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 Abstract – System planning on a large-scale electric power 
system is computationally challenging. Network reduction into 
a small system can significantly reduce the computational 
expense. The Ward equivalent technique is widely used for the 
reduction; however, it may not yield the same flow pattern as 
the original network. In this paper, a new methodology for 
network reduction is proposed and the results are compared 
with those from other methodologies.  
 

Index Terms – Eigenvalue, eigenvector, DC power flow, 
factorization, transmission network reduction, power transfer 
distribution factor (PTDF), Ward reduction.  
 

I. NOMENCLATURE 
 
Bbranch  Branch impedance matrix 
Bbus   Bus impedance matrix 
C Node-branch incidence matrix with cardinality of 

L-by-N 
Fk   kth flow group 
Gk   kth injection group 
H   PTDF matrix with cardinality of L-by-N 
Iw    Identity matrix with cardinality of w-by-w  
L   Number of lines in the original network 
Le   Number of inter-group lines in the original network 
Li   Number of intra-group lines in the original network 
N    Number of buses in the original network 
Pf Permutation matrix arranging flows (i.e., intra-

group flow on top and inter-group flow on bottom 
of the flow vector) 

Pflow  L-by-1 power flow vector in the original network 
Pg Permutation matrix ordering injection according to 

injection group 
Pinj  N-by-1 net injection vector in the original network; 

generation – load 
Pref N-by-N column permutation matrix placing slack 

bus on top 
PT n-by-n column permutation matrix placing slack 

bus on top 
diag(x)  Diagonal matrix with the diagonal elements of x 
ej   jth unit vector 
f   Power flow on the reduced network 
g    Power injection vector in the reduced network 
  

€ 

     Number of lines in the reduced network 
mK   Number of elements in a set K 
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n   Number of buses in the reduced network 
x   L-by-1 reactance vector 
y   L-by-1 inverse reactance vector 
θ   N-by-1 voltage angle vector 
Θflow    

€ 

 -by-Le matrix to sum flows 
Θ injection n-by-N matrix to sum bus injections 
 

II. INTRODUCTION 
 

ith the growing concern regarding climate change, the 
integration of renewable electric technologies into the 

transmission network has become increasingly important 
over the past decade. Recently, an efficient expansion-
planning algorithm was developed to optimize both the 
transmission network and generation [1-5]. However, the 
power system planning for the integration on a large-scale 
power system is computationally challenging. By using 
small, equivalent networks, the computational requirements 
can be significantly reduced.  

Network reduction is usually performed by computing 
impedances and by eliminating unnecessary elements [6-11]. 
This reduction usually results in a highly dense impedance 
matrix; therefore, using the reduced network may not 
significantly increase efficiency. Equivalent networks have 
been used for short circuit studies because they can 
reproduce the same voltages and currents of the remaining 
buses as the original systems do. However, the flows of the 
eliminated branches cannot be approximated in the reduced 
networks. Therefore, the usage of the reduced networks is 
limited in the power flow analysis (i.e., the flows using the 
reduced networks are significantly different from the flows 
from the original networks). 

The reduced networks of the conventional equivalent 
techniques are dependent on the operation set point; 
therefore, the reduced networks at different operation set 
points on an identical network may be significantly different. 
Generation expansion planning is a process to find an 
optimal configuration of generation at various load profiles. 
Because the network is an input of the planning, it is 
necessary to have an interpretation of the network 
independent of the set points. 

For planning, a highly nonlinear, full AC power flow 
would be the most accurate interpretation. Due to the high 
computational demands of AC, DC power flow is widely 
used because it is a linear approximation and captures most 
features of the AC power flow model. Because of its 
linearity, the sensitivity of power flows to the power 
injection (power transfer distribution factor, PTDF) does not 
depend on operation set points. There was an attempt to 
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reduce network using zonal power exchange [11]. However, 
the method has the operation set point dependence and yields 
significant error in the flow profile for a different set point, 
even with the same congestion profile as the original case 
used for the reduction.  

