
Networked Life:
20 Questions and Answers

Mung Chiang

Princeton University

April 2012 Draft

Contents

Preface page v

Acknowledgements viii

Roadmap xi

1 What makes CDMA work for my smartphone? 1

2 How does Google sell ad spaces? 25

3 How does Google rank webpages? 44

4 How does Netflix recommend movies? 60

5 When can I trust an average rating on Amazon? 88

6 Why does Wikipedia even work? 109

7 How do I viralize a YouTube video and tip a Groupon deal? 127

8 How do I influence people on Facebook and Twitter? 155

9 Can I really reach anyone in 6 steps? 189

10 Does the Internet have an Achilles’ heel? 210

11 Why do AT&T and Verizon Wireless charge me $10 a GB? 230

12 How can I pay less for my Internet connection? 251

13 How does tra�c get through the Internet? 273

14 Why doesn’t the Internet collapse under congestion? 306

15 How can Skype and BitTorrent be free? 331

iv Contents

16 What’s inside the cloud of iCloud? 354

17 IPTV and Netflix: How can the Internet Support Video? 376

18 Why is WiFi faster at home than at a hotspot? 401

19 Why am I only getting a few % of advertised 4G speed? 427

20 Is it fair that my neighbors iPad downloads faster? 446

Notes 467
Index 469

Preface

You pick up your iPhone while waiting in line at a co↵ee shop. You Google a
not-so-famous actor and get linked to a Wikipedia entry listing his recent movies
and popular YouTube clips. You check out user reviews on IMDB and pick one,
download that movie on BitTorrent or stream that in Netflix. But suddenly the
WiFi logo on your phone is gone and you’re on 4G. Video quality starts to
degrade a little, but you don’t know if it’s the video server getting crowded in
the cloud or the Internet is congested somewhere. In any case, it costs you $10
per gigabyte, and you decide to stop watching the movie, and instead multitask
between sending tweets and calling your friend on Skype, while songs stream
from iCloud to your phone. You’re happy with the call quality, but get a little
irritated when you see there’re no new followers on Twitter.
You’ve got a typical networked life, an online networked life.
And you might wonder how all of these technologies “kind of” work, and why

sometimes they don’t. Just flip through the table of contents of this book. It’s a
mixture: some of these questions have well defined formulations and clear answer
while others still face a significant gap between the theoretical models and actual
practice; a few don’t even have widely-accepted problem statements. This book
is about formulating and answering these 20 questions.
This book is about the networking technologies we use each day as well as

the fundamental ideas in the study of networks. Each question is selected not
just for its relevance to our daily lives, but also for the core concepts and key
methodologies in the field of networking that are illustrated by its answer. These
concepts include aggregation and influence, distributed coordination, feedback
control, and strategic equilibrium. And the analytic machineries are based on
mathematical languages that people refer to as graph, optimization, game, and
learning theories.
This is an undergraduate textbook for a new course at Princeton University:

Networks: Friends, Money, and Bytes. The course targets primarily juniors
in electrical engineering and computer science, but also seniors and beginning
graduate students as well as students from mathematics, sciences, economics, and
engineering in general. It can be viewed as the second course after the “signals
and systems” course that anchors the undergraduate electrical and computer
engineering curriculum today.
This book weaves a diverse set of topics you would not normally see under

vi Preface

the same cover into a coherent stream: from Arrow’s impossibility and Rawls’
fairness to Skype signaling and Clos networks, from collaborative filtering and
firefly synchronization to MPEG/RTSP/TCP/IP and WiFi CSMA DCF. This
begs a question: “So, what is the discipline of this book?”, a question that most
of the undergraduates simply do not care about. Neither does this book: it only
wants to address these practical questions, using whatever modeling languages
that have been observed to be the most relevant ones so far. Turns out there is
a small and coherent set of mathematics we will need, but that’s mostly because
people have only invented a limited suite of modeling languages.
This is not a typical textbook for another reason. It does not start with general

theories as do many books on these subjects, e.g., graph theory, game theory,
optimization theory, or abstract concepts like feedback, coordination, and equi-
librium. Instead it starts with concrete applications and practical answers, and
sticks to them (almost) every step of the way. Theories and generalizations only
emerge, as if “accidental by-products”, during the process of formulating and
answering these questions.
This book, when used as an undergraduate textbook, can be complemented

with its website features: http://www.network20q.com, including lecture slides,
problem solutions, additional questions, further pointers to references, collec-
tion of news media coverage of the topics, currency-earning activities, course
projects, blogs, tweets, surveys, and student-generated course materials in wiki.
We created web features that turn this class into an online social network and a
networked economy.
This book can also be used by engineers, technology managers, and pretty

much anyone with a keen interest in understanding how social and technologi-
cal networks work. On many spots, we sacrifice generality for accessibility, and
supplement symbolic representation by numerical illustration.

• The first section of each chapter is a “short answer”, and it is accessible by
most people.

• Then there’s a “long answer” section. If you remember di↵erentiation and
linear algebra (and occasionally a little bit of integration and basic proba-
bility), you can follow all the material there. We take great care to include
only those symbols and equations that’re really necessary to unambigiously
express the ideas.

• The “examples” section contains detailed, numerical examples to reinforce the
learning from the “long answer” section.

• Each chapter concludes with a section on “advanced material,” which requires
the reader to be quite comfortable with symbolic operations and abstract
reasoning, but can be skipped without losing the coherence and gist of the
book. In the undergraduate course taught at Princeton, almost none of the
advanced material is covered. Covering all the advanced material sections
would constitute an introductory graduate level course.

• At the end of each chapter, there’re 5 homework questions, including easy

Preface vii

drills, essential supplements, and some “out-of-syllabus” explorations. The
level of di�culty is indicated on a scale of 1 (easy) to 3 (hard) stars.

• There are also 5 key references per chapter (yes, only 5, in the hope that
undergraduates may actually read some of these 5, and my apologies to
the authors of thousands of papers and books that could have been cited).
These references open the door to many worthwhile further readings, in-
cluding textbooks, research monographs, and survey articles.

This is a (relatively) thin book. It’s a collage of snapshots, not an encyclopedia.
It’s an appetizer, not an entree. We realize that the majority of readers will not
pursue a career specializing in the technical material in this book, so we take
every opportunity to delete material that’s very interesting to specialists but not
essential to this undergraduate course. Each one of these 20 chapters deserves
many books for a detailed treatment. We only highlight a few key ideas in the
span of about 20 pages per chapter and 80 minutes per lecture. There are many
other mathematical languages in the study of networks, many other questions
about a networked life, and many other types of networks that we do not have
time to cover in one semester. But as the saying goes for a course: “It’s more
important to uncover than to cover a lot.”
This is a book illustrating some pretty big ideas in networking, through 20

questions we can all relate to in our daily lives. Questions that tickle our imag-
ination with surprises and incomplete answers. Questions that I wished I had
known how to answer several years ago. Questions that are quickly becoming an
essential part of modern education in electrical and computer engineering.
But above all, we hope this book is fun to read.

Acknowledgements

In so many ways I’ve been enjoying the process of writing this book and creating
the new undergraduate course at Princeton University. The best part is that I
got to, ironically in light of the content of this book, stay o✏ine and focus on
learning a few hours a day for several hundred days. I got to digest wonderful
books and papers that I didn’t get a chance to read before, to think about what’re
the essential points and simple structures behind the drowning sea of knowledge
in my research fields, and to edit and re-edit each sentence I put down on paper.
It reminded me of my own sophomore year, one and half decade ago, at Stanford
University. I often biked to the surreally beautiful Oval in the morning and dived
into books of many kinds, most of which not even remotely related to my majors.
As the saying goes, that was a pretty good approximation of paradise.
That paradise usually ends together with the college years. So I have many

to thank for granting me a precious opportunity to indulge myself again at this
much later stage in life.

• The new course “Networks: Friends, Money, and Bytes” could not have been
created without the dedication from its three remarkable TAs: Jiasi Chen,
Felix Wong, and Pei-yuan Wu. They did so much more for the course than
a “normal” TA experience.

• Many students and postdocs in Princeton’s EDGE Lab and EE Department
worked with me in creating worked examples: Chris Brinton, Amitabha
Ghosh, Sangtae Ha, Joe Jiang, Carlee Joe-Wong, Yiannis Kamitsos, Haris
Kremo, Chris Leberknight, Soumya Sen, Arvid Wang, and Michael Wang.

• Princeton students in ELE/COS 381’s first o↵ering were brave enough to take
a completely new course and contributed in many ways, not the least the
class website blogs and course projects. Students in the graduate course
ELE539A also helped proofread the book draft and created multiple choice
questions.

• Before I even get a chance to advertise the course, some colleagues started
planning to o↵er similar courses at their institutions: Jianwei Huang (CUHK,
Hong Kong), Hongseok Kim (Sogang U., Korea), Tian Lan (GWU), Walid
Saad (U. Miami), Chee Wei Tan (City U., Hong Kong), Kevin Tang (Cor-
nell), more...

• Over 50 colleagues provided valuable suggestions to the course and the book.

Acknowledgements ix

In particular, I’ve received many detailed comments from Kaiser Fung (Sir-
ius), Victor Glass (NECA), Jason Li (IAI), Jennifer Rexford (Princeton),
Keith Ross (NYU Poly), Krishan Sabnani (Bell Labs), Walid Saad (U.
Miami), Matthew Salganik (Princeton), Jacob Shapiro (Princeton), and
Walter Willinger (AT&T Labs), more...

• Phil Meyler from Cambridge University Press encouraged me to turn the
lecture notes into a textbook, and further connected me with a group of
enthusiastic sta↵ at CUP.

• This course was in part supported by a grant from the U.S. National Science
Foundation, in a program run by Darleen Fisher, for a team consisting of
two engineers and two social scientists at Princeton. I’m glad to report
that we achieved the proposed educational goals, and did that before the
project’s o�cial end date.

And my appreciation traces back to many of my teachers. For example, I’ve had
the fortune to be co-advised in my Ph.D. study by Stephen Boyd and Tom Cover,
two superb scholars who are also superb teachers. Their textbooks Convex Op-
timization and Elements of Information Theory are two towering achievements
in engineering education. Read these two books, and you’ll experience the def-
inition of “clarity”, “accessibility”, and “insight”. When I was writing research
papers with them, Tom would spend many iterations just to get one notation
right, and Stephen would even pick out each and every LaTex inconsistency. It
was a priviledge to see first-hand how the masters established the benchmarks
of technical writing.

Stephen and Tom were also the most e↵ective lecturers in classroom, as was
Paul Cohen, from whom I took a math course in my sophomore year. Pulling
o↵ the sweatshirt and writing with passion on the blackboard from the first
moment he entered the classroom, Paul could put your breadth on hold for 80
minutes. Even better, he forgot to give us a midterm and then gave a week-long,
take-home final that the whole class couldn’t solve. He made himself available
for o�ce hours on-demand to talk about pretty much anything related to math.
The course was supposed to be on PDE. He spent just four lectures on that,
and then introduced us to 18 di↵erent topics that quarter. I’ve forgotten most
of what I learned in that course, but I’ll always remember that learning should
be fun.

In the same quarter that I took Stephen’s and Tom’s courses, I also took
from Richard Rorty a unique course at Stanford called “From Religion through
Philosophy to Literature”, which pulled me out of Platonism that I had been
increasingly attached to as a teenager. Talking to Rorty drastically sharpened
my appreciation of the pitfalls of mistaking representations for reality. A side-
benefit of that awakening was a repositioning of my philosophy of science, which
propagated to the undercurrents of this book.

Three more inspirations, from those I never met:

x Acknowledgements

• Out of all the biographies I’ve read, the shortest one, by far, is by Paul Johnson
on Churchill. And it’s by far the most impactful one. Brevity is power.

• But even a short book feels like infinitely long to the author until it goes to
the press. What prevented me from getting paralyzed by procrastination is
Terman’s approach of writing textbooks while serving as a Dean and then
the Provost at Stanford (and creating the whole Silicon Valley model):
write one page each day.

• Almost exactly one century ago, my great grandfather, together with his
brother, wrote some of the first modern textbooks in China on algebra
and on astronomy. (And three decades ago, my grandfather wrote a text-
book on econometrics at the age of seventy.) As I was writing this book,
sometimes I couldn’t help but picture the days and nights that they spent
writing theirs.

For some reason, the many time commitments of a professor are often hard to
compress. And I couldn’t a↵ord to cut back on sleep, for otherwise the proportion
of garbage in this book would have been even higher. So it’s probably fair to say
that each hour I spent writing this book has been an hour of family time lost.
Has that been a good tradeo↵? Definitely not. So I’m glad that the book is done,
and I’m grateful to my family for making that happen: my parents who helped
take care of my toddler daughter when I was o↵ to dwell in this book, my wife
who supported me sitting there staring at my study’s ceiling despite her more
important job of curing the ill, and Novia who could have played with her Daddy
a lot more in the past year. This book was written with my pen and their time.

Roadmap

This roadmap is written for course instructors, or as an epilogue for students who
have already finished reading the book. It starts with a taxonomy of the book
and introduces its organization and notation. Then it discusses the similarities
and di↵erences between this book and some excellent, related books published
over the last decade. Then it highlights three pedagogical principles guiding the
book: Just In Time, Bridge Theory and Practice, and Book As a Network, and
two contexts: the importance of domain-specific functionalities in network science
and the need for undergraduate curriculum evolution in electrical and computer
engineering. It concludes with anecdotes of arranging this course as a social and
economic network itself.

Taxonomy and Organization

The target audience of this book are both students and engineering professional.
For students, the primary audience are those from engineering, science, eco-
nomics, operations research and applied mathematics, but also those on the
quantitative side of sociology and psychology.
There are three ways to use this book as a textbook:

• Undergraduate general course at sophomore or junior level : Go through all 20
chapters without Advanced Material sections. This course serves as an in-
troduction to networks before going further into senior level courses in four
possible directions: computer networking, wireless communication, social
networks, or network economics.

• Undergraduate specialized course at senior level : Pick either the social and
economic network chapters or the technology and economic network chap-
ters, and go through Advanced Material sections in those chapters.

• First year graduate level : Go through all 20 chapters including Advanced
Material sections.

While this book consists of 20 chapters, there are just 4 key recurring concepts
underlying this array of topics. Table 0.1 summarizes the mapping from chapter
number to the concept it illustrates.

xii Roadmap

Table 0.1 Key Concepts: The chapters where each of the four key concepts show up for
di↵erent types of networks.

Network Type Aggregation Distributed Feedback Strategic
& Influence Coordination Control Equilibrium

Wireless 1 19
Internet 10, 13, 16 14
Content Distribution 15, 17 18
Web 3, 4, 5 2
Online Social 6,8 9 7
Internet Economics 20 11, 12

The modeling language and analysis machinery come from quite a few fields in
applied mathematics, especially the four foundations summarized in Table 0.2.

Table 0.2 Main Methodologies: The chapters where each of the four families of
mathematical languages are used in di↵erent types of networks.

Network Type Graph Optimization Game Learning
Theory Theory Theory Theory

Wireless 18, 19 1
Internet 10 13,14,16
Content Distribution 15, 17
Web 3 2 4,5
Online Social 7,8,9 6
Internet Economics 11 20 12

The order of appearance of these 20 questions is arranged so that clusters of
highly related topics show up next to each other. Therefore, we recommend going
through the chapters in this sequence, unless you’re OK with flipping back every
now and then when key concepts from prior chapters are referenced. Figure 0.1
summarizes the “prerequisite” relationship among the chapters.
This book cuts across both networks among devices and networks among peo-

ple. We examine networks among people that overlay on top of networks among
devices, but also spend half of the book on wireless networks, content distribu-
tion networks, and the Internet itself. We’ll illustrate important ideas and useful
methodologies across both types of networks. We’ll see striking parallels in the
underlying analytic models, but also crucial di↵erences due to domain-specific
details.
We can also classify the 20 questions into three groups based on the stages of

development in formulating and answering them:

• Question well formulated, and theory-inspired answers adopted in practice: 1,
2, 3 4, 9, 10, 11, 13 14, 15, 16, 17, 18, 19.

Roadmap xiii

p p y

13

15 19

1

2

8

3

7

4

10

12

11 14

Figure 0.1 Dependency of mathematical background across some of the chapters. Each
node is a chapter. Each directional link is a dependence relationship, e.g., Chapter 8’s
material requires those in Chapters 3 (which in turn requires those in Chapter 1) and
those in Chapter 7 (which in turn requires those in Chapter 2, which in turn requires
those in Chapter 1). Chapters 1, 4, and 13, the root nodes of these three trees, o↵er
foundational materials for ten other chapters. Some chapters aren’t shown here
because they don’t form part of a dependence tree.

• Question well formulated, but there’s a gap between theory and practice (and
we discuss some possible bridges over the gaps): 12, 20.

• Question less well formulated (but certainly important to raise and explore):
5, 6, 7, 8.

It’s comforting to see that the majority of our 20 chapters belong to the first
group. Not surprisingly, questions about technological networks tend to belong
to the first group, with those about social and economic networks more towards
the second and third groups. It’s often easier to model networked devices than
networked human beings with predictive power.

Not all chapters explicitly study the impact of network topology, e.g., Chapter
7 studies influence models with decision externalities based on population sizes,
while Chapter 8 looks at influence models with topology taken into account.

A quick word about the homework problems. There are 5 problems at the end
of each chapter. These are a mixture of easy drills, simple extensions, challenging
mini-research projects, and open-ended questions. And they’re ordered as such.
Some important topics that we cannot readily fit into the main flow of the text
are postponed to the homework problem section.

xiv Roadmap

Notation

We use boldface text to denote key index terms when each of them is defined.
We use italics to highlight important, subtle, or potentially confusing points.
We use boldface math symbols to denote vectors or matrices, e.g., x,A. Vectors

are column vectors by default. We do not use special fonts to represent sets. We
use (t) to index iterations over continuous time, and [t] or [k] to index iterations
over discrete time. We use ⇤ to denote optimal or equilibrium quantities.
Some symbols have di↵erent meanings in di↵erent chapters, because they are

the standard notation in di↵erent communities.

Related Books

There’s no shortage of books on networks of many kinds. The popular ones that
appeared in the past decade or so fall into two main groups:

• Popular science books, many of them filled with historical stories, empirical
evidence, and sometimes a non-mathematical sketch of technical content.
Some of the widely read ones are: Bursts, Connected, Linked, Money Lab,
Planet Google, Six Degrees, Sync, The Perfect Storm, The Tipping Point,
The Wisdom of Crowds. Two other books, while not exactly on networks,
provide important insights to many topics in networking: Thinking, Fast
and Slow and The Black Swan. On the technology networks side, there
are plenty of “for dummies” books, industry certification prep books, and
entrepreneurship books. There’re also several history of technology books,
e.g., Where the Geeks Stay Up Late and The Qualcomm Equation.

• Popular undergraduate or graduate level textbooks. On the graph-theoretic
and economic side of networking, three excellent textbooks appeared in
2010: Networks, Crowds, and Markets by Easley and Kleinberg, Networks
by Newman, and Social and Economic Networks by Jackson. The latter
two are more on the graduate level. An earlier popular textbook is Social
Network Analysis: Methods and Applications by Wasserman and Faust.
On the computer networking side, there’s a plethora of excellent textbooks
written over the past decade. Two particularly popular ones are: Computer
Networking: A Top-Down Approach by Kurose and Ross, and Computer
Networks: A Systems Approach by Peterson and Davie. On wireless com-
munications, several textbooks in the last few years have become popular:
Wireless Communications by Molisch, Wireless Communications by Gold-
smith, Fundamentals of Wireless Communication by Tse and Viswanath.

As illustrated in Figure 0.2, this book fills in the gap between existing groups
of books. Each chapter is driven by a practical question or observation, but the
answers (or approximate answers) are explained using the rigorous language of
mathematics. It also maintains a balance bewteen social/economic networks and

Roadmap xv

20 Q

J.
N. K.R.

P.D.
E.K.

Social
Networks

Popular
Science Books

Technology
Networks

Textbooks

Casual

History of
Engineering

Books

Figure 0.2 A cartoon illustrating roughly where some of the related books sit on two
axes: one on the level of di�culty ranging from leisurely reading to graduate level
textbooks, and another on the mix of topics ranging from social and economic
networks to technological networks. E.K. stands for Easley and Kleinberg. J. stands
for Jackson. N. stands for Newman. K. R. stands for Kurose and Ross. P. D. stands
for Peterson and Davie. 20Q stands for this book.

Internet/wireless networks, and between graph/economic theory and optimiza-
tion/learning theory. For example, understanding why WiFi works slower in hot
spots is given as much attention as how Google auctions its ad spaces. A main
goal of this book is to put social economic networks and technological networks
side by side, and highlight their surprising similarities in spirit and subtle di↵er-
ences in detail.

In similar ways, the Princeton undergraduate course also di↵ers from the sem-
inal courses by Easley and Kleinberg at Cornell, and by Kearns at Penn, which
have inspired a few similar courses, such as the one by Parke at Harvard, by
Prabhakar at Stanford, by Wierman at Caltech, by Chaintreau at Columbia,
by Spielman at Yale, by Kempe at USC... These excellent courses have started
structuring social and economic networking topics to undergraduates, and in-
spired our course at Princeton. Of course, both computer networking and wireless
communications courses are standard, and sometimes required courses at many
universities CS and EE departments. We hope there’ll be more courses in elec-
trical engineering departments around the world that use rigorous languages to
teach the concepts and methods common to social, economic, and technological
networks.

xvi Roadmap

Pedagogical Principles

This book and the associated course are also an experiment in three principles
of teaching networks: JIT, BTP, and BAN.

Principle 1: Just In Time (JIT)

Models are often crippled by their own assumptions to start with, and end up
being largely irrelevant to what they set out to enable. Once in a while this is
not true, but that’s a low probability event. So, before presenting any model, we
first try to justify why the models are really necessary. The material is arranged
so that extensive mathematical machinery is introduced bit by bit, each bit
presented just in time for the question raised. We enforce this “just-in-time”
policy pretty strictly: no mathematical machinery is introduced unless it’s used
within the same section.
This might seem to be a rather unconventional way to write a textbook on

the mathematical side of engineering. Usually a textbook asks the students to be
patient with 50, 100, sometimes 200 pages of mathematics to lay the foundation
first, and promises that motivating applications are coming after these pages.
It’s like asking a 3-year-old to be patient for a long drive and promising ice-
cream cones after many miles on the highway. In contrast, this book hands out
an ice-cream cone every minute along the way. Hopefully the 3-year-old becomes
very motivated to keep the journey going. It’s more fun when gratification isn’t
delayed. “Fun right now” and “instant gratification” are what this book tries to
achieve.
This book is an experiment motivated by this hypothesis: what professors

call “fundamental knowledge” can be taught as “by-products” in the answers
to practical questions that students are interested in. A devoted sequence of
lectures focusing exclusively (or predominantly) on the fundamental knowledge
is not the only way to teach the material. Maybe we could also chop up the
material and sprinkle it around. This does not “water-down” the material, it
simply reorganizes it so that it shows up right next to the applications in each
and every lecture. The downside is that the standard trains of thought running
through the mathematical foundation of research communities are interrupted
many times. This often leaves me feeling weird because I could not finish my
normal teaching sequence, but that’s probably a good sign. The upside is that
undergraduates, who may not even be interested in a long-term career in this
field, view the course as completely driven by practical questions.
For example, the methodologies of optimization theory are introduced bit by

bit: The basic definitions and Perron Frobenius theory in power control, convex-
ity and least squares in Netflix recommendation, network utility maximization
in Internet pricing, dynamic programming and multi-commodity flow in Internet
routing, gradient and dual decomposition in congestion control, and combinato-
rial optimization in peer-to-peer networks.

Roadmap xvii

The methodologies of game theory are introduced bit by bit in this book: The
basic definitions in power control, auction theory in ad space auctioning, bar-
gaining theory in Wikipedia consensus formation as well as in two-sided pricing
of Internet access, and selfish maximization in tipping.
The methodologies of graph theory are introduced bit by bit: matching in ad

space auctioning, consistency and pagerank in Google search, bipartite graph in
Netflix recommendation, centrality, betweenness, and clustering measures in in-
fluence models, small world models in social search, scale free models in Internet
topology, Bellman Ford algorithm and max flow min cut in Internet routing, and
tree embedding in P2P.
The methodologies of learning theory are introduced bit by bit: collaborative

filtering in Netflix recommendation, Bayesian analysis and adaptive boosting in
ratings, and community detection in influence models.

Principle 2: BTP (Bridge Theory and Practice)

The size of the global industry touched upon by these 20 question is many
trillons of dollars. Just the sum of market capitalizations of the 20 most relevant
U.S. companies to this book: Google (including YouTube), Microsoft (including
Skype), Amazon, eBay, Facebook, Twitter, Groupon, LinkedIn, Netflix, Disney,
Apple, AT&T, Verizon, Comcast, Qualcomm, Ericsson, Cisco, EMC, HP, Intel,
added up to over $1.8 trillion as of November 2011.
In theory, this book’s theories are directly connected to practice in this multi-

trillion-dollar industry. In practice, that’s not always true, especially in fields
like networking where stable models, like the additive Gaussian noise channel
for copper wire in communication theory, often do not exist.
Nonetheless, we try to strike a balance between (a) presenting enough de-

tail so that answers to these practical questions are grounded in actual practice
rather than in “spherical cows” and “infinite planes,” (although we couldn’t
help but keep “rational human beings” in several chapters), and (b) avoiding
too much detail that reduces the “signal-noise-ratio” in illustrating the funda-
mental principles. This balance is demonstrated in the level of detail with which
we treat network protocol descriptions, Wikipedia rules, Netflix recommenda-
tion algorithm parameters, etc. And this tradeo↵ explains the (near) absence of
random graph theory and of Internet protocol header formats, two very popu-
lar sets of material in standard textbooks in math/CS-theory/sociology and in
CS-systems/EE, respectively.
Some of these 20 questions are currently trapped in particularly deep theory-

practice gaps, especially those hard-to-formulate questions in Chapters 5 and 6,
and those hard-to-falsify answers in Chapters 7 and 8. The network economics
material in Chapters 11 and 12 also fits many of the jokes about economists, too
many to quote here. (A good source of them is Taleb’s The Bed of Procrustes.)
Reverse engineering, shown across many chapters, has its own share of accurate
jokes: “Normal people look at something that works in theory, and wonder if it’ll

xviii Roadmap

also work in practice. Theoreticians look at something that works in practice,
and wonder if it’ll also work in (their) theory.”
Time and time again, we skip the mechanics of mathematical acrobats, and in-

stead highlight the never-ending struggles between representations and realities
during modeling: the process of “mathematical crystallization” where (most)
parts of reality are thrown out of the window so that what remains becomes
tractable using today’s analytic machineries. What is often unclear is whether
the resulting answerable-questions are still relevant and the resulting tractable
models still have predictive powers. However, when modeling is done “right”, en-
gineering artifacts can be explained rather than just described, and better design
can be carried out top-down rather than by “tweak and debug.” It’s often been
quoted (mostly by theoreticians like me) that “there’s nothing more practical
than a good theory,” and that “a good theory is the first order exponent in the
Taylor’s expansion of reality.” Perhaps these can be interpreted as definitions
of what constitutes a “good” theory. By such a definition, this book has traces
of good theory, thanks to many researchers and practitioners who have been
working hard on bridging the theory-practice gap in networking.

