real-time constraints. Because robots are advanced control systems
which include implementation of various digital hardware and control algorithms, each component
must be operated in a deterministic manner and should meet strict temporal deadlines, or hard
real-time constraints.

In this paper, we employ EtherCAT [17], a real-time Ethernet protocol, to address the issue of
guaranteeing precise control speed and short cycle times while transferring massive amounts of
information between EtherCAT slave devices (servo drivers of the mobile robot). In our previous
work, we have implemented an EtherCAT environment for a desktop PC to control a conventional
wheeled mobile robot [18]. Owing to the current trend in exploiting open embedded platforms as
main controllers in robot control applications [19–21], we developed a low-cost, real-time EtherCAT
controller based on an open embedded hardware: i.MX6Q SABRELite [22]. However, the software
development on these platforms is more difficult in contrast to commercial distributions owing
to the limited availability of systematic documentation and technical support [23,24]. Although
manufacturers provide software sources such as the Linux kernel, compatibility with the other software
and patches is also a concern. With the aim to minimize development costs and provide an easily
redistributable solution for researchers and real-time developers, we provide detailed instructions on
developing a real-time environment for the i.MX6Q SABRELite utilizing an open-source EtherCAT
master—IgH EtherLAB [25]—and considering its compatibility with other open-source software
sources. IgH EtherLAB only should be executed under a real-time operating system (RTOS) to ensure
operation in real-time. The Linux kernel is highly recommended because of its openness, which
enables users to freely add and modify the source code. As a result of the continuous contribution of
developers worldwide, the standard Linux operating system has advanced to become a soft RTOS.
It can meet real-time deadlines most of the time. However, deadlines are frequently missed with
tolerable system degradation because the standard Linux scheduling policy utilizes fairness instead
of priority in executing processes [26]. Mobile robot control applications are a collection of hard
real-time tasks and missing a deadline can result in severe system malfunction leading to physical
accidents such as inability to follow the required path and collision with obstacles. Thus, we employed
Xenomai [27], a cokernel approach of real-time Linux, running alongside the standard kernel to provide
hard real-time support for user space applications.

Electronics 2019, 8, 317 3 of 19

While satisfying real-time constraints is critical, the accurate actuation on the center body of a
mobile robot requires the desired trajectory to be decomposed in the joint space [28]. Our previous
study provides a brief description of a convolution-based trajectory generation method considering
the geometric constraints of a high curvature path [29]. However, it was developed to drive a
conventional-wheeled differential drive mobile robot, it did not completely describe the definition of a
high curvature, and practical testing on an actual mobile robot was not executed. In this paper, we focus
on the adaptation of the algorithm on a four-wheeled omnidirectional mobile robot based on EtherCAT.
The difference in kinematics shows that synchronization is very essential between each actuator and
the main controller, which generates and distributes velocity commands. This problem is imminent in
tracking a high curvature trajectory with the maximum allowable velocity as it requires numerous
mathematical operations in short cyclic period. EtherCAT offers a delay compensation mechanism
between EtherCAT slaves, namely, distributed clock (DC). However, synchronization between the
EtherCAT master and the slaves was not considered according to the results of Cena et al. [30]. This
affects the stability of the entire system due to periodically losing packets on the transmission line [31].
This paper presents a method that configures the reference slave as the global reference clock to be
followed by the EtherCAT master and all the slaves within the network. The local time of the EtherCAT
master is adjusted according to the drift of the reference clock while performing its required tasks.
This method can satisfy the synchronization requirements of joint space control without data loss, thus
accurately tracking the path with high curvature.

In summary, the contribution of this paper is divided into three main points. First, we provide the
detailed procedures considering software compatibility in developing a network-oriented, low-cost,
real-time embedded system to control an omnidirectional mobile robot via EtherCAT protocol. A joint
space trajectory generator which enables tracking of high curvature paths is thoroughly discussed
with the definition of the underlying geometrical constraints. Lastly, a method to improve the DC
mechanism of EtherCAT is proposed to guarantee synchronization between the EtherCAT master and
slaves for accurate joint space motion. The remainder of this paper is organized as follows. Section 2
presents the design of the real-time environment for the i.MX6Q SABRELite embedded platform,
including both hardware and software architecture. Section 3 discusses the convolution-based
trajectory generation scheme to track a high curvature path and its adaptation to the kinematics
of a four-wheeled omnidirectional mobile robot. The improvement of the DC mechanism and
its significance in joint space control is explained in Section 4. Section 5 shows the results of the
experiments and the last section summarizes the concluding remarks and discusses future work.

2. Design of a Real-Time Embedded System

With the aim to design a mobile robot applicable in several fields such as education, industrial
automation, and research, we have employed EtherCAT, a real-time Ethernet protocol developed
by Beckhoff Automation [17]. EtherCAT is becoming the standard fieldbus protocol guaranteeing
strict scheduling deadlines and short cycle times while transferring massive amounts of information
between a network of devices. The protocol is typically implemented in main controllers of
cyberphysical systems including industrial and humanoid robots that require powerful but bulky
industrial computers running expensive proprietary software. However, mobile robot applications
require portable main controllers to increase versatility and dexterity when moving inside a working
environment. To address this issue, this section provides detailed procedures for designing a real-time
EtherCAT controller based on the open embedded platform i.MX6Q SABRELite. The functions of each
of the hardware components and the software architecture considering compatibility for the motion
control system are described.

2.1. Hardware Components

A robot motion control system is typically composed of a main controller, servo drives, and
actuators to interact with the environment. The main controller is responsible for the calculation of

Electronics 2019, 8, 317 4 of 19

motion commands and collection of feedback from the other components, the servo drives serves as
mediators between the main controller and the actuators by converting motion commands to current
and voltage values required by the actuators. Actuators are usually composed of motors with encoders
expressing the actual mechanical motion. The motion control system employing the EtherCAT network
is shown in Figure 1.

Electronics 2018, 7, x FOR PEER REVIEW 4 of 19

encoders expressing the actual mechanical motion. The motion control system employing the
EtherCAT network is shown in Figure 1.

Figure 1. Network-oriented control architecture for an omnidirectional mobile robot.

The main controller serves as the EtherCAT master handling the path planner, trajectory
generator, and the joint space controller. As shown in the figure, the initial and target positions
respectively, denoted as Pi and Pf, respectively, are received by the EtherCAT master from the
remote monitor. The path planner generates a path between these points without considering
temporal parameters. The corresponding linear and angular velocity commands (denoted as vc and
ωc, respectively) are produced by the trajectory generator and are decomposed to the joint space
velocities through the joint space controller. The joint space velocities are sent to the servo drives on
the EtherCAT network to drive the motors. The actual movement are measured by the encoders
connected to each motor and the measurements are sent back to the EtherCAT master, which are
processed to deduce the current location of the mobile robot in Cartesian space denoted as x(t) and
y(t).

In our developed system, four EtherCAT servo drives are employed, each attached with AC
motors. In addition, the servo drive supports processing of 19-bit serial encoder and provides three
different control modes: velocity, position, and torque control. Thus, we selected motors that are
each equipped with an internal 19-bit absolute encoder, used for measuring the actual movement of
the motors and calculating the actual position of the robot. To address the size and power
requirements, we characterize the main controller to run on the embedded platform i.MX6Q
SABRELite, a low-power and low-cost open embedded hardware manufactured by NXP (formerly
Freescale) [22]. i.MX6 processors are widely used in different industrial and control applications as it
has a quad-core 1.2 GHz ARM Cortex A9 CPU, making it competitive with industrial computers.
Although there are various evaluation boards for the i.MX6 processor, we have selected SABRELite
because it has the interfaces required to drive a mobile robot while being minimally sized. The
embedded platform is equipped with a gigabit Ethernet controller which serves as the interface to
connect with the EtherCAT devices. Other hardware interfaces such as SPI, I2C, and UART are also
available that can be used to attach different sensors and extend the functionality of the mobile
robot.

2.2. Software Architecture

The open-source EtherCAT master—IgH EtherLAB—is required to be implemented under the
Linux kernel. The compatible version of embedded Linux kernel that can be implemented on the
embedded platform is kernel version 3.14.15 provided in the ARMv7 Multiplatform repository [32].
Although Linux provides libraries and other tools for application development, IgH EtherLAB
requires an RTOS to meet real-time guarantees in connection with the EtherCAT slaves. To this end,
we have selected Xenomai, a cokernel approach of real-time Linux. Xenomai provides hard real-time
support in the user space applications with task synchronization and scheduling mechanisms such

Figure 1. Network-oriented control architecture for an omnidirectional mobile robot.

The main controller serves as the EtherCAT master handling the path planner, trajectory generator,
and the joint space controller. As shown in the figure, the initial and target positions respectively,
denoted as Pi and Pf, respectively, are received by the EtherCAT master from the remote monitor.
The path planner generates a path between these points without considering temporal parameters.
The corresponding linear and angular velocity commands (denoted as vc and ωc, respectively) are
produced by the trajectory generator and are decomposed to the joint space velocities through the joint
space controller. The joint space velocities are sent to the servo drives on the EtherCAT network to
drive the motors. The actual movement are measured by the encoders connected to each motor and
the measurements are sent back to the EtherCAT master, which are processed to deduce the current
location of the mobile robot in Cartesian space denoted as x(t) and y(t).