In this paper, a new method to reduce network is 
proposed, and the result is compared with those from the 
conventional methods. Furthermore, the new method is 
applied to the Western Electricity Coordinating Council 
(WECC) system for power flow study. 

 
III. STRUCTURAL CHARACTERISTICS OF PTDF 

 
H, the PTDF matrix with cardinality of L-by-N, is very 

useful in power flow studies because it relates power flows 
to the power injections that are control variables of optimal 
power flow. In a DC formulation, power injection and power 
flow are linearly related to the voltage angle θ:  

€ 

Pinj = Bbus θ

Pflow = Bbranch θ
                  (1) 

Since Bbus is a rank-deficient matrix, (1) can be solved for 
power flow only after selecting the reference bus for voltage 
angle and power injection.  

Make Pref a permutation matrix to re-organize Pinj so that 
the injection at the reference bus and those at the non-
reference buses are located at the top and on the bottom of 
the injection vector, respectively. Using the first equation in 
(1), one can relate the voltage angle at the non-reference 
buses with that in the reference bus and the power injection 
at the non-reference buses. For example, 

€ 

Pref Pinj =
Pinj

ref

Pinj
non -ref

 

 
 
 

 

 
 
 

= Pref Bbus Pref
T Pref θ = Pref Bbus Pref

T θ inj
ref

θ inj
non -ref

 

 
 
 

 

 
 
 

→ Pinj
non -ref = 0 IN−1( )Pref Pinj

= 0 IN−1( ) PBP11
1×1 PBP12

1× N−1( )

PBP21
N−1( )×1 PBP22

N−1( )× N−1( )

 

 
 
 

 

 
 
 

θ inj
ref

θ inj
non -ref

 

 
  

 

 
  

= PBP21 θ inj
ref + PBP22 θ inj

non -ref

→θ inj
non -ref = PBP22[ ]−1 Pinj

non -ref − PBP21 θ inj
ref( )

where PBP = Pref Bbus Pref
T ,  and Pref

T Pref = IN

   (2) 

 
Similarly, power flow can be expressed as: 

€ 

Pflow = Bbranch θ = Bbranch Pref
T Pref θ = Bbranch Pref

T θ inj
ref

θ inj
non -ref

 

 
 
 

 

 
 
 

= BPbranch
ref BPbranch

non -ref( ) θ inj
ref

θ inj
non -ref

 

 
 
 

 

 
 
 

= BPbranch
ref θ inj

ref + BPbranch
non -ref θ inj

non -ref

= BPbranch
ref θ inj

ref + BPbranch
non -ref PBP22[ ]−1 Pinjnon -ref − PBP21 θ injref( )

= BPbranch
non -ref PBP22[ ]−1 Pinjnon -ref + BP θ inj

ref

where BPbranch = Bbranch Pref
T

BP = BPbranch
ref − BPbranch

non -ref PBP22[ ]−1 PBP21

   (3) 

By setting the reference angle to zero, (3) gives the 
linear relationship between power flow and power injection: 

€ 

Pflow = BPbranch
non -ref PBP22[ ]−1 Pinj

non -ref

→ Pflow = ′ H Pinj
non -ref = 0 ′ H ( )

Pinj
ref

Pinj
non−ref

 

 
  

 

 
  = H Pinj

         (4) 

BP and the PBP matrix can easily be derived by using the 
node-branch incidence matrix C and the reactance x: 

  

€ 

B ′ P branch = diag 1 x( ) ′ C 

PBP22 = ′ C T diag 1 x( ) ′ C 

where diag 1 x( ) =

1 x1 0  0
0 1 x2

 

0 1 xL

 

 

 
 
 
 

 

 

 
 
 
 

  and x =

x1

x2



xL

 

 

 
 
 
 

 

 

 
 
 
 

   (5) 

where C’ is the C matrix with the column corresponding 
to the eliminated reference bus. Therefore, H’ can be 
expressed in terms of C’ and x: 

€ 

′ H = diag 1 x( ) ′ C [ ] ′ C T diag 1 x( ) ′ C { }
−1

→ ′ H ′ C T diag 1 x( ) ′ C = diag 1 x( ) ′ C 
       (6) 

