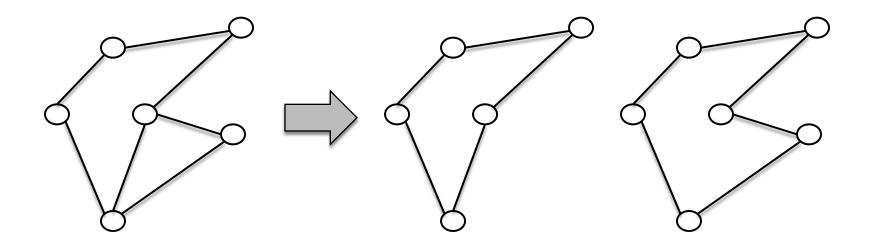
University of Waterloo - eNVy

1

INTRODUCTION TO NETWORK VIRTUALIZATION

Wednesday, May 14, 2008

Mosharaf Chowdhury Member, eNVy Project


What is Virtualization?

- 2
- Transparent abstraction of computing platform and resources
 - Multiple logical interpretations of the physical characteristics

- Virtualized everything
 - Virtual machines: VMware, Xen
 - Storage virtualization: SAN
 - Data-center virtualization

Network Virtualization for Dummies

Making a physical network appear as multiple logical ones

Physical Network

Virtualized Network - 1

Virtualized Network - 2

University of Waterloo - eNVy

Wednesday, May 14, 2008

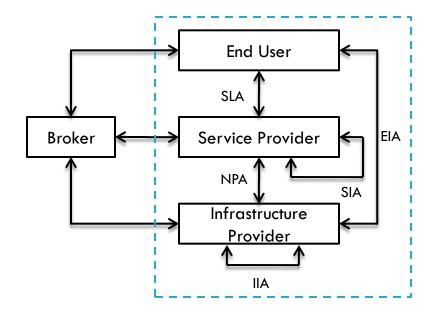
Why Virtualize ?

- Internet is almost ossified
 - Lots of band-aids and makeshift solutions (e.g. overlays)
 - A new architecture (aka clean-slate) is needed
- Hard to come up with a one-size-fits-all architecture
 Almost impossible to predict what future might unleash
- Why not create an all-sizes-fit-into-one instead!
 - Open and expandable architecture
- Testbed for future networking architectures and protocols

Related Concepts

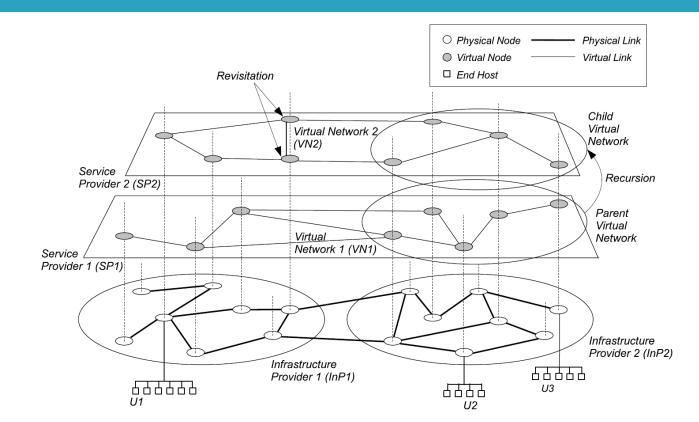
- Virtual Private Networks (VPN)
 - Virtual network connecting distributed sites
 - Not customizable enough
- Active and Programmable Networks
 - Customized network functionalities
 - Programmable interfaces and active codes
- Overlay Networks
 - Application layer virtual networks
 - Not flexible enough

Network Virtualization Model


- Business Model
- □ Architecture
- Design Principles
- Design Goals

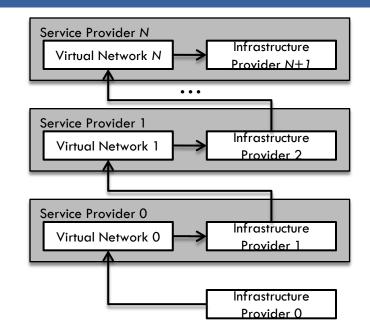
Business Model

Players


- Infrastructure Providers (InPs)
 - Manage underlying physical networks
- □ Service Providers (SPs)
 - Create and manage virtual networks
 - Deploy customized end-to-end services
- End Users
 - Buy and use services from different service providers
- Brokers
 - Mediators/Arbiters

Relationships

Architecture


8

Design Principles

- <u>Concurrence</u> of multiple heterogeneous virtual networks
 - Introduces diversity
- <u>Recursion</u> of virtual networks
 - Opens the door for network virtualization economics
- □ <u>Inheritance</u> of architectural attributes
 - Promotes value-addition
- <u>Revisitation</u> of virtual nodes
 - Simplifies network operation and management

Hierarchy of Roles

Design Goals (1)

Flexibility

- Service providers can choose
 - arbitrary network topology,
 - routing and forwarding functionalities,
 - customized control and data planes
- No need for co-ordination with others
 - IPv6 fiasco should never happen again
- Manageability
 - Clear separation of policy from mechanism
 - Defined accountability of infrastructure and service providers
 - Modular management

Design Goals (2)

Scalability

- Maximize the number of co-existing virtual networks
- Increase resource utilization and amortize CAPEX and OPEX

Security, Privacy, and Isolation

- Complete isolation between virtual networks
 - Logical and resource
- Isolate faults, bugs, and misconfigurations
 - Secured and private

Design Goals (3)

Programmability

Of network elements e.g. routers

- Answer "How much" and "how"
- Easy and effective without being vulnerable to threats

Heterogeneity

- Networking technologies
 - Optical, sensor, wireless etc.
- Virtual networks

Design Goals (4)

- Experimental and Deployment Facility
 - PlanetLab, GENI, VINI
 - Directly deploy services in real world from the testing phase

- Legacy Support
 - Consider the existing Internet as a member of the collection of multiple virtual Internets
 - Very important to keep all concerned parties satisfied

Definition (Sort of)

<u>Network virtualization</u> is a networking environment that allows multiple service providers to dynamically compose multiple heterogeneous virtual networks that co-exist together in isolation from each other, and to deploy customized end-to-end services on-the-fly as well as manage them on those virtual networks for the end-users by effectively sharing and utilizing underlying network resources leased from multiple infrastructure providers.

Existing Projects

Four general categories

- 1. Networking technology
 - IP (X-Bone), ATM (Tempest)
- 2. Layer of virtualization
 - Physical layer (UCLP), Application layer (VIOLIN)
- 3. Architectural domain
 - Network resource management (VNRMS), Spawning networks (Genesis)
- 4. Level of virtualization
 - Node virtualization (PlanetLab), Full virtualization (Cabo)

Future Works

Four general directions

- 1. Instantiation
 - Creates virtual networks
- 2. Logistics
 - Runs them
- 3. Management
 - Manages them
- 4. Interactions
 - Let them flourish

Reference

N.M. Mosharaf Kabir Chowdhury, Raouf Boutaba, "A Survey of Network Virtualization", University of Waterloo Technical Report CS-2008-25, Oct. 2008.

Questions ? | // Comments