In our developed system, four EtherCAT servo drives are employed, each attached with AC
motors. In addition, the servo drive supports processing of 19-bit serial encoder and provides three
different control modes: velocity, position, and torque control. Thus, we selected motors that are each
equipped with an internal 19-bit absolute encoder, used for measuring the actual movement of the
motors and calculating the actual position of the robot. To address the size and power requirements,
we characterize the main controller to run on the embedded platform i.MX6Q SABRELite, a low-power
and low-cost open embedded hardware manufactured by NXP (formerly Freescale) [22]. i.MX6
processors are widely used in different industrial and control applications as it has a quad-core 1.2 GHz
ARM Cortex A9 CPU, making it competitive with industrial computers. Although there are various
evaluation boards for the i.MX6 processor, we have selected SABRELite because it has the interfaces
required to drive a mobile robot while being minimally sized. The embedded platform is equipped
with a gigabit Ethernet controller which serves as the interface to connect with the EtherCAT devices.
Other hardware interfaces such as SPI, I2C, and UART are also available that can be used to attach
different sensors and extend the functionality of the mobile robot.

2.2. Software Architecture

The open-source EtherCAT master—IgH EtherLAB—is required to be implemented under the
Linux kernel. The compatible version of embedded Linux kernel that can be implemented on the
embedded platform is kernel version 3.14.15 provided in the ARMv7 Multiplatform repository [32].

Electronics 2019, 8, 317 5 of 19

Although Linux provides libraries and other tools for application development, IgH EtherLAB requires
an RTOS to meet real-time guarantees in connection with the EtherCAT slaves. To this end, we have
selected Xenomai, a cokernel approach of real-time Linux. Xenomai provides hard real-time support
in the user space applications with task synchronization and scheduling mechanisms such as mutex,
semaphores, event flags, etc. Xenomai runs alongside the standard Linux kernel through the adaptive
domain environment for operating systems or ADEOS, a nanokernel hardware abstraction layer that
enables multiple entities called domains to exist in the same hardware. In this configuration, Xenomai
has the higher priority and is handled first, causing nonreal-time processes on the standard Linux
kernel to have the lowest priority by default. Thus, any standard Linux task will execute, if and only if
there are no pending Xenomai tasks.

The Linux kernel is patched with the compatible ADEOS ipipe-3.14.17-arm-2, which is available at
the Xenomai i-pipe patch archives [33]. Additional kernel configurations are required to disable CPU
features that are prone to voltage and clock frequency changes. These include CONFIG_CPU_FREQ,
CONFIG_CPU_IDLE, and CONFIG_KGDB. Buffer overflow detection and protection is also disabled
because it can trigger warnings when installing Xenomai. The kernel is compiled including device
tree binaries (DTB). DTB is the newest data structure in Linux that contains the information of the
devices attached to the embedded platform. In case of the i.MX6Q SABRELite, DTBs are introduced
from Linux kernel version 3.8. Thus, a bootloader that can identify this data structure is required for
a successful booting process. We have chosen U-Boot 2014.07, which is the most stable bootloader
compatible with the platform. The latest version of Xenomai that is compatible with both the Linux
kernel and IgH EtherLAB is Xenomai 2.6.5. It is included with user space libraries and tools for easier
application development without having to program in the kernel space. Xenomai is compiled with
−arch = armv7-a and −mfpu = vfp3, which comprise the architecture of the CPU and floating-point
unit (FPU) attached to the i.MX6Q SABRELite. Finally, IgH EtherLAB is installed on the
system to ensure deterministic communication with the EtherCAT slaves. The latest version
of the EtherCAT master is v1.5.2 The toolchain used to compile all the software sources is
gcc-linaro-arm-linux-gnueabihf-4.8.3 and the root filesystem used is minimal Ubuntu 14.04. The
real-time environment for the i.MX6 SABRELite, considering the compatibility of each software, is
shown in Figure 2. The real-time performance of the Xenomai-based real-time environment for i.MX6Q
SABRELite and its comparison to other widely known open embedded hardware platforms was
presented in our previous work in [34].

Electronics 2018, 7, x FOR PEER REVIEW 5 of 19

as mutex, semaphores, event flags, etc. Xenomai runs alongside the standard Linux kernel through
the adaptive domain environment for operating systems or ADEOS, a nanokernel hardware
abstraction layer that enables multiple entities called domains to exist in the same hardware. In this
configuration, Xenomai has the higher priority and is handled first, causing nonreal-time processes
on the standard Linux kernel to have the lowest priority by default. Thus, any standard Linux task
will execute, if and only if there are no pending Xenomai tasks.

The Linux kernel is patched with the compatible ADEOS ipipe-3.14.17-arm-2, which is available
at the Xenomai i-pipe patch archives [33]. Additional kernel configurations are required to disable
CPU features that are prone to voltage and clock frequency changes. These include
CONFIG_CPU_FREQ, CONFIG_CPU_IDLE, and CONFIG_KGDB. Buffer overflow detection and
protection is also disabled because it can trigger warnings when installing Xenomai. The kernel is
compiled including device tree binaries (DTB). DTB is the newest data structure in Linux that
contains the information of the devices attached to the embedded platform. In case of the i.MX6Q
SABRELite, DTBs are introduced from Linux kernel version 3.8. Thus, a bootloader that can identify
this data structure is required for a successful booting process. We have chosen U-Boot 2014.07,
which is the most stable bootloader compatible with the platform. The latest version of Xenomai that
is compatible with both the Linux kernel and IgH EtherLAB is Xenomai 2.6.5. It is included with user
space libraries and tools for easier application development without having to program in the kernel
space. Xenomai is compiled with −arch = armv7-a and −mfpu = vfp3, which comprise the
architecture of the CPU and floating-point unit (FPU) attached to the i.MX6Q SABRELite. Finally,
IgH EtherLAB is installed on the system to ensure deterministic communication with the EtherCAT
slaves. The latest version of the EtherCAT master is v1.5.2 The toolchain used to compile all the
software sources is gcc-linaro-arm-linux-gnueabihf-4.8.3 and the root filesystem used is minimal
Ubuntu 14.04. The real-time environment for the i.MX6 SABRELite, considering the compatibility of
each software, is shown in Figure 2. The real-time performance of the Xenomai-based real-time
environment for i.MX6Q SABRELite and its comparison to other widely known open embedded
hardware platforms was presented in our previous work in [34].

Figure 2. Real-time environment for the i.MX6Q SABRELite for IgH EtherCAT master.

3. Joint Space Motion of an Omnidirectional Mobile Robot

Advancements in motion control has enabled conventional-wheeled mobile robots to track
curved paths with smooth trajectories. However, there are still considerable amounts of lateral and
longitudinal slipping (nonholonomic constraints) that constricts movement in all possible directions.
To this end, omnidirectional mobile robots are developed employing specially designed wheels.
Controlling an omnidirectional mobile robot is a challenging task owing to its kinematics and
dynamics in comparison to conventional-wheeled mobile robots. The dynamic model of the mobile
robot which is required to implement various control algorithms in real environment having various
uncertainties. In this paper, however, we focus on an advanced trajectory generation algorithm
based on convolution which was originally characterized for a conventional-wheeled mobile robot

Figure 2. Real-time environment for the i.MX6Q SABRELite for IgH EtherCAT master.

3. Joint Space Motion of an Omnidirectional Mobile Robot

Advancements in motion control has enabled conventional-wheeled mobile robots to track curved
paths with smooth trajectories. However, there are still considerable amounts of lateral and longitudinal
slipping (nonholonomic constraints) that constricts movement in all possible directions. To this end,

Electronics 2019, 8, 317 6 of 19

omnidirectional mobile robots are developed employing specially designed wheels. Controlling an
omnidirectional mobile robot is a challenging task owing to its kinematics and dynamics in comparison
to conventional-wheeled mobile robots. The dynamic model of the mobile robot which is required to
implement various control algorithms in real environment having various uncertainties. In this paper,
however, we focus on an advanced trajectory generation algorithm based on convolution which was
originally characterized for a conventional-wheeled mobile robot with two wheels. The algorithm
is modified in accordance to the kinematics model of a four-wheeled omnidirectional mobile robot
driven with Mecanum wheels, where we assumed that there is no wheel slippage on the ground and
provided references for the derivation of our mathematical model [35]. Trajectory generation for a
smooth path is easier to accomplish, but it does not ensure the reliability to track paths with high
curvature. Tracking high curvature paths is vital in a practical scenario where an obstacle is present in
the working environment. The mobile robot is redirected to a new path to avoid collision with the
obstacle that has high curvature turning points. Therefore, we present a trajectory generation technique
that improves the original convolution-based algorithm considering the geometrical constraints of a
high curvature path. In comparison to our previous work [29], we have provided the description of
the algorithm in details. The definition of a high curvature path is included in this paper. The high
curvature trajectory is decomposed in the joint space to actuate the EtherCAT-based omnidirectional
mobile robot.

3.1. Robot Kinematics and Joint Space Velocities

The kinematics of the omnidirectional mobile robot investigated in this paper is shown in
Figure 3. It is driven with four motors and has a rectangular shape. In the figure, the horizontal
and vertical distances between the center of the robot and the center of each wheel are denoted as L
and l, respectively. The rate of the heading angle at the center of the robot is denoted as ωc. The lateral
and longitudinal linear velocities are represented by vx and vy, respectively. These velocities, along
with ωc, are decomposed to the joint space velocities denoted as ωi (i = 0,1,2,3) with respect to the
radius of the wheels denoted as R.