Principle 3: BAN (Book As a Network)

Throughout the chapters, comparison and contrast are constantly drawn with
other chapters. This book itself is a network, a network of ideas living in nodes
called chapters, and we grasp every opportunity to highlight each possible link
between these nodes. The most interesting part of this book is perhaps this
networking e↵ect among ideas: to see how curiously related, and yet crucially
di↵erent they are.
Figure 0.3 shows the main connections among the chapters. This is what the

book is about: weave a network of ideas (about networks), and the positive
networking e↵ect comes out of that.
We can extract the top 20 ideas across the chapters. The first 10 are features

of networks, the next 5 design ideas, and the last 5 modeling approaches.

1. Resource sharing (such as statistical multiplexing and fairness): Ch. 1, 11, 13,
14, 15, 16, 17, 18, 20

2. Opinion aggregation and consensus formation: Ch. 3, 4, 5, 6, 18

3. Positive network e↵ect (such as resource pooling and economy of scale): Ch.
9, 11, 13, 15, 16

4. Negative network e↵ect (such as tragedy of the commons): Ch. 11, 20

5. The wisdom of crowds (diversity gain and e�ciency gain): Ch. 7, 8, 18, 19

6. The fallacy of crowds (cascade and contagion): Ch. 7, 8

7. Functional hierarchy and layering: Ch. 13, 14, 15, 17, 19

8. Spatial hierarchy and overlaying: Ch. 10, 13, 15, 16, 17

9. From local actions to global property: Ch. 1, 6, 7, 8, 13, 14, 15, 18

10. Overprovision capacity vs. connectivity: Ch. 14, 15, 16

Roadmap xix

15

19
1

8

3 17

10

12

11 14

9
13

4

18

2

165

20

6

7

Figure 0.3 Intellectual connections across the chapters. A node is a chapter, and a
bidirectional link is an intellectual connection, via either similar concepts or common
methodologies. Cliques of nodes and multipath paths from one node to another are
particularly interesting to observe in this graph.

11. Feedback control: Ch. 1, 7, 13, 14

12. Utility maximization: Ch. 1, 2, 11, 12, 14, 20

13. Protocol: Ch. 14, 15, 17, 19

14. Signaling: Ch. 6, 19

15. Randomization: Ch. 3, 15, 18

16. Graph consistency models: Ch. 3, 13

17. Strategic equilibrium models: Ch. 1, 2, 15

18. Generative model (and reverse engineering): Ch. 9, 10, 14

19. Latent factor models: Ch. 4

20. Axiomatization models: Ch. 6, 20

In the first o↵ering of the course at Princeton, the undergrads voted (by Borda
count) resource sharing, opinion aggregation, and positive network e↵ect as the
top three concepts they found most useful. And they also voted the key equa-
tions in pagerank, distributed power control, and Bellman Ford as the top three
equations.
Almost every one of these 20 ideas cuts across social/economic networks and

technological networks. For example,

• The emergence of global coordination through local actions based on local
views is a recurring theme from influence models in social networks to
routing and congestion control in the Internet, from consumer reaction to
pricing signals to power control in wireless networks.

• Resource sharing models, in the form of additive sharing x+ y 1, or mulit-
plicative sharing x/y � 1, or binary sharing x, y 2 {0, 1}, x + y 1, are

xx Roadmap

introduced for network pricing as well as the classic problems of congestion
control, power control, and contention control. Indeed, congestion control in
TCP has been interpreted as a form of dynamic pricing in network access.

• The (positive) network e↵ect is often highlighted in social and economic net-
works. It also finds a concrete realization in how content is shared over the
Internet through peer-to-peer protocols and scaling-up of data center.

• “The wisdom of (independent and unbiased) crowds” is another common
theme in social networks. There’re two types of “wisdom” here: diversity
gain in reducing the chance of some bad event (typically represented math-
ematically 1 � (1 � p)N where N is the size of the crowd), and e�ciency
gain in smoothing out some average metric (typically represented mathe-
matically as a factor

p
N in the metric). Both types are observed in social

networks and the latest generation of 4G and 802.11n wireless networks.

• Forming consensus is used in computing webpage importance score in pager-
ank as well as in discovering the right time to transmit in WiFi.

• Spatial hierarchy is used in both small world models and how the Internet is
structured.

• The design methodology of feedback control is used in influence models in
social networks and congestion control in the Internet.

• Utility maximization is used in auctioning advertising spots and setting In-
ternet access pricing.

• The power method is used in both Google pagerank and distributed power
control.

• Randomization is used in Google pagerank and 802.11 CSMA.

• Strategic equilibrium models are used in auctioning and BitTorrent.

• Reverse engineering is used in studying scale free networks and TCP.

• Axiomization is used in voting procedure and fairness evaluation.

Yet equally important are the subtle di↵erences between technological and
social-economic networks. Exhibit A for this alert is the (non-existence of) the
Achilles’ heel of the Internet and the debate between two generative models
(preferential attachment vs. constrained optimization) of scale free networks.

Two Bigger Pictures

There are also two broader pictures in the backdrop of this book:

• Instill domain specific functionalities to a generic network science. Network
science around these 20 questions must be based on domain-specific models
and on the pursuit of falsification. For example, while a random graph
is elegant, it’s often neither a relevant approach to design nor the only
generative model to explain what we see in this book. And as much as
metrics of a static graph are important, engineering protocols governing

Roadmap xxi

the functionalities of feedback, coordination, and robustness are just as
crucial as the topological properties of the graph like degree distribution.

• Revisit the Electrical and Computer Engineering (ECE) undergraduate cur-
riculum. In the standard curriculum in electrical engineering since around
the 1960s, a “signals and systems” course is one of the first foundational
courses. As networks of various kinds play an increasingly important role
both in engineering design and in society, it’s time to capture fundamental
concepts in networking in a second systems course. Just like linear time-
invariant systems, sampling, integral transforms, and filter design have laid
the foundation of ECE curriculum since the 1960s, we think the following
concepts have now become fundamental to teach to the future ECE stu-
dents, whether they are taught in the JIT way or not: patterns of connec-
tions among nodes, modularization and hierarchy in networked systems,
consistency and consensus in graphs, distributed coordination by pricing
feedback, strategic equilibrium, pros and cons of scaling up, etc.

So this book is an experiment in both what to teach and how to teach
in an electrical and computer engineering undergrad curriculum: what con-
stitutes core knowledge that needs to be taught and how to teach it in a
context that enhances learning e�ciency. As much as we appreciate FIR
and IIR filter design, Laplace and Z transforms, etc., maybe it’s about time
to explore the possibility of reducing the coverage of these topics by just
a tiny bit to make room for mathematical notions just as fundamental to
engineering today. And we believe the best way to drive home these ideas
is to tie in with applications that teenagers, and many of the older folks,
use every day.

Class as a Social and Economic Network

The class “Networks: Friends, Money, and Bytes,” created in parallel to this
book in fall 2011 and cross listed in electrical engineering and computer science
at Princeton University, was a social and economic network itself. We tweeted,
we blogged, and we created wikis. On the first day of the class, we drew a class
social graph, where each node is a student, and a link represents a “know by
first name before coming to the first class” relationship. After the last lecture,
we drew the graph again.
We also created our own currency called “nuggets.” The TAs and I “printed”

our money as we saw fit. There were several standard ways to earn nuggets,
including catching typos in lecture notes and writing popular blogs. There were
10 class activities beyond homework problems that were rewarded by nuggets,
including one activity in which the students were allowed to buy and sell their
homework solutions using auctions. The matching of students and class project
topics was also run through bidding with nuggets. Eventually the nugget bal-

xxii Roadmap

ances translate into an upward adjustment of grades. To see some of the fun of
ELE/COS 381 at Princeton University, visit www.network20q.com.

1 What makes CDMA work for my
smartphone?

1.1 A Short Answer

Take a look at your iPhone, Android phone, or a smartphone running on some
other operating system. It embodies a remarkable story of technology innova-
tions. The rise of wireless networks, the Internet, and the web over the last five
decades, coupled with advances in chip design, touchscreen materials, battery
packaging, software systems, business model... led to this amazing device you
are holding in your hand. It symbolizes the age of networked life.

These phones have become the mobile, lightweight, smart centers of focus in
our lives. They are not just used for voice calls, but also for data applications
: texting, emailing, browsing the web, streaming videos, downloading books,
uploading photos, playing games, or video-conferencing friends. These data fly
through a cellular network and the Internet. The cellular network in turn
consists of the radio air-interface and the core network. We focus on the air-
interface part in this chapter, and turn to the cellular core network in Chapter
19.

Terrestrial wireless communication started back in the 1940s. And cellular
networks have gone through generations of evolution since the 1970s, moving
into what we hear as 4G these days. Back in the 1980s, some estimated that
there would be 1 million cellular users in the US by 2000. That turned out to be
one of those under-estimations that did not even get close to the actual impact
of networking technologies.

Over more than three decades of evolution, the fundamental concept of cellular
architecture has remained essentially the same. The entire space of deployment
is divided into smaller regions called cells , often represented by hexagons as in
Figure 1.1, thus the name cellular networks and cell phones. There is one base
station (BS) in each cell, connected on the one side to switches in the core
network, and on the other side the mobile stations (MS) assigned to this cell.
An MS could be a smart phone, a tablet, a laptop with a dongle, or any device
with antennas that can transmit and receive in the right frequencies following a
cellular network standard.

We see a clear hierarchy, a fixed infrastructure, and one-hop radio links in cel-
lular networks. This is in contrast to other types of wireless networks. Moreover,

2 What makes CDMA work for my smartphone?

the deployment of base stations is based on careful radio engineering and tightly
controlled by a wireless provider, in constrast to WiFi networks in Chapter 18.
Why do we divide the space into smaller regions? Because the wireless spec-

trum is scarce and radio signals weaken over space.
Transmitting signals over the air means emitting energy over parts of the

electromagnetic spectrum. Certain regions of the spectrum are allocated by
di↵erent countries to cellular communications, just like other parts of the spec-
trum are allocated to AM and FM radio. For example, the 900 MHz range is
allocated for the most popular 2G standard called GSM, and in Europe the 1.95
GHz range and 2.15 GHz range are allocated for UMTS, a version of the 3G
standard. Some part of the spectrum is unlicensed, like in WiFi as we will see
in Chapter 18. Other parts are licensed, like those for cellular networks, and a
wireless service provider needs to purchase these rare resources with hefty prices.
The spectrum for cellular networks is further divided into chunks, since it is much
easier for transmitters and receivers to work with frequency bands with widths
on the order of 10MHz.
The signals sent in the air become weaker as they travel over longer distances.

The amount of this attenuation is often proportional to the square, or even the
fourth power, of the distance traversed. So, in a typical cellular network , the
signals become too weak to be accurately detected after a couple of miles. At
first glance, this may sound like bad news. But it also means that the same
frequency band used by base station A can be reused by another base station
B su�ciently far away from A. All we need to do is to tesselate the frequency
bands, as illustrated in Figure 1, so that no two cells share the same frequency
band if they are too close. In Figure 1.1, we say that there is a frequency reuse
factor of 7, since we need that many frequency bands to avoid two close cells
sharing the same frequency. Cellular architecture enables the network to scale
up over space. We will visit several other ways to scale up a network later.
Now, how can the users in the same cell share the same frequency band? There

are two main approaches: orthogonal and non-orthogonal allocation of resources.
Frequency is clearly one type of resource, and time is another. In orthogonal

allocation, each user is given a small band of frequency in Frequency Divi-
sion Multiple Access (FDMA), or a timeslot in Time Division Multiple Access
(TDMA). Each user’s allocation is distinct from the others, as shown in Figure
1.1(a)(b). This often leads to an ine�cient use of resources. We will see in later
chapters a recurring theme: a dedicated assignment of resources to users becomes
ine�cient when users come and go frequently.
The alternative, non-orthogonal allocation, allows all users to transmit

at the same time over the same frequency band, as in Code Division Multiple
Access. CDMA went through many ups and downs with technology adoption
from 1989-1995, but is now found in all the 3G cellular standards as part of the
design. In CDMA’s first standard, IS-95 in the 2G family, the same frequency
band is reused in all the cells, as illustrated in Figure 1.2(c). But how can we
tell the users apart if their signals overlap with each other?

1.1 A Short Answer 3

1

2

3 4

52

3 4

1

67
BS BS

BS

MS
MS

A
B

Figure 1.1 Part of a typical cellular network with a frequency reuse of 7. Each cell is a
hexagon with a base station (BS) and multiple mobile stations (MSs). Only a few of
them are drawn in the figure. Some mobile stations, like MS A, are close to the base
station with strong channels to the BS. Others, like MS B, are on the cell edge with
weak channels.

Think of a cocktail party with many pairs of people trying to carry out indi-
vidual conversations. If each pair takes turns in communicating, and only one
person gets to talk at each time slot, we have a TDMA system. If all pairs can
communicate at the same time, and each uses a di↵erent language to avoid con-
fusion, we have a CDMA system. But there are not enough languages whose
pronounciations do not cause confusion, and human ears are not that good at
decoding, so interference is still an issue. How about controlling each person’s
volume? Each transmitter adjusts the volume of its voice based on the rela-
tive distances among the speakers and listeners. In a real cocktail party, unless
there is some politeness protocol or it hurts someone’s vocal chord to raise voice,
we end up in a situation where everyone is shouting at the top of their voices.
Transmit power control can hopefully mitigate this problem.
The core idea behind the CDMA standards is as follows: the transmitter mul-

tiplies the digital signals with a sequence of 1s and -1s, a sequence we call the
spreading code. The receiver multiplies the received bits with the same spread-
ing code to recover the original signals. This is straight-forward to see: 1 ⇥ 1 is
1, an �1⇥ �1 is also 1. What is non-trivial is that a family of spreading codes
can be designed such that only one spreading code, the original one used by the
transmitter, can recover the signals. If you use any other spreading codes in this
family, you will get noise-like, meaningless bits. We call this a family of orthog-
onal codes. Users are still separated by orthogonalization, just along the “code
dimension” as opposed to the more intuitive “time dimension” and “frequency
dimension.” This procedure is called direct sequence spread spectrum, one
of the two ways to enable CDMA.

4 What makes CDMA work for my smartphone?

(c)

f

t(a)

f

t (b)

f

t

Figure 1.2 Part of a time-frequency grid is shown in each graph above. (a) FDMA and
(b) TDMA are dedicated resource allocation: each frequency band or time slot is
given to a user. In contrast, (c) CDMA is shared resource allocation: each
time-frequency bin is shared by multiple users, all transmitting and receiving over the
same frequency band and at the same time. These users are di↵erentiated by signal
processing. Power control also helps di↵erentiate their signals. For visual simplicity,
we only show two slices of resources being used.

However, there may not be enough orthogonal spreading codes for all the mo-
bile stations. Families of orthogonal codes are limited in their sizes. Furthermore,
a slight shift on the time axis can scramble the recovered bits at the receiver. We
need the clocks on all the devices to be synchronized. But this is infeasible for
the uplink, where mobiles talk to the base station: MSs cannot easily coordinate
their clocks. It is di�cult even in the downlink, where the base station talks to
the mobiles: the BS has one single clock but the wireless channel distorts the bits.
In the end, we do not have perfectly orthogonal spreading codes, even though
these imperfect codes still provide significant “coding gain” in di↵erentiating the
signals.

We need an alternative mechanism to di↵erentiate the users, and to tackle
the interference problem; wireless signals are just energy propagating in the
air, and one users’s signal is every other user’s interference. Interference, together
with attenuation of signal over distance and fading of signal along multiple paths,
are the top three issues we have to address in wireless channels.

As shown in Figure 1.1, a user standing right next to the BS can easily over-
whelm another user far away at the edge of the cell. This is the classic near-far
problem in CDMA networks. It was solved in the IS-95 standard by Qualcomm
about 20 years ago. This solution was one of the cornerstones in realizing the
potential of CDMA since then.

Qualcomm’s solution in 1989 to the near-far problem is simple and e↵ective. It
leverages the inference and then the feedback of the channel quality estimate.

1.1 A Short Answer 5

Consider an uplink transmission: multiple MSs trying to send signals to the BS
in a particular cell. The BS can estimate the channel quality from each MS to
itself, e.g., by looking at the ratio of the received signal power to the transmitted
power, the latter being pre-configured to some fixed value during the channel
estimation timeslot. Then, the BS inverts the channel quality and sends that
value, on some feedback control channel, back to the MSs, telling them that these
are the gain parameters they should use in setting their transmit powers. This
way, all the received signal strengths will be equal. This is the basic transmit
power control algorithm in CDMA.

But what if equalization of the received signal powers is not the right goal? For
voice calls, the typical application on cell phones in 2G networks, there is often
a target value of the received signal quality that each call needs to achieve. This
signal quality factor is called the Signal to Interference Ratio (SIR). It is the
ratio between the received signal strength and the sum of all the interference’s
strength (plus the receiver noise strength). Of course it is easy to raise SIR for
one user: just increase its transmitter’s power. But that translates into higher
interference for everyone else, which further leads to higher transmit powers by
them if they also want to maintain or improve their SIRs. This positive feedback
escalates into a transmit power “arms race”; until each user is shouting at the
top of her voice. That would not be a desirable state to operate in.

If each user fixes a reasonable target SIR, can we do better than this “arms
race” through a more intelligent power control? Here, “being reasonable” means
that the set of SIRs targeted by all the users in a cell are mutually compatible;
they can be simultaneously achieved by some configuration of transmit powers
at the MSs.

The answer is yes. In 1992-1993, a sequence of research results developed the
basic version of Distributed Power Control (DPC), a fully distributed al-
gorithm. We will come back to discuss what we mean by “distributed” and
“fully distributed.” For now, it su�ces to say that, in DPC, each pair of trans-
mitter (e.g., an MS) and receiver (e.g., the BS) does not need to know the
transmit power or channel quality of any other pairs. At each time slot, all it
needs to know is the actual SIR it currently achieves at the receiver. Then take
the ratio between the fixed, target SIR and the actual SIR value measured at
this time slot, multiply the current transmit power with that ratio, and you get
the transmit power for the next timeslot. This update happens simultaneously
at each pair of transmitter and receiver.

This simple method is an iterative algorithm; the updates continue from one
timeslot to the next, unlike the one-shot, received-power-equalization algorithm.
But it is still simple, and when the target SIRs can be simultaneously achieved,
it has been proven to converge: the iterative procedure will stop over time.
When it stops, it stops at the right solution: a power-minimal configuration of
transmit powers that achieve the target SIRs for all. DPC converges quite fast,
approaching the right power levels with an error that decays as a geometric

6 What makes CDMA work for my smartphone?

series. DPC can even be carried out asynchronously: each radio has a di↵erent
clock and therefore di↵erent definition of what timeslot it is now.

Of course, in real systems the time slot is indeed asynchronous and power
levels are discrete. Asynchronous and quantized versions of DPC have been im-
plemented in all the CDMA standards in 3G networks. Some standards run
power control 1500 times every second, while others run 800 times a second.
Some discretize power levels to 0.1dB, while others 0.2-0.5dB. Without CDMA,
our cellular networks today could not work as e�ciently. Without power con-
trol algorithms (and the associated hando↵ method to support user mobility),
CDMA could not function properly. In a 4G standard called LTE, a technology
called OFDM is used instead of CDMA, but power control is still employed for
interference reduction and for energy management.

Later in Chapter 18, we will discuss some of the latest ideas that help further
push the data rates in new wireless network standards, ranging from splitting,
shrinking, and adjusting the cells to overlaying small cells on top of large ones
for o✏oading, from leveraging multiple antennas and tilting their positions to
chopping up the frequency bands for more e�cient signal processing.

1.2 A Long Answer

1.2.1 Distributed Power Control (DPC)

Before we proceed to a general discussion of the DPC algorithm, we must first
define some symbols.

Consider N pairs of transmitters and receivers. Each pair is a logical channel,
indexed by i. The transmit power of the transmitter of link i is pi, some positive
number, usually capped at a maximum value: pi pmax (although we will not
consider the e↵ect of this cap in the analysis of the algorithm). The transmitted
power impacts both the received power at the intended receiver and the received
interference at the receivers of all the other pairs.

Now, consider the channel from the transmitter of link (i.e., transmitter-
receiver pair) j to the receiver of link i, and denote the channel gain by Gij .
So Gii is the direct channel gain, the bigger the better, since it is the channel
for the intended transmission for tranmitter-receiver of link i. All the other Gij ,
for j not equal to i, are gains for interference channels, so the smaller the better.
We call these channel “gains” whereas actually they are less than 1, so maybe a
better term is channel “loss.”

This notation is visualized in Figure 1.3 for a simple case of two MSs talking
to a BS, which can be thought of as two di↵erent “logical” receivers physically
located together.

These {Gij} are determined by two main factors: location of the transmitters
and receivers, and the quality of the channel in between. Gii is also enhanced

1.2 A Long Answer 7

Transmitter 1

Transmitter 2

Receiver 1

Receiver 2

G11

G12

G21

G22

te e e ce

Figure 1.3 Uplink interference between two mobile stations at the base station. We
can think of the base station as two receivers collocated. G11 and G22 are direct
channel gains, the bigger the better. G12 and G21 are interference channel gains, the
smaller the better. Transmit powers are denoted by pi and received
signal-interference-ratio by SIRi.

by the CDMA spreading codes that help the intended receivers decode more
accurately.
The received power of the intended transmission at the receiver is therefore

Giipi. What about the interference? It is the sum of Gijpj over all transmitters j
(other than the correct one i):

P
j 6=i Gijpj . There is also noise ni in the receiver

electronics for each receiver i. So we can write the SIR, a unit-less ratio, at the
receiver of logical link i as

SIRi =
GiipiP

j 6=i Gijpj + ni
. (1.1)

For proper decoding of the packets, the receiver needs to maintain a target level
of SIR. We will denote that as �i for link i, and we want SIRi � �i for all i.
Clearly, increasing p

1

raises the SIR for receiver 1 but lowers the SIR for all other
receivers.
As in a typical algorithm we will encounter throughout book, we assume that

time is divided into discrete slots, each indexed by [t]. At each time t, the receiver
on link i can measure the received SIR readily, and feed back that number SIRi[t]
to the transmitter.
The DPC algorithm can be described through a simple equation: each trans-

mitter simply multiplies the current power level pi[t] by the ratio between the
target SIR, �i, and the current measured SIRi, to obtain the power level to use
in the next timeslot:

pi[t+ 1] =
�i

SIRi[t]
pi[t], for each i. (1.2)

8 What makes CDMA work for my smartphone?

We see that each user i only needs to measure its own SIR at each iteration,
and remember its own target SIR. There is no need for passing any control
message around, like telling other users what power level you are using. Simple
in communication, it is a very distributed algorithm, and we will later encounter
many types of distributed algorithms in various kinds of networks.
This algorithm is also simple in its computation: just one division and one

multiplication. And it is simple in its parameter configuration: there is actually
no parameters in the algorithm that need to be tuned, unlike quite a few other
algorithms that we will encounter in the book. Simplicity is a key reason why
certain algorithms are widely adopted in practice.
Intuitively, this algorithm makes sense. First, when the iterations stop because

no one’s power is changing any more, i.e., we have converge to an equilibrium,
we can see that SIRi = �i for all i.
Second, there is hope that the algorithm will actually converge, based on the

direction in which the power levels are moving. The transmit power moves up
when the received SIR is below the target, and moves down when it is above the
target. Proving that convergence will happen is not as easy. As one transmitter
changes its power, the other transmitters are doing the same, and it is unclear
what the next timeslot’s SIR values will be. In fact, this algorithm does not
converge if too many �i are too large, i.e., when too many users request large
SIRs as their targets.
Third, if satisfying the target SIRs is the only criterion, there are many trans-

mit power configurations that can do that. If p
1

= p
2

= 1 mW achieves these
two users’ target SIR, p

1

= p
2

= 10 mW will do so too. We would like to pick
the configuration that uses the least amount of power; we want a power-minimal
solution. And the algorithm above seems to be adjusting power lower when high
power is unnecessary.