Because both H’ and C’ are rank (N – 1) matrices, the 
product H’C’T also has the rank of N – 1. Therefore, L – (N – 
1) eigenvalues of H’C’T are zeros, and the corresponding 
eigenvectors span the null space of H’C’T. Equation (6) 
implies that N – 1 eigenvalues of H’C’T are unity, and that 
the corresponding eigenvectors are the column vectors of 
diag(1/x) C’. Therefore, diag(1/x) C’ spans the real space of 
H’C’T. Consequently, the eigenvalue decomposition of 
H’C’T yields either 1) zero eigenvalue of which 
corresponding eigenvectors span the null space of H’C’T, or 
2) unity eigenvalue and the corresponding eigenvectors span 
the real space of H’C’T.  

To evaluate x from the PTDF matrix, one needs to take 
the eigenvalue decomposition of H’C’T, select eigenvectors 
of which eigenvalues are unity, and then assign the set of 
eigenvectors V’. The eigenvectors are not uniquely defined 
because the eigenvalues are unity; therefore, it is not easy to 
calculate x directly from the PTDF matrix. Indeed, any linear 
combination of the eigenvectors can span the real space of 
H’C’T. The physical interpretation of this property in the 
power system follows: A linear network attached to the 
meshed system does not affect the PTDF matrix, and in that 
case, the column vector in the space of V’ is a unit vector. 
Because V’ spans the same space as H’C’T, the 
multiplication of the unit vector with H’C’T yields the unit 
vector itself. Suppose there exists a unit vector e satisfying 
the condition stated above, and that the unit vector is added 
in V’—let the matrix be V. Then the rank of V’ and that of V 
(= [V’ e]) should be the same. In other words, e is a linear 
combination of the column vector in V’. Consequently, some 
columns of V’ can be replaced by e—let the matrix be V”. 
Note that V” is more sparse than V’. 

QR-factorization of the V matrix yields the real and null 
spaces spanned by the matrix: 

€ 

V L× N−1+ne( ) =Q R = Q1
L× N−1( ) Q2

L× L−N +1( )[ ] R1
N−1( )× N−1+ne( )

0

 

 
 
 

 

 
 
 
  (7) 
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where ne is the number of such e vectors. Because the 

unit vectors are a linear combination of other column vectors 
in V, the first N – 1 columns of R1 must be the same as R-
factor of QR-factorization of V’. 

Note that QR-factorization of V yields sparser Q2 than V’ 
does. Therefore, it is computationally more efficient to 
proceed with V than with V’. Because the null space of V, 
which is same as the null space of diag(1/x) C’, is 
perpendicular to the real space of V, then: 

  

€ 

Q2
T diag 1 x( ) C '= 0

OR Q2
T diag 1 x( ) c j = 0 where C '= c1 c2  cN−1[ ]

       (8) 

 
Simple algebra gives: 

  

€ 

Q2
T diag 1 x( ) c j = 0↔Q2

T diag c j( ) 1
x( ) = 0

→Ω 1
x( )

L×1
= 0

whereΩ =

Q2
T diag c1( )

Q2
T diag c2( )


Q2
T diag cN−1( )

 

 

 
 
 
 

 

 

 
 
 
 

L−N +1( )L[ ]×L

      (9) 

Note that a trivial solution exists (i.e., 1/x = 0); however, 
the desired solution is non-trivial to satisfy (9). Because the 
uniform increase in the value of x is canceled out in 
evaluating H’ (see (6)), there is an infinite number of sets of 
x to choose from to satisfy (9). Therefore, (9) is modified to: 

€ 

min
x

Ω 1
x( )

k
, s.t. 1

x k
≥ M > 0( )           (10) 

where M stands for a small positive number, which is a 
lower bound of k-norm of 1/x vector. For convenience, 2-
norm was used for the optimization problem. A LaGrange 
function can be formed for the optimization problem: 

€ 

L = yTΩTΩy + λ M − yT y( )
where y = yi[ ], and yi = 1

xi

            (11) 

 
An optimality condition says: 

€ 

∂L
∂y

= 2ΩTΩy − 2λy = 0→ ΩTΩ( ) y = λy          (12) 

Note that the change in M by one unit does not affect H 
(see (6)), but it does affect  by λ. Therefore, 

€ 

Ω y  is 
minimized for a given value of M at a small value of λ. For 
example, y is the eigenvector corresponding to the least 
eigenvalue in the absolute value of .  