Electronics 2018, 7, x FOR PEER REVIEW 6 of 19

with two wheels. The algorithm is modified in accordance to the kinematics model of a
four-wheeled omnidirectional mobile robot driven with Mecanum wheels, where we assumed that
there is no wheel slippage on the ground and provided references for the derivation of our
mathematical model [35]. Trajectory generation for a smooth path is easier to accomplish, but it does
not ensure the reliability to track paths with high curvature. Tracking high curvature paths is vital in
a practical scenario where an obstacle is present in the working environment. The mobile robot is
redirected to a new path to avoid collision with the obstacle that has high curvature turning points.
Therefore, we present a trajectory generation technique that improves the original
convolution-based algorithm considering the geometrical constraints of a high curvature path. In
comparison to our previous work [29], we have provided the description of the algorithm in details.
The definition of a high curvature path is included in this paper. The high curvature trajectory is
decomposed in the joint space to actuate the EtherCAT-based omnidirectional mobile robot.

3.1. Robot Kinematics and Joint Space Velocities

The kinematics of the omnidirectional mobile robot investigated in this paper is shown in
Figure 3. It is driven with four motors and has a rectangular shape. In the figure, the horizontal and
vertical distances between the center of the robot and the center of each wheel are denoted as L and l,
respectively. The rate of the heading angle at the center of the robot is denoted as ωc. The lateral and
longitudinal linear velocities are represented by vx and vy, respectively. These velocities, along with
ωc, are decomposed to the joint space velocities denoted as ωi (i = 0,1,2,3) with respect to the radius of
the wheels denoted as R.

Figure 3. Simplified kinematics of a four-wheeled omnidirectional mobile robot.

Each of the wheels is driven individually for the robot to perform either lateral or radial
movement. The kinematic model highly depends on the wheel configuration and the angle between
the rollers and the center of the mobile robot according to the work of Taheri et al. [35]. Assuming
that there is no wheel slippage on the ground, the mathematical model of the motion in the joint
space in this configuration is expressed in the following equation.

0 0

1 1

2 2

3 3

() () 1 1 ()
()

() () 1 1 ()
()

() () 1 1 ()
()() () 1 1 ()

x

y

c

v t t L l
v t

v t t L l
R v t

v t t L l
tv t t L l

ω
ω
ω

ωω

 − + − + = = − − + +

 (1)

We can easily find a relationship between the central velocity of the mobile robot and the
angular velocities at each of its joint. These angular velocities are derived using the following
equation.

Figure 3. Simplified kinematics of a four-wheeled omnidirectional mobile robot.

Each of the wheels is driven individually for the robot to perform either lateral or radial movement.
The kinematic model highly depends on the wheel configuration and the angle between the rollers
and the center of the mobile robot according to the work of Taheri et al. [35]. Assuming that there
is no wheel slippage on the ground, the mathematical model of the motion in the joint space in this
configuration is expressed in the following equation.

v0(t)
v1(t)
v2(t)
v3(t)

 = R

ω0(t)
ω1(t)
ω2(t)
ω3(t)

 =

1 1 −(L + l)
1 −1 (L + l)
1 −1 −(L + l)
1 1 (L + l)

 vx(t)

vy(t)
ωc(t)

 (1)

Electronics 2019, 8, 317 7 of 19

We can easily find a relationship between the central velocity of the mobile robot and the angular
velocities at each of its joint. These angular velocities are derived using the following equation.

ω0(t) = 1
R (vx(t) + vy(t)− (L + l)ωc(t))

ω1(t) = 1
R (vx(t)− vy(t) + (L + l)ωc(t))

ω2(t) = 1
R (vx(t)− vy(t)− (L + l)ωc(t))

ω3(t) = 1
R (vx(t) + vy(t) + (L + l)ωc(t))

(2)

Thus, the trajectory generator is responsible for producing the linear velocity commands at the
center body of the mobile robot (vx and vy) and the angular velocity (ωc). Whereas, the joint space
controller converts the central velocity commands into the angular velocities at each of the joints for
the actual motion. The following sections discusses a trajectory generator based on convolution, which
satisfies the physical limits of the robot and could track a high-curvature path.

3.2. Convolution-Based Path Planning

Yang et al. [28] proposed a path planner based on convolution which produces the center velocity
for a two-wheeled mobile robot to track a smooth curve. The convolution operator satisfies physical
limitations of the robot, including maximum velocity, maximum acceleration, and maximum jerk. To
generate the velocity profile, a square wave function, y0(t), is defined with an area equal to the linear
distance of the planned path, S, as shown in the following equation.

y0(t) =

{
vmax, 0 ≤ t ≤ t0

0, otherwise

where, t0 = |S|
vmax

(3)

By applying the preceding output of the system as the input of the next iteration, successive
operation of the digital convolution in uniform sampling time generates the center velocity profile
using the following simplified equation.

vn(t) = yn[k] =
yn−1[k]− yn−1[k−mn]

mn
+ yn[k− 1] (4)

where, k and mn satisfies k = t/Ts and mn = tn/Ts. tn is the calculated time parameter with respect to
the given physical limits. Theoretically, the convolution operator can be applied to infinity; however,
the smooth movement of the mobile robot only requires consideration of the jerk limit. Thus, the
convolution operator is performed only for two times. However, the convolution operator only
considers the linear distance between two points, which is unequal to the actual travel distance along a
curved path. We assume that a curve is denoted as ∆S(u), which is uniformly sampled with a defining
parameter in the range of 0 ≤ u ≤ 1. The total travel distance along the entire path, Bd, is calculated as

Bd =
1

∑
u=0

∆S(u) =
1

∑
u=0

√
(x(u + ∆u)− x(u))2 + (y(u + ∆u)− y(u))2 (5)

The smoothness of the curve is defined as proportional to the number of samples of the defining
parameter. Meaning, a smoother curve is generated with a larger number of u samples. The actual
travel distance in (5) is substituted as the input function for the convolution operator. Hence, the center
velocity, vc(t), is generated in the time domain. Here, physical limitations, such as maximum velocity,
maximum acceleration, maximum jerk, and sampling time are configured to match the specifications
of the mobile robot. However, the generated velocity does not consider the heading angles along
the curve. Therefore, the defining parameter of the curve is calculated in the time domain using the
following equation.

Electronics 2019, 8, 317 8 of 19

u(t) =

t0+t1+t2
∑

t=0
vc(t)

Bd
(6)

The accumulated distance at each sampling point in the time domain ∆S(u(t)) is obtained by
substituting the calculated u(t) parameter in the curve equation to produce a trajectory that considers
the heading angles of the curved path. This notation denotes that shorter sampling time can generate
more accurate trajectory. Assuming that a path is defined by the time-bounded parameter in (6), then
each point along the curve is defined as a function of that parameter or expressed as the coordinates
(x(u(t)), y(u(t))). By definition, vx and vy are the rates of change of the position on the x and y axes,
respectively. Thus, they are calculated as the derivative of the curved path, or vx(t) =

dx(u(t))
dt

vy(t) =
dy(u(t))

dt

(7)

The heading angle from the center of the mobile robot, θc, at each point along the curve is
calculated as

θc(u(t)) = tan−1 dy(u(t))
dx(u(t))

(8)

Therefore, the angular velocity at the center body of the mobile robot is equal to the derivative of
the heading angle, or

ωc(t) =
dθc(u(t))

dt
(9)

3.3. Trajectory Generator for a High Curvature Path

In the previous section, we discussed a convolution-based path planner which considers the
physical limits and the heading angles at the center body of the mobile robot. However, it is inevitable
for robots to work in an environment where obstacles exist inside a working environment. The
common way to avoid obstacles is to alter the original planned path. For example, generating
two additional paths, one for avoiding the obstacle, and the other to connect the deviation and the
original target position. However, the deviation usually results to a path with high curvature. In our
previous work [29], the geometric constraints present at the turning points of was considered. The
convolution-based trajectory generator in the previous section was improved to generate feasible
trajectories. This method satisfies both the physical limits of the mobile robot and the geometrical
limits due to the high curvature of the curved path. However, it was developed to drive a two-wheeled
differential drive mobile robot and did not completely describe the definition of a high curvature.
In this paper, we focus on the adaptation of the algorithm for a four-wheeled omnidirectional mobile
robot. Assuming a curved path generated in the x- and y-axes with the parameter u(t) in (6), its
curvature is defined as

κ(u(t)) =
1

ρ(u(t))
=

x′(u(t))y′′(u(t))− y′(u(t))x′′(u(t))

(x′(u(t))2 + y′(u(t))2)
3/2 (10)

where κ is the curvature of the curve and ρ denotes the radius of curvature. In this notation, we can
see that the curvature at each point of the curve is the reciprocal of the radius of a circle that complies
at that certain point.

The curvature of the path is analyzed using the first-order derivative (FOD) test or dκ(u(t))/du(t),
in order to detect local extrema. A curve is defined to have high curvature when local extrema exist at
certain points along the curve. The extrema can either be the maximum or the minimum value of an
open interval function, such as the curvature of the path. These are found when the FOD at a certain

Electronics 2019, 8, 317 9 of 19

point of the curve is equal to zero. In Figure 4, two S-curves were generated, and their curvatures
analyzed using (10) and the FOD test. Figure 4a shows a smooth curve as there are no existing zero
values of the FOD at any sampling points. On the other hand, Figure 4b contains two points where the
FOD are zero located at u(t) = 0.055 and at u(t) = 0.944. These points are defined as the turning points
of the curve. Thus, any curve that has existing turning points can be defined as a high curvature curve.
These turning points contemplate geometric constraints limiting the allowable velocity at that point, as
defined in the following equation.

v(u(t)) =
√

armaxρ(u(t)) (11)
Electronics 2018, 7, x FOR PEER REVIEW 9 of 19

(a)

(b)

Figure 4. Definition of a high curvature based on the first-order derivative (FOD): (a) smooth curve
and (b) curve with two high curvature turning points.