1.2.2 DPC as an optimization solution

In general, the questions of “will it converge” and “will it converge to the right
solution” are the top two questions that we would like to address in the design of
all iterative algorithms. Of course, what “the right solution” means will depend
on the definition of optimality. In this case, power-minimal transmit powers that
achieve the target SIR for all users are the “right solution.” Power minimization
is the objective and achieving target SIR for all users is the constraint.
In this case, there are many ways to address these questions, for example,

using machineries from optimization theory or game theory. Either way, we can
show that, under the condition that the target SIR values are indeed achievable
at all, i.e., there are some values of the transmit powers that can achieve the
target SIRs for all users, DPC will converge, and converge to the right solution.
We can illustrate a typical set of feasible SIRs in the SIR feasibility region

shown in Figure ??. One user’s higher SIR can be achieved at the expense of a
lower SIR for another user. This highlights another recurrent theme in the book:

1.2 A Long Answer 9

SIR2

SIR1

Pareto
 Optimal

p

Figure 1.4 An illustration of the SIR feasibility region. It is a constraint set for power
control optimization, and visualizes the competition among users. Every point strictly
inside the shaded region is a feasible vector of target SIRs. Every point outside is
infeasible. And every point on the boundary of the curve is Pareto optimal: you
cannot increase one user’s SIR without reducing another user’s SIR.

the need to tackle tradeo↵s among users and among design objectives, and the
importance of providing incentives for people to react to in achieving a desirable
tradeo↵.

It turns out that DPC also solves a global optimization problem for the net-
work. Here, “global” means that the interests of all the users are incorporated.
In this case, it is the sum of transmit powers that is minimized, and every user’s
target SIR must be met.

Once we have an objective function and a set of constraints, and we have
defined which quantities are variables and which are constants, an optimization
problem is formulated. In this case, the transmit powers are variables. The
achieved SIRs are also variables, but are derived from the powers. All the other
quantities are constants: they are not degrees of freedom under your control.

If the variable vector x
0

satisfies all the constraints, it is called a feasible
solution. If an optimization problem’s constraints are not mutually compatible,
it is called infeasible. If an x⇤ is both feasible and better than any other feasi-
ble solution, i.e., gives the smallest objective function value for a minimization
problem (or the largest objective function value for a maximization problem), it
is called an optimal solution. An optimal solution may not exist, e.g., minimize
1/x for x 2 R. And optimal solutions may not be unique.

Here is the optimization problem of varying transmit power to satisfy fixed

10 What makes CDMA work for my smartphone?

target SIR constraints and then minimize the total power:

minimize
P

i pi
subject to SIRi(p) � �i, 8i
variables p.

(1.3)

Problem (1.3) would look complicated if you substitute the definition (1.1) of
SIR as a function of the whole vector p:

minimize
P

i pi
subject to G

ii

p
iP

j 6=i

G
ij

p
j

+n
i

� �i, 8i
variables p.

But it can be simplified through a di↵erent representation. We can rewrite it as
a linear programming problem: minimizing a linear function of the variables
subject to linear constraints of the variables:

minimize
P

i pi
subject to Giipi � �i(

P
j 6=i Gijpj + ni) � 1, 8i

variables p.

Linear programming problems are easy optimization problems, and more gen-
erally, convex optimization (to be introduced in Chapter 4) is easy; easy in theory
with its complexity count and easy in practice with fast solution software. Also
shown in Advanced Material is the derivation of DPC as the solution to this
optimization problem (1.3).
We will be formulating and solving optimization problems many times in future

chapters. Generally, solving a global optimization via local actions by each user
is di�cult. But in this case, it turns out that the selfish behavior of users in
their own power minimization also solves the global, constrained optimization
problem; their interests are correctly aligned already. This is more of an exception
than the norm.

1.2.3 DPC as a game

Power control is a competition. One user’s received power is another’s interfer-
ence. Each player searches for the right “move,” (or in this case, the right trans-
mit power) so that its “payo↵” is optimized (in this case, the transmit power is
the smallest possible while providing the user with its target SIR �i). We also
hope that the whole network reaches some desirable equilibrium as each player
strategizes. The concepts of “players,” “move,” and “payo↵” can be defined in
a precise and useful way.
We can model competition as a game. The word “game” here carries a techni-

cal meaning. The study of games is a branch of mathematics called game theory.
If the competition is among human beings, a game might actually correspond to
people’s strategies. If it is among devices, as in this case among radios, a game
is more like an angle of interpretation and a tool for analysis. It turns out that

1.2 A Long Answer 11

cooperation can also be modeled in the language of game theory, as we will show
in Chapter 6.
In the formal definition, a game is specified by three elements:

1. A set of players {1, 2, . . . , N}
2. A strategy space Ai for each player
3. A payo↵ function, or utility function, Ui for each player to maximize (or

a cost function to minimize). Function Ui maps each combination of all
players’ strategies to a real number, the payo↵ (or cost), to player i.

Table 1.1 Prisoner’s Dilemma. This is a famous game in which there is a unique and
undesirable Nash equilibrium. Player A’s two strategies are the two rows. Player B’s two
strategies are the two columns. The values in the table represent the payo↵s to the two
players in each scenario.

Not Confess Confess

Not Confess (-1,-1) (-5,0)

Confess (0,-5) (-3,-3)

Now consider a two-player game in Table 1.1. Player A’s strategies are shown
in rows and player B’s in columns. Each entry in the 2 ⇥ 2 table has two num-
bers, (x, y), where x is the payo↵ to A and y to B if the two players pick the
corresponding strategies. As you would expect from the coupling between the
players, each payo↵ value is determined jointly by the strategies of both players.
For example, the payo↵ function maps (Not Confess, Not Confess) to �1 for
both players A and B. These payo↵s are negative because it is about the number
of years the two prisoners are going to serve in prison. If one confesses but the
other does not, the one who confesses gets a deal to walk away free and the other
one is heavily penalized. If both confess, both serve three years. If both do not
confess, only a lesser conviction can be pursued and both serve one year. Both
players know this table but they cannot communicate with each other.
This is the famous prisoner’s dilemma game, which we will also encounter

later in voting paradoxes, tragedy of the commons, and P2P file sharing.
If player A chooses strategy Not Confess, player B should choose strategy

Confess, since 0 > �1. This is called the best response strategy by player B,
in response to player A choosing strategy Not Confess.
If player A chooses strategy Confess, player B’s best response strategy is

still Confess, since �3 > �5. When the best response strategy of a player is the
same no matter what strategy the other player chooses, we call that a dominant
strategy. It may not exist. But when it exists, a player will obviously pick a
dominant strategy.
In this case, Confess is the dominant strategy for player B. By symmetry, it

is also the dominant strategy for player A. So both players will pick Confess,
and (Confess, Confess) is an equilibrium for the game. This is a slightly

12 What makes CDMA work for my smartphone?

di↵erent definition of equilibrium from what we saw before, where equilibrium
means an update equation reaches a fixed point.
Clearly, this equilibrium is undesirable: (Not Confess, Not Confess) gives

a higher payo↵ value to both players: -1 instead of -3. But the two prisoners could
not have coordinated to achieve (Not Confess, Not Confess). An equilibrium
might not be socially optimal, i.e., a set of strategies maximizing the sum of
payo↵s

P
i Ui of all the players. It might not even be Pareto optimal, i.e., a

set of strategies such that no player’s payo↵ can be increased without hurting
another player’s payo↵.

Table 1.2 Coordination Game. In this game, there are two Nash equilibria. Neither player
has an incentive to unilaterally change strategy in either equilibrium.

Action Movie Romance Movie

Action Movie (2,1) (0,0)

Romance Movie (0,0) (1,2)

Consider a di↵erent game in Table 1.2. This is a typical game model for coor-
dination, a task we will see many times in future chapters. You and your friend
are trying to coordinate which movie to watch together. If you disagree, you
will not go to any movie and the payo↵ is zero for both of you. If you agree,
each will get some positive payo↵ but the values are di↵erent, as you prefer the
romance movie and your friend prefers the action movie. (By the way, we will try
to understand how to predict a person’s preference for di↵erent types of movies
in Chapter 4.)
In this game, there is no dominant strategy, but it so happens that there are

pairs of best response strategies that match each other. If my best response to
my friend picking strategy a is strategy b, and my friend’s best response to my
picking strategy b is strategy a, then (a, b) pair “matches.”
In the coordination game above, (Action, Action) is such a pair, and (Romance,

Romance) another pair. For both pairs, neither player has an incentive to uni-
laterally move away from its choice in this pair of strategies. If both move at
the same time, they could both benefit, but neither wants to do that alone. This
creates an equilibrium in strategic thinking: I will not move unless you move, and
you think the same way too. This is called a Nash equilibrium. In prisoner’s
dilemma, (Confess, Confess) is a Nash equilibrium.
Symbolically, for a two-user game, suppose the two payo↵ functions are (U

1

, U
2

)
and the two strategy spaces are (A,B) for the two players, respectively. We say
(a⇤ 2 A, b⇤ 2 B) is a Nash equilibrium if:

U
1

(a⇤, b⇤) � U
1

(a, b⇤), for any a 2 A,

and

U
2

(a⇤, b⇤) � U
2

(a⇤, b), for any b 2 B.

1.3 Examples 13

A Nash equilibrium may not exist in a game. And when it exists, it may not
be unique (like in the coordination game above), or socially optimal, or Pareto
optimal. But if the players are allowed to throw a coin and decide probabilistically
which strategy to play, i.e., a mixed strategy, it is guaranteed, by Nash’s
famous result, that a Nash equilibrium always exists.
We will expand and use our game theory language in several future chapters.

In our current case of power control as a game, the set of players is the set of
transmitters. The strategy for each player is its transmit power level, and the
strategy space is the set of transmit powers so that the target SIR is achieved.
The cost function to minimize is the power level itself.
In this power control game, while the cost function is independent across the

players, each player’s strategy space Ai actually depends on the transmit powers
of all the other players. This coupling across the players is introduced by the
very nature of interference, and leads to strategic moves by the players.
Here is a simple fact, which is important to realize and easy to verify: iterating

by the best response strategy of each player in the power control game is given
precisely by (1.2). Given that all the other transmitters transmit at a certain
power level, my best response strategy is to pick the power level that is my
current power level times the ratio between the target SIR and the current SIR.
Now, consider player 1. If the transmit powers of all the other players become

smaller, player 1’s strategy space A
1

will be larger. This is the case since there
are more transmit powers to pick and still be able to maintain the target SIR,
as other players’ transmit powers are smaller and the denominator in SIR is
smaller. Games with this property (and under some technicalities) are called
submodular. It is a fact, which we will not have space to prove here, that best
response strategies of a submodular game converge.
This game-theoretic approach is one of the ways to prove the convergence of

DPC. Another way is through the angle of global optimization and with the help
of linear algebra, as we will present in Advanced Material. But first, a small and
detailed example.

1.3 Examples

A word about all the examples. They are completely numerical and presented
in great detail, so as to alleviate any “symbol-phobia” a reader may have. This
means that we have to strike a tradeo↵ between a realistic size for illustration
and a small size so that it does not take up too many pages. In some cases, these
examples do not represent the actual scale of the problems while scaling-up is a
core di�culty.
Suppose we have four (transmitter, receiver) pairs. Let the channel gains {Gij}

be given in Table 1.3. As the table suggests, we can also represent these gains in a
matrix. You can see that in general Gij 6= Gji because the interference channels
do not have to be symmetric.

14 What makes CDMA work for my smartphone?

Receiver Transmitter of Link
of Link 1 2 3 4

1 1 0.1 0.2 0.3

2 0.2 1 0.1 0.1

3 0.2 0.1 1 0.1

4 0.1 0.1 0.1 1

Table 1.3 Channel gains in an example of DPC. The entries are for illustrating the
algorithm. They do not represent actual numerical values typically observed in real cellular
networks.

Suppose that the initial power level is 1.0 mW on each link, and that the noise
on each link is 0.1 mW. Then the initial signal-to-interference ratios are given
by

SIR
1

[0] = 1⇥1.0
0.1⇥1.0+0.2⇥1.0+0.3⇥1.0+0.1 = 1.43

SIR
2

[0] = 1⇥1.0
0.2⇥1.0+0.1⇥1.0+0.1⇥1.0+0.1 = 2.00

SIR
3

[0] = 1⇥1.0
0.2⇥1.0+0.1⇥1.0+0.1⇥1.0+0.1 = 2.00

SIR
4

[0] = 1⇥1.0
0.1⇥1.0+0.1⇥1.0+0.1⇥1.0+0.1 = 2.50,

where we use the formula

SIRi =
GiipiX

j 6=i

Gijpj + ni

,

with pi representing the power level of link i and ni the noise on link i.

We will use DPC to adjust the power levels. Suppose that the target SIR’s are

�
1

= 2.0

�
2

= 2.5

�
3

= 1.5

�
4

= 2.0.

Then the new power levels are, in mW,

p
1

[1] = �1

SIR1[0]
p
1

[0] = 2.0
1.43 ⇥ 1.0 = 1.40

p
2

[1] = �2

SIR2[0]
p
2

[0] = 2.5
2.00 ⇥ 1.0 = 1.25

p
3

[1] = �3

SIR3[0]
p
3

[0] = 1.5
2.00 ⇥ 1.0 = 0.75

p
4

[1] = �4

SIR4[0]
p
4

[0] = 2.0
2.5 ⇥ 1.0 = 0.80.

1.3 Examples 15

Now each receiver calculates the new SIR and feeds it back to its transmitter:

SIR
1

[1] = 1⇥1.40
0.1⇥1.25+0.2⇥0.75+0.3⇥0.8+0.1 = 2.28

SIR
2

[1] = 1⇥1.25
0.2⇥1.40+0.1⇥0.75+0.1⇥0.8+0.1 = 2.34

SIR
3

[1] = 1⇥0.75
0.2⇥1.40+0.1⇥1.25+0.1⇥0.8+0.1 = 1.28

SIR
4

[1] = 1⇥0.80
0.1⇥1.40+0.1⇥1.25+0.1⇥0.75+0.1 = 1.82.

The new power levels in the next timeslot become, in mW,

p
1

[2] = �1

SIR1[1]
p
1

[1] = 2.0
2.28 ⇥ 1.40 = 1.23

p
2

[2] = �2

SIR2[1]
p
2

[1] = 2.5
2.33 ⇥ 1.25 = 1.34

p
3

[2] = �3

SIR3[1]
p
3

[1] = 1.5
1.28 ⇥ 0.75 = 0.88

p
4

[2] = �4

SIR4[1]
p
4

[1] = 2.0
1.82 ⇥ 0.80 = 0.88,

with the corresponding SIRs as follows:

SIR
1

[2] = 1⇥1.23
0.1⇥1.34+0.2⇥0.88+0.3⇥0.88+0.1 = 1.83

SIR
2

[2] = 1⇥1.34
0.2⇥1.23+0.1⇥0.88+0.1⇥0.88+0.1 = 2.56

SIR
3

[2] = 1⇥0.88
0.2⇥1.23+0.1⇥1.34+0.1⇥0.88+0.1 = 1.55

SIR
4

[2] = 1⇥0.88
0.1⇥1.23+0.1⇥1.34+0.1⇥0.88+0.1 = 1.98.

Calculating the new power levels again, we have, in mW,

p
1

[3] = �1

SIR1[2]
p
1

[2] = 2.0
1.83 ⇥ 1.23 = 1.35

p
2

[3] = �2

SIR2[2]
p
2

[2] = 2.5
2.56 ⇥ 1.34 = 1.30

p
3

[3] = �3

SIR3[2]
p
3

[2] = 1.5
1.55 ⇥ 0.88 = 0.85

p
4

[3] = �4

SIR4[2]
p
4

[2] = 2.0
1.98 ⇥ 0.88 = 0.89.

Then the new SIRs are

SIR
1

[3] = 1⇥1.35
0.1⇥1.30+0.2⇥0.85+0.3⇥0.89+0.1 = 2.02

SIR
2

[3] = 1⇥1.30
0.2⇥1.35+0.1⇥0.85+0.1⇥0.89+0.1 = 2.40

SIR
3

[3] = 1⇥0.85
0.2⇥1.35+0.1⇥1.30+0.1⇥0.89+0.1 = 1.45

SIR
4

[3] = 1⇥0.89
0.1⇥1.35+0.1⇥1.30+0.1⇥0.85+0.1 = 1.97,

and the new power levels, in mW, are

p
1

[4] = �1

SIR1[3]
p
1

[3] = 2.0
2.02 ⇥ 1.35 = 1.33

p
2

[4] = �2

SIR2[3]
p
2

[3] = 2.5
2.40 ⇥ 1.30 = 1.36

p
3

[4] = �3

SIR3[3
p
3

[3] = 1.5
1.45 ⇥ 0.85 = 0.88

p
4

[4] = �4

SIR4[3]
p
4

[3] = 2.0
1.97 ⇥ 0.89 = 0.90.

We see that the power levels are beginning to converge: p
1

, p
2

, p
3

, p
4

all change

16 What makes CDMA work for my smartphone?

by less than 0.1 mW. The new SIRs are

SIR
1

[4] = 1⇥1.33
0.1⇥1.36+0.2⇥0.88+0.3⇥0.90+0.1 = 1.96

SIR
2

[4] = 1⇥1.36
0.2⇥1.33+0.1⇥0.88+0.1⇥0.90+0.1 = 2.49

SIR
3

[4] = 1⇥0.88
0.2⇥1.33+0.1⇥1.36+0.1⇥0.90+0.1 = 1.49

SIR
4

[4] = 1⇥0.90
0.1⇥1.33+0.1⇥1.36+0.1⇥0.88+0.1 = 1.97.

Iterating one more time, the new power levels, in mW, are

p
1

[5] = �1

SIR1[4]
p
1

[4] = 2.0
1.96 ⇥ 1.33 = 1.37

p
2

[5] = �2

SIR2[4]
p
2

[4] = 2.5
2.49 ⇥ 1.36 = 1.36

p
3

[5] = �3

SIR3[4]
p
3

[4] = 1.5
1.49 ⇥ 0.88 = 0.89

p
4

[5] = �4

SIR4[4]
p
4

[4] = 2.0
1.97 ⇥ 0.90 = 0.92,

with corresponding SIRs:

SIR
1

[5] = 1⇥1.37
0.1⇥1.36+0.2⇥0.89+0.3⇥0.92+0.1 = 1.99

SIR
2

[5] = 1⇥1.36
0.2⇥1.37+0.1⇥0.89+0.1⇥0.92+0.1 = 2.45

SIR
3

[5] = 1⇥0.89
0.2⇥1.37+0.1⇥1.36+0.1⇥0.92+0.1 = 1.48

SIR
4

[5] = 1⇥0.92
0.1⇥1.37+0.1⇥1.36+0.1⇥0.89+0.1 = 1.99.

All the SIRs are now within 0.05 of the target. The power levels keep iterating,
taking the SIRs closer to the target. Figure 1.5 shows the graph of power level
versus the iterations. After about 20 iterations, the change is too small to be
seen on the graph; the power levels at that time are

p
1

= 1.46 mW

p
2

= 1.46 mW

p
3

= 0.95 mW

p
4

= 0.97 mW.

The resulting SIR’s are shown in Figure 1.6. We get very close to the target
SIRs, by visual inspection, after about 50 iterations.
While we are at this example, let us also walk through a compact, matrix

representation of the target SIR constraints. This will be useful in the next
section.
If the target SIR �i is achieved or exceeded by {pi}, we have

GiipiX

j 6=i

Gijpj + ni

� �i,

for i = 1, 2, 3, 4. Multiplying both sides by
X

j 6=i

Gijpj + ni and dividing by Gii,

1.3 Examples 17

0 5 10 15 20 25 30
0.5

1

1.5

2

iteration

p
o
w

e
r

(m
W

)

link 1

link 2

link 3

link 4

Figure 1.5
Convergence
of power levels
in an example
of DPC.

0 5 10 15 20 25 30
1

1.5

2

2.5

3

iteration

S
IR

link 1

link 2

link 3

link 4

Figure 1.6
Convergence
of SIRs in an
example of
DPC.

we have

pi �
�i
Gii

0

@
X

j 6=i

Gijpj + ni

1

A ,

which can be written as

pi � �i
X

j 6=i

Gij

Gii
pj +

�i
Gii

ni. (1.4)

Now we define the variable vector

p =

2

664

p
1

p
2

p
3

p
4

3

775 ,

and a constant vector

v =

2

6664

�1n1

G11
�2n2

G22
�3n3

G33
�4n4

G44

3

7775
=

2

664

2.0⇥0.1
1.0

2.5⇥0.1
1.0

1.5⇥0.1
1.0

2.0⇥0.1
1.0

3

775 =

2

664

0.20
0.25
0.15
0.20

3

775 .

18 What makes CDMA work for my smartphone?

Define also a 4 ⇥ 4 diagonal matrix D with �i on the diagonal, and another
4⇥ 4 matrix F where Fij =

G
ij

G
ii

for i 6= j, and the diagonal entries of F are zero.
Plugging in the numbers, we have

D =

2

664

2.0 0 0 0
0 2.5 0 0
0 0 1.5 0
0 0 0 2.0

3

775 ,

F =

2

664

0 0.1 0.2 0.3
0.2 0 0.1 0.1
0.2 0.1 0 0.1
0.1 0.1 0.1 0

3

775 .

We can now rewrite (1.4) as

p � DFp+ v =

2

664

0 0.20 0.40 0.60
0.50 0 0.25 0.25
0.30 0.15 0 0.15
0.20 0.20 0.20 0

3

775p+

2

664

0.20
0.25
0.15
0.20

3

775 ,

where � between two vectors (of equal length) simply represents component-wise
inequality between the corresponding entries of the two vectors.
We can check that the power levels in the last iteration shown above satisfy

this inequality tightly:
2

664

1.46
1.46
0.95
0.97

3

775 �

2

664

0 0.20 0.40 0.60
0.50 0 0.25 0.25
0.30 0.15 0 0.15
0.20 0.20 0.20 0

3

775

2

664

1.46
1.46
0.95
0.97

3

775+

2

664

0.20
0.25
0.15
0.20

3

775 =

2

664

1.46
1.46
0.95
0.97

3

775 .

We will use this matrix representation as we go from problem representation
(1.3) to problem representation (1.5) in the next section.

1.4 Advanced Material

1.4.1 Iterative power method

We can generalize the vector notation in the last example. Let 1 represent a
vector of 1s, so the objective function is simply

P
i pi. Let I be the identity

matrix, and D(�) a diagonal matrix with the diagonal entries being the target
SIR values {�i}, F is a matrix capturing the given channel conditions: Fij =

G
ij

G
ii

if i 6= j, and 0 along the diagonal: Fii = 0, and the constant vector v captures
normalized noise:

v =

✓
�
1

n
1

G
11

,
�
2

n
2

G
22

, . . . ,
�NnN

GNN

◆T

.

We will soon see why this shorthand notation is useful.

1.4 Advanced Material 19

Equipped with the notation above, we can represent the target SIR constraints
in problem (1.3) as:

p � D(�)Fp+ v,

and further group all the terms involving the variables p. The linear programming
problem we have becomes

minimize 1Tp
subject to (I�D(�)F)p � v
variables p.

(1.5)

You should verify that indeed problem (1.3) and problem (1.5) are equivalent,
by using the definitions of SIR, of matrices (D,F), and of vector v.
Linear programming problems are conceptually and computationally easy to

solve in general. Our special case here has even more structure. This DF matrix
is a non-negative matrix, since all entries of the matrix are non-negative
numbers. These matrices are a powerful modeling tool in linear algebra, with
applications from economics to ecology. They are well-studied in matrix analysis
through the Perron-Frobenius theory.
If the largest eigenvalue of the DF matrix, denoted as ⇢(DF), is less than 1,

then the following three statements are true:
(a) We can guarantee that the set of target SIRs can indeed be achieved

simultaneously, which makes sense since ⇢(DF) < 1 means that the {�i} in D
are not “too big,” relative to the given channel conditions captured in F.
(b) We can invert the matrix defining the linear constraints in our optimization

problem (1.5): solve the problem by computing (I�DF)�1v. But of course there
is no easy way to directly run this matrix inversion distributively across the MSs.
(c) The inversion of the matrix can be expressed as a sum of terms, each term a

multiplication of matrixDF by itself. More precisely: (I�DF)�1 =
P1

k=0

(DF)k.
This is an infinite sum, so we say that the partial sum of K terms,

PK
k=0

(DF)k,
will converge as K becomes very large. Furthermore, the tail term in this sum,
(DF)k, approaches 0 as k becomes large:

lim
k!1

(DF)k = 0. (1.6)

The key insight is that we want to invert a matrix (I�DF), because that will
lead us to a power-minimal solution to achieving all the target SIRs:

p⇤ = (I�DF)�1v (1.7)

is a solution of problem (1.3), i.e., for any solution p̂ satisfying the constraints
in problem (1.3), p⇤ is better:

p̂ � p⇤. (1.8)

Now, the matrix inversion step is not readily implementable in a distributed
fashion, as we need in cellular network power control. Fortunately, it can be
achieved by applying the following update.

20 What makes CDMA work for my smartphone?

(1) First, p⇤ = (I �DF)�1v can be represented as a power series, as stated
in Statement (c) above:

p⇤ =
1X

k=0

(DF)kv. (1.9)

(2) Then, you can readily check that the following iteration over time gives
exactly the above power series (1.9), as time t goes on:

p[t+ 1] = DFp[t] + v. (1.10)

One way to check this is to substitute the above recursive formula of p (1.10) all
the way to p]0], the initialization of the iteration. Then, at any time t, we have

p[t] = (DF)tp[0] +
tX

k=0

(DF)kv,

which converges, as t!1, to:

lim
t!1

p[t] = 0 +
1X

k=0

(DF)kv = p⇤,

since (DF)tp[0] approaches 0 as t!1. This also shows that it does not matter
what the initialization vector p[0] is. Its e↵ect will be washed away as time goes
on. So, we know (1.10) is right.
(3) Finally, rewrite the vector form of update equation (1.10) in scalar form

for each transmitter i, and you will see that it is exactly the DPC distributed
algorithm (1.2):

pi[t+ 1] =
�i

SIRi[t]
pi[t], for each i.

We just completed a development and convergence analysis of the DPC as the
solution of a global optimization problem through the language of linear algebra.
In general, for any square matrix A, the following statements are equivalent:

1. The largest modulus eigenvalue is less than 1.
2. The limit of this matrix multiplying itself is 0: limk!1Ak = 0.
3. The infinite sum of powers

P1
k=0

Ak exists and equals (I�A)�1.