After H(x) is evaluated using (6) with a given value of x, 
the relative errors are calculated: 

 

€ 

error =
H −H x( ) 2

H 2

              (13) 

The errors are typically in the range of the numerical 
error, 10-11. 
 

IV. REDUCED PTDF MATRIX, Hr 
 
An ideal reduced PTDF matrix for the power flow study 

finds a sensitivity matrix of reduced flow to the reduced 

power injection. For defining the reduced flow and 
injection, the groups of buses that are aggregated must be 
defined. Let the injection groups (G1, G2,…, Gn); injection 
( ); the intra-group flow (

€ 

Pflow
int ); and the inter-group flow 

(

€ 

Pflow
ext ) be defined between groups. Then: 

  

€ 

Pflow = Pf
T Pf Pflow = Pf

T Pflow
int

Pflow
ext

 

 
 

 

 
 

Pinj = Pg
T Pg Pinj = Pg

T
PG1


PGn

 

 

 
 
 

 

 

 
 
 

= Pg
T Pinjection

         (14) 

where Pf and Pg are permutation matrices ordering rows 
according to flow and injection groups, respectively, and 

 is the power injection vector rearranged according 
to group. Then reduced flow and power injection give: 

  

€ 

f = Pflow
k→l

k∈Gi
l∈Gj

∑
 

  
 

  
=Θflow 0Le×Li ILe[ ] Psign Pflowext

=Θflow 0Le×Li ILe[ ] Psign Pf Pflow
g = gGi[ ] = Pinj

k
k∈Gi∑[ ] =Θ injection Pinjection =Θ injection Pg Pinj

where

Θflow
l×Le =

1F1
T 0


0 1Fl
T

 

 

 
 
 

 

 

 
 
 
, 1Fk =

1


1

 

 

 
 
 

 

 

 
 
 

mFk ×1

Θ injection
n×N =

1G1
T 0


0 1Gn
T

 

 

 
 
 

 

 

 
 
 
, 1Gk =

1


1

 

 

 
 
 

 

 

 
 
 

mGk ×1

 

 

 
 
  

 

 
 
 
 

    (15) 

where  is a diagonal matrix where an element is 1 if 
the corresponding flow is in the same direction as the inter-
group flow; otherwise, the element is -1. 

A reduced PTDF Hr is, by definition, a sensitivity matrix 
of the reduced flow to the reduced power injection. 
Therefore: 

€ 

f =Θflow 0 I[ ] Psign Pf Pflow =Θflow 0 I[ ] Psign Pf H Pinj
= Hr g = Hr Θ injection Pg Pinj

       (16) 

Trying to find Hr to satisfy (16) for any power injection 
Pinj, leads to: 

€ 

Θflow 0 I[ ] Psign Pf H = Hr Θ injection Pg         (17) 
Equation (17) is an over determined problem, therefore 

finding the solution is an error minimization process. One 
finds the solution for Hr is: 

  

€ 

H r
l×n =Θflow

l×Le HR
Le×N Θ injection

T W injection
n×n

where HR = 0Le×Li I Le[ ] Psign
L×L Pf

L×L H L×N Pg
N×N( )T

          W injection = Θ injection
n×N Θ injection

T( )−1

                        =

1
mG1

0



0 1
mGn

 

 

 
 
 
 
 

 

 

 
 
 
 
 

n×n      (18) 
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Note that HR is the row and column rearranged PTDF 

matrix according to the flow and the injection groups, and all 
intra-group flows are deleted.  