The curvature of the path is analyzed using the first-order derivative (FOD) test or
dκ(u(t))/du(t), in order to detect local extrema. A curve is defined to have high curvature when local
extrema exist at certain points along the curve. The extrema can either be the maximum or the
minimum value of an open interval function, such as the curvature of the path. These are found
when the FOD at a certain point of the curve is equal to zero. In Figure 4, two S-curves were
generated, and their curvatures analyzed using (10) and the FOD test. Figure 4a shows a smooth
curve as there are no existing zero values of the FOD at any sampling points. On the other hand,
Figure 4b contains two points where the FOD are zero located at u(t) = 0.055 and at u(t) = 0.944. These
points are defined as the turning points of the curve. Thus, any curve that has existing turning points
can be defined as a high curvature curve. These turning points contemplate geometric constraints
limiting the allowable velocity at that point, as defined in the following equation.

max(()) (())rv u t a u tρ= (11)

The velocity at a turning point is determined through the relationship of the radius of curvature
and the radial acceleration limit of the robot, armax. In order to consider these constraints, velocity
profiles from the initial, terminal, and turning points are generated, with the lowest value at each
sampling point is considered to be the maximum allowable velocity that can track the high curvature
path. Figure 5 shows a graphical interpretation of the high curvature trajectory generation
technique. First, a velocity profile from the initial point to the terminal point is generated in the
forward direction applying the convolution operator in (4), as shown in Figure 5a. In perspective, the
velocity in the opposite direction from the terminal point would produce the same result as the
velocity from the initial point, thus it is neglected.

Figure 4. Definition of a high curvature based on the first-order derivative (FOD): (a) smooth curve
and (b) curve with two high curvature turning points.

The velocity at a turning point is determined through the relationship of the radius of curvature
and the radial acceleration limit of the robot, armax. In order to consider these constraints, velocity
profiles from the initial, terminal, and turning points are generated, with the lowest value at each
sampling point is considered to be the maximum allowable velocity that can track the high curvature
path. Figure 5 shows a graphical interpretation of the high curvature trajectory generation technique.
First, a velocity profile from the initial point to the terminal point is generated in the forward direction
applying the convolution operator in (4), as shown in Figure 5a. In perspective, the velocity in the
opposite direction from the terminal point would produce the same result as the velocity from the
initial point, thus it is neglected.

In the case of the turning points, the maximum velocity at each turning point is calculated using
(11). The velocity profile is divided into two parts and is generated with the same distance as that
of the first step. For the first portion, the convolution operator is applied in the opposite direction
towards the velocity in the initial point as illustrated in Figure 5b. On the second portion, the velocity
profile is generated in the opposite direction approaching the terminal point shown in Figure 5c. This
step is repeated for the other terminal point, as shown in Figure 5d,e. Finally, the lowest velocity at
each point from the various velocity profiles determines the proposed maximum allowable central
velocity (MACV), see Figure 5f. This produces a velocity profile that can track a high curvature path
while considering the physical limits of the mobile robot owing to the convolution operator. Because
the velocity limits at the turning points are taken into consideration, the total traveling time is extended
and should be reformulated to conform the travel distance with MACV:

dt =
dS(u(t))
vc(u(t))

(12)

Electronics 2019, 8, 317 10 of 19

Because of the adjustment in the velocity profile can produce a travel distance which is greater
than the calculated Bd and can produce nonuniform displacement and sampling time at each sampling
point, the MACV is reformulated using a variation of linear interpolation:

vuni(t) = vc(tn−1) +
vc(tn)− vc(tn−1)

tn − tn−1
(t− tn−1) (13)

where vuni is the reformulated maximum allowable central velocity. The total travel time, denoted by
tn, is calculated by integrating (12). The uniform sampling time t is defined as tn − 1 ≤ t ≤ tn.

This notation makes the convolution-based velocity comply with the path generated with the
high curvature in the periodic sampling time. The sequence of major computations for generating the
proposed convolution-based joint space trajectory to track a path with high curvature turning points
for an omnidirectional mobile robot is as follows.

• Define a planned path through the given terminal and control points in uniform sampling points.
• Calculate the total travel time for a travel distance Bd, according to the given physical limitations

of the mobile robot using (5) with the given maximum velocity, acceleration, and jerk values.
• With the calculated travel distance and total travel time as inputs, perform the recursive form of

the convolution operator in (4) for two successions to consider the physical limits of the mobile
robot such as maximum velocity, acceleration, and jerk.

• From the curve parameter u-domain, transform the path in the time domain using (6).
• For a path with high curvature, calculate the position of the high curvature turning points using

(10) and the velocity limits at the turning points using (11).
• Velocity from the high curvature turning points is generated from the turning point to the terminal

point in the forward direction and to the initial point in the backward direction, respectively. The
maximum allowable velocity at the center of the mobile robot is defined as the minimum values
at each sampling point of the combined velocity profiles.

• Because the velocity limits at the turning points are considered, the total traveling time is
reformulated to conform the travel distance with MACV using (12). The reformulated MACV
is calculated using (13), which is the velocity profile that can track a high curvature path while
considering the physical limits of the mobile robot.

• MACV is decomposed to the joint space according to the kinematics of the omnidirectional mobile
robot in (2). The linear and angular velocities are calculated in a series of computation using
Equations (7)–(10).Electronics 2018, 7, x FOR PEER REVIEW 10 of 19

Figure 5. Graphical interpretation of the high curvature convolution-based trajectory generation.

In the case of the turning points, the maximum velocity at each turning point is calculated using
(11). The velocity profile is divided into two parts and is generated with the same distance as that of
the first step. For the first portion, the convolution operator is applied in the opposite direction
towards the velocity in the initial point as illustrated in Figure 5b. On the second portion, the
velocity profile is generated in the opposite direction approaching the terminal point shown in
Figure 5c. This step is repeated for the other terminal point, as shown in Figure 5d,e. Finally, the
lowest velocity at each point from the various velocity profiles determines the proposed maximum
allowable central velocity (MACV), see Figure 5f. This produces a velocity profile that can track a
high curvature path while considering the physical limits of the mobile robot owing to the
convolution operator. Because the velocity limits at the turning points are taken into consideration,
the total traveling time is extended and should be reformulated to conform the travel distance with
MACV:

()
()

)
()
(

c

dS u t
d

v u
t

t
= (12)

Because of the adjustment in the velocity profile can produce a travel distance which is greater
than the calculated Bd and can produce nonuniform displacement and sampling time at each
sampling point, the MACV is reformulated using a variation of linear interpolation:

() () () () ()1
1 1

1

 c n c n

uni c n n
n n

v t v t
v t v t t t

t t
−

− −
−

−
= + −

−
 (13)

Where vuni is the reformulated maximum allowable central velocity. The total travel time,
denoted by tn, is calculated by integrating (12). The uniform sampling time t is defined as tn-1 ≤ t ≤ tn.

This notation makes the convolution-based velocity comply with the path generated with the
high curvature in the periodic sampling time. The sequence of major computations for generating
the proposed convolution-based joint space trajectory to track a path with high curvature turning
points for an omnidirectional mobile robot is as follows.

• Define a planned path through the given terminal and control points in uniform
sampling points.

Figure 5. Graphical interpretation of the high curvature convolution-based trajectory generation.

Electronics 2019, 8, 317 11 of 19

4. Synchronous Joint Space Controller

Although the real-time requirements are satisfied, the main controller and all other components
of the motion control system should be synchronized in order to accurately track a predefined path
especially for the path with high curvature as mentioned above. EtherCAT offers a synchronization
solution called the distributed clock, widely known as the DC mechanism. The main idea of the
DC mechanism is to adjust the local clocks of each slave in accordance to the reference clock (clock
of the first slave on the network). There are two main causes of clock deviations among the slaves
in EtherCAT networks: the mismatch of start-up times among the slaves and frequency differences
in the oscillators on the slaves. To synchronize clocks between the reference slave and other slaves,
EtherCAT uses the DC synchronization mechanism. EtherCAT slaves manage three variables for clock
synchronization: system_time, local_time, and reference_time. The system_time is a global clock,
beginning from 1 January 2000 and runs at a rate of 1 ns stored in an internal 64-bit register.