What we saw in DPC is an iterative power method (the word “power”
here has nothing to do with transmit powers, but instead refers to raising a
matrix to some power, i.e., multiplying a matrix by itself many times). It is
a common method used to develop iterative algorithms arising from a linear
systems model. First we formulate the problem as a linear program, define the
solution of the problem as the solution to a linear equation, implement the matrix
inversion through a sequence of matrix powers, turn each of those steps into
an easy computation at each time slot, and finally achieve the matrix inversion
through an iteration in time. This will be used again when we talk about Google’s
pagerank algorithm in Chapter 3.

1.4 Advanced Material 21

p p

Error
Rate Pγ

SIR [t]

Outer
Loop

Control

Inner
Loop

Control

Wireless
Network

Figure 1.7 Inner and outer loops of power control in cellular networks. The inner loop
takes in a fixed target SIR, compares with the current SIR, and updates the transmit
power. The outer loop adjusts the target SIR based on the performance measured
over a longer timescale. We have focused on the inner loop power control.

1.4.2 Outer loop power control

As shown in the block diagram in Figure 1.7, in cellular networks there are two
timescales of power control. What we have been discussing so far is the inner
loop power control. Nested outside of that is the outer loop power control,
where the target SIRs {�i} are determined.

One standard way to determine target SIRs is to measure the received signal
quality, in terms of decoding error probabilities, at the receiver. If the error rate
is too high, the target SIR needs to be increased. And if error rate is lower than
necessary, the target SIR can be reduced.

Alternatively, we can also consider optimizing target SIRs as optimization
variables. This is particularly useful for 3G and 4G networks where data tra�c
dominates voice tra�c on the cellular networks. Higher SIR can provide a higher
rate at the same signal quality. But every user wants to achieve higher SIR. So
we need to model this either as a network-wide optimization, maximizing the
sum of all users’ payo↵ functions, or as a game, with each user maximizing its
own payo↵ function of SIR.

Further Reading

This chapter introduces several foundational methodologies: optimization, games,
and algorithms. As a result, there are many interesting readings.

22 What makes CDMA work for my smartphone?

1. The DPC algorithm in the core of this chapter appeared in the following
seminal paper:
[FM93] G. J. Foschini and Z. Miljanic, “A simple distributed autonomous

power control algorithm and its convergence,” IEEE Transactions on Vehicular
Networks, vol. 42, no. 3, pp. 641-646, November 1993.

2. Much more discussion on power control algorithms in cellular networks can
be found in the following monograph:
[Chi+08] M. Chiang, P. Hande, T. Lan, and C. W. Tan, Power Control for

Cellular Wireless Networks, Foundation and Trends in Networking, NOW Pub-
lisher, 2008.

3. A standard reference on linear algebra is the following mathematics text-
book, which includes a chapter on non-negative matrices and Perron Frobenius
theory:
[HJ90] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University

Press, 1990.

4. A standard textbook on linear programming is
[BT97] D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization,

Athena Scientific, 1997.

5. There are many textbooks on game theory, in all types of styles. A compre-
hensive introduction is
[Mye97] R. B. Myerson, Game Theory: Analysis of Conflict, Harvard Univer-

sity Press, 1997.

Problems

1.1 Distributed power control ?

(a) Consider 3 pairs of transmitters and receivers in a cell, with the following
channel gain matrix G and noise of 0.1 mW for all the receivers. The target
SIRs are shown below. With an initialization of all transmit powers at 1 mW,
run DPC for 10 iterations and plot the evolutions of transmit powers and of
received SIRs.

You can use any programming language to calculate, or even write the steps
out by hand. Please turn in the code or all the hand-written steps, respectively.

G =

2

4
1 0.1 0.3
0.2 1 0.3
0.2 0.2 1

3

5 , � =

2

4
1
1.5
1

3

5 .

1.4 Advanced Material 23

(b) Now suppose the power levels for logical links 1,2,3 have converged as in the
previous problem. A new pair of transmitter and receiver, labeled as logical link
4, shows up in the same cell, with an initial transmit power of 1 mW and demands
a target SIR of 1. The new channel gain matrix is shown below. Similar to what
you did for Problem 1 above, show what happens in the next 10 timeslots? What
happens at the new equilibrium?

G =

2

664

1 0.1 0.3 0.1
0.2 1 0.3 0.1
0.2 0.2 1 0.1
0.1 0.1 0.1 1

3

775 .

1.2 Power control infeasibility ??

Consider a 3-link system with the link gains Gij shown below. The receivers
request SIR

1

= 1, SIR
2

= 2, SIR
3

= 1. The noise ni = 0.1, 8i. Show that this set
of target SIRs is infeasible.

G =

2

4
1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

3

5

1.3 Zero sum game ?

In the following 2-user game, the payo↵s of the users are exactly negative of
each other in all the combinations of strategies. This models an extreme case of
competition, and is called zero-sum game. Is there any pure strategy equilib-
rium? How many are there?

a b
a (2,-2) (3,-3)
b (3,-3) (4,-4)

1.4 Mechanism design ??

Consider the game below. There are two players, each with two strategies, and
the payo↵s are shown below. Consider only pure strategy equilibria.

a b
a (0,2) (2,0)
b (6,0) (3,2)

(a) Is there a Nash equilibrium, and if so, what is it?

(b) We want to make this game a “better” one. What entries in the table

24 What makes CDMA work for my smartphone?

would you change to make the resulting Nash equilibrium unique and socially
optimal?

This is an example of mechanism design: change the game so as to induce
the players to move to a desirable equilibrium. We will see a lot more of mecha-
nism design in future chapters.

1.5 Repeating prisoner’s dilemma ? ? ?

(a) Suppose the two prisoners know that they will somehow be caught in the
same situation 5 more times in future years. What will be each prisoner’s strategy
in choosing between confession and no confession?
(b) Suppose the two prisoners have infinite lifetimes, and there is always 90%

chance that they will be caught in the same situation after each round of this
game. What will be each prisoner’s strategy now?

2 How does Google sell ad spaces?

2.1 A Short Answer

Much of the web services and online information is “free” today because of
the advertisements shown on the websites. It is estimated that the online ad
industry reached $26 billion in 2010. Compared to traditional media, online
advertisements’ revenue ranked right below TV and above newspaper.

In the early days of the web, i.e., the mid 1990s, online advertisements were
sold as banners on a per-thousand-impression basis. In 1997, GoTo (later became
Overture) started selling advertisement spaces on a per-click basis. This middle
ground between ad revenue (what the website cares about) and e↵ectiveness of
ad (what the advertisers care about) became a commonly accepted foundation
for online advertising.

With the rise of Google came one of the most stable online ad market segments:
search ads, also called sponsored search. In 2002, Google started the AdWords
service where you can create your ad, attach keywords to it, and send it to
Google’s database. When someone searches for a keyword, Google will return
a list of search results, as well as a list of ads on the right panel, or even the
main panel, if that keyword matches any of the keywords of ads in its database.
This process takes place continuously and each advertiser can adjust her bids
frequently. There are often many ad auctions happening at the same time too.
We will skip these important factors in the basic models in this chapter, focusing
just on a single auction.

Now the question is: where will your ad appear on the list? We all know the
order of appearance makes a big di↵erence. You will have to pay more money to
have your ad higher in the list. For example, when I searched “Ban↵ National
Park” on Google in September 2011, and I saw an ad for www.banfflakelouise.com,
a vacation planning company. This ad was right on top of the main panel, above
all the search results on websites and images of Ban↵ National Park. (By the
way, how those “real” search results are ordered is the subject of the next chap-
ter.) You also see a list of ads on the right panel, starting with the top one
for www.rockymountaineer.com, a tourist train company. These two companies
probably get most of the clicks, and pay more than the other advertisers for each
click. The rest of this chapter delves into the auction methods that allocate these
ad spaces based on how much each advertiser is willing to pay.

26 How does Google sell ad spaces?

When will these advertisers need to pay Google? Only when someone clicks on
the link and visits their websites (like I just did, thus contributing to Google’s
revenue). The average number of times that a viewer of the search result page
clicks an ad link, over say one hour, is called the click through rate. In a
general webpage layout, it may be di�cult to rank ad spaces by their positions
along a line, but we can always rank them by their click through rates. Let us
say the payment by advertisers to Google is proportional to the click through
rates.
What is in it for the advertisers then? Their revenue derived from placing this

particular ad is the product of two things: C, the number of clicks (per unit time,
say, one hour), and R, the average revenue (in dollars) generated from each click.

• Let us assume that the number of clicks per day actually observed is indeed
the estimated click through rate, both denoted as C. This is of course not
true in general, but it is a reasonable assumption to make first. We also
assume that C is independent of the content in the actual advertisement
placed, again a shaky assumption to make the model more tractable.

• As for the average revenue R generated from each click (averaged over all the
clicks), that highly depends on the nature of the goods or services being
advertised and sold. R for each ad space buyer is assumed to be independent
of which ad space she ends up buying, a more reasonable assumption than
the one on the independence of C of the advertisement.

This product C⇥R, the expected revenue from a particular ad space by a buyer,
is the valuation of the ad space to the buyer. For example, if C is 20 clicks per
hour for an ad space and R is $8 generated per click for an ad space buyer,
the valuation of that space to this buyer is $160. For multiple ad spaces, the
valuation of each buyer is a vector, one entry per ad space.
In this discussion, there is one seller, which is Google, and many buyers/bidders,

which are the advertisers, and many “goods,” which are the ad spaces. Each bid-
der can bid for the ad spaces, and Google will then allocate the ad spaces among
the bidders according to some rule, and charge the bidders accordingly.
This process is an auction. In general, you can have S sellers, N bidders, and

K items in an auction. We will only consider the case with S = 1. Ad space
auction is a special case of general auctions. Auctions can be analyzed as games,
i.e., with a set of players, a strategy set per player, and a payo↵ function per
player.
Depending on the rules, each bidder may choose to bid in di↵erent ways,

possibly bidding her true valuation of the ad spaces. It would be nice to design
the rules so that such a truthful bidding behavior is encouraged. But Google
has other considerations too, such as maximizing its total revenue: the sum of the
revenue from each bidder, which is in turn the product of the number of clicks
(actually observed in real time) times the per-click charge (determined during
the auction).
Before we analyze a K-item auction, we will first study auctions with only

2.1 A Short Answer 27

K = 1 item. There are two main types of such 1-item auctions: ascending-price
and descending-price. These require a public venue for announcing the bids, have
been used since the Roman Empire, and are quite intuitive to most of us.

• In an ascending price auction, an auctioneer announces a base price, and
then each bidder can raise her hand to bid a higher price. This price war
keeps escalating until one bidder bids a price, and no other bidder raises
a hand anymore as the auctioneer calls out “gone.” The last bidder is the
winning bidder, and she pays the price she bid in the last round.

• In a descending price auction, an auctioneer announces a high price first,
so high that no bidder is willing to accept it. The auctioneer then starts to
lower the price, until there is one bidder who shouts out OK. That bidder
is allocated the item, and pays the price announced when she said OK.

The alternative to a public venue is private disclosure of bids, called sealed
envelope auctions. This is much more practical in many settings, including
selling ad spaces by Google and auctioning goods on eBay. There are two types
of such auctions, but it turns out that their results are essentially equivalent to
the two types of open auctions we just discussed.
Each bid bi is submitted by bidder i in a sealed envelope. All bids are then

revealed simultaneously to the auctioneer, who will then decide (1) the allocation
and (2) how much to charge each item. The allocation part is easy: the highest
bidder gets the item. But the amount charged can vary:

• In a first price auction, the winner pays the highest bid, i.e., her own bid.
• In a second price auction, the winner pays the second highest bid, i.e., the

bid from the next highest bidder.

Second price auction sounds “wrong.” If I know I will be paying the next
highest bid, why not bid extremely high so that I can win the item, and then
possibly pay a much lower price for it? It turns out this intuition itself is wrong.
The assumption of “much lower prices by other bidders” does not hold when
everyone engages in the same strategic thinking.
Instead, a second price auction is equivalent to the highly intuitive ascending

price auction, and can induce truthful bidding behavior from the bidders. That
is why second price auction is used so often, from auctioning major municipal
projects to auctioning wireless spectrum.
Finally, we come back to auctions ofK items (still with 1 seller andN bidders).

If we follow the basic mechanism of second price auction, we obtain what is called
the Generalized Second Price (GSP) for ad space auction: the ith ad space
goes to the bidder that puts in the ith highest bid, and the charge, per click
through rate, is the (i+1)th bid. If the webpage layout shows the ads vertically,
the advertiser in a given ad space is paying the price that is the same as the bid
from the advertiser in the ad space right below hers. This simple method is used
by Google in selling its ad spaces.
But it turns out GSP is not an auction that induces truthful bidding, and there

28 How does Google sell ad spaces?

Open

Auction

Sealed Envelope

Ascending
Price

Descending
Price

1st
Price

2nd
Price

Multiple
Item

Generalization
VCGGSP

Equivalent

Figure 2.1 A taxonomy of major types of auction in this chapter. Second price sealed
envelope is equivalent to (a certain simpler version of) ascending price open auction,
and can be generalized in two di↵erent ways to multiple-item auctions: a simple
extension to Generalized Second Price (GSP) auction and a more sophisticated
extension to Vickrey Clarke Groves (VCG) auction that preserves the truthful
bidding property.

can be many Nash equilibria if we analyze it as a game. An alternative is the
Vickrey Clarke Groves (VCG) auction, which actually extends second pricing
auction’s property of truthful bidding to multiple-item auctions. VCG charges
based on externalities, a principle that we will see many times throughout the
book. The relationships between these types of auction are summarized in Figure
2.1.

Throughout the chapter, we focus on the simplest case, where there is a sin-
gle round of bidding. In reality, there are multiple related bids going on at the
same time, e.g., www.banfflakelouise.com may be bidding for multiple related
keywords “Ban↵,” “Lake Louise,” and “Canadian vacation” simultaneously. In
a homework problem, we will go into a little more detail on one aspect of simul-
taneous auction in the context of spectrum auctioning.

2.2 A Long Answer

2.2.1 When do we need auctions?

No matter which format, an auction runs a resource allocation process. It al-
locates items among bidders and sets the prices. We assume each bidder has a
valuation of the item, and that the valuation is private and independent. Private
valuation means that the value is unknown to others (all the other bidders and

2.2 A Long Answer 29

the auctioneer). Independent valuation means that one bidder’s valuation
does not depend on other bidders’ valuations.
You will see that all assumptions are false, which is why we call them “assump-

tions” rather than “facts.” But some assumptions are so false that the theory
built on them loses predictive power. In this chapter, the private and indepen-
dent valuation assumptions for auction will be used quite fruitfully, but it is still
worthwhile to point out that they may be false in reality.

• In many instances, valuations often depend on each other, especially when
there is a secondary market for you to resell the items. If you are bidding
on a foreclosure house, you are probably dealing with dependent valuation.

• Valuations are sometimes public. In fact, some eBay bidding strategies attempt
to reveal others’ valuations, a particularly helpful strategy when you do not
know how to value an item and you think other bidders might be experts
who know more.

• Valuations in some cases are actually not precisely known even to the bidder
herself.

There are several criteria to compare the di↵erent outcomes of an auction.

• One is seller’s revenue, which clearly the seller would like to maximize. It often
turns out that the revenue-maximizing strategy is very hard to characterize.

• Another criterion is the sum of payo↵s received by each bidder, across all the
bidders. This will become clearer as we model auctions as games. There is
a tradeo↵ between seller revenue and bidders’ payo↵.

• A third criterion often used is truthful bidding, a property of an auction where
each bidder bids her true valuation.

2.2.2 Auction as a game

We can view an auction as a game:

1. The set of players is the set of bidders, indexed by i.

2. The strategy is the bid bi of each bidder, and each has a strategy space being
the range of bids that she might put forward.

3. Each bidder’s payo↵ function, Ui, is the di↵erence between her valuation vi
of the item and the price pi she has to pay, if she wins the auction:

Ui(b) = vi � pi(b).

Here, the coupling of the bidder’s bidding choices is shown through the depen-
dence of Ui on the entire vector b, even though the valuation is independent:
vi only depends on i. Di↵erent auction rules lead to di↵erent pi(b), that is
the mechanism design part. For a given mechanism, each bidder will pick her
bi to maximize Ui.

30 How does Google sell ad spaces?

On the other hand, the payo↵ is

Ui(b) = 0

if bidder i loses the auction, since she is not paying anything nor getting the
item.

Obviously, winning or losing the auction is also an outcome determined by
b.

In the case of a first price sealed envelope auction, the price pi one has to pay
(when winning the auction) is her own bid value bi, since that is the highest bid.
So the payo↵ for bidder i, when winning, is vi�bi. From this bidder’s perspective,
she wants to pick the “right” bi: not so big that the payo↵ is small (possibly
zero) when winning, and not so small that she does not win the auction at all
and receives 0 payo↵. It is not easy to solve this optimization since it involves
unknown valuation and the strategies of all other bidders. But one thing is clear:
she should bid less than her true valuation, for otherwise the best payo↵ she can
receive is zero.
In the case of a second price sealed envelope auction, the price pi one has to

pay (when winning the auction) is the second highest price, i.e., the bid from
say bidder j. The payo↵ is vi� bj if bidder i wins, and 0 otherwise. In this game,
it turns out that, no matter what other bidders might bid, each bidder can
maximize her payo↵ by bidding her true valuation: bi = vi, i.e., truthful bidding
is a dominant strategy for the game. In other words, if pi(b) is the second highest
entry in b, then setting bi = vi maximizes Ui, no matter what the values of the
rest of the entries in b are.

2.2.3 Single item auction: Second price

There are several ways to view the somewhat counter-intuitive result of bidding
behavior in a second price auction. Fundamentally, it is precisely the decoupling
of the payo↵ amount (how much you gain if you win) from the auction result
(whether you win at all) that induces each bidder to bid her true valuation. This
is also what happens in the familiar format of an open auction with ascending
price. Your bid determines how long you will stay in the price war. But when it
stops, you pay the bid of the next highest bidder plus a small amount capped
by the minimum increment per new bid (unless you overbid much more than the
minimum increment), for that is the auctioneer’s announcement when the price
war stops as a result of the next highest bidder dropping out.
We can readily convince ourselves that truthful bidding is a dominant strategy.

Say you want to bid your true valuation: b = v. Suppose that, as your advisor, I
suggest lowering that bid to be something less than v. Call this new bid b̃. You
should realize that such an action will only change the outcome (auction result
or payment amount) if the next highest bid, say user 2’s bid, b

2

, is between b
and b̃: b > b

2

> b̃. And in this case, you lose the auction, which you could have

2.2 A Long Answer 31

Revenue
per click Buyer Valuation Ad Space

Click
through rate

10 1

2

3

5

1

51

2

3

3

1

50
30
10
25
15
5
5
3
1

Matching?

Figure 2.2 An example of 3 bidders and 3 ad spaces. Each bidder’s valuation is a
vector now. Each valuation vector is proportional to the vector of click through rates
[C1, C2, C3], where the proportionality constant is the average revenue per click, R,
for that bidder of ad space. We assume that the click through rates are independent
of the content of the ad placed at each position. If the bidders and ad spaces are
listed in descending order of their R and C, and each player bids true valuations,
GSP simply matches “horizontally”.

won and received a positive payo↵ of v � b
2

= b � b
2

> 0. So you would rather
not take my advice to lower your bid.
Suppose I suggest raising your bid to be something more than v. Call this new

bid b̂. Again, such an action will only change the outcome if the highest bid, let
us say user 2’s bid, b

2

, is in between b and b̂: b̂ > b
2

> b. And in this case, you
now win the auction, but receive a negative payo↵, as you end up paying more
than you value the item: v � b

2

= b � b
2

< 0. Had you bid b, you would have
lost and received a payo↵ of 0, a better outcome when compared to a negative
payo↵. So you would rather not take my advice to raise your bid.
Therefore, no matter what other bidders do, you would rather neither lower

nor raise your bid. You would rather simply bid v.
This argument seals the math, but what is the intuition behind the math?

For example, while it is clear why first price is not truthful-bid-inducing, what
about third price? We will see in Advanced Material that the intuition is that
second price here can capture the negative externality, the “damage” done by
the winner to the other bidders.

2.2.4 Multiple-item auction: Generalized second price (GSP)

So far in this section, we have been examining auctions with only one item to
sell. Search ad markets have multiple ad spaces to sell in each auction: multiple
items facing multiple bidders. For simplicity, we assume that there is only one

32 How does Google sell ad spaces?

auction going on. Let us say there are three ad spaces in this auction, each with
an average click through rate of 5, 3, and 1, as shown in Figure 2.2. And there are
three advertisers (bidders of ad spaces), each with a di↵erent expected revenue
per click, say 10, 5, and 1. Then the valuation of each advertiser is as follows:
the first advertiser has valuations of [50, 30, 10] for the three spaces. The second
advertiser has valuations of [25, 15, 5], and the third advertiser [5, 3, 1]. The job
of a multiple-item auction is to assign one item to each advertiser.
If the number of advertisers and the number of ad spaces are di↵erent, some

advertisers may get no ad space or some ad space will be left unsold. We will
consider these cases as simple extensions in a homework problem.
We will later encounter other types of bipartite graph, like the one we saw

between the auctioned items and bidders in Figure 2.2.
Now, back to multiple-ad-space auctions. A bidder, i.e., an advertiser, i sends

in a bid bi, that is how much she is willing to pay per click. This is actually a
significant simplification in ad auction. Since there are multiple ad spaces, why
not ask each advertiser to submit many bids, one bid per ad space, e↵ectively
presenting a scale of their preferences? We will encounter such vector preferences
later. But for ad auction, the industry thought that a scalar representation of this
vector preference su�ces. Each entry in the valuation vector is just a multiple
of this scalar.
So, advertiser i sends in a vector of bids [biC1

, biC2

, . . . biCK] for the K ad
spaces with clickthrough rate Cj , j = 1, 2, . . . ,K. She may not pick bi to be the
same as vi, the expected revenue per click.
In GSP, the ith ad space is allocated to the ith highest bidder. As we will

see, this rule of ad space allocation is the same for VCG. But the amount each
bidder is charged is di↵erent depending on whether GSP or VCG is used, and
the strategic thinking in bidders’ minds is consequently di↵erent too. In GSP,
the charges are easy to determine: the ith ad space winner pays the per click
price of the (i+ 1)th highest bidder.
In summary, for GSP:

• The allocation part is easy to see: advertiser i’s bidding vector is proportional
to the vector of click through rates [C

1

, C
2

, . . . , CK], where the proportion-
ality constant is bid bi. So the advertiser who sends in the ith highest bid
for each click gets the ith most valuable ad space. Advertiser i then drops
out of future bidding after winning an ad space.

• The charge part is simply a straight forward extension of the second price
approach. (We could have also generalized the first price approach, as
Overture did in the late 1990s, but soon realized that it was an unsta-
ble mechanism.)

Often, a minimum bid is also mandated, say, $0.5. So in the above example in
Figure 2.2, if all the advertisers bid their true valuations, advertiser 1 is matched
to ad space 1, with a price of $5 per click, advertiser 2 to ad space 2, with a price

2.3 Examples 33

of $1 per click, and advertiser 3 to ad space 3 with a price of $0.5 per click, the
minimum bid allowed.
We can consider GSP as a game too. Despite the apparent similarities between

GSP and second price auction, there are substantial di↵erences. There can be
multiple Nash equilibria in the GSP game, and it is possible that none of them
involves a truthful bidding. The example in the next section illustrates these
properties of GSP. This is in sharp contrast to second price auction’s desirable
property: truthful bidding as a dominant strategy. For a multiple-item auction
that preserves this property, we will have to wait until Advanced Material, where
we will describe the VCG auction. It is not “second price” that matters, but
charging based on damage caused to others.

2.3 Examples

2.3.1 Single item auction on eBay

Started in 1995 and with over 40 million users now, eBay runs online auctions
for all kinds of goods. The eBay auction style largely follows the second price
auction, but is not exactly the same. There are four main di↵erences:

• A seller can announce a start price, but can also choose to specify a secret
reserve price: the minimum price below which she will not sell the good.
bidders know the existence of the reserve price but not the actual value.
This allows a seller to set a start price low enough to attract tra�c but still
maintains a minimum revenue. In the rest of this section, for simplicity, we
will assume the reserve price is the same as the start price. There is also
a minimal increment of � dollars: the winner pays the second highest bid
plus this � (unless that exceeds her own bid, in which she just pays her
own bid, the highest bid).

• An eBay auction is not sealed envelope. Some information about the current
bids is continuously released to the public. This is particularly helpful when
some bidders are not sure about the valuation of a good. It also generates
more “fun” in the auction process. So what information is displayed? eBay
looks at the price the winner would need to pay, had the auction been
concluded right now, i.e., the smaller of (1) the current highest bid b

1

, and
(2) the second highest bid b

2

plus �. This price is announced in public. The
next bid has to exceed it by the minimum increment �, which becomes the
new ask price displayed: min(b

1

, b
2

+ �) + �.
• It has a fixed and publicly announced time horizon, e.g., 3 days. This hard

closing rule changes bidding behavior. For example, many bidders choose
to wait until the last 10 minutes to enter their bids, knowing that it is the
time period that really matters (unless they want to scare other bidders
away with a large opening bid). There are even third-party tools for au-
tomated “sniping,” where bids are sent on your behalf in the last seconds

34 How does Google sell ad spaces?

before closing. It is advantageous to wait if you would like to surprise your
competitors or want to learn something about their valuations. It is advan-
tageous not to wait if you would like to scare the competitors away with a
very high bid to start with and avoid a dragged-out bidding war.

• It allows automated “proxy agent” bidding to simplify the user interface. A
bidder can enter the maximum bid she is willing to put in, and then let
the proxy run the course. When the bidder is no longer the highest bidder,
yet the displayed ask price is less than or equal to this indicated maximum
bid, a bid is automatically entered to take the ask price.

Here is an example timeline illustrating an eBay auction with 3 bidders: Alice,
Bob, and Chris.