The transmission network topology is determined once 
the network reduction is performed. With a given topology, a 
reduced node-branch incidence matrix Cr can be constructed: 

  

€ 

Cr
l×n =Wflow

l× l Θflow
l×Le CR Θ injection

T

   where  CR = 0Le×Li ILe[ ] Psign
L×L Pf

L×L CL×N Pg
T

                Wflow =

1
mF1

0

1
mF2



0 1
mFl

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

l× l

         

(19) 

For a large system, L and N are very large numbers. For 
example, the WECC system contains approximately 18,000 
branches and 16,000 buses. The calculation of H’ requires 
the inversion of the matrix in the curly bracket in (6). 
Therefore, it would be computationally demanding to 
evaluate H because the calculation involves the inversion of 
an N-by-N matrix, requiring time and space of an order of 
ϑ(N3). Using (6), one finds: 

€ 

H '= diag 1 x( ) C '[ ] C 'T diag 1 x( ) C '[ ]
−1
IN−1

→ hk = H 'ek = diag 1 x( ) C '[ ] C 'T diag 1 x( ) C '{ }
−1
ek

          (20) 

By performing a sparse LU-factorization of the matrix in 
the curly bracket with the minimum degree orderings [12] 
and saving L, U, and P matrices, each column of H’ matrix 
(hk) is evaluated. Then, columns in HR are calculated by 
ignoring all of the intra-group flows. After HR is evaluated, 
Θflow is multiplied. The multiplication is a summation of 
flows in the same flow group. Because each group is known 
in advance, the multiplication of  is equivalent 
to updating an appropriate column of Hr. In this way, the 
reduced PTDF matrix can be calculated without a large 
storage space capacity. Fig. 1 illustrates the procedure to 
calculate Hr: 

 
 

Fig. 1. Flow-chart to illustrate how to calculate Hr. 
 

V. PROPERTIES OF Hr 
 
For the reduced PTDF matrix, Hr would be a full-rank 

matrix, which does not have a slack bus. Consequently, Hr 
may not have the required structural properties discussed in 
IV. The reduced Hr and Cr are transformed to eliminate a 
column corresponding to a slack bus as follows: 

  

€ 

CT = Cr PT

0 0  0
0
 I
0

 

 

 
 
 
 

 

 

 
 
 
 

→ C 'T = Cr PT

0  0

I

 

 

 
 
 
 

 

 

 
 
 
 

HT = Hr PT −Hr PT e1 1  1( )[ ]

0 0  0
0
 I
0

 

 

 
 
 
 

 

 

 
 
 
 

= Hr PT

0 −1  −1
0
 I
0

 

 

 
 
 
 

 

 

 
 
 
 

→ H 'T = Hr PT

−1  −1

I

 

 

 
 
 
 

 

 

 
 
 
 

     (21) 

The power balance equation implies that the product of 
C’T and flow yields injection; therefore, multiplying flow 
with H’C’T results in the flow itself. Multiplying C’T on both 
sides of (6) shows that C’TH’ equals an identity matrix. 
Therefore, the multiplication of H’C’T and flow yields flow, 
and that of C’TH’ and g is g. This also applies to the reduced 
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C and H. For example, the power balance equation for any 
injection g is written as: 

  

€ 

−1T g
g

 

 
 

 

 
 = PT

T Cr
T f = PT

T Cr
T Hr PT

−1T g
g

 

 
 

 

 
 

→ PT
T Cr

T Hr PT =

0 −1  −1
0
 I
0

 

 

 
 
 
 

 

 

 
 
 
 

         (22) 

Note that the power injected g is balanced by ejecting the 
same amount at the slack bus. Equations (21) and (22) yield: 

  

€ 

C 'T
T H 'T =

0
 I
0

 

 

 
 
 

 

 

 
 
 
PT
T Cr

T Hr PT

−1  −1

I

 

 

 
 
 
 

 

 

 
 
 
 

=

0
 I
0

 

 

 
 
 

 

 

 
 
 

0 −1  −1
0
 I
0

 

 

 
 
 
 

 

 

 
 
 
 

−1  −1

I

 

 

 
 
 
 

 

 

 
 
 
 

= I

     (23) 

 
To see if the reduced PTDF matrix has the 

eigenvalue/eigenvector property as the original matrix, 

 

is considered: 