The local_time is an internal clock for each slave and represents the time that starts from zero
when each slave powers up. The DC-capable slave that is closest to the master is usually chosen
as the reference slave, and reference_time is defined as the system_time of the reference slave. The
DC synchronization procedure consists of three phases: offset compensation, propagation delay
measurement, and drift compensation. The offset of each slave is defined as the time difference
between reference_time and local_time of each slave. To determine the offset of each nonreference
slave, the master reads the local_time of each slave and calculates its difference with the reference_time.
The difference is written into the System_Time_Offset register of each slave [30]. This procedure is
performed only once when the system is started. The definition of the system_time is shown in the
following equation.

system_time = local_time + time_offset (14)

The propagation delay of the EtherCAT slaves (excluding the reference slave) is defined as the time
taken to transmit a specific message from the reference slave to the other slaves. Drift compensation
occurs every cycle using special EtherCAT commands known as multiple read and write (ARMW or
FRMW). These commands are distributed by the master and measures the times when the packet first
arrived at each slave and is returned to the same slave around the network. The drift is defined as the
time difference between the reference_time and system_time of each slave considering the propagation
delay and is defined as follows

∆t = system_time− (reference_time + propagation_delay) (15)

The delay occurs due to the frequency difference of the oscillators of each slave. If the calculated
average drift is approximately equal to zero, the local clocks of each slave are increased by 10 ns;
whereas, 11 ns or 9 ns are added when the slave is detected to be running slower or faster than
the reference clock, respectively. According to the results of Cena et al. [30], the DC mechanism
can effectively solve the synchronization problem between the EtherCAT slaves on the network.
However, synchronization between the EtherCAT master and the slaves was not considered. The
asynchronization between the master and the slave can lead to data mismatch. Slower movement of
the master clock results in the EtherCAT slaves receiving empty packets for a certain period. On the
other hand, when the master is faster, data which are not yet read by the slaves is overwritten by newer
data. This problem is critical in robot navigation, where the joint space velocities should be strictly
followed to accurately track a planned path. In addition, when a data loss occurs while the mobile
robot is accelerating or decelerating, physical constraints such as the maximum acceleration and jerk
are violated. This could result into physical damage of the actuators or worse, an accident because of
the unpredictable movement of the robot. Due to this synchronization delay, the joint space velocities

Electronics 2019, 8, 317 12 of 19

in (1) are modified to considering the clock drift as shown in (16). This equation contemplates that
smaller ∆t results to minimal tracking error of a given trajectory.

v0(t + ∆t)
v1(t + ∆t)
v2(t + ∆t)
v3(t + ∆t)

 = R

ω0(t + ∆t)
ω1(t + ∆t)
ω2(t + ∆t)
ω3(t + ∆t)

 =

1 1 −(L + l)
1 −1 (L + l)
1 −1 −(L + l)
1 1 (L + l)

 vx(t + ∆t)

vy(t + ∆t)
ωc(t + ∆t)

 (16)

Various researchers have tried to solve this problem using different control schemes [36–38].
However, these algorithms need to run in a separate real-time task, which could reduce the clock
accuracy of the EtherCAT master because of context switching jitters. IgH EtherLAB offers APIs to
utilize the DC mechanism, which can easily be used inside the real-time control task. However, it
relies on the clock services of the RTOS, which can also administer unwanted task jitters. A fast
clock synchronization method adjusting the clock of the master in accordance to the reference
slave clock is presented by Chen et al. [31]. The method is applied on a Windows PC with RTX
real-time extension and commercial EtherCAT master which are not available as an open-source.
In this paper, we present a solution that synchronizes the master clock to track the system clock
of the reference slave. The clock data from the reference clock is collected periodically to calculate
the system. The master clock adjusts its clock speed by changing its cycle time according to the
calculated specific value. In comparison to the original DC procedure, jitter of the master would
not have any effects on the synchronization delay of the entire EtherCAT network. The distributed
clock mechanism offered by IgH EtherLAB is implemented to perform offset compensation and
propagation delay measurement. This includes reading of the local_time from all the slaves and
calculation of the time_offset, which are sent to back the slaves for correction of the system_time. When
the control task enters the real-time cyclic task, the system_time of the reference slave is acquired
using the function ecrt_reference_slave_clock(). The calculated drift of the entire network in (15)
is acquired by reading the System_Time_Offset of the slaves (register 0X092C) using the function
ecrt_master_sync_monitor_process(). Before calling this function, a broadcast read all datagram
should be sent using ecrt_master_sync_monitor_queue(). The master clock is adjusted according to
the normalized system_time of the reference clock and the calculated drift. The new master clock
is passed as the argument to the function ecrt_master_aplication_time(). Finally, all the other slaves
are synchronized to the new master clock using the function ecrt_master_sync_slave_clocks(). The
flowchart of the improved DC clock synchronization method is shown in in Figure 6.

Electronics 2018, 7, x FOR PEER REVIEW 13 of 19

according to the normalized system_time of the reference clock and the calculated drift. The new
master clock is passed as the argument to the function ecrt_master_aplication_time(). Finally, all the
other slaves are synchronized to the new master clock using the function
ecrt_master_sync_slave_clocks(). The flowchart of the improved DC clock synchronization method
is shown in in Figure 6.

Figure 6. Flowchart of the improved clock synchronization method.

To validate the improved DC mechanism, comparative analysis is performed running an
EtherCAT real-time task in 1 ms cyclic period for 100 seconds. The results are analyzed and are
shown in Figure 7. In Figure 7a, the offset compensation shows that the improved method performs
faster offset compensation with the time_offset measured at 5.775 s in comparison to the 8.094 s of
the original method. The measured drift is illustrated as the stem graph in Figure 7b. In this figure,
an improvement of the drift compensation is clearly visible with the calculated average drift of
24.217 μs. This is a 60% improvement from the original DC mechanism with an average of 39.914 μs.
These results gratify that all the components within the EtherCAT network can communicate with
minimal synchronization error, which is very critical in synchronous joint space motion of the
omnidirectional mobile robot.

(a)

(b)

Figure 7. Comparison between the distributed clock mechanism and its improvement: (a) time_offset
and (b) drift compensation.

5. Experimental Results

Figure 6. Flowchart of the improved clock synchronization method.

Electronics 2019, 8, 317 13 of 19

To validate the improved DC mechanism, comparative analysis is performed running an EtherCAT
real-time task in 1 ms cyclic period for 100 s. The results are analyzed and are shown in Figure 7.
In Figure 7a, the offset compensation shows that the improved method performs faster offset
compensation with the time_offset measured at 5.775 s in comparison to the 8.094 s of the original
method. The measured drift is illustrated as the stem graph in Figure 7b. In this figure, an improvement
of the drift compensation is clearly visible with the calculated average drift of 24.217 µs. This is a 60%
improvement from the original DC mechanism with an average of 39.914 µs. These results gratify that
all the components within the EtherCAT network can communicate with minimal synchronization
error, which is very critical in synchronous joint space motion of the omnidirectional mobile robot.

Electronics 2018, 7, x FOR PEER REVIEW 13 of 19

according to the normalized system_time of the reference clock and the calculated drift. The new
master clock is passed as the argument to the function ecrt_master_aplication_time(). Finally, all the
other slaves are synchronized to the new master clock using the function
ecrt_master_sync_slave_clocks(). The flowchart of the improved DC clock synchronization method
is shown in in Figure 6.

Figure 6. Flowchart of the improved clock synchronization method.

To validate the improved DC mechanism, comparative analysis is performed running an
EtherCAT real-time task in 1 ms cyclic period for 100 seconds. The results are analyzed and are
shown in Figure 7. In Figure 7a, the offset compensation shows that the improved method performs
faster offset compensation with the time_offset measured at 5.775 s in comparison to the 8.094 s of
the original method. The measured drift is illustrated as the stem graph in Figure 7b. In this figure,
an improvement of the drift compensation is clearly visible with the calculated average drift of
24.217 μs. This is a 60% improvement from the original DC mechanism with an average of 39.914 μs.
These results gratify that all the components within the EtherCAT network can communicate with
minimal synchronization error, which is very critical in synchronous joint space motion of the
omnidirectional mobile robot.

(a)

(b)

Figure 7. Comparison between the distributed clock mechanism and its improvement: (a) time_offset
and (b) drift compensation.

5. Experimental Results

Figure 7. Comparison between the distributed clock mechanism and its improvement: (a) time_offset
and (b) drift compensation.

5. Experimental Results

5.1. Assembly of the Mobile Robot

In the system we developed, we employed four EtherCAT servo drives (L7NA004B) manufactured
by LS Mecapion. The devices are operated using CANopen-over-EtherCAT (CoE) with CiA 402 device
profile for communication and servo operation. For each slave, the process data objects were configured
and divided into 12 bytes each for transmission and receipt, with a total of 24 bytes of data packets
in for each EtherCAT cycle. The servo drive supports processing of a 19-bit serial encoder. Thus, we
attached a 400-Watt AC servo motor with the rated motor inertia of 0.25 × 104 kg·m2 at each drive
to actuate the wheels of the mobile robot. To avoid incompatibility with the servo drive, we chose a
motor from the same manufacturer, APM-FB04AMK, with a rated maximum speed of 5000 revolutions
per minute (RPM). Each of the motors is equipped with a built-in 19-bit absolute encoder, which is
used for accurate feedback loop control required to ensure that the load reaches the target command.
The servo drives also provides three different control modes: velocity, position, and torque control. We
have configured them to run in cyclic velocity mode to minimize calculation time and interpolation
operations when using other operation modes.