• Start
Sam, the seller, lists a lamp for sale on eBay, with a start price of $5.00
and a duration of 5 days. The minimum increment is $1.00. Reserve price
is set to be the same as the start price.
Highest bid: n/a; Ask price: $5.00

• Day 1
The first bid is from Alice, who uses a proxy agent with the maximum bid
set to $12.00. eBay therefore bids $5.00 on Alice’s behalf. The ask price
becomes $5.00 + $1.00 = $6.00.
Highest bid: Alice, $5.00; Ask price: $6.00

• Day 2
The second bid is from Bob, who bids $8.00 even though the ask price is
$6.00. eBay immediately raises bid to $8.00 + $1.00 = $9.00 on Alice’s be-
half, since she is using proxy agent bidding and the ask price is not greater
than her maximum bid. The ask price becomes min{$9.00, $8.00+$1.00}+
$1.00 = $10.00.
Highest bid: Alice, $9.00; Ask price: $10.00

• Day 3
Bob tries again, bidding $10.50 this time. eBay immediately raises the
bid to $10.50 + $1.00 = $11.50 on Alice’s behalf. The ask price becomes
min{$11.50, $10.50 + $1.00}+ $1.00 = $12.50.
Highest bid: Alice, $11.50; Ask price: $12.50

• Day 4
Bob gets frustrated and raises his bid to $17.50. The highest bidder now
changes to Bob and the ask price becomes min{$17.50, $11.50 + $1.00} +
$1.00 = $13.50.
Highest bid: Bob, $17.50; Ask price: $13.50

2.3 Examples 35

• Day 5
It so happens that Chris enters the auction at the last moment and bids
$18.00, even though he did not know $17.50 is the current highest bid. The
ask price becomes min{$18.00, $17.50 + $1.00}+ $1.00 = $19.00.
Highest bid: Chris, $18.00; Ask price: $19.00. This displayed ask price gives
a hint to Chris that his bid is now the highest one.

• End
Nobody takes the ask price before the auction terminates at the hard closing
time announced before. The auction ends and Chris wins the lamp with a
price of min{$18.00, $17.50 + $1.00} = $18.00.

The bidding history is summarized in Table 2.1:

Table 2.1 The bidding history and ask price evolution in an example of an eBay auction.
There are three bidders, each using a di↵erent bidding strategy, to compete for a single
item. The auction lasts 5 days.

Day 1 Day 2 Day 3 Day 4 Day 5

Alice $5.00 $9.00 $11.50 – –
Bob – $8.00 $10.50 $17.50 –
Chris – – – – $18.00

Ask price $6.00 $10.00 $12.50 $13.50 $19.00

2.3.2 Multiple item auction by GSP in Google

Let us consider the bipartite graph in Figure 2.2 again.

• Bidding : Assume truthful bidding, i.e., b is the same v for each of the three
bidders as shown in the graph. For example, bidder 1 bids $50 (per hour)
= $10 per click⇥ 5 clicks per hour, for ad space 1, $30 for ad space 2, etc.

• Auction outcome (matching, or allocation): By the GSP mechanism, the most
valuable ad space is allocated to the highest bidder, which clearly is bidder
1 (since bidder 1 bids 50, bidder 2 bids 25, and bidder 3 bids 5 for this
ad space). Similarly, ad space 2 is allocated to bidder 2, and ad space 3 to
bidder 3. This matching is not surprising, since we have already ordered
the bidders and the ad spaces in descending order.

• Auction outcome (Charging, or pricing, or payment): Assume the actual num-
ber of clicks per hour is the same as the estimated (per hour) click through
rate: bidder 1 pays the second highest bid, which is $5 (per click). So she
pays $5⇥ 5 (the second 5 here refers to click through rate of 5 per hour for
ad space 1)= $25 per hour for ad space 1. Bidder 2 payers $1 per click. So
she pays $1*3=$3 per hour for ad space 2. Bidder 3 pays just the minimum
bid, e.g., $0.5 per click as set by Google. So she pays $0.5*1 = $0.5 per
hour.

36 How does Google sell ad spaces?

In summary, Google’s collected a revenue of $25 + 3 + 0.5 = $28.5 per
hour.

• Payo↵s for each bidder : Payo↵ is valuation v minus price p. So bidder 1’s
payo↵ is $10 � $5 = $5 per click, or equivalently, $5 ⇥ 5 = $25 per hour.
bidder 2’s payo↵ is $5� $1 = $4 per click, or $4⇥ 3 = $12 per hour. bidder
3’s payo↵ is $1� 0.5 = $0.5 per hour, or $0.5⇥ 1 = $0.5 per hour.

In summary, the total social payo↵ is $25 + 12 + 0.5 = $37.5 per hour.

2.3.3 Another example on GSP

Suppose there are two ad spaces on a webpage and three bidders. An ad in the
first space receives 400 clicks per day, while the second space gets 200. Bidders
1, 2, and 3 have values per click of $12, $8, and $4, respectively.
If all advertisers bid truthfully, then the bids are (in dollars) [4800, 2400] from

bidder 1, [3200, 1600] from bidder 2, and [1600, 800] from bidder 3. Bidder 1
wins the first ad space, paying $8 per click, while bidder 2 wins the second
space, paying $4 per click. Bidder 3 does not get any ad space. If the actual click
through rates are the same as estimated ones, payments of bidders 1 and 2 are
$3200 and $800, respectively. And the payo↵s are $1600 and $800, respectively.
Truth-telling is indeed an equilibrium in this example, as you can verify that

no bidder can benefit by changing her bids.
But in general, truth-telling is not a dominant strategy under GSP. For ex-

ample, consider a slight modification: the first ad space receives 400 clicks a day,
and the second one 300. If all players bid truthfully, then bidder 1’s payo↵, as
before, is ($12 - $8) * 400 = $1600. If, instead, she shades her bid and bids
only $7 per click to get the second ad space, her payo↵ will be equal to ($12 -
$4) *300 = $2400 > $1600. Therefore, she would bid below her valuation and
receive a higher payo↵. The di↵erence between the first and second ad space’s
click through rate is simply not large enough relative to the di↵erence in per
click payment for her to bid truthfully.

2.4 Advanced Material

2.4.1 VCG Auction

As we just saw, the GSP auction does not guarantee truthful bidding for multiple-
item auctions. If that property is desired, the proper generalization of second
price auction is the VCG auction.
To search for the correct intuition, we revisit single item second price auctions.

Had the highest bidder not been there in the auction, the second highest bidder
would have obtained the item, while the other bidders face the same outcome
of losing the auction. So the “damage” done by the highest bidder to the entire
system (other than the highest bidder herself) is the valuation of the second

2.4 Advanced Material 37

Buyers
Bid
{Vij}

Seller
Assigns

Ad Spaces

Seller
Decides

Prices
{Pij}

Figure 2.3 Three steps in VCG auctions. First, each bidder sends in a vector of bids for
the K items. Then the seller solves an optimization problem of finding the matching
between bidders and items and the corresponding maximized value V for the system.
Finally, given the matching, the seller determines the price pij that bidder j pays for
item i that she is matched to, based on the amount of negative externality caused.

highest bidder, which is exactly how much the highest bidder is charged. For
example, suppose the three valuations are 10, 5, and 1, respectively from Alice,
Bob, and Chris. If Alice were not there in the system, Bob would have won the
item, and Chris would have lost the auction anyway. Now that Alice is in the
system, Bob loses the chance to receive a valuation of 5, and Chris does not
su↵er any lost valuation. So the total valuation lost to the system (other than
Alice) is 5, which is the price Alice pays according to second price auction’s rule.
The key idea to realize is that, in a second price auction, the winner is charged

for how much her winning reduces the payo↵s of the other bidders. This is called
the negative externality imposed by the winner on all the other bidders. It is
this property that enables truthful bidding.
In Chapter 1, power control in wireless networks compensates for negative

externality due to signal interference. We will later see negative externalities
characterized and compensated for in voting, in tragedy of the commons, and in
TCP congestion control. In multiple-item auctions, we are going to again com-
pare two scenarios and take the di↵erence as the quantification of the “damage”
done by bidder i:

• The revenue generated by Google if bidder i were not in the system.

• The revenue generated by Google from all other bidders when bidder i is in
the system.

In VCG auctions, there are three main steps, as summarized in Figure 2.3.

1. The first step is to invite each bidder to send in her bids, one for each of the

38 How does Google sell ad spaces?

items. In Google’s case, they are proportional to a common scalar. Let vij
be the value of the bid submitted to the seller by bidder i for item j. Now,
these bids might not be the true valuations. But as we will soon discover,
by properly matching the bidders with the items and then charging the right
prices, we can induce the bidders to submit the true valuations as {vij}. Again,
auction design can be viewed as a mechanism design problem.

2. Second, an optimization is carried out by the seller. A matching is computed
through this optimization, in which each item is matched to a bidder.

For example, if we draw three horizontal lines from bidders to items in
Figure 2.2, that would be a matching, denoted as [(1, 1), (2, 2), (3, 3)]. This
matching returns a total valuation of 50 + 15 + 1 = 66 to the bidders.

In VCG, we want the matching to maximize the total valuation of the
whole system: we maximize

P
(ij) vij (where the sum is over all the matched

pairs) over all the possible matchings. For example, a di↵erent matching of
[(1, 2), (2, 3), (3, 1)] would return a total valuation of

P
(ij) vij = 30+ 5+ 5 =

40, an inferior matching to [(1, 1), (2, 2), (3, 3)], as illustrated in Figure 2.4.

Denote by V the resulting maximized total value. Suppose item j is allo-
cated to bidder i in this matching. Obviously, we can write V as the sum of
the value vij and V̂i j , the sum of the values of all the other (item, bidder)
pairs in the matching:

V = vij + V̂i j .

This notation will become useful soon.

3. Matching decides the allocation, and pricing is determined only after the
matching. For a given matching, each pair of (item, bidder) is charged a price
of pij , which is the amount of damage caused by this matching. So, how do
we quantify the damage done by a bidder i getting item j?

Imagine two alternative systems. (a) A system without bidder i, and there
is a corresponding Vno i as the maximum total valuation for everyone else. (b)
A system with bidder i, who will get item j, and the corresponding V̂i j as
the total maximum valuation for everyone else. The di↵erence between these
two valuations: Vno i � Vi j is the “damage” caused to everyone else, and
that is the price pij the seller charges user i for being matched to item j:

pij = Vno i � V̂i j . (2.1)

This completes the description of VCG auction.

Similar to the GSP example we just saw in the last section, suppose there are
two ad spaces on a webpage and three bidders. An ad in the first space receives
400 clicks per hour, while the second space gets 200. Bidders 1, 2, and 3 have
valuations per click of $12, $8, and $4, respectively. Suppose the bids are the
true valuations for now, we will later prove taht is indeed a dominant strategy
in the auction game.
The matching by VCG happens to be the same as by GSP in this case: bidder

2.4 Advanced Material 39

(a)

1

2

3

1

2

3

Buyer Ad Space

(b)

1

2

3

1

2

3

Buyer Ad Space

Figure 2.4 Two of the many possible matchings between bidders (on the left) and ad
spaces (on the right) of a multi-item auction’s bipartite graph. The weight of link (ij)
is vij = RiCj . A maximum weight matching selects a subset of those links so that
each bidder is matched to an item, and the sum of these links’ weights is the largest
possible among all matchings. By the parameter values in Figure ??, matching (a)
turns out to maximize

P

(ij) vij , and is thus chosen in step 2 of a VCG auction, while

matching (b) does not.

1 gets the first ad space, and bidder 2 the second, with bidder 3 not matched to
any ad space. The second bidders payment is still $800 because the damage it
causes to the system is that bidder 3 lost the second ad space, thus $4 ⇥ 200 =
$800 value. However, the payment of bidder 1 is now $2400: $800 for the damage
to bidder 3 and $1600 for the damage to bidder 2: bidder 2 moves from position
1 to position 2, thus causing her (400-200) = 200 clicks per day at the valuation
of $8 a click.
In this example, the seller’s revenue under VCG is $2400+$800=$3200, lower

than that under GSP ($3200 + $800 = $4000), if the advertisers bid truthfully
in both cases.

2.4.2 Truthful bidding

So back to this question: what would each (rational) bidder i bid for item j in a
VCG auction? We claim it must be the true valuation, i.e., the expected revenue
per click times the estimated click through rate.
Suppose that was not true, and bidder i bids some other number. In the

VCG auction’s matching, again it is important to realize that this would make a
di↵erence only if it resulted in bidder i getting a di↵erent item, say item h, e.g.,
as in Figure 2.4(b). Obviously,

vij + V̂i j � vih + V̂i h,

40 How does Google sell ad spaces?

since the left side is V , the maximized total valuation over all possible matchings.
Subtracting Vno i from both sides:

vij + V̂i j � Vno i � vih + V̂i h � Vno i,

and using the definition of pij in (2.1), we have

vij � pij � vih � pih,

i.e., the payo↵ of bidding true valuation is higher. This argument shows that
VCG induces truthful bidding as a dominant strategy for each bidder.

2.4.3 Other considerations

What about the seller’s perspective: to maximize (over all the possible match-
ings)

P
(ij) pijC(j), the sum of per-click price times the estimated click through

rate across the (item, bidder) pairs matched in a given matching. As we just saw
in the example, GSP may generate more revenue than VCG, or less, depending
on the problem parameter values. If the actual click through rate, as a function
of the ad space location j, also depends on who is the winning bidder i, i.e., C(j)
becomes Ci(j) and depends on i, then the seller’s revenue maximization problem
becomes even more challenging.
Which one to use: GSP or VCG? Google uses GSP while many web 2.0 com-

panies use VCG. Companies like AppNexus run variants of VCG auctions on
a large-scale (billions each day), real time (millisecond matching), and user-
profile-based targeted ad placement. The comparison needs to include various
considerations:

• GSP is simpler for Google to explain to advertisers than VCG.
• While GSP is simple when C(j) is independent of winner i, it becomes more

complicated when the click through rate of an ad space depends on the
actual ad placed there.

• While VCG guarantees truthful bidding, that may not be the case if there are
multiple auctions held in parallel across many websites.

• If Google switches from GSP to VCG, the advertisers may act irrationally.
They may ignore this change, continue to shade their bids, and use the
same bids as before. You can readily check that, for the same set of bids,
VCG revenue is lower than GSP revenue. Relative to the potential benefit,
the cost of transitioning from GSP to VCG has been too high for Google.

What is clear from this chapter is that di↵erent transaction mechanisms can
induce very di↵erent behaviors from people. People react to di↵erent prices with
di↵erent demands, react to di↵erent allocation methods with di↵erent strategies,
and react to di↵erent expectations of tomorrow’s events with di↵erent actions
today. More generally, our design of a network and its functions may induce
di↵erent optimization problems for the operators or the individual players. This
is a recurring theme throughout the book.

2.4 Advanced Material 41

Further Reading

Auction theory is a well studied discipline in economics and in computer science.
There are many variations of the basic ones we covered here: reverse auction
with one bidder and many sellers, double auctions with many bidders and many
sellers, multiple winners per auction, revenue maximization strategies, and col-
lusion among bidders.

1. The following is a standard textbook on the subject:
[Kri09] V. Krishna, Auction Theory, 2nd Ed., Academic Press 2009.

2. Another nice survey with special emphasis on applications is
[Mil04] P. Milgrom, Putting Auction Theory to Work, Cambridge University

Press 2004.

3. The following book provides an in-depth discussion of eBay auction and the
surprises in people’s behavior there:
[Ste07] K. Steiglitz, Snipers, Shills, and Sharks, Princeton University Press,

2007.

4. The following short paper provides a concise survey to the key ideas in
Google ad search:
[Var07] H. Varian, “The economics of Internet search,” The Angela Costa Lec-

ture, 2007.

5. A more technical discussion focusing on GSP can be found here, especially
the viewpoint of auctions as a dynamic game:
[EOS07] B. Edelman, M. Ostrovsky, and M. Schwarz, “Internet Advertising

and the Generalized Second-Price Auction: Selling Billions of Dollars Worth of
Keywords,” The American Economic Review, vol. 97, no. 1, pp. 242-259, 2007.

Problems

2.1 A simple ad space auction ?

Three advertisers, 1, 2, 3, bid for two ad spaces A, B. The average revenue per
click are $6, $4, $3 for the bidders respectively, and the click through rate of the
ad spaces are 500, 300 clicks per hour respectively.

(a) Draw the bipartite graph with nodes indicating advertisers/ad spaces and
edges indicating values per hour. Indicate the maximum matching with bold
lines.

(b) What is the result of the auction, assuming truthful bidding: allocation,

42 How does Google sell ad spaces?

prices charged, and payo↵s received?

2.2 eBay Auction ??

Kevin, the seller, lists a sofa for sale on eBay via auction with both start price
and reserve price set to $7.00 and a duration of 5 days. The minimal increment
is $0.25 and the following events happen during the auction:

• Day 1 Bidder 1 uses a proxy agent setting the maximum bid up to $11.00

• Day 2 Bidder 2 bids $9.25.

• Day 3 Bidder 3 uses a proxy agent setting the maximum bid up to $17.25

• Day 4 Bidder 2 bids $13.65.

• Day 5 Bidder 1 bids $27.45.

List the bid history of the three bidders. Who is the winner and what price does
she pay?

2.3 More items than bidders ?

Tom and Jimmy are bidding for three ad slots on a page, and one bidder can
win at most one slot. Suppose an ad in the first slot receives 500 clicks per hour,
while the second and third slot get 300, 200 clicks per hour respectively. Assume
Tom receive r value per click.

(a) Denote by b, b0 as the bids by Tom and Jimmy respectively. In GSP auc-
tion, discuss Tom’s payo↵ f in terms of b, b0.

(b) Does Tom have a dominant strategy?

2.4 Reverse auction ?

Reverse auction is a type of auction where there are multiple sellers and only
one bidder. The roles of bidders and sellers are reversed , that is, sellers lower
their bids during auction and the one with the lowest bid sells his/her item.

Suppose there are three sellers in a reverse auction with one bidder. Denote bi
as the price seller i bids, vi as the value seller i attaches to the item.

(a) In the case of second price auction, what is the payo↵ function fi for seller
i, as a function of b

1

, b
2

, b
3

?

(b) Is truthful bidding a dominant strategy?

2.5 Spectrum auction and package bidding ??

2.4 Advanced Material 43

Wireless cellular technologies rely on spectrum assets. Around the world, auc-
tions have emerged as the primary means of assigning spectrum licenses to com-
panies wishing to provide wireless communication services. For example, from
July 1994 to July 2011, the U.S. Federal Communications Commission (FCC)
conducted 92 spectrum auctions, raising over $60 billion for the U.S. Treasury,
and assigned thousands of licenses to hundreds of firms in di↵erent parts of the
spectrum and di↵erent geographic regions of the country.
The U.S. FCC spectrum auctions use simultaneous ascending auction, in which

groups of related licenses are auctioned simultaneously and the winner pays the
highest bid. The British OfCom, in contrast, runs package bidding, where each
potential spectrum bidder can bid on a joint set of frequency bands.
Among the many issues involved in spectrum auctioning is the debate between

simultaneous ascending auction and package bidding auction. We will illustrate
the ine�ciency resulting from disallowing package bidding in a toy example. The
root cause is bidder-specific complementarity and lack of competition.
Suppose that there are two bidders for two adjacent seats in a movie theater.

Bidder 1 is planning to watch the movie together with her spouse as part of a
date. She values the two spots jointly at $15, and a single spot is worth nothing.
Bidder 2 plans to watch the movie by himself, and value each seat at $10, and
the two seats together at $12 (since it is a little nicer to have no one sitting next
to him on one side of his seat).

(a) Assume a simultaneous ascending auction is used for the seats, and Bidder
1 correctly guesses that Bidder 2 values $10 for one seat and $12 for two seats
together. What strategy will Bidder 1 take? What is the result of the auction,
in terms of the winner, the allocation, the price charged, and payo↵s received?

(b) Repeat part (a) but now assume package bidding is used. In particular,
Bidder 1 can bid on a package consisting of both seats. Explain the di↵erences
with (a).

3 How does Google rank webpages?

3.1 A Short Answer

Now we turn to the other links you see on a search result webpage; not the ads or
sponsored search results, but the actual ranking of webpages by search engines
such as Google. We will see that, each time you search on www.google.com,
Google solves a very big linear equation to rank the webpages.
The idea of embedding links in text dates back to the middle of last century.

As the Internet scaled up, and with the introduction of the web in 1989, the
browser in 1990, and the web portal in 1994, this vision was realized with an
unprecedented scale. The network of webpages is huge: over 1 trillion by 2008 in
one estimate. And most of them are connected to each other in a giant component
of this network. It is also sparse: most webpages only have a few hyperlinks
pointing in or out. Google search organizes this huge and sparse network by
ranking the webpages.
More important webpages should be ranked higher. But how do you quantify

how important a webpage is? Well, if there are many other important webpages
pointing towards a webpage A, probably A is important. This argument implic-
itly assumes two ideas:

• Webpages form a network, where a webpage is a node, and a hyperlink is a
directed link in the network: webpage A may point to B without B pointing
back to A.

• We can turn the seemingly circular logic of “important webpages pointing to
you means you are important” into a set of equations that characterize
the equilibrium based on a recursive definition of “importance.” This im-
portance score will act as an approximation of the ultimate test of search
engines: how useful a user finds the search results.

Suppose there are N webpages. Each webpage i has Oi outgoing links and
Ii incoming links. We cannot just count the number of webpages pointing to
a given webpage A, because that number, the in-degree of the node in the
hyperlinked graph, is often not the right measure of importance.
Let us denote the “importance score” of each webpage by ⇡i. If important

webpages point to webpage A, maybe webpage A should be important too, i.e.,
⇡A =

P
i!A ⇡i, where the sum is over all the webpages pointing to A. But this

3.1 A Short Answer 45

is not quite right either, since node i may be pointing to many other nodes in
this graph, and that means each of these nodes only receives a small portion of
node i’s importance score.

Let us assume each node’s importance score is evenly spread across all the
outgoing links, i.e., each of the outgoing neighbors of node i receives ⇡i/Oi

importance score. Now each node’s importance score can also be written as the
sum of the importance scores received from all of the incoming neighbors, indexed
by j, e.g., for node A,

X

j!A

⇡j

Oj
.

If this sum is indeed also ⇡A, we have consistency of the scores. But it is not
clear if we can readily compute these scores, or if there is a consistent set of
scores at all.

It turns out that, with a couple of modifications to the basic idea above, there
is always a unique set of consistent scores, denoted as {⇡⇤i }, and these scores
determine the ranking of the webpages: the higher the score, the higher the
webpage ranked.

For example, consider a very small graph with just four webpages and six
hyperlinks, shown in Figure 3.1. This is a directed graph where each node is a
webpage and each link a hyperlink. A consistent set of importance scores turns
out to be [0.125, 0.125, 0.375, 0.375]: webpages 3 and 4 are more important
than webpages 1 and 2. In this small example, it so happens that webpages 3
and 4, linking each other, push both webpages’ rankings higher.

Intuitively, the scores make sense. First, by symmetry of the graph, webpages 1
and 2 should have the same importance score. We can view webpages 3 and 4 as if
they form one webpage first, a supernode 3+4. Since node 3+4 has two incoming
links, and each of nodes 1 and 2 only one incoming link, node 3+4 should have a
higher importance score. Since node 3 points to node 4 and vice versa, these two
nodes’ importance scores mix into an equal division at equilibrium. This line of
reasoning qualitatively explains the actual scores we see.

But how do we calculate the exact scores? In this small example, it boils down
to two simple linear equations. Let the score of node 1 (and 2) be x, and that
of node 3 (and 4) be y. Looking at node 1’s incoming links, we see that there is
only one such link, coming from node 4 that points to three nodes. So we know
x = y/3. Since all scores must add up to: 2x + 2y = 1, we have x = 0.125 and
y = 0.375.

Now, how do we compute this set of consistent scores in a large, sparse, general
graph of hyperlink connectivity?

46 How does Google rank webpages?

1

2

3 4 Figure 3.1 A simple example of
importance score with 4 webpages and
6 hyperlinks. It is small with much
symmetry, leading to a simple
calculation of importance scores of the
nodes.

3.2 A Long Answer

In any search engine, there are two main activities going on continuously behind
the scene: (a) crawling the hyperlinked web space to get the webpage information,
(b) indexing this information into concise representations and storing the indices.
When you search in Google, it triggers a ranking procedure that takes into

account two main factors:

• How relevant the content is on each webpage, or the relevance score.
• How important the webpage is, or the importance score.

It is the composite score of these two factors that determines the ranking. We
focus on the importance score ranking, since that usually determines the order of
the top few webpages in any reasonably popular search, which has a tremendous
impact on how people obtain information and how online businesses generate
tra�c.
We will be constructing several related matrices: H, Ĥ, and G, step by step

(this matrix G is not the channel gain matrix of Chapter 1; it denotes the
Google matrix in this chapter). Eventually, we will be computing an eigenvector
of G as the importance score vector. Each matrix is N ⇥ N , where N is the
number of webpages. These are extremely large matrices, and we will discuss the
computational challenge of scaling-up in Advanced Material.

3.2.1 Constructing H

The first matrix we define is H: its (i, j)th entry is 1/Oi if there is a hyperlink
from webpage i to webpage j, and 0 otherwise. This matrix describes the network
topology: which webpages points to which. It also evenly spreads the importance
of each webpage among its outgoing neighbors, or the webpages that it points
to.
Let ⇡ be an N ⇥ 1 column vector denoting the importance scores of the N

webpages. We start by guessing that the consistent score vector is 1, simply a
vector of 1s as each webpage is equally important. So we have an initial vector
⇡[0] = 1, where 0 denotes the 0th iteration, i.e., the initial condition.