  

€ 

H 'T C 'T
T = Hr PT

−1  −1

I

 

 

 
 
 
 

 

 

 
 
 
 

0
 I
0

 

 

 
 
 

 

 

 
 
 
PT
T Cr

T

= Hr PT PT
T Cr

T = Hr Cr
T

=Θflow 0 I[ ] Psign Pf H '

× Pg
T Θ injection

T W injection Θ injection Pg{ }

×C 'T Pf
T Psign

T 0
I
 

 
 
 

 
 Θflow

T Wflow
    

(24) 

The quantity shown in the last row of (24) is the injection 
on the original network Pinjection that yields flow f at the 
reduced network. Multiplication with the second row 
rearranges the injection so that the power injection at any 
non-slack bus is compensated by the slack bus injection. The 
rearranged injection is multiplied with H’ to give the feasible 
flow in the original network Pflow. Therefore, the 
multiplication of the rearranged injection with the first row 
yields a flow on the reduced network, equaling flow f. The 
resulting flow is in the space spanned by the feasible flow 
space, and the flow satisfies the nodal power balance 
equation. Therefore, 

€ 

HT CT
T  has the eigenvector and 

eigenvalue pair such that eigenvalues are unity. Note that the 
ranks of 

€ 

HT  and 

€ 

CT
T

 

are n – 1, as it is for

€ 

HT CT
T . Therefore, 

€ 

HT CT
T  has n – 1 of eigenvectors of which the eigenvalue is 

unity. Because H’C’T has the eigenvalue property discussed 
in III and all other matrices in (24) only give a linear 
combination of the eigenvalue and eigenvectors, the property 
is preserved. 

Because the size of  and 

 

are   

€ 

–by-(n – 1), and 
the size of

 

is   

€ 

–by-  

€ 

 , the eigenvalue decomposition 
of 

 

gives (  

€ 

  – n + 1) zero eigenvalue. For example, 

€ 

H 'T C 'T
T = V W( )

diag λ( ) 0
0 0

 

 
 

 

 
 V W( )−1

         

(25) 

V and W span the real and the null space of , 
respectively. QR-factorization of W gives: 

 

€ 

W = QWR QWN( )
RW
0

 

 
 

 

 
 ,  

and QWR
T QWR = I

      H 'T C 'T
T QWR = 0↔ C 'T

T QWR = 0

      QWR
T H 'T C 'T

T = 0↔QWR
T H 'T = 0

          

(26) 

Note that QWR span the null space of , and  and 
 are not zero matrices. Equations (23) and (26) yield: 

€ 

H 'T C 'T
T = H 'T QWR( )

I 0
0 0
 

 
 

 

 
 
C 'T

T

QWR
T

 

 
 

 

 
 

→ H 'T C 'T
T H 'T QWR( )

= H 'T QWR( )
I 0
0 0
 

 
 

 

 
 
C 'T

T

QWR
T

 

 
 

 

 
 H 'T QWR( )

= H 'T QWR( )
I 0
0 0
 

 
 

 

 
 

    

(27) 

 

has the eigenvector and eigenvalue pair such that 
eigenvalue is either unity or zero. Because the non-zero 
eigenvalue is unity, any linear combination of the column 
vectors of  can be the eigenvectors of . Note that 
the ranks of 

€ 

H 'T and C 'T
T  are n – 1, as is . Therefore, 

 has n – 1 of eigenvectors of which eigenvalues are 
unity. That is: 

€ 

H 'T C 'T
T F = F l× n−1( ) In−1, where F = f[ ]

         

(28) 
Therefore, it is possible to evaluate the reactance of the 

lines in the reduced network from the procedure as described 
in III. 

 
VI. NUMERICAL EXAMPLES 

 
A. Simple Illustrative Example 
 
To illustrate how this method works, the six-bus example 

in [11] is used. For the system, the reactance values are all 
0.1j. The original and the reduced network are illustrated in 
Fig. 2. 
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Fig. 2.  a) Original 6-bus system; b) resulting system after the network 

reduction where {1} = I, {2, 3} = II, {4} = III, and {5, 6} = IV. Note that the 
dotted lines in a) show the group boundaries among I – IV. 