Each of the motors is connected to a reducer gearbox with a reduction ratio of 1:100 for minimal
error and higher mobility performance in high speed actuation. In order to achieve omnidirectionality,
Mecanum wheels are connected, consisting of 12 rollers with a diameter of 203 mm. The diameter of
the rollers is 67 mm. Common Mecanum-wheel mobile robots are either in the form of a parallelogram
or a circle. Our developed mobile robot is a parallelogram shaped with the Mecanum wheels attached
to constitute a basic 45◦ driving system. The omnidirectional capabilities of the platform are highly
dependent on the contact of each wheel on the surface. Hence, most of the proprietary and commercial
designs of a Mecanum-wheel driving system include a suspension. In our design, the wheels and the
motors are mounted directly on an aluminum chassis with dimensions of approximately 700 mm and

Electronics 2019, 8, 317 14 of 19

450 mm in length and width, respectively. Figure 8 shows the mobile robot without the top plate, in
order to make the interior as visible as possible.

Electronics 2018, 7, x FOR PEER REVIEW 14 of 19

In the system we developed, we employed four EtherCAT servo drives (L7NA004B)
manufactured by LS Mecapion. The devices are operated using CANopen-over-EtherCAT (CoE)
with CiA 402 device profile for communication and servo operation. For each slave, the process data
objects were configured and divided into 12 bytes each for transmission and receipt, with a total of
24 bytes of data packets in for each EtherCAT cycle. The servo drive supports processing of a 19-bit
serial encoder. Thus, we attached a 400-Watt AC servo motor with the rated motor inertia of 0.25 ×
104 kg∙m2 at each drive to actuate the wheels of the mobile robot. To avoid incompatibility with the
servo drive, we chose a motor from the same manufacturer, APM-FB04AMK, with a rated maximum
speed of 5000 revolutions per minute (RPM). Each of the motors is equipped with a built-in 19-bit
absolute encoder, which is used for accurate feedback loop control required to ensure that the load
reaches the target command. The servo drives also provides three different control modes: velocity,
position, and torque control. We have configured them to run in cyclic velocity mode to minimize
calculation time and interpolation operations when using other operation modes.

Each of the motors is connected to a reducer gearbox with a reduction ratio of 1:100 for minimal
error and higher mobility performance in high speed actuation. In order to achieve
omnidirectionality, Mecanum wheels are connected, consisting of 12 rollers with a diameter of 203
mm. The diameter of the rollers is 67 mm. Common Mecanum-wheel mobile robots are either in the
form of a parallelogram or a circle. Our developed mobile robot is a parallelogram shaped with the
Mecanum wheels attached to constitute a basic 45° driving system. The omnidirectional capabilities
of the platform are highly dependent on the contact of each wheel on the surface. Hence, most of the
proprietary and commercial designs of a Mecanum-wheel driving system include a suspension. In
our design, the wheels and the motors are mounted directly on an aluminum chassis with
dimensions of approximately 700 mm and 450 mm in length and width, respectively. Figure 8 shows
the mobile robot without the top plate, in order to make the interior as visible as possible.

Figure 8. EtherCAT-based omnidirectional mobile robot.

5.2. Results and Discussion

The main purpose of the experiment is to demonstrate the effects of improving the DC
mechanism (Section 4) for the synchronous joint space motion of the four-wheeled omnidirectional
mobile robot. The velocity profile is generated in the user space of Xenomai and these commands
were sent to the mobile robot using CANopen-over-EtherCAT protocol on a bounded period of 1
ms. For the experiment, we generated and combined three curves, with the second curve having
high curvature turning points, to form a path from an initial point of (0 m, 0 m) to a desired terminal
point (7 m, 4 m). The initial and terminal velocities and heading angles were configured at 0 m/s and
0°, respectively. The physical limits of the mobile robot required to generate the respective velocity
commands are based on the actual constraints of the actuators. According to the motor
specifications, the limits are stated as 0.23 m/s for the maximum velocity limit, 0.2 m/s2 for the
maximum tangential acceleration, and 0.4 m/s3 for the maximum jerk. The maximum allowable
central velocity (MACV) is produced using the convolution operator as mentioned in the second

Figure 8. EtherCAT-based omnidirectional mobile robot.

5.2. Results and Discussion

The main purpose of the experiment is to demonstrate the effects of improving the DC mechanism
(Section 4) for the synchronous joint space motion of the four-wheeled omnidirectional mobile robot.
The velocity profile is generated in the user space of Xenomai and these commands were sent to
the mobile robot using CANopen-over-EtherCAT protocol on a bounded period of 1 ms. For the
experiment, we generated and combined three curves, with the second curve having high curvature
turning points, to form a path from an initial point of (0 m, 0 m) to a desired terminal point (7 m, 4 m).
The initial and terminal velocities and heading angles were configured at 0 m/s and 0◦, respectively.
The physical limits of the mobile robot required to generate the respective velocity commands are
based on the actual constraints of the actuators. According to the motor specifications, the limits are
stated as 0.23 m/s for the maximum velocity limit, 0.2 m/s2 for the maximum tangential acceleration,
and 0.4 m/s3 for the maximum jerk. The maximum allowable central velocity (MACV) is produced
using the convolution operator as mentioned in the second section. Actual joint space velocity
commands for the omnidirectional mobile robot were calculated with respect to the robot kinematics in
Equations (1) and (2). The diameter of the wheels is 203 mm, and the distance from the center
frame to the center of the wheels in both longitudinal (L) and transversal direction (l) are 286 and
298.5 mm, respectively.

The calculated distance of the path is 17.48 m which was traveled by the robot in 93.79 s with the
maximum allowable velocity. The trajectory tracking experiment was performed two times to compare
the original DC mechanism with the improved method shown in the previous section. During the
experiment, the mobile robot was kept isolated to avoid any unwanted interruptions that could affect
the performance of the main controller. For this reason, the driving experiment was performed on an
ideal environment where the wheels of the mobile robot were lifted to impose freewheeling motion
avoiding any disturbances that can convey uncertainties such as slip and friction. Also, all the encoder
measurements were stored in a separate buffer for offline processing and analysis. Comparison of the
reference and the actual measured joint space velocities are shown in Figure 9. The reference velocities
were generated without violating the maximum velocity of the motors (calculated as 0.531 m/s).
Although not reported in this paper, previous experiments show undesired hunting oscillations when
the motors are operated in a very low speed. Thus, we applied a reducer gearbox with a high reduction
ratio of 1:100. The actual values from the encoder show high accuracy in tracking the reference but, with
oscillating results, we have used an absolute encoder. The results from the original DC mechanisms
are illustrated as the blue solid line with an inverted triangle while the improved DC is shown as the
red solid line with a dot marker. Although only with a small difference, the results acquired from the

Electronics 2019, 8, 317 15 of 19

improved DC are located closer to the reference than that of the results from implementing the original
DC mechanism.

Electronics 2018, 7, x FOR PEER REVIEW 15 of 19

maximum tangential acceleration, and 0.4 m/s3 for the maximum jerk. The maximum allowable
central velocity (MACV) is produced using the convolution operator as mentioned in the second
section. Actual joint space velocity commands for the omnidirectional mobile robot were calculated
with respect to the robot kinematics in equations (1) and (2). The diameter of the wheels is 203 mm,
and the distance from the center frame to the center of the wheels in both longitudinal (L) and
transversal direction (l) are 286 and 298.5 mm, respectively.

The calculated distance of the path is 17.48 m which was traveled by the robot in 93.79 s with
the maximum allowable velocity. The trajectory tracking experiment was performed two times to
compare the original DC mechanism with the improved method shown in the previous section.
During the experiment, the mobile robot was kept isolated to avoid any unwanted interruptions that
could affect the performance of the main controller. For this reason, the driving experiment was
performed on an ideal environment where the wheels of the mobile robot were lifted to impose
freewheeling motion avoiding any disturbances that can convey uncertainties such as slip and
friction. Also, all the encoder measurements were stored in a separate buffer for offline processing
and analysis. Comparison of the reference and the actual measured joint space velocities are shown
in Figure 9. The reference velocities were generated without violating the maximum velocity of the
motors (calculated as 0.531 m/s). Although not reported in this paper, previous experiments show
undesired hunting oscillations when the motors are operated in a very low speed. Thus, we applied
a reducer gearbox with a high reduction ratio of 1:100. The actual values from the encoder show high
accuracy in tracking the reference but, with oscillating results, we have used an absolute encoder.
The results from the original DC mechanisms are illustrated as the blue solid line with an inverted
triangle while the improved DC is shown as the red solid line with a dot marker. Although only with
a small difference, the results acquired from the improved DC are located closer to the reference than
that of the results from implementing the original DC mechanism.

(a)

(c)

(b)

(d)

Figure 9. Comparison between the reference and actual joint space velocities: (a) Wheel 1; (b) Wheel 2;
(c) Wheel 3; and (d) Wheel 4.

However, in the Cartesian space, as shown in Figure 10, the difference between the two methods is
very conspicuous according to their tracking error with the reference path. In here, the encoder values
acquired when actuating the robot using the original DC mechanism is shown in the blue dotted line.
On the other hand, the results from the improved DC method are illustrated by the red dash-dot line.
The results from the original DC mechanisms show higher tracking error especially in the part with
high curvature turning points. Due to the deviation, the robot arrived at the terminal point of 6.802 m,
3.841 m—an error of approximately 4%. In comparison, the improved DC curve was able to track and
is closer to the reference path (black line) arriving at the terminal point of 6.951 m, 3.921 m, which is an
error of less than 1.3%. Although the tracking error is reduced with the improved DC method, small
deviations are still visible in some parts of the curve. These are due to the absolute encoder being
unable to follow the motor being driven at a very high speed. Moreover, the reduction gear could also
affect the accuracy of the encoder as the physical connection between each gear which can produce
the deviations. In actual practice, the dynamics [39–41] of the mobile robot should be considered to
implement control algorithms to compensate the source of disturbances such as the surface condition
of the floor, the change in the mass of the payload, and the internal parameters of the reduction gear.