3.2 A Long Answer 47

1

2

3

4
Figure 3.2 A network of
hyperlinked webpages with a
dangling node 4.

Then, multiply ⇡T on the right by matrix H. (By convention, a vector is a
column vector. So when we write a vector horizontally on a line, we put the
transpose symbol T on top of the vector.) You can write out this matrix multi-
plication, and see this is spreading the importance score from the last iteration
evenly among the outgoing links, and re-calculating the importance score of
each webpage in this iteration by summing up the importance scores from the
incoming links. For example, ⇡

1

[2] (for webpage 1 in the second iteration) can
be expressed as the following weighted sum of importance scores from the first
iteration:

⇡
1

[2] =
X

j!1

⇡j [1]

Oj
,

i.e., the ⇡ vector from the previous iteration inner-producting the first column
of H:

⇡
1

[2] = (⇡[1])T (column 1 of H).

If we index the iterations by k, the update at each iteration is simply:

⇡T [k] = ⇡T [k � 1]H. (3.1)

We followed the (visually a little clumsy) convention in this research field that
defined H such that the update is a multiplication of row vector ⇡T by H from
the right.

Since the absolute values of the entries in ⇡ do not matter, only the ranked
order, we can also normalize the resulting ⇡ vector so that its entries add up to
1.

Do the iterations in (3.1) converge, i.e., is there a K su�ciently large such
that, for all k � K, the ⇡[k] vector is arbitrarily close to ⇡[k� 1] (no matter the
initial guess ⇡[0])? If so, we have a way to compute a consistent score vector as
accurately as we want.

But the answer is “not quite yet.” We need two adjustments to H.

48 How does Google rank webpages?

3.2.2 Constructing Ĥ

First, some webpages do not point to any other webpages. These are “dangling
nodes” in the hyperlink graph. For example, in Figure 3.2, node 4 is a dangling
node, and its row is all 0s in the H matrix:

H =

2

664

0 0 0 1
1/3 0 1/3 1/3
1/3 1/3 0 1/3
0 0 0 0

3

775 .

There are no consistent scores. To see this, we write out the system of linear
equations ⇡ = ⇡H:

8
>>>><

>>>>:

1

3

(⇡
2

+ ⇡
3

) = ⇡
1

1

3

⇡
3

= ⇡
2

1

3

⇡
2

= ⇡
3

⇡
1

+ 1

3

(⇡
2

+ ⇡
3

) = ⇡
4

.

Solving these equations gives ⇡
1

= ⇡
2

= ⇡
3

= ⇡
4

= 0, which violates the
normalization requirement

P
i ⇡i = 1.

One solution is to replace each row of 0’s, like the last row in H above, with
a row of 1/N . Intuitively, this is saying that even if a webpage does not point to
any other webpage, we will force it to spread its importance score evenly among
all the webpages out there.
Mathematically, this amounts to adding the matrix 1

N (w1T) to H, where 1 is
simply a vector of 1s, and w is an indicator vector with the ith entry being 1 if
webpage i points to no other webpages (a dangling node) and 0 otherwise (not
a dangling node). This is an outer product between two N -dimensional vectors,
which leads to an N ⇥N matrix. For example, if N = 2 and w = [1 0]T , we have

1

2

✓
1
0

◆
(1 1) =

✓
1/2 1/2
0 0

◆
.

This new matrix we add to H is clearly simple. Even though it is big, N ⇥N , it
is actually the same vector w repeated N times. We call it a rank-1 matrix.
The resulting matrix:

Ĥ = H+
1

N
(w1T),

has all entries non-negative and each row adds up to 1. So we can think of each
row as a probability vector, with the (i, j)th entry of Ĥ indicating the probability
that, if you are currently on webpage i, you will click on a link and go to webpage
j.
Well, the structure of the matrix says that you are equally likely to click on

any links shown on a webpage, and if there is no link at all, you will be equally
likely to visit any other webpages. Such behavior is called a random walk on
graphs and can be studied as Markov chains in probability theory. Clearly

3.2 A Long Answer 49

1

3

2

4
Figure 3.3 A network of
hyperlinked webpages with
multiple consistent score vectors.

this does not model web browsing behavior exactly, but it does strike a pretty
e↵ective balance between simplicity of the model and usefulness of the resulting
webpage ranking. We will see a similar model for influence in social networks in
Chapter 8.

3.2.3 Constructing G

Second, there might be many consistent score vectors, all compatible with a given
Ĥ. For example, for the graph in Figure 3.3, we have

H =

2

664

1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

3

775 .

Di↵erent choices of ⇡[0] result in di↵erent ⇡⇤, which are all consistent. For ex-
ample, if ⇡[0] = [1 0 0 0]T , then ⇡⇤ = [0.5 0.5 0 0]T . If ⇡[0] = [0 0.3 0.7 0]T , then
⇡⇤ = [0.15 0.15 0.35 0.35]T .
One solution to this problem is to add a little randomization to the iterative

procedure and the recursive definition of importance. Intuitively, we say there is
a chance of (1� ✓) that you will jump to some other random webpage, without
clicking on any of the links on the current webpage.
Mathematically, we add yet another matrix 1

N 11T , a matrix of 1s scaled by
1/N (clearly a rank-1 matrix), to Ĥ. But this time it is a weighted sum, with a
weight ✓ 2 [0, 1]. (1 � ✓) describes how likely you will randomly jump to some
other webpage. The resulting matrix is called the Google matrix:

G = ✓Ĥ+ (1� ✓)
1

N
11T . (3.2)

Now we can show that, independent of the initialization vector ⇡[0], the iter-
ative procedure below:

⇡T [k] = ⇡T [k � 1]G (3.3)

50 How does Google rank webpages?

will converge as k ! 1, and converge to the unique vector ⇡⇤ representing the
consistent set of importance scores. Obviously, ⇡⇤ is the left eigenvector of G
corresponding to the eigenvalue of 1:

⇡⇤T = ⇡⇤TG. (3.4)

One can then normalize ⇡⇤: take ⇡⇤i /
P

j ⇡
⇤
j as the new value of ⇡⇤i , and rank the

entries in descending order, before outputting them on the search result webpage
in that order. The matrix G is designed such that there is a solution to (3.4)
and that (3.3) converges from any initialization.

However you compute ⇡⇤, taking (the normalized and ordered version of) ⇡⇤

as the basis of ranking is called the pagerank algorithm. Compared to DPC
for wireless networks in Chapter 1, the matrix G in pagerank is much larger, but
we can a↵ord a centralized computation.

3.3 Examples

Consider the network in Figure 3.4 with 8 nodes and 16 directional links. We
have

H =

2

666666666664

0 1/2 1/2 0 0 0 0 0
1/2 0 0 0 1/2 0 0 0
0 1/2 0 0 0 0 0 1/2
0 0 1 0 0 0 0 0
0 0 0 1/2 0 0 0 1/2
0 0 0 1/2 1/2 0 0 0
0 0 0 1/2 0 1/2 0 0

1/3 0 0 1/3 0 0 1/3 0

3

777777777775

.

Here Ĥ = H since there is no dangling node. Taking ✓ = 0.85, we have

G =

2

666666666664

0.0188 0.4437 0.4437 0.0188 0.0188 0.0188 0.0188 0.0188
0.4437 0.0188 0.0188 0.0188 0.4437 0.0188 0.0188 0.0188
0.0188 0.4437 0.0188 0.0188 0.0188 0.0188 0.0188 0.4437
0.0188 0.0188 0.8688 0.0188 0.0188 0.0188 0.0188 0.0188
0.0188 0.0188 0.0188 0.4437 0.0188 0.0188 0.0188 0.4437
0.0188 0.0188 0.0188 0.4437 0.4437 0.0188 0.0188 0.0188
0.0188 0.0188 0.0188 0.4437 0.0188 0.4437 0.0188 0.0188
0.3021 0.0188 0.0188 0.3021 0.0188 0.0188 0.3021 0.0188

3

777777777775

.

3.4 Advanced Material 51

4

1

2

3

5

6

7

8

Figure 3.4 An example of the pagerank algorithm with 8 webpages and 16 hyperlinks.
Webpage 3 is ranked the highest even though webpage 4 has the largest in-degree.

Initializing ⇡[0] = [1/8 1/8 · · · 1/8]T , iteration (3.3) gives

⇡[1] = [0.1073 0.1250 0.1781 0.2135 0.1250 0.0719 0.0542 0.1250]T

⇡[2] = [0.1073 0.1401 0.2459 0.1609 0.1024 0.0418 0.0542 0.1476]T

⇡[3] = [0.1201 0.1688 0.2011 0.1449 0.0960 0.0418 0.0606 0.1668]T

⇡[4] = [0.1378 0.1552 0.1929 0.1503 0.1083 0.0445 0.0660 0.1450]T

⇡[5] = [0.1258 0.1593 0.2051 0.1528 0.1036 0.0468 0.0598 0.1468]T

⇡[6] = [0.1280 0.1594 0.2021 0.1497 0.1063 0.0442 0.0603 0.1499]T

...

and, to 4 decimal places, ⇡⇤ = [0.1286 0.1590 0.2015 0.1507 0.1053 0.0447 0.0610 0.1492]T .
This means the ranked order of the webpages are: 3, 2, 4, 8, 1, 5, 7, 6.
The node with the largest in-degree, i.e., with the largest number of links

pointing to a node, is node 4, which is not ranked the highest. This is in part
because its importance score is spread exclusively to node 3. As we will see again
in Chapter 8, there are many more useful metrics measuring node importance
than just the degree, pagerank being one of them.

3.4 Advanced Material

3.4.1 Generalized pagerank and some basic properties

The Google matrix G can be generalized if the randomization ingredient is more
refined. First, instead of the matrix 1

N 11T , we can add the matrix 1vT (again,
the outer product of two vectors), where v can be any probability distribution.
Certainly, 1

N 1T is a special case of that.
We can also generalize the dangling node treatment: instead of adding 1

Nw1T

52 How does Google rank webpages?

to H, where w is the indicator vector of dangling nodes, we can add wvT . Again,
using 1

N 1 is a special case.

Now, the Google update equation can be written in the long form (not us-
ing the shorthand notation G) as a function of the given webpage connectivity
matrix H, vector w indicating the dangling webpages, and the two algorithmic
parameters: scalar ✓ and vector v:

⇡TG = ✓⇡TH+ ⇡T (✓w + (1� ✓)1)vT . (3.5)

You should verify that the above equation is indeed the same as (3.3).

There are many viewpoints to further interpret (3.3) and connect it to matrix
theory, to Markov chain theory, and to linear systems theory. For example:

• ⇡⇤ is the left eigenvector corresponding to the dominant eigenvalue of a posi-
tive matrix.

• It represents the so-called stationary distribution of a Markov chain whose
transition probabilities are in G.

• It represents the equilibrium of an economic growth model according to G
(more on this viewpoint later in this section).

The major operational challenges of running the seemingly simple update (3.3)
are scale and speed : there are billions of webpages and Google needs to return
the results almost instantly.

Still, the power method (3.3) o↵ers many numerical advantages compared to a
direct computation of the dominant eigenvector of G. First, (3.3) can be carried
out by multiplying a vector by the sum of H and two rank-1 matrices. This is
numerically simple: H is very large but also very sparse: each webpage usually
links to just a few other webpages, so almost all the entries in H are zero.
Multiplying by rank-1 matrices is also easy. Furthermore, at each iteration, we
only need to store the current ⇡ vector.

While we have not discussed the speed of convergence, it is clearly important
to speed up the computation of ⇡⇤. As we will see again in Chapter 8, the conver-
gence speed in this case is governed by the second largest eigenvalue �

2

(G) of G,
which can be shown to be approximately ✓ here. So this parameter ✓ controls the
tradeo↵ between convergence speed and the relevance of the hyperlink graph in
computing the importance scores: smaller ✓ (closer to 0) drives the convergence
faster, but also de-emphasizes the relevance of the hyperlink graph structure.
This is hardly surprising: if you view the webpage importance scores more like
random objects, it is easier to compute the equilibrium. Usually ✓ = 0.85 is
believed to be a pretty good choice. This leads to convergence in about tens
of iterations while still giving most of the weight to the actual hyperlink graph
structure rather than the randomization component in G.

3.4 Advanced Material 53

3.4.2 Pagerank as a solution to a linear equation

Pagerank sounds similar to the distributed power control in Chapter 1. They
both apply the power method to solve a system of linear equations. The solu-
tions to those equations capture the right engineering configuration in the net-
work, whether that is the relative importance of webpages in a hyperlink graph
or the best transmit power vector in a wireless interference environment. This
conceptual connection can be sharpened to an exact, formal parallel below.
First, we can rewrite the characterization of ⇡⇤ as the solution to the following

linear equation (rather than as the dominant left eigenvector of matrix G (3.4),
the viewpoint we have been taking so far):

(I� ✓H)T⇡ = v. (3.6)

Compare (3.6) with the characterization of optimal power vector in the dis-
tributed power control algorithm in Chapter 1:

(I�DF)p = v.

Of course, the vectors v are defined di↵erently in these two cases: based on
webpage viewing behavior in pagerank and on receiver noise in power control.
But we see a striking parallel: the consistent score vector ⇡ and the optimal
transmit power vector p are both solutions to a linear equation with the following
structure: identity matrix minus a scaled version of the network connectivity
matrix.
In pagerank, the network connectivity is represented by the hyperlink ma-

trix H. This makes sense since the key factor here is the hyperlink connectivity
pattern among the webpages. In power control, the network connectivity is rep-
resented by the normalized channel gain matrix F. This makes sense since the
key factor here is the strength of the interference channels.
In pagerank, the scaling is done by one scalar ✓. In power control, the scaling

is done by many scalars in the diagonal matrix D: the target SIR for each user.
To make the parallelism exact, we may think of a generalization of the Google
matrix G where each webpage has its own scaling factor ✓.
The general theme for solving these two linear equations can be stated as

follows. Suppose you want to solve a system of linear equations Ax = b, but
do not want to directly invert the square matrix A. You might be able to split
A = M�N, where M is invertible and its inverse M�1 can be much more easily
computed than A�1.
The following linear stationary iteration (“linear” because the operations

are all linear, and “stationary” because the matrices themselves do not vary over
iterations) over times indexed by k:

x[k] = M�1Nx[k � 1] +M�1b

will converge to the desired solution:

lim
k!1

x[k] = A�1b,

54 How does Google rank webpages?

from any initialization x[0], provided that the largest eigenvalue of M�1N is
smaller than 1. Both DPC and pagerank are special cases of this general algo-
rithm.
But we still need to show that (3.6) is indeed equivalent to (3.4): a ⇡ that

solves (3.6) also solves (3.4), and vice versa. First, starting with a ⇡ that solves
(3.6), we can easily show the following string of equalities:

1Tv = 1T (I� ✓H)T⇡

= 1T⇡ � ✓(H1)T⇡

= 1T⇡ � ✓(1�w)T⇡

= ⇡T (✓w + (1� ✓)1),

where the first equality uses (3.6) and the third equality uses the fact that sum-
ming each row of H gives a vector of 1s (except those rows corresponding to
dangling webpages). The other two equalities are based on simple algebraic ma-
nipulations.
But 1Tv = 1 by design, so we know

⇡T (✓w + (1� ✓)1) = 1.

Now we can readily check that ⇡TG, using its definition in (3.5) and the above
equation, equals ✓⇡TH+ vT .
Finally, using one more time the assumption that ⇡ satisfies (3.6), i.e., v =

(I� ✓H)T⇡, we complete the argument:

⇡TG = ✓⇡TH+ ⇡T (I� ✓H) = ✓⇡TH� ✓⇡TH+ ⇡T = ⇡T .

Therefore, any ⇡ solving the linear equation (3.6) is also a dominant left eigen-
vector of G that solves (3.4).
Vice versa, a ⇡ that solves (3.4) also solves (3.6), can be similarly shown.

3.4.3 Scaling up and speeding up

It is not easy to adjust the parameters in pagerank computation. We discussed
the role of ✓ before, and we know that when ✓ is close to 1, pagerank results
become very sensitive to small changes in ✓, since the importance matrix (I �
✓H)�1 approaches infinity.
There is also substantial research going into designing the right randomization

vector v, e.g., the entries of the H matrix: a web surfer likely will not pick all
of the hyperlinked webpages equally likely, and their actual behavior can be
recorded to adjust the entries of H.
But the biggest challenge to running pagerank is scale: how to scale up to

really large matrices? How to quickly compute and update the rankings? There
are both storage and computational challenges. And there are many interesting
approaches developed over the years, including the following five. The first one
is a computational acceleration method. The other four are approximations, two

3.4 Advanced Material 55

change the notion of optimality and two restructure the graph of the hyperlinked
webpages.

1. Decompose H. A standard triangular decomposition gives H = DL, where
D is a diagonal matrix with entries being 1 over the number of links from
webpage i, and L is a binary adjacency matrix. So only integers, instead of
real numbers, need to be stored to describe H. Now, suppose there are N web-
pages, and on average, each webpage points to M webpages. N is huge: in the
billions, and M is very small: often 10 or less. Instead of NM multiplications,
this matrix decomposition reduces it to just M multiplications.

2. Relax the meaning of convergence. It is not the values of importance scores
that matter to most people, it is just the order of the webpages, especially
the top ones. So once the computation of pagerank is sure about the order,
there is no need to further improve the accuracy of computing ⇡ towards
convergence.

3. Di↵erentiate among the webpages. The pagerank algorithm as applied to most
webpages quickly converge, and can be locked while the other webpages’
pageranks are refined. This is an approximation that works particularly well
when the pageranks follow the power law that we will discuss in Chapter 10.

4. Leave the dangling nodes out. There are many dangling nodes out there, and
their behavior in the matrices and computations involved are pretty similar.
So they might be grouped together and not be updated to speed up the
computation.

5. Aggregation of webpages. When many nodes are lumped together into a clus-
ter, then hierarchical computation of pageranks can be recursively computed,
first treating each cluster as one webpage, and then distributing the pager-
ank of that cluster among the actual webpages within that cluster. We will
visit an example of this important principle of building hierarchy to reduce
computation (or communication) load in a homework problem.

3.4.4 Beyond the basic search

There is another player in the game of search: companies that specialize in in-
creasing a webpage’s pagerank, possibly pushing it to the top few search results,
or even to the very top spot. This industry is called Search Engine Optimiza-
tion (SEO). There are many proprietary techniques used by SEO companies.
Some techniques enhance content relevance scores, sometimes by adding bogus
tags in the html files. Other techniques increase the importance score, sometimes
by adding links pointing to a customer’s site, and sometimes by creating sev-
eral truly important webpages and then attaching many other webpages as its
outgoing neighbors.
Google is also playing this game by detecting SEO techniques and then up-

dating its ranking algorithm so that the artificial help from SEO techniques

56 How does Google rank webpages?

is minimized. For example, in early 2011, Google made a major update to its
ranking algorithm to counter the SEO e↵ects.
There are also many important variants to the basic type of search we dis-

cussed, e.g., personalized search based on user’s feedback on how useful she finds
the top webpages in the search result. Multimedia search is another challenging
area: searching through images, audios, and video clips require very di↵erent
ways of indexing, storing, and ranking the content than text-based search.

Further reading

The pagerank algorithm is covered in almost every single book on network sci-
ence these days. Some particularly useful references are as follows.

1. The Google founders wrote the following seminal paper explaining the pager-
ank algorithm back in 1998:
[BP98] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web

search engine,” Computer Networks and ISDN Systems vol. 33, pp. 107-117,
1998.

2. The standard reference book devoted to pagerank is
[LM06] A. N. Langville and C. D. Meyer, Google’s Pagerank and Beyond,

Princeton University Press, 2006.

3. Here is well written website explaining pagerank:
[R] C. Ridings, “Pagerank explained: Everything you’ve always wanted to

know about Pagerank,” http://www.rankwrite.com.

4. Dealing with non-negative matrices and creating linear stationary iterations
are well documented, e.g., in the following reference book:
[BP79] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathe-

matical Sciences, Academic Press, 1979.

5. Computational issues in matrix multiplication is treated in textbooks like
this one:
[GV96] G. Golub and C. F. van Van Loan, Matrix Computations, 3rd Ed., The

Johns Hopkins University Press, 1996.

Problems

3.1 Pagerank sink ?

Write out the H matrix of the graph in Figure 3.5. Iterate ⇡[k]T = ⇡[k�1]TH,

3.4 Advanced Material 57

2 3

4 5 6

1

Figure 3.5 A simple network of webpages with a sink node.

where k = 0, 1, 2, . . ., and let

⇡[0] =
⇥
1/6 1/6 1/6 1/6 1/6 1/6

⇤T
.

What problem do you observe with the converged ⇡[k] vector?

3.2 Cyclic ranking ?

4

1 2

3

Figure 3.6 A simple network of webpages with a cycle.

Write out the H matrix of the graph in Figure 3.6. Iterate ⇡[k]T = ⇡[k�1]TH,
where k = 0, 1, 2, . . ., and let

⇡[0] =
⇥
1/2 1/2 0 0

⇤T
.

(a) Do the vectors {⇡[k]} converge?

(b) Solve for ⇡⇤ such that ⇡⇤T = ⇡⇤TH and
P

i ⇡
⇤
i = 1.

3.3 Basic pagerank with di↵erent ✓ ??

Compute the pagerank vector ⇡⇤ of the graph in Figure 3.7, for ✓ = 0.1, 0.3, 0.5, 0.85.
What do you observe?

58 How does Google rank webpages?

1

2

3

4

5

Figure 3.7 A simple example for pagerank with di↵erent ✓.

1

3

BA 2

3

1

(a)

1

2

3

4

5

(b)

Figure 3.8 An example of hierarchical pagerank. Two di↵erent graphs that will be
superimposed later.

3.4 Block aggregation in pagerank ??

Set ✓ = 0.85 and start with any normalized initial vector ⇡[0].

(a) Compute the pagerank vector
⇥
⇡⇤A ⇡⇤B

⇤T
of the graph in Figure 3.8(a)

1

2

3

4

5

A

B

Figure 3.9 Subgraphs A and B are combined into a single graph.

3.4 Advanced Material 59

with

H =

1 0

1/3 2/3

�
.

Note the uneven splitting of link weights from node B. This will be useful later
in the problem.

(b) Compute the pagerank vectors
⇥
⇡⇤
1

⇡⇤
2

⇤T
and

⇥
⇡⇤
3

⇡⇤
4

⇡⇤
5

⇤T
of the two

graphs in Figure 3.8(b).
(c) If we divide the graph in Figure 3.7 into two blocks as shown in Figure 3.9,

we can approximate ⇡⇤ in the previous question by

⇡̃⇤ =
⇥
⇡⇤A ·

⇥
⇡⇤
1

⇡⇤
2

⇤
, ⇡⇤B ·

⇥
⇡⇤
3

⇡⇤
4

⇡⇤
5

⇤⇤T
.

Compute this vector. Explain the advantage, in terms of computational load, of
using this approximation instead of directly computing ⇡⇤.

3.5 Personalized ranking (Open-ended)

How would you solicit and aggregate individual user feedback to improve per-
sonalized ranking?

4 How does Netflix recommend
movies?

We just saw three beautiful equations in the last three chapters, each used at
least a billion times every single day:

pi[t+ 1] =
�i

SIRi[t]
pi[t]

Ui(b) = vi � pi(b)

⇡⇤T = ⇡⇤TG.

We continue with our first block of four chapters that present four fundamental
algorithms: Distributed power control, second price auction, pagerank, and now,
collaborative filtering. These four chapters also introduce the basic languages of
optimization, game, graph, and learning theories. A word of caution: as a chapter
that introduces both the basic ideas in convex optimization and in machine
learning, this chapter is among the longest in the book; you have to wait about
14 pages before we get to the most important idea on collaborative filtering for
Netflix. This chapter is also mathematically more demanding than most of the
other chapters.

4.1 A Short Answer

4.1.1 Recommendation problem

Netflix started its DVD rental business in 1997: instead of going to rental stores,
you can just wait for DVDs to arrive by mail. Instead of incurring a late fee for
each day you hold the DVD beyond the return date, you can keep holding the
DVD as long as you continue to pay the monthly subscription fee, but you cannot
receive a new DVD without returning the old one. This is similar in spirit to the
sliding window mechanism of congestion control in Chapter 14, or the tit-for-tat
incentive mechanism of P2P in Chapter 15. Netflix also maintained an e�cient
inventory control and mail delivery system. It operated with great scalability
(the per-customer cost is much lower as the number of customers go up) and
stickiness (users are reluctant to change the service). By 2008, there were about
9 million users in North America.
Then Netflix moved on to the next mode of delivering entertainment. This

time it was streaming movies and TV programs from video servers, through the

4.1 A Short Answer 61

Internet and wireless networks, to your Internet-connected devices: TVs, set-top
boxes, game consoles, smart phones, and tablets. With its branding, choice of
content, and aggressive pricing, Netflix’s subscriber base nearly tripled to 23
million by April 2011. Netflix video streaming generated so much Internet tra�c
that over one in every four bits going through the Internet that month was Netflix
tra�c. In September 2011, Netflix announced that it would separate the DVD
rental and online streaming businesses. Soon afterwards, Netflix reversed the
decision, although the pricing for DVD rental and for online streaming became
separated.
We will look at the cloud-based video distribution technology, including Net-

flix, Amazon Prime, Hulu, HBO Go, etc., in Chapter 17, and how that is changing
the future of both entertainment and networking. In this chapter, we instead fo-
cus on the social network dimension used by Netflix: How does it recommend
movies for you to watch (either by mail or by streaming)? It is like trying to
read your mind and predict your movie rating. An e↵ective recommendation
system is important to Netflix because it enhances user experience, increases
royalty and volume, and helps with inventory control.
A recommendation system is a helpful feature for many applications beyond

video distribution. Similar to search engines in Chapter 3, recommendation sys-
tems give rise to structures in a “sea” of raw data and reduce the impact of
information “explosion.” Here are some representative systems of recommenda-
tion:

• You must have also noticed how Amazon recommends products to you based
on your purchase and viewing history, adjusting its recommendation each
time you browse a product. Amazon recommendation runs content-based
filtering, in contrast to collaborative filtering used by Netflix. (A re-
lated question is when you can trust the averaged rating of a product on
Amazon? It is a di↵erent variant of the recommendation problem, and will
be taken up in Chapter 5.)