 
The PTDF matrix of the original network can be 

evaluated using (6): 

€ 

H '=

1 2 3 4 5 6
1→ 2 0 −0.786 −0.571 −0.500 −0.214 −0.429
1→ 5 0 −0.214 −0.429 −0.500 −0.786 −0.571
2→ 3 0 0.214 −0.571 −0.500 −0.214 −0.429
3→ 4 0 0.071 0.143 −0.500 −0.071 −0.143
3→ 6 0 0.143 0.286 0 −0.143 −0.286
4→ 6 0 0.071 0.143 0.500 −0.071 −0.143
5→ 6 0 −0.214 −0.429 −0.500 0.214 −0.571

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
  

(29) 

As mentioned in the introduction, the network reductions 
in [6] and [11] are obtained based on the operation set point. 
Therefore, the PTDF on the reduced network depends on the 
dispatch. For example, a significantly different reduced 
PTDF might be obtained if the set point is different. From 
the reactance values and (6), it is possible to evaluate H: 

€ 

H ' 6[ ] =

I II III IV
I → II 0 0.952 −0.333 −0.191
I → IV 0 0.119 −0.167 −0.238
II → III 0 0.786 0.500 0.429
II → IV 0 0.095 0.667 −0.191
III → IV 0 0.214 0.500 0.571

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

       

(30) 

     

(31) 

€ 

H 'r =

I II III IV
I → II 0 −0.679 −0.500 −0.321
I → IV 0 −0.321 −0.500 −0.679
II → III 0 0.107 −0.500 −0.107
II → IV 0 0.214 0 −0.214
III → IV 0 0.107 0.500 −0.107

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

       

(32) 

 
Equations (30) and (31) show clearly that the elements in 

both H’[6] and H’[11] have the same sign even though the 
values are different. However, the reduced PTDF shown in 
(32) indicates significantly different values and sign patterns. 
The set point used for reduction is not listed in [11], so it is 
not possible to compare the results at the same set point. To 
compare the results, the flow on the original network is 
calculated at the injection of [-5, 1, 1, 1, 1, 1]: 

€ 

flow =

flow1→2
flow1→5
flow2→3
flow3→4
flow3→6
flow4→6
flow5→6

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

= H

−5
1
1
1
1
1

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

=

−2.5
−2.5
−1.5
−0.5
0
0.5
−1.5

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

          

(33) 

The flow in (33) shows that power flows among groups I 
– IV are [-2.5, -2.5, -0.5, 0, 0.5], and it is clear that the power 
injection at each group is [-5; 2; 1; 2]. The flows are 
calculated using the PTDF matrices given in (30), (31), and 
(32), and the values for the flows are listed in Table I. To 
quantify the accuracy, the following performance index is 
introduced, and listed in Table I: 

€ 

error =
floworiginal − flowreduced 2

floworiginal 2

           

(34) 

where original and reduced in subscript represent the 
original network and reduced network, respectively. 

 
TABLE I 

FLOWS CALCULATED BASED ON THE PTDF MATRICES IN (29) 

AND (30) USING THE INJECTION OF [-5; 2; 1; 2]. 

Flows Actual 
Flow  Ref. [6] Ref. [11] This 

Study 
I  II -2.5 -0.524 -0.738 -2.5 
I  IV -2.5 -0.405 -0.593 -2.5 
II  III -0.5 2.929 3.331 -0.5 
II  IV 0 0.476 0.262 0 
III IV 0.5 2.071 1.669 0.5 

error - 132 % 133 % 0 % 
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It is evident that the errors in the flow are significant and 

the flow directions are wrong for some lines when the 
methods in [6] and [11] are used. Note that both the case in 
[11] and that from this example are non-congested case (i.e., 
the identical congestion pattern). Clearly, the method 
suggested here is more suitable for the power flow study. 