Electronics 2019, 8, 317 16 of 19

Electronics 2018, 7, x FOR PEER REVIEW 16 of 19

Figure 9. Comparison between the reference and actual joint space velocities: (a) Wheel 1; (b) Wheel
2; (c) Wheel 3; and (d) Wheel 4.

Figure 10. Comparison of the reference and actual trajectory in tracking a high curvature path driven
with the maximum allowable velocity.

However, in the Cartesian space, as shown in Figure 10, the difference between the two
methods is very conspicuous according to their tracking error with the reference path. In here, the
encoder values acquired when actuating the robot using the original DC mechanism is shown in the
blue dotted line. On the other hand, the results from the improved DC method are illustrated by the
red dash-dot line. The results from the original DC mechanisms show higher tracking error
especially in the part with high curvature turning points. Due to the deviation, the robot arrived at
the terminal point of 6.802 m, 3.841 m—an error of approximately 4%. In comparison, the improved
DC curve was able to track and is closer to the reference path (black line) arriving at the terminal
point of 6.951 m, 3.921 m, which is an error of less than 1.3%. Although the tracking error is reduced
with the improved DC method, small deviations are still visible in some parts of the curve. These are
due to the absolute encoder being unable to follow the motor being driven at a very high speed.
Moreover, the reduction gear could also affect the accuracy of the encoder as the physical connection
between each gear which can produce the deviations. In actual practice, the dynamics [39–41] of the
mobile robot should be considered to implement control algorithms to compensate the source of
disturbances such as the surface condition of the floor, the change in the mass of the payload, and
the internal parameters of the reduction gear.

6. Conclusion

In this paper, we present a network-oriented, low-cost, real-time embedded system employing
EtherCAT protocol to control an omnidirectional mobile considering synchronous joint space
motion. The paper provides a real-time environment considering the compatibility of each
open-source software available for the embedded platform i.MX6Q SABRELite. For the trajectory
generation of the omnidirectional mobile robot, we have adapted our previous work that can track a
high curvature path according to the kinematics of a four-wheeled omnidirectional mobile robot and
clearly define the geometric constraints. Although the EtherCAT master shows viable real-time
performance, the actual motion of the robot requires the trajectory to be decomposed in the joint
space, where synchronization is a critical issue. We presented an improvement of the EtherCAT DC
mechanism; dynamically adjusting the clock of the EtherCAT master according to the reference
slave. This method shows improvement in minimizing the synchronization error between all the
components of the network, and faster offset compensation. Experiments were performed on our
own developed EtherCAT-based Mecanum-wheeled mobile robot to verify the effects of the
improvement of the DC mechanism in tracking a high curvature planned path. In comparison to the

Figure 10. Comparison of the reference and actual trajectory in tracking a high curvature path driven
with the maximum allowable velocity.

6. Conclusions

In this paper, we present a network-oriented, low-cost, real-time embedded system employing
EtherCAT protocol to control an omnidirectional mobile considering synchronous joint space motion.
The paper provides a real-time environment considering the compatibility of each open-source
software available for the embedded platform i.MX6Q SABRELite. For the trajectory generation of the
omnidirectional mobile robot, we have adapted our previous work that can track a high curvature
path according to the kinematics of a four-wheeled omnidirectional mobile robot and clearly define the
geometric constraints. Although the EtherCAT master shows viable real-time performance, the actual
motion of the robot requires the trajectory to be decomposed in the joint space, where synchronization
is a critical issue. We presented an improvement of the EtherCAT DC mechanism; dynamically
adjusting the clock of the EtherCAT master according to the reference slave. This method shows
improvement in minimizing the synchronization error between all the components of the network,
and faster offset compensation. Experiments were performed on our own developed EtherCAT-based
Mecanum-wheeled mobile robot to verify the effects of the improvement of the DC mechanism in
tracking a high curvature planned path. In comparison to the original DC mechanism, experimental
results acquired from the improved DC method shows higher accuracy in tracking a planned path
with high curvature turning points with less than 1.3% of tracking error. However, further studies
should be conducted for the practical application of the mobile robot considering its dynamics and
implementing control algorithms to compensate external factors, such as the surface condition of the
floor, encoders being unable to follow high speed actuation of the motors, and the change in the mass
of the load. Although the synchronization method in this paper was applied to the joint space motion
of an omnidirectional mobile robot, the same method can be applied in more complex control systems
such as industrial automation control networks for smart factories [42], intelligent automotive [43],
unmanned vehicles [44], and humanoid robots [13,45].

Author Contributions: R.D. surveyed the background of this research, developed the environment for the
embedded hardware, formulated the experiment procedures, and analyzed the results of the experiments. B.W.C.
supervised and supported this study.

Electronics 2019, 8, 317 17 of 19

Acknowledgments: This work was supported by the Human Resources Development of the Korea Institute of
Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade,
Industry & Energy (NO. 20174030201840).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Bradley, J.M.; Atkins, E.M. Optimization and control of cyber-physical vehicle systems. Sensors 2015, 15,
23020–23049. [CrossRef]

2. Guo, Y.; Hu, X.; Hu, B.; Cheng, J.; Zhou, M.; Kwok, R.Y.K. Mobile cyber physical systems: Current challenges
and future networking applications. IEEE Access 2018, 6, 12360–12368. [CrossRef]

3. Kim, H.; Kang, J.; Park, J.H. A light-weight secure information transmission and device control scheme in
integration of cps and cloud computing. Microprocess. Microsyst. 2017, 52, 416–426. [CrossRef]

4. You, B.-J.; Kwon, J.R.; Nam, S.-H.; Lee, J.-J.; Lee, K.-K.; Yeom, K. Coexistent space: Toward seamless
integration of real, virtual, and remote worlds for 4d+ interpersonal interaction and collaboration.
In Proceedings of the SIGGRAPH Asia 2014 Autonomous Virtual Humans and Social Robot for Telepresence,
Shenzhen, China, 3–6 December 2014; pp. 1–5.

5. Terakawa, T.; Komori, M.; Matsuda, K.; Mikami, S. A novel omnidirectional mobile robot with wheels
connected by passive sliding joints. IEEE/ASME Trans. Mechatron. 2018, 23, 1716–1727. [CrossRef]

6. Kato, K.; Wada, M. Kinematic analysis and simulation of active-caster robotic drive with ball transmission
(acrobat-s). Adv. Robot. 2017, 31, 355–367. [CrossRef]

7. Wang, C.; Liu, X.; Yang, X.; Hu, F.; Jiang, A.; Yang, C. Trajectory tracking of an omni-directional wheeled
mobile robot using a model predictive control strategy. Appl. Sci. 2018, 8, 231. [CrossRef]

8. Yamada, N.; Komura, H.; Endo, G.; Nabae, H.; Suzumor, K. Spiral mecanum wheel achieving omnidirectional
locomotion in step-climbing. In Proceedings of the 2017 IEEE International Conference on Advanced
Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 1285–1290.

9. Cherubini, A.; Passama, R.; Crosnier, A.; Lasnier, A.; Fraisse, P. Collaborative manufacturing with physical
human–robot interaction. Robot. Comput. Integr. Manuf. 2016, 40, 1–13. [CrossRef]

10. Larrea, M.; Larzabal, E.; Irigoyen, E.; Valera, J.J.; Dendaluce, M. Implementation and testing of a soft
computing based model predictive control on an industrial controller. J. Appl. Logic 2015, 13, 114–125.
[CrossRef]

11. Choi, T.; Kyung, J.; Park, C.; Park, D.; Do, H. Real-time synchronisation method in multi-robot system.
Electron. Lett. 2014, 50, 1824–1826. [CrossRef]

12. Gago, J.J.; Victores, G.J.; Balaguer, C. Sign language representation by teo humanoid robot: End-user interest,
comprehension and satisfaction. Electronics 2019, 8, 57. [CrossRef]

13. Jung, T.; Lim, J.; Bae, H.; Lee, K.K.; Joe, H.-M.; Oh, J.-H. Development of the humanoid disaster response
platform drc-hubo+. IEEE Trans. Robot. 2018, 34, 1–17. [CrossRef]

14. Al Mamun, M.A.; Nasir, M.T.; Khayyat, A. Embedded system for motion control of an omnidirectional
mobile robot. IEEE Access 2018, 6, 6722–6739. [CrossRef]

15. Arvin, F.; Espinosa, J.; Bird, B.; West, A.; Watson, S.; Lennox, B. Mona: An affordable open-source mobile
robot for education and research. J. Intell. Robot. Syst. 2018. [CrossRef]

16. López-Rodríguez, F.M.; Cuesta, F. Andruino-a1: Low-cost educational mobile robot based on android and
arduino. J. Intell. Robot. Syst. 2015, 81, 63–76. [CrossRef]

17. ETG. Ethercat. Available online: https://www.ethercat.org/default.htm (accessed on 22 November 2018).
18. Delgado, R.; Kim, S.; You, B.; Choi, B. An ethercat-based real-time motion control system in mobile robot

application. In Proceedings of the 2016 13th International Conference on Ubiquitous Robots and Ambient
Intelligence (URAI), Xi’an, China, 19–22 August 2016; pp. 710–715.

19. Ferdoush, S.; Li, X. Wireless sensor network system design using raspberry pi and arduino for environmental
monitoring applications. Procedia Comput. Sci. 2014, 34, 103–110. [CrossRef]

20. Honegger, D.; Meier, L.; Tanskanen, P.; Pollefeys, M. An open source and open hardware embedded metric
optical flow cmos camera for indoor and outdoor applications. In Proceedings of the 2013 IEEE International
Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013.

http://dx.doi.org/10.3390/s150923020
http://dx.doi.org/10.1109/ACCESS.2017.2782881
http://dx.doi.org/10.1016/j.micpro.2016.08.001
http://dx.doi.org/10.1109/TMECH.2018.2842259
http://dx.doi.org/10.1080/01691864.2016.1271747
http://dx.doi.org/10.3390/app8020231
http://dx.doi.org/10.1016/j.rcim.2015.12.007
http://dx.doi.org/10.1016/j.jal.2014.11.005
http://dx.doi.org/10.1049/el.2014.2959
http://dx.doi.org/10.3390/electronics8010057
http://dx.doi.org/10.1109/TRO.2017.2776287
http://dx.doi.org/10.1109/ACCESS.2018.2794441
http://dx.doi.org/10.1007/s10846-018-0866-9
http://dx.doi.org/10.1007/s10846-015-0227-x
https://www.ethercat.org/default.htm
http://dx.doi.org/10.1016/j.procs.2014.07.059

Electronics 2019, 8, 317 18 of 19

21. Kaliński, K.J.; Mazur, M. Optimal control at energy performance index of the mobile robots following
dynamically created trajectories. Mechatronics 2016, 37, 79–88. [CrossRef]

22. NXP. I.Mx6q Sabrelite. Available online: https://www.nxp.com/products/processors-and-
microcontrollers/applications-processors/i.mx-applications-processors/i.mx-6-processors/sabre-
board-for-smart-devices-based-on-the-i.mx-6quad-applications-processors:RD-IMX6Q-SABRE (accessed
on 27 December 2018).

23. Delgado, R.; You, B.-J.; Choi, B.W. Real-time control architecture based on xenomai using ros packages for a
service robot. J. Syst. Softw. 2019, 151, 8–19. [CrossRef]

24. Li, J.; Pilkington, N.T.; Xie, F.; Liu, Q. Embedded architecture description language. J. Syst. Softw. 2010, 83,
235–252. [CrossRef]

25. Pose, F. Igh Ethercat Master 1.5.2 Documentation. Available online: https://www.etherlab.org/download/
ethercat/ethercat-1.5.2.pdf (accessed on 12 November 2018).

26. Abbott, D. Linux for Embedded and Real-Time Applications, 4th ed.; Butterworth-Heinemann: Newton, MA,
USA, 2003.

27. Choi, B.W.; Shin, D.G.; Park, J.H.; Yi, S.Y.; Gerald, S. Real-time control architecture using xenomai for
intelligent service robots in usn environments. Intell. Serv. Robot. 2009, 2, 139–151. [CrossRef]

28. Yang, G.J.; Delgado, R.; Choi, B.W. A practical joint-space trajectory generation method based on convolution
in real-time control. Int. J. Adv. Robot. Syst. 2016, 13, 56. [CrossRef]

29. Delgado, R.; Choi, B.W. Practical high curvature path planning algorithm in joint space. Electron. Lett. 2015,
51, 469–471. [CrossRef]

30. Cena, G.; Bertolotti, I.C.; Scanzio, S.; Valenzano, A.; Zunino, C. Evaluation of ethercat distributed clock
performance. IEEE Trans. Ind. Inform. 2012, 8, 20–29. [CrossRef]

31. Chen, X.; Li, D.; Wan, J.; Zhou, N. A clock synchronization method for ethercat master. Microprocess. Microsyst.
2016, 46, 211–218. [CrossRef]

32. Nelson, R.C. Armv7-Multiplatform. Available online: https://github.com/RobertCNelson/armv7-
multiplatform (accessed on 17 January 2019).

33. Xenomai Adeos Archive. Available online: https://xenomai.org/downloads/ipipe/v3.x/arm/older/
(accessed on 17 January 2019).

34. Delgado, R.; Park, J.; Choi, W.B. Open embedded real-time controllers for industrial distributed control
systems. Electronics 2019, 8, 223. [CrossRef]

35. Taheri, H.; Qiao, B.; Ghaeminezhad, N. Kinematic model of a four mecanum wheeled mobile robot. Int. J.
Comput. Appl. 2015, 113, 6–9. [CrossRef]

36. Ferrari, P.; Flammini, A.; Marioli, D.; Taroni, A. A distributed instrument for performance analysis of
real-time ethernet networks. IEEE Trans. Ind. Inform. 2008, 4, 16–25. [CrossRef]

37. Ganz, D.; Leschke, S.; Doran, H.D. Imporoving ethercat master-slave syncrhonization precision using ptcp
embedded in ethercat frames. In Proceedings of the 2015 IEEE World Conference on Factory Communication
Systems, Palma de Mallorca, Spain, 27–29 May 2015.

38. Park, S.-M.; Kim, H.; Kim, H.-W.; Cho, C.N.; Choi, J.-Y. Synchronization improvement of distributed clocks
in ethercat networks. IEEE Commun. Lett. 2017, 21, 1277–1280. [CrossRef]

39. Zimmermann, K.; Zeidis, I.; Abdelrahman, M. Dynamics of mechanical systems with mecanum wheels.
In Applied Non-Linear Dynamical Systems; Awrejcewicz, J., Ed.; Springer International Publishing: Cham,
Switzerland, 2014; pp. 269–279.

40. Weiss, A.; Langlois, R.G.; Hayes, M.J.D. Dynamics and vibration analysis of the interface between a non-rigid
sphere and omnidirectional wheel actuators. Robotica 2015, 33, 1850–1868. [CrossRef]

41. Oliveira, H.P.; Sousa, A.J.; Moreira, A.P.; Costa, P.J. Dynamical models for omni-directional robots with 3
and 4 wheels. In Proceedings of the ICINCO 2008 5th International Conference on Informatics in Control,
Automation and Robotics, Madeira, Portugal, 11–15 May 2008; pp. 189–196.

42. Chen, B.; Wan, J.; Shu, L.; Li, P.; Mukherjee, M.; Yin, B. Smart factory of industry 4.0: Key technologies,
application case, and challenges. IEEE Access 2018, 6, 6505–6519. [CrossRef]

43. Cummings, R.; Richter, K.; Ernst, R.; Diemer, J.; Ghosal, A. Exploring use of ethernet for in-vehicle control
applications: Afdx, ttethernet, ethercat, and avb. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 2012, 5, 72–88.
[CrossRef]

http://dx.doi.org/10.1016/j.mechatronics.2016.01.006
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-6-processors/sabre-board-for-smart-devices-based-on-the-i.mx-6quad-applications-processors:RD-IMX6Q-SABRE
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-6-processors/sabre-board-for-smart-devices-based-on-the-i.mx-6quad-applications-processors:RD-IMX6Q-SABRE
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-6-processors/sabre-board-for-smart-devices-based-on-the-i.mx-6quad-applications-processors:RD-IMX6Q-SABRE
http://dx.doi.org/10.1016/j.jss.2019.01.052
http://dx.doi.org/10.1016/j.jss.2009.09.043
https://www.etherlab.org/download/ethercat/ethercat-1.5.2.pdf
https://www.etherlab.org/download/ethercat/ethercat-1.5.2.pdf
http://dx.doi.org/10.1007/s11370-009-0040-0
http://dx.doi.org/10.5772/62722
http://dx.doi.org/10.1049/el.2014.3926
http://dx.doi.org/10.1109/TII.2011.2172434
http://dx.doi.org/10.1016/j.micpro.2016.03.002
https://github.com/RobertCNelson/armv7-multiplatform
https://github.com/RobertCNelson/armv7-multiplatform
https://xenomai.org/downloads/ipipe/v3.x/arm/older/
http://dx.doi.org/10.3390/electronics8020223
http://dx.doi.org/10.5120/19804-1586
http://dx.doi.org/10.1109/TII.2008.919016
http://dx.doi.org/10.1109/LCOMM.2017.2668400
http://dx.doi.org/10.1017/S0263574714001088
http://dx.doi.org/10.1109/ACCESS.2017.2783682
http://dx.doi.org/10.4271/2012-01-0196

Electronics 2019, 8, 317 19 of 19

44. Ju, C.; Son, I.H. Multiple uav systems for agricultural applications: Control, implementation, and evaluation.
Electronics 2018, 7, 162. [CrossRef]

45. Muratore, L.; Laurenzi, A.; Hoffman, E.M.; Rocchi, A.; Caldwell, D.G.; Tsagarakis, N.G. Xbotcore: A real-time
cross-robot software platform. In Proceedings of the 2017 First IEEE International Conference on Robotic
Computing (IRC), Taichung, Taiwan, 10–12 April 2017; pp. 77–80.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/electronics7090162
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Design of a Real-Time Embedded System
	Hardware Components
	Software Architecture

	Joint Space Motion of an Omnidirectional Mobile Robot
	Robot Kinematics and Joint Space Velocities
	Convolution-Based Path Planning
	Trajectory Generator for a High Curvature Path

	Synchronous Joint Space Controller
	Experimental Results
	Assembly of the Mobile Robot
	Results and Discussion

	Conclusions
	References