• You must have also been swayed by recommendations on YouTube that fol-
lowed each of the videos you watched. We will look at YouTube recommen-
dation in Chapter 7.

• You may have used Pandora’s online music selection, where recommendation
is developed by experts of music selection. But you get to thumb-up or
thumb-down the recommendation; an explicit binary feedback.

Netflix instead wants to develop a recommendation system that does not de-
pend on any expert, but uses the rich history of all the user behaviors to profile
each user’s taste in movies. This system has the following inputs, outputs, and
criteria of success:

• Among the inputs to this system is the history of star ratings across all the
users and all the movies. Each data point consists of four numbers: (a) user
ID, indexed by u, (b) movie title, indexed by i, (c) number of stars, 1-5,

62 How does Netflix recommend movies?

of the rating, denoted as rui, (d) date of the rating, denoted as tui. This
is a really large data set: think of millions of users and tens of thousands
movies. But only a fraction of users have watched a given movie, and only
a fraction of that fraction actually bothered to rate the movie. Still, the
size of this input is on the order of billions for Netflix. And the data set
is also biased: which users have watched and rated which movie already
provide much information about people’s movie taste.

• The output is, first of all, a set of predictions r̂ui, one for each movie i that
user u has not watched yet. These can be real numbers, not just integers
like an actual rating rui. We can interpret a predicted rating of, say, 4.2
as saying that the user will rate this movie 4 stars with 80% probability
and 5 stars with 20% probability. The final output is a short, ranked list
of movies recommended to each user u, presumably those movies receiving
r̂ui � 4, or the top 5 movies with the highest predicted r̂ui.

• The real test of this mind-reading system is whether user u actually likes
the recommended movies. This information, however, is hard to collect.
So a proxy used by Netflix is the Root Mean Squared Error (RMSE),
measured for those (u, i) pairs where we have both the prediction and the
actual rating. Let us say there are C such pairs. Each rating prediction’s
error is squared: (rui � r̂ui)2, and then averaged over all the predictions.
Since the square was taken, to scale the numerical value back down, a
square root is taken over this average:

RMSE =

vuut
X

(u,i)

(rui � r̂ui)2

C
.

The smaller the RMSE, the better the recommendation system. Netflix
could have used the absolute value of the error instead of the squared error,
but for our purposes we will stick to RMSE as the metric that quantifies the
accuracy of a recommendation system. More importantly, regardless of the
error metric it uses, in the end only the ranked order of the movies matter
in recommendation. Only the top few in that rank ordered list are relevant
as only they will be recommended to the user. The ultimate test is whether
the user decides to watch the recommended movies, and whether she likes
them or not. So, RMSE minimization is just a tractable approximation of
the real problem of recommendation.

4.1.2 The Netflix Prize

Could recommendation accuracy be improved by 10% over what Netflix was
using? That was the question Netflix presented to the research community in
October 2006, through an open, online, international competition with a $1 mil-
lion prize called the Netflix Prize.
The competition’s mechanism is interesting in its own right. Netflix made

4.1 A Short Answer 63

_

Training Set

100 Million

Public

Probe
Set

Quiz
Set

Test
Set

Hidden

1.4 M 1.4 M 1.4 M

Figure 4.1 The Netflix Prize’s four data sets. The training set and probe set were
publicly released, whereas the quiz set and test set were hidden from the public and
known only to Netflix. The probe, quiz, and test sets have similar statistical
properties, but the probe set can be used by each competing team as often as they
want, and the quiz set at most once a day. The final decision is based on comparison
of RMSE on the test set.

available a set of over 100 million ratings, as part of its records from 1999 to 2005.
That amount of data could really fit in the memory of standard desktops in 2006,
making it easy for anyone in the world to participate in the competition. The
rating data came from more than 480,000 users and 17,770 movies. On average,
each movie was rated by more than 5000 users and each user rated more than
200 movies. But those average numbers disguise the real di�culty here: many
users only rated a few movies, and very few users rated a huge number of movies
(one user rated over 17,000 movies). Whatever recommendation system we use,
it must predict well for all users.

The exact distribution of the data is shown in Figure 4.1:

• A little less than 100 million ratings were made public as the training set.

• About 1.4 million additional ratings were also made public and they had
similar statistical properties as the test set and the quiz set described next.
It was called the probe set, which competitors in Netflix Prize could use to
test their algorithms.

• About 1.4 million additional ratings were hidden from the competitors, called
the quiz set. Each competing team could submit an algorithm that would
run on the quiz test, but not more than once a day. The RMSE scores
continuously updated on the leaderboard on Netflix Prize website were
based on this set’s data.

• Another 1.4 million ratings, also hidden from the competitors, called the test

64 How does Netflix recommend movies?

set. This was the real test. The RMSE scores on this set would determine
the winner.

Each competing team first came up with a model for its recommendation
system, then decided their model parameters’ values based on minimizing the
RMSE between known ratings in the training set and their model’s predictions,
and finally, used this model with tuned parameters to predict the unknown rat-
ings in the quiz set. Of course, Netflix knows the actual ratings in the quiz set,
and can evaluate RMSE between those ratings and the predictions from each
team.

This was a smart arrangement. No team could reverse engineer the actual test
set, since only scores on the quiz set were shown. It was also helpful to have a
probe set where the competing teams could run their own tests as many times
as they wanted.

Netflix had its own algorithm called Cinematch that gave an RMSE of 0.9514
on the quiz set if its parameters were tuned by the training set. Improving RMSE
by even 0.01 can sometimes make a di↵erence in the top 10 recommendations
for a user. If the recommendation accuracy is improved by 10% over Cinematch,
it would push RMSE to 0.8563 on the quiz set, and 0.8572 on the test set.

This Netflix Prize ignited the most intense and high-profile surge of activities
in the research communities of machine learning, data mining, and information
retrieval in recent years. To some researchers, the quality and sheer size of the
available data was as attractive as the hype and prize. Over 5000 teams worldwide
entered more than 44,000 submissions. Both Netflix and these research fields
benefitted from the three year quest towards the goal of 10%. It turned out
that setting the target as 10% improvement was a really good decision. For the
given training set and quiz set, getting 8% improvement was reasonably easy,
but getting 11% would have been extremely di�cult.

Here are a few highlights in the history of Netflix Prize, also shown in the
timeline in Figure 4.2: (a) Within a week of the start of the competition, Cine-
match was beaten. (b) By early September, 2007, team BellKor made an 8.26%
improvement over Cinematch, but first place changed hands a couple of times,
until (c) in the last hour before the first year of competition ended, the same
team got 8.43% improvement and won the $50,000 annual progress prize for
leading the pack during the first year of the competition.

Then teams started merging. BellKor and BigChaos, two of the leading teams,
merged and (d) received the 2008 progress prize for pushing the RMSE down
to 0.8616. They further merged with Pragmatic Theory, and (e) the new team
BellKor’s Pragmatic Chaos became the first team that achieved more than 10%
improvement in June 2009, beating Cinematch by 10.06%, on the quiz set. Then
the competition entered the “last call” period: all teams had 30 days to make
their final submissions. (f) At the end of this period, two teams beat Cinematch
by more than 10% on the quiz set: BellKor’s Pragmatic Chaos had an RMSE

4.1 A Short Answer 65

RMSE (On Quiz Set)

0.9514

0.8728
0.8712
0.8616
0.8563
0.8553

Oct. 2
2006

Oct.
2007

Oct.
2008

June
July
2009

Time

(a)

(b) (c)
(d)

(e)
(f)

*

* *
*

*

Figure 4.2 The Netflix Prize’s timeline and some of the highlight events. It lasted for
almost three years and the final decision came down to a twenty-minute di↵erential.
The y-axis shows the progress towards reducing RMSE on the quiz set data by 10%
over the benchmark.

of 0.8554, and The Ensemble had an RMSE of 0.8553, slightly better. The final
winner was to be declared by comparing their RMSEs on the test set.

Here is the grand finale: both teams beat Cinematch by more than 10% on
the test set, and actually got the same RMSE on that set: 0.8567. But BellKor’s
Pragmatic Chaos submitted their algorithm 20 minutes earlier, and thus became
the winner of the grand prize. A world-class science race lasting almost 3 years
concluded with a 20 minute di↵erential.

You must be wondering what algorithm BellKor’s Pragmatic Chaos used in
the final winning solution. The answer is documented in detail in a set of three
reports, one from each component of this composite team, linked from the Netflix
Prize website. But what you will find is that the winning solution is really a
cocktail of many methods combined, with hundreds of ingredient algorithms
blended together and thousands of model parameters fine-tuned specifically to
the training set provided by Netflix. That was what it took to get that last 1% of
improvement. But if you are only interested in the main approaches, big ideas,
and getting 8-9% improvement over Cinematch, there are actually just a few key
methodologies. And those are what we will focus on in the rest of this chapter.

4.1.3 Key ideas

To start with, take a look at the table in Figure 4.3. We can also think of the
table as a matrix R, or as a weighted bipartite graph where the user nodes are
on the left column and the movie nodes on the right. A link connecting user node
u and movie node i if u rated i, and the value of the rating as the weight of the

66 How does Netflix recommend movies?

_

? ?

1 2 3 4 5 6 7 8

1

2

3

4

5

6

5 2 4

4 3 1 3

5 4 5 4

1 1 2

3 3

2 4

? ?

Movies

Users

Figure 4.3 Recommendation system’s problem: predicting missing ratings from given
ratings in a large yet sparse table. In this small example of 6 users and 8 movies,
there are 18 known ratings as a training set, and 4 unknown ratings to be predicted.
Real problems are much larger, with billions of entries in the table, and sparse: only
about 1% filled with known ratings.

link. In Chapter 8 we will discuss other matrices that describe the structure of
di↵erent graphs.
Each column in this table is a movie (or an item in general), each row is a

user, and each cell’s number is the star rating by that user for that movie. Most
cells are empty since only a few users rated a given movie. You are given a large
yet sparse table like this, and asked to predict some missing entries like those
four indicated by question marks in the last two rows in this table.
There are two main types of techniques for any recommendation system:

content-based filtering and collaborative filtering.
Content-based filtering only looks at each row in isolation and attaches labels

to the columns: if you like a comedy with Rowan Atkinson, you will probably
like another comedy with Rowan Atkinson. This straightforward solution is often
inadequate for Netflix.
In contrast, collaborative filtering exploits all the data in the entire table,

across all the rows and all the columns, trying to discover structures in the
pattern and values of the entries in this table.
Drawing an imperfect analogy with search engines in Chapter 3, content-based

filtering is like the relevance score of individual webpages, and collaborative
filtering is like the importance score determined by the connections among the
webpages.
In collaborative filtering, there are in turn two main approaches.

• The intuitively simpler one is the neighborhood model. Here, two users are
“neighbors” if they share similar tastes in movies. If Alice and Bob both

4.1 A Short Answer 67

like “Schindler’s List” and “Life is Beautiful,” but not as much “E.T.” and
“Lion King”, then knowing that Alice likes “Dr. Zhivago” would make us
think Bob likes “Dr. Zhivago”, too. In the neighborhood method, we first
compute a similarity score between each pair of users. The larger the
score, the closer these two users are in their taste for movies. Then for a
given user whose opinion of a movie we would like to predict, we select,
say, 50 of the most similar users who have rated that movie. Then take a
weighted sum of these ratings and call that our prediction.

• The second approach is called the latent factor model. It assumes that un-
derneath the billions of ratings out there, there are only a few hundred key
factors on which users and movies interact. Statistical similarities among
users (or among movies) are actually due to some hidden, low-dimensional
structure in the data. This is a big assumption: there are many fewer types
of people and movies than there are people and movies, but it sounds about
right. It turns out that one way to represent a low-dimensional model is to
factorize the table into two sets of short vectors of “latent factors.”

Determining baseline predictors for the neighborhood model, or finding just
the right short vectors in the latent factor model, boils down to solving least
squares problems, also called linear regressions.

Most of the mileage in the leading solutions to the Netflix Prize was obtained
by combining variants of these two approaches, supplemented by a whole bag of
tricks. Two of these supplementary ideas are particularly interesting.

One is implicit feedback. A user does not have to rate a movie to tell us
something about her mind. Which movies she browsed, which ones she watched,
and which ones she bothered to rate at all are all helpful hints. For example,
it is useful to leverage information in a binary table where each entry simply
indicates whether this user rated that movie or not.

Another idea played an important role in pushing the improvement to 9% in
the Netflix Prize: incorporating temporal dynamics. Here, the model param-
eters become time-dependent. This allows the model to capture changes in a
person’s taste and in trends of the movie market, as well as the mood of the day
when a user rated movies, at the expense of dramatically increasing the number
of model parameters to optimize over. One interesting observation is that when
a user rates many movies on the same day, she tends to give similar ratings to
all of these movies. By discovering and discounting these temporal features, the
truly long-term structures in the training set are better quantified.

In the next section, we will present baseline predictor training and the neigh-
borhood method, leaving the latent factor model to Advanced Material.

68 How does Netflix recommend movies?

g

Ground
Truth

Model
Parameter

Observation

Training Prediction Prediction

Observation

Model

Figure 4.4 The main flow of two steps: first training and then prediction. The training
module optimizes over model parameters using the known ground truth. Then the
prediction module uses the models with optimized model parameters to make
predictions.

4.2 A Longer Answer

Before diving into any specific predictors, let us take a look at the generic work-
flow consisting of two phases, as shown in Figure 4.4:

• Training : we put in a model (a mathematical representation of what we want
to understand) with its parameters to work on the observed data, and
then compare the predictions with the ground truth that we know in the
training data. Then we tune the model parameters so as to minimize some
error metric, like RMSE, relative to the ground truth that we know.

• Prediction: now we use the optimized model parameter to work on data ob-
served beyond those in the training set. These predictions are then used in
practice (or, in the case of the Netflix Prize, compared against a quiz set
of ground truth that only Netflix knew).

4.2.1 Baseline predictor through least squares

Collaborative filtering extracts and leverages structures from the data set such
as those in the table in Figure 4.3. But here is an easy method that does not
even require any understanding of the structure: just use a simple averaging
to compute the biases in the aggregate data. Let us start with this baseline
predictor, and along the way introduce two important topics: the least squares
problem and its solution, and time-dependent parameters that capture temporal
shifts.
Suppose you look at the table of ratings in Figure 4.3 and decide not to

4.2 A Longer Answer 69

study the user-movie interactions. Instead, you just take the average of all the
ratings out there, denoted as r̄, and use that as the predictor for all r̂ui. In the
Netflix Prize’s training set, r̄ = 3.6. That is an extremely lazy and inaccurate
recommendation system.
So how about incorporating two parameters: bi to model the quality of each

movie i relative to the average r̄, and bu to model the bias of each user u relative
to r̄? Some movies are of higher quality than average, while some users tend
to give lower ratings to all movies. For example, “The Godfather” might have
bi = 1.2, but Alice tends to be a harsh reviewer with a bu = �0.5. Then you
might predict that Alice would rate “The Godfather” with 3.6 + 1.2� 0.5 = 4.3
stars.
If you think along this line, you will be using a model of baseline predictor:

r̂ui = r̄ + bu + bi. (4.1)

We could have used the bu =
P

i

r
ui

M
u

, where Mu is the number of movies rated

by user u, and bi =
P

u

r
ui

M
i

, where Mi is the number of users rated movie i. But
that may not minimize RMSE. Instead, we choose the model parameters {bu, bi}
so that the resulting prediction’s RMSE (for the training set’s rating data) is
minimized in the training phase. This is equivalent to:

minimize{b
u

,b
i

}
X

(u,i)

(rui � r̂ui)
2, (4.2)

where the sum is, of course, only over (u, i) pairs in the training set where user u
actually rated movie i, and the minimization is over all the N +M parameters,
where N is the number of users and M the number of movies in the training
set. This type of optimization problem is called least squares. It is extensively
studied and will be encountered later.
Least squares minimizes a convex quadratic function with no constraints,

where the objective function is the sum of squares of some linear function of
the variables. That is exactly what we have in (4.2).
To simplify the notation, just consider a very small example with one user

(user 1) rating two movies (A and B) in the training set: r
1A and r

1B , with
average rating r̄ = (r

1A + r
1B)/2. The model parameters we have are b

1

(for bu)
and bA and bB (for bi). The RMSE minimization boils down to minimizing the
following convex, quadratic function

(b
1

+ bA + r̄ � r
1A)

2 + (b
1

+ bB + r̄ � r
1B)

2

over (b
1

, bA, bB).
We can rewrite this minimization (4.2) in the standard form of a least squares

problem, where A and c are given constant matrix and vector, respectively:
minimize the sum of squares of all the elements in a vector Ab � c, i.e., the
square of the l-2 norm of Ab� c:

kAb� ck2
2

,

70 How does Netflix recommend movies?

where the subscript 2 denotes the l-2 norm. In this case, we have

������

✓
1 1 0
1 0 1

◆0

@
b
1

bA
bB

1

A�
✓

r
1A � r̄
r
1B � r̄

◆������

2

2

.

More generally, the variable vector b contains all the user biases and movie
biases, and is thus N + M elements long. Each entry in the constant vector c
is the di↵erence between the known rating rui in the training set and r̄, thus C
elements long. The constant matrix A is C ⇥ (N +M), with each entry being 0,
unless the corresponding user has rated the corresponding movie, in which case
it is 1.
You can take the first derivatives of this kAb � ck2

2

with respect to b, and
set them to zero. We know this is a minimizer because the objective function is
convex.

By the definition of the l-2 norm, we have kxk2
2

=
P

i x
2

i . So we can write
kAb� ck2

2

as

(Ab� c)T (Ab� c) = bTATAb� 2bTAT c+ cT c.

Taking the derivative with respect to b and setting to 0 gives:

2
�
ATA

�
b� 2AT c = 0. (4.3)

You could also write out the quadratic function in long hand and take the deriva-
tive to validate the above expression.
So the least-squares solution b⇤ is the solution to the following system of linear

equations:
�
ATA

�
b = AT c. (4.4)

There are many ways to numerically solve this system of linear equations to ob-
tain the result b⇤. This is a useful fact: minimizing (convex) quadratic functions
boils down to solving linear equations, because we take the derivative and set it
to zero.
In the above example of estimating three parameters (b

1

, bA, bB) from two
ratings (r

1A, r1B), this linear equation (4.4) becomes:

0

@
2 1 1
1 1 0
1 0 1

1

A

0

@
b
1

bA
bB

1

A =

0

@
r
1A + r

1B � 2r̄
r
1A � r̄
r
1B � r̄

1

A .

It so happens that there are an infinite number of solutions to the above linear
equations. But in the realistic case where the number of model parameters is
much less than the number of known ratings, like the one in the next section, we
will not have that problem.
As explained in Advanced Material, least squares solutions often su↵er from

the overfitting problem. It fits the known data in the training set so well that

4.2 A Longer Answer 71

it loses the flexibility to adjust to a new data set. Then you have a super-refined
explanatory model that loses its predictive power.
To avoid overfitting, a standard technique is called regularization. We simply

minimize a weighted sum of (a) the sum of squared error and (b) the sum of
squared parameter values:

minimize{b
u

,b
i

}
X

(u,i)

(rui � r̂ui)
2 + �

X

u

b2u +
X

i

b2i

!
, (4.5)

where r̂ui is the baseline predictor (4.1), as a function of model parameters
{bu, bi}. This balances the need to fit known data with the desire to use small
parameters. The weight � is chosen to balance these two goals. Bigger � gives
more weight to regularization and less to fitting the training data.
Since we picked the L-2 norm as the penalty function of {bu, bi} in the regu-

larization terms, (4.5) still remains a least squares problem: minimizing a convex
quadratic function in the variables {bu, bi}, even though it is a di↵erent function
from the one in (4.2).
In the rest of the chapter, we will subtract the baseline predictors from the

raw rating data:

r̃ui = rui � r̂ui = rui � (r̄ + bu + bi).

After this bias removal, in matrix notation, we have the following error matrix:

R̃ = R� R̂.

4.2.2 Quick detour and generalization: Convex optimization

Least squares is clearly not a linear programming problem as introduced in
Chapter 1. But it is a special case of convex optimization: minimizing a
convex function subject to a convex set of constraints. Detecting convexity
in a problem statement takes some experience, but defining the convexity of a
set and of the convexity of a function is straightforward.
We call a set convex if the following is true: whenever two points are in the

set, the line segment connecting them is also entirely in the set. So in Figure
4.5, (a) is a convex set but (b) is not. An important property of convex sets is
that you can use a straight line (or, a hyperplane in more than 2 dimensions) to
separate two (non-intersecting) convex sets.
We call a (twice di↵erentiable) function convex if its second derivative is pos-

itive (and the domain of the function is a convex set). So in Figure 4.6, (a) is a
convex function but (b) is not. In the case of a multivariate function f , the sec-
ond derivative is a matrix, the Hessian matrix, where the (i, j)th entry is the
partial derivative of f with respect to the ith and jth argument of the function.
For example, the Hessian of f(x, y) = x2 + xy + y2 is

✓
2 1
1 2

◆
.

72 How does Netflix recommend movies?

(a) (b)

Figure 4.5 (a) is a convex set. (b) is not. A set is convex if for any two points in the
set, the line segment in between them is also in the set. A key property of convex sets
is that we can use a straight line (or a hyperplane in higher than two-dimensional
spaces) to separate two (non-intersecting) convex sets. The constraint set of a convex
optimization problem is a convex set. The domain of a convex function must be a
convex set.

f (x)

x

(a)

f (x)

x

(b)

Figure 4.6 (a) is a convex function. (b) is not. A (twice di↵erentiable) function is
convex if its second derivative Hessian matrix is positive semidefinite. A function f is
concave if �f is convex. Some functions, like (b) above, have a convex part and a
concave part. Linear functions are both convex and concave.

For the functions we will deal with in this book, there is a simple test of con-
vexity. If the Hessian’s eigenvalues are all non-negative, it is called a positive
semidefinite matrix (not to be confused with positive matrix in Chapter 1);

4.2 A Longer Answer 73

then we say the “second derivative” is “positive,” and the multivariate function
is convex. For example, f(x, y) above is convex.
Least squares is a convex quadratic minimization, since the Hessian of kAb�

ck2
2

is 2ATA (just take the derivative with respect to b of the left side of (4.3)),
which is always positive semidefinite no matter what A is.
We can also define convexity for functions that are not smooth enough to

have second derivatives. Roughly speaking, convex functions curve upwards. But
since all functions we will see have first and second derivatives, let us stick to
this easily-verifiable second derivative definition.
It turns out that convex optimization problems are easy to solve, both in

theory and in practice, almost as easy to solve as linear programming problems.
One justification is that, for a convex optimization problem, any locally optimal
solution (no worse than other feasible solutions in a small neighborhood) is also a
globally optimal solution (no worse than any other feasible solution). We will see
several more justifications in later chapters. The “watershed” between easy and
hard optimization is convexity, rather than linearity. This has been a veryuseful
realization in the optimization theory community over the past two decades.

4.2.3 Quick detour: Baseline predictor with temporal models

If you compute the model parameters {bu, bi} of this baseline predictor through
the above least squares optimization (4.5) using the training set data {rui}, the
accuracy of the prediction in the probe set or the quiz set will not be that impres-
sive. But here is an idea that can substantially reduce the RMSE: incorporate
temporal e↵ects into the baseline model parameters.
Movies went in and out of fashion over the period of more than 5 years in

the Netflix Prize’s datasets. So bi should not be just one number for user i,
but a function that depends on what day it is. These movie trends do not shift
substantially within the course of a day, but if we bin all the days in 5 years
into 30 bins, each about 10 weeks long, we might expect some shift in bi across
the bins. Let us denote that shift, whether positive or negative, as b

i,bin(t),
where time t is measured in days but then binned into 10-week periods. Then
we have 30 additional model parameters for each movie i, in addition to the
time-independent bi:

bi(t) = bi + b
i,bin(t).

Each user’s taste also changes over time. But taste is trickier to model than a
movie’s temporal e↵ect. There is a continuous component �u(t): user u’s rating
standard changes over time, and this deviation can be measured in several ways.
There is also a discrete component bu,t: big fluctuations on each day that a user
rates movies. You might wonder why that is so. One reason is that one single
user account on Netflix is often shared by a family, and the actual person giving
the rating might be a di↵erent one on any given day. Another is the “batch
rating e↵ect:” when a user decides to rate many movies on the same day, these

74 How does Netflix recommend movies?

ratings often fall into a much narrower range than they would have if not batch
processed. This was one of the key insights among the hundreds of tricks used
by the leading teams in the Netflix Prize. Putting these together, we have the
following time-dependent bias term per user:

bu(t) = bu + �u(t) + bu,t.

Now our baseline predictor becomes time-dependent too:

r̂ui(t) = r̄ + bi(t) + bu(t).

The least squares problem in (4.5) remains the same if we substitute r̂ui by
r̂ui(t), and add regularization terms for all the additional time-dependent pa-
rameters defining bi(t) and bu(t).
We just added a lot of model parameters to the baseline predictor, but this

is well worth it. Even if we stop right here with just the baseline predictor,
without any discovery and exploitation of user-movie interactions in the training
set, we can already achieve an RMSE of 0.9555, not far from the benchmark
Cinematch’s RMSE of 0.9514. Furthermore, the two families of methods we are
going to describe next can also benefit from temporal e↵ect models.

4.2.4 Neighborhood method: similarity measure and weighted prediction

We have said nothing about collaborative filtering yet. Everything so far is about
taking averages in a row or a column of the rating matrix. For Netflix recom-
mendations, we now move on to extract structures from user-movie interactions
in the table shown in Figure 4.3. The neighborhood method is one of the two
main approaches. It relies on pairwise statistical correlation:

• User-user correlation: Two users with similar ratings of movies in the training
set are row-wise “neighbors:” they are likely going to have similar ratings
for a movie in the quiz set. If one of the users rates movie i with 4 stars,
the other user is likely going to rate it with 4 stars too.

• Movie-movie correlation: Two movies that got similar ratings from users in
the training set are column-wise “neighbors:” they are likely going to have
similar ratings by a user in the quiz set. If one of the movies is rated 4 stars
by user u, the other movie is likely going to be rated 4 stars by this user
too.

Both arguments sound intuitive. We mentioned user-user correlation in the first
section, and we will focus on movie-movie correlation now.
Since there are so many (u, i) pairs in the training data, of course we want

to leverage more than just one neighbor. “Neighbor” here refers to closeness
in movies’ styles. Given a movie i, we want to pick its L nearest neighbors,
where “distance” among movies is measured by a similarity metric. A standard
similarity metric is the cosine coe�cient shown in Figure 4.7, where we view

4.2 A Longer Answer 75

1

2

3

4
5

54321

θ

Figure 4.7 Given two points (in this case, in 2-dimensional space), we can measure
how close they are by the sizes of the angle between the lines connecting each point to
the origin. The cosine of this angle ✓ is the cosine similarity measure if we view these
two points as two users’ ratings on 2 movies, one on each axis.

each pair of columns in the R̃ matrix as two vectors ri and rj in the Euclidean
space, and the cosine of their angles is

dij =
rTi rj

krik2krjk2
=

P
u r̃uir̃ujpP

u(r̃ui)
2

P
u(r̃uj)

2

, (4.6)

where the summation is of course only over those users u that rated both movies
i and j in the training set. We can now collect all the {dij} in an M by M matrix
D that summarizes all pairwise movie-movie similarity values.
Now for a given movie i, we rank all the other movies, indexed by j, in de-

scending order of |dij |, and pick those top L movies as the neighbors that will
count in neighborhood modeling. L can be some integer between 1 and M � 1.
Call this set of neighbors (for movie i) Li.
We say the predicted rating is simply the baseline predictor plus a weighted

sum of ratings from these neighbor movies (and normalized by the weights).
There can be many choices for these weights wij . One natural, though subopti-
mal, choice is to simply let wij = dij . There is actually no particular reason why
similarity measure must also be the prediction weight, but for simplicity let us
stick with that.
Then we have the following predictor, where N in r̂Nui denotes “neighborhood

method:”

r̂Nui = (r̄ + bu + bi) +

P
j2L

i

dij r̃ujP
j2L

i

|dij |
. (4.7)

This equation is the most important one for solving the Netflix recommendation
problem in this chapter. So we pause a little to examine it.

76 How does Netflix recommend movies?

Users
1

2

1A

Movies
A B

2A

1B

2B

r
dAB

d12

r

r

r

Figure 4.8 Two coordinates of collaborative filtering: user-user correlation vs.
movie-movie correlation. Suppose we want to predict user 2’s rating of movie B. We
can either exploit the similarity between movies A and B and r2A, or exploit the
similarity between users 1 and 2 and r1B .

• The three terms inside the bracket simply represent the estimate before taking
advantage of similarities of users or movies.

• The quotient term is the weighted sum of the intelligence we gathered from
collaborative filtering. The weights {dij} can be positive or negative, since
it is just as helpful to know two movies are very di↵erent as to know they
are very similar. Of course, the magnitude normalization term in the de-
nominator needs to take the absolute value of {dij} to avoid a cancellation
of the e↵ects.

There are quite a few extensions to the neighborhood predictor shown above.
Choosing an appropriate L and generalizing the choice of weights wij are two of
those. We can also throw away those neighbors that only have very few overlaps,
e.g., if very few users rated both movies 1 and 2, then we might not want to count
movie 2 as a neighbor of movie 1 even if d

12

is large. We also want to discount
those users that rate too many movies as all high or all low. These users tend to
be not so useful in recommendation systems.

Now we can again collect all these predictors into a matrix R̂N and use that
instead of just the baseline predictors R̂.

We have seen two styles of neighborhood models: user-user and movie-movie.
But as you might suspect, these two are really two sides of the same coin, creating
di↵erent “chains” of connection in the table of ratings. This is illustrated in
Figure 4.8.

4.3 Examples 77

4.2.5 Summary

The procedure developed so far can be summarized into 5 steps:

1. Train a baseline predictor by solving least squares.

2. Obtain the baseline prediction matrix R̂, and shift R by R̂ to get R̃.

3. Compute movie-movie similarity matrix D.

4. Pick a neighborhood size L to construct a neighborhood of movies L for each
movie i.

5. Compute the baseline predictor plus neighborhood predictor (4.7) as the final
prediction for each (u, i) pair. This gives us R̂N .

At the end of the above steps, Netflix can pick the top few unwatched and highly
rated (by its prediction) movies to recommend to each user u. Or, as in the case
of the Netflix Prize, it can compute RMSE against the ground truth in quiz and
test sets to determine the prize winner.

4.3 Examples

We illustrate the baseline predictor and the neighborhood model with a simple
example. The matrix R in this example consists of 40 hypothetical ratings from
10 users on 5 movies. This is an 80% dense matrix, much denser than a real
system’s data, but we are constrained by the size of a matrix that can be written
out on one page. We will use 30 randomly chosen ratings as the training set, and
the remaining 10, in boldface, as the test set. The other 10 missing ratings are
denoted by “-”. The average rating of this example matrix is r̄ = 3.83.

R =

0

BBBBBBBBBBBBBBB@

A B C D E

1 5 4 4 � 5
2 � 3 5 3 4
3 5 2 � 2 3
4 � 2 3 1 2
5 4 � 5 4 5
6 5 3 � 3 5
7 3 2 3 2 �
8 5 3 4 � 5
9 4 2 5 4 �
10 5 � 5 3 4

1

CCCCCCCCCCCCCCCA

4.3.1 Baseline predictor

The baseline predictor minimizes the sum of squares of all the elements in the
following vector Ab� c:

78 How does Netflix recommend movies?

0

BBB@

1 2 3 · · · 10 A B · · · E

1 1 0 0 · · · 0 1 0 · · · 0
2 0 0 1 · · · 0 1 0 · · · 0
...

...
. . .

...
30 0 0 0 · · · 1 0 0 · · · 1

1

CCCA

0

BBBBBBBBBBBBB@

b
1

b
2

...
b
10

bA
bB
...
bE

1

CCCCCCCCCCCCCA

�

0

BBB@

r
1A � r̄
r
3A � r̄

...
r
10E � r̄

1

CCCA
.

Solving the above system of linear equations with 30 equations and 15 vari-
ables, we find the optimal user bias:

b⇤u = [0.62, 0.42,�0.28,�1.78, 0.52, 0.49,�1.24, 0.45, 0.40, 0.23]T ,

and the optimal movie bias

b⇤i = [0.72,�1.20, 0.60,�0.60, 0.33]T .

These values quantify the intuition from what we observe from the training data.
For example:

1. Users 1, 2, 5, 6 and 8 tend to give higher ratings;

2. Users 4 and 7 tend to give lower ratings;

3. Movies A and C tend to receive higher ratings;

4. Movies B and D tend to receive lower ratings.

We clip any predicted rating lower than 1 to 1 and any higher than 5 to 5,
since it is ranking data we are dealing with. The rating matrix estimated by the
baseline predictor (after clipping) is as follows:

R̂ =

0

BBBBBBBBBBBBBBB@

A B C D E

1 5.00 3.09 4.90 � 4.62
2 � 2.89 4.69 3.49 4.42
3 4.10 2.19 � 2.78 3.71
4 � 1.00 2.49 1.29 2.22
5 4.90 � 4.79 3.58 4.51
6 4.88 2.96 � 3.56 4.48
7 3.15 1.23 3.03 1.82 �
8 4.84 2.92 4.72 � 4.44
9 4.84 2.92 4.72 3.51 �
10 4.61 � 4.49 3.29 4.22

1

CCCCCCCCCCCCCCCA

.

We compute the RMSE between R and R̂ above. It is 0.51 for the training
set and 0.64 for the test set.
The baseline predictor with parameters trained through least squares su↵ers

4.3 Examples 79

from the overfitting problem. Take the predicted rating for movie B by user 4 as
an example: r̂

4B = r̄ + b
4

+ bB = 3.67 � 1.78 � 1.20 = 0.69, significantly lower
than the real rating r

4B = 2. Indeed, while the overall training RMSE is 0.51,
the test error is 0.64.

4.3.2 Neighborhood model

The neighborhood model goes one step further to extract the user-movie inter-
actions. We start with the di↵erences between the raw ratings of the training set
and the corresponding biases captured by the (unregularized) baseline predictor:

R̃ = R� R̂ =

0

BBBBBBBBBBBBBBB@

A B C D E

1 0 0.91 �0.90 � ?
2 � 0.11 0.31 ? �0.42
3 0.90 �0.19 � ? �0.71
4 � ? 0.51 �0.29 �0.22
5 �0.90 � ? 0.42 0.49
6 ? 0.040 � �0.56 0.52
7 �0.15 ? �0.031 0.18 �
8 0.16 ? �0.72 � 0.56
9 ? �0.87 0.33 0.54 �
10 ? � 0.51 �0.29 �0.22

1

CCCCCCCCCCCCCCCA

We used ? to indicate test set data, and � to denote unavailable data (i.e., user
1 never rated movie D).
We use the cosine coe�cient to measure the similarity between movies repre-

sented in R̃. Take the calculation of the similarity between movie B and movie
C as an example. According to the training data in R̃, users 1, 2 and 9 rated
both movies. Therefore,

dBC =
r̃
1B r̃1C + r̃

2B r̃2C + r̃
9B r̃9Cp

(r̃2
1B + r̃2

2B + r̃2
9B)(r̃

2

1C + r̃2
2C + r̃2

9C)

=
(0.91)(�0.90) + (�0.11)(0.31) + (�0.87)(0.33)p
(0.912 + 0.112 + 0.872)(0.902 + 0.312 + 0.332)

= �0.84.

Similarly, we can calculate the entire similarity matrix, a 5 ⇥ 5 symmetric
matrix (where the diagonal entries are not of interest since they concern the
same movie):

D =

0

BBBB@

A B C D E

A � �0.21 �0.41 �0.97 �0.75
B �0.21 � �0.84 �0.73 0.51
C �0.41 �0.84 � �0.22 �0.93
D �0.97 �0.73 �0.22 � 0.068
E �0.75 0.51 �0.93 0.068 �

1

CCCCA
.

80 How does Netflix recommend movies?

With the above pairwise movie-movie similarity values, we can carry out the
following procedure to compute r̂ui:

1. Find L = 2 movie neighbors with the largest absolute similarity values, |dik|
and |dil|.

2. Check if user u has rated both movies k and l. If so, use both, as in the
formula below. If the user rated only one of them, then just use that movie.
If the user rated neither, then do not use the neighborhood method.

3. Calculate the predicted rating r̂u,i = (r̄ + bu + bi) +
d
ik

r̃
uk

+d
il

r̃
ul

|d
ik

|+|d
il

| .

Take r̂
3D for an example. The two nearest neighbors for movie D are movie

A and movie B, whose cosine coe�cients are -0.97 and -0.73 respectively. User
3 has rated both movie A and movie B. Hence,

r̂
3D = (r̄+b

3

+bD)+
dDAr̃3A + dDB r̃3B
|dDA|+ |dDB |

= 2.78+
�0.97 ⇤ 0.90 + (�0.73) ⇤ (�0.19)

0.97 + 0.73
= 2.35.

In the baseline predictor, r̂
3D = 2.78. So the neighborhood predictor reduces the

error compared to the ground truth of r
3D = 2.

Similarly, the closest neighbors for movie B are movies C and D. From the
training set, we know that user 2 only rated movie C but not D. Hence r̂

2B =
(r̄ + b

2

+ bB) + dBC r̃2C/|dBC | = 2.89� 0.31 = 2.58.
The predictions by the neighborhood model (after clipping) are given below:

R̂N =

0

BBBBBBBBBBBBBBB@

A B C D E

1 5.00 3.99 3.99 � 5.00
2 � 2.58 4.86 3.38 4.11
3 4.81 2.19 � 2.35 2.81
4 � 1.00 2.71 1.29 1.71
5 4.46 � 4.30 4.49 5.42
6 4.97 3.52 � 3.52 4.48
7 2.97 1.16 3.03 1.97 �
8 4.28 3.64 4.16 � 4.77
9 4.25 2.44 5.54 4.33 �
10 4.87 � 4.71 3.29 3.71

1

CCCCCCCCCCCCCCCA

The training error and test error using the neighborhood model are 0.34 and
0.54 respectively, compared to 0.51 and 0.64 using the baseline predictor. This
represents a 16% improvement in RMSE for the test set.
We could also take a look at the errors by Hamming distance. If we just look

at the wrong predictions (after rounding up or down to integers), it turns out all
of them are o↵ by 1 star. But the baseline predictor gets 5 wrong, whereas the
neighborhood predictor gets 4 wrong, a 20% reduction in error.
Even in this extremely small example, the movie-based neighborhood method

manages to take advantage of the statistical relationship between the movies
and outperform the baseline predictor for both the training and test data sets.

4.4 Advanced Material 81

In much larger and realistic cases, neighborhood methods have much more infor-
mation to act on and can reduce RMSE much further as compared to a baseline
predictor.

4.4 Advanced Material

4.4.1 Regularization: Robust learning without overfitting

Learning is both an exercise of hindsight and one of foresight : it should generate
a model that fits training data, but also make predictions that match unseen
data. There is a tradeo↵ between the two. You need reasonable hindsight to
have foresight, but a perfect hindsight often means you are simply re-creating
history. This is called overfitting, and is a particularly common problem when
there is a lot of noise in your data (you end up modeling the noise), or there
are too many parameters relative to the training data size (you end up creating
a model tailor-made for the training data). Eventually it is the foresight that
matters.
Overfitting is intuitively clear: you can always develop a model that fits train-

ing data perfectly. For example, my recommendation system for Netflix might be
as follows: Alice rates 4 stars to a comedy starring Julia Roberts if she watches
it on April 12, and 5 stars to a drama starring Al Pacino if she watches on March
25, etc. I can make it fit the training data perfectly by adding enough model pa-
rameters, such as lead actors and actresses, date of the user watching the movie,
etc. But in doing so, the model is no longer simple, robust, or predictive.
We will go through an example of overfitting in learning in a homework prob-

lem. There are several ways to avoid overfitting. Regularization is a common
one: add a penalty term that reduces the sensitivity to model parameters by
rewarding smaller parameters. We measure size by some norm, and then we add
this penalty term to the objective function quantifying learning e�ciency. In our
case, that e�ciency is captured by RMSE. To maintain the least squares struc-
ture of the optimization over model parameters, it is a common practice to add
the l-2 norm of the parameter values as the penalty term to control hindsight:

minimize{model parameters} (Squared error term)+� (Parameter size squared).

This results in the regularized least squares problem, and it can be e�ciently
solved, just like the original least squares. Statistically, this process will introduce
bias to the parameter values.
The theme in regularization is to use parameters with smaller magnitudes to

avoid “over optimization.” Using fewer parameters is another path.
In Netflix recommendation, adding the regularization term �(

P
u b

2

u +
P

i b
2

i)
limits the magnitudes of the user and movie biases, which in turn helps bring the
test error more in line with the training error. For the same example as in the
last section, Figure 4.9 shows how the training and test errors vary with respect

82 How does Netflix recommend movies?

0 0.5 1 1.5 2
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Value of �

R
M

SE

Training errors
Test errors

Figure 4.9 E↵ect of regularization on overfitting for baseline predictor. As the
regularization weight parameter � increases, the training set’s RMSE increases but
the test set’s RMSE drops first. In hindsight, we see that � = 1 turns out to be the
right regularization weight value in this numerical example. Setting the right � in
each regularized least squares problem can be tricky.

to di↵erent values of �. The test error first falls with more regularization and
starts to rise once � exceeds an optimal value, which happens to be at about 1
in this example.
After regularization with the best � = 1, we get R̂ as

R̂ =

0

BBBBBBBBBBBBBBB@

A B C D E

1 4.70 3.23 4.61 � 4.40
2 � 3.05 4.44 3.38 4.23
3 4.01 2.53 � 2.85 3.71
4 � 1.47 2.86 1.80 2.65
5 4.67 � 4.58 3.52 4.38
6 4.54 3.07 � 3.39 4.25
7 3.37 1.90 3.28 2.22 �
8 4.66 3.18 4.57 � 4.36
9 4.49 3.02 4.40 3.34 �
10 4.45 � 4.36 3.29 4.15

1

CCCCCCCCCCCCCCCA

,

and the resulting RMSE as 0.56 for the training set and 0.50 for the test set.

4.4 Advanced Material 83

The tricky part is to set the weight � just right so as to strike the balance
between hindsight and foresight. There are several techniques to do that, such
as cross-validation, where we divide the available training data into K parts.
In each of K rounds of cross-validation, we leave out one of the K parts as test
data. Of course, a larger K provides more opportunities for validation, but leaves
a smaller test data sample per round. Sometimes, a reasonable � can be found
by using any K picked from a wide range of values.

4.4.2 Latent factor method: matrix factorization and alternating projection

The latent factor method relies on global structures underlying the table in Figure
4.3. One of the challenges in recommendation system design is that the table is
both large and sparse. In the case of the Netflix Prize, the table has about
N = 480, 000 times M = 17, 770, i.e., more than 8.5 billion cells, yet only a little
more than 1% of those are occupied with ratings.
But we suspect there may be structures that can be captured by two much

smaller matrices. We suspect that the similarities among users and movies are
not just a statistical fact, but are actually induced by some low-dimensional
structures hidden in the data. Therefore, we want to build a low-dimensional
model for this high-dimensional data.
Towards this goal, we propose that for each user u, there is a K-dimensional

vector pu explaining her movie taste. And for each movie i, there is also a K-
dimensional vector qi explaining the movie’s appeal. The inner product between
these two vectors, pT

uqi, is the prediction r̂ui.
Typical numbers of K for the Netflix Prize were between 10 and 200. Let

us consider a toy example where K is 2. One dimension is whether the movie
is romantic vs. action, and the other is long vs. short. Let us say Alice likes
romantic movies but is not too much into long movies: pu = [1, 0.7]T . Let us
say “Gone With the Wind” is pretty romantic and long: qi = [2.5, 2]T . Then
their inner product is pT

uqi = 1⇥ 2.5 + 0.7⇥ 2 = 3.9.
Now our job in the latent factor method is to fix K, the number of dimensions,

and then optimize over all these latent factor vectors {pu,qi} to minimize the
Mean Squared Error (MSE) based on the given ratings {rui} in the training set:

minimize
P,Q

X

(u,i)

�
rui � pT

uqi

�
2

. (4.8)

Here, we collect the pu vectors across all the users to form an N ⇥K matrix P,
and we collect the qi vectors across all the movies to form an K ⇥M matrix
Q. Of course, we should also add quadratic regularization terms, penalizing the
sum of squares of all the entries in (P,Q) as well.
Solving (4.8) we obtain P⇤ and Q⇤, and the resulting latent-factor prediction

matrix is

R̂L = P⇤Q⇤.

84 How does Netflix recommend movies?

M

N

K M

N

K

Figure 4.10 Factorize matrix R into a skinny matrix P and a thin matrix Q. In the
case of the Netflix Prize, N = 480, 000 and M = 17, 770, both very large, whereas the
latent factor dimension is between K = 10 to 200, much smaller than either N or M .

How many model parameters are we talking about here? If K = 200, then we
have 200⇥ (480, 000+ 17, 770), a little less than 100 million parameters. That is
almost the same as the number of the training set’s rating data points. We can
view (P,Q) as a matrix factorization of the much larger N ⇥M matrix R, as
illustrated in Figure 4.10. By picking a K value so that K(N +M) is about the
same as the number of entries in the large, sparse matrix R, we turn the sparsity
in the high-dimensional data (given to us) into structures in a low-dimensional
model (constructed by us).

How do we solve problem (4.8), or its regularized version? It might look like a
least squares problem, but it is not. Both pu and qi are optimization variables
now. In fact, it is not even a convex optimization. But if we hold P as constants
and vary overQ, or vice versa, it reduces to a least squares problem that we know
how to solve. So a standard way to solve (4.8) is by alternating projections:
hold P as constants and vary over Q in a least squares problem, then hold Q
as constants and vary over P in another least squares problem, and repeat until
convergence. Since this is a nonconvex optimization problem, the converged point
(P⇤,Q⇤) may not be globally optimal.

Coming back to those latent factors, what exactly are they? Many models
may be able to fit given observations, but we hope some of them are also ex-
plainable through intuition. In the neighborhood method, we have an intuitive
explanation of statistical correlation. But in the latent factor method, precisely
where we expect to see some meaning of these latent factors, we actually do not
have intuitive labels attached to all these K dimensions. If the prediction works
out, these K dimensions are telling us something, but we might not be able to
explain what that “something” is. Some people view this as a clever strength: ex-

4.4 Advanced Material 85

tracting structures even when words fail us. Others consider it an unsatisfactory
explanation of this “trick.”
In any case, a straight-forward implementation of the latent factor model,

with the help of temporal e↵ect modeling, can give an RMSE of 0.8799. That is
about an 8% of improvement over Cinematch, and enough to get you close to
the leading position in the 2007 progress prize.
The di↵erence between the neighborhood model and the latent factor model

lies not just in statistical vs. structural understanding, but also in that the neigh-
borhood model only utilizes pairwise (local) interactions, whereas the latent fac-
tor model leverages global interactions. But we can expand the neighborhood
model to incorporate global interactions too. In fact, it has recently been shown
that neighborhood models become equivalent to a particular matrix factorization
model.
By combining the neighborhood method and latent factor method, with the

help of temporal e↵ect models and implicit feedback models, and after blending
other tricks and carefully tuning all the parameters with the training set, in
about two years after the 8% improvement was achieved, we finally saw the 10%
mark barely reached by the two teams in July 2009.

Further Readings

The Netflix Prize was widely reported in popular science magazines from 2006
to 2009.

1. The original announcement by Netflix in October 2006 can be found here:
[Net06] The Netflix Prize, http://www.netflixprize.com//rules, 2006.

2. A non-technical survey of the first two years of progress can be found at
[Bel+09] R. Bell, J. Bennett, Y. Koren, and C. Volinsky, “The million dollar

programming prize,” IEEE Spectrum, May 2009.

3. A more technical survey can be found as a book chapter below:
[KB11] Y. Koren and R. Bell, “Advances in collaborative filtering,” Recom-

mender Systems Handbook, Springer, 2011.

4. Another survey written by part of the winning team of the Netflix Prize
is the following one on factorization methods, which we followed in Advanced
Material:
[KBV09] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques

for recommender systems,” IEEE Computer, 2009.

5. This chapter introduces the basic notions of convex optimization. An excel-
lent textbook for convex optimization and applications is

86 How does Netflix recommend movies?

[BV04] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Uni-
versity Press, 2004.

Problems

4.1 Baseline predictor ?

Compute the baseline predictor R̂ for the following R:

R =

2

66664

5 � 5 4
� 1 1 4
4 1 2 4
3 4 � 3
1 5 3 �

3

77775
.

(Hint: This involves a least squares problem with 16 equations and 9 variables.
Feel free to use any programming language. For example, backslash operator or
pinv() in Matlab. If there are multiple solutions to the least squares problem,
take any one of these.)

4.2 Neighborhood predictor ? ? ?

Using the R and the computed R̂ from the previous question, compute the
neighborhood predictor R̂N with L = 2.

4.3 Least squares ??

(a) Solve for b in the following least squares problem, by hand or programming
in any language:

minimize
b

kAb� ck2
2

,

where

A =

2

664

1 0 2
1 1 0
0 2 1
2 1 1

3

775 and c =

2

664

2
1
1
3

3

775 .

(b) Solve the above least squares problem again with regularization. Vary the
regularization parameter � for � = 0, 0.2, 0.4, . . . , 5.0, and plot both kAb � ck2

2

and kbk2
2

against �.

(Hint: take derivative of

kAb� ck2
2

+ �kbk2
2

with respect to b to obtain a system of linear equations.)

4.4 Advanced Material 87

4.4 Convex functions ?

Determine whether the following functions are convex, concave, both, or nei-
ther:
(a) f(x) = 3x+ 4, for all real x;

(b) f(x) = 4 ln
⇣x
3

⌘
, for all x > 0;

(c) f(x) = e2x, for all real x;
(d) f(x, y) = �3x2 � 4y2, for all real x and y;
(e) f(x, y) = xy, for all real x and y.

(Hint: f is convex if and only if its Hessian matrix H is positive semidefinite.
Similarly, f is concave if and only if its Hessian H is negative semidefinite.)

4.5 Log-Sum-Exp and geometric programming ??

(a) Is exp(x+ y) convex or concave in (x, y)?

(b) Is exp(x+ y) + exp(2x+ 5y) convex or concave in (x, y)?

(c) Is log(exp(x+y)+exp(2x+5y)) convex or concave in (x, y)? This log-sum-
exp function is heavily used in a class of convex optimization called geometric
programming in fields like statistical physics, communication systems, and cir-
cuit design.

(d) Can you turn the following problem in variables x, y, z > 0 into convex
optimization?

minimize xy + xz
subject to x2yz + xz�1 10

0.5x�0.5y�1 = 1.

5 When can I trust an average rating
on Amazon?

Starting with this chapter, in the next four chapters we will walk through a
remarkable landscape of intellectual foundations. But sometimes we will also see
significant gaps between theory and practice.

5.1 A Short Answer

We continue with the theme of recommendation. Webpage ranking in Chapter 3
turns a graph into a ranked order list of nodes. Movie ranking in Chapter 4 turns
a weighted bipartite user-movie graph into a set of ranked order lists of movies,
with one list per user. We now examine the aggregation of a vector of rating
scores by reviewers of a product or service, and turn that vector into a scalar,
one per product. These scalars may in turn be used to rank order a set of similar
products. In Chapter 6, we will further study aggregation of many vectors into
a single vector.
When you shop on Amazon, likely you will pay attention to the number of stars

shown below each product. But you