 
B. WECC system 
 

WECC is comprised of approximately 15,000 buses and 
18,000 branches. Performing a DC OPF on the system took 
about 15 minutes using MATPOWER [13]. Finding an 
optimal expansion plan for the system described in [3] was 
not feasible due to the dimension of the problem. Therefore, 
it is necessary to reduce the system tradeoff between 
accuracy and computational efficiency.  

The flow chart in Fig. 3 illustrates how the network 
reduction was performed, and Fig. 4 shows the result of the 
reduced network. 

A 176-bus simplified equivalent of the WECC system 
[14] was used to choose the initial set of buses. In the 
aggregation process, some buses can be added to multiple 
nuclei. Equation (18) provides a heuristic approach to this 
problem (i.e., the error between both sides is kept small). If 
buses can be added to multiple nuclei, a nucleus was selected 
to minimize an error defined in (34). Create a new nucleus if 
doing so yields a significant decrease in error. Using the 
criterion, the flow error remains at an acceptable level. In 
this study, a 10% decrease in error was the criterion for the 
significant reduction in error. As a result, three additional 
buses were added to the original 176-bus system. 

The state boundary condition is not necessary for the 
power system analysis, and might result in a large error. 
However, the condition was applied because it was useful for 
studying the state renewable portfolio. Due to the criterion, 
Bus 180 was added. As a result, the WECC system was 
reduced to 180 buses and 414 branches.  

The “Ward” reduction was performed using the 
PowerWorld software. Because the reduction was manually 
performed, it is not possible to provide the execution time. 
However, it is worth mentioning that reducing 15,000 buses 
to 180 buses using the software is not the normal process, 
and multiple software crashes were observed. The result may 
also have the path dependency. The method in [11] was 
robust, but one must re-evaluate Ψ and F matrices if the 
operation set point changes. The most computationally 
expensive part is calculating the Ψ matrix, which takes about 
8 hours using a 2.53 GHz computer. Constructing the F 
matrix also takes significant time and space. It is important 
to note that cardinality of F is (  

€ 

  ×n)-by-n (i.e., 74,520-by-
180); therefore, constructing the F matrix takes significant 
time and space. 

 
Fig. 3. Flow chart showing the bus aggregation procedure. 

 

 
 

Fig. 4. An aggregate WECC 180-bus system. 
 
The errors as defined in (34) were approximately 80% 

from [6] and 10% from [11] when the same set point was 
used as the selected load flow case. The errors were further 
increased to 180% and 150% in a low-load period, 
respectively. It is not surprising that the “Ward” reduction 
method yields a large error because the method is neither for 
a load flow study nor for such a significant size reduction 
(15,000 buses to 180 buses). The method in [11] yields a 
very small error at the same set point; however, a significant 
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error is observed for a different condition because the 
method is based on the power flow of a specific case, which 
is affected by operation set point as well as the PTDF matrix. 
for a different set point. 

The reduced WECC system was obtained within 8 hours 
using the method proposed in this study as described in Fig. 
1. The error was at most 30% for both cases. Note that this 
method does not require a load flow case, and therefore, its 
result does not depend on the set point. 

The method proposed in this study is based on the DC 
power flow approximation. Therefore, it does not address 
several issues such as voltage and reactive power. 
Consequently, it may perform poorly in cases where the DC 
model is not a good approximation to AC. 
 

VII. CONCLUSIONS 
 
Power systems are, in general, very large systems; 

therefore, precise power system optimization is practically 
infeasible. Several reduction methods were suggested, but 
their usage was limited due to the inaccuracy and the 
operation set point dependence. In this paper, a network 
reduction algorithm is proposed to reduce network using the 
PTDF matrix. The reduced PTDF matrix has the same 
structural properties as the original network’s PTDF does. 
The method is tested on a simple system and performance 
compared with other methods observed in the references in 
terms of power flow. It yields more precise representation of 
the reduced network than the conventional methods. Another 
advantage is that the reduced network does not depend on the 
operation set point. As a result, it provides a concise and 
precise representation of the transmission network for a 
power flow study. Therefore, it can be used in a large system 
OPF, national corridor, and renewable portfolio studies, 
among other things.  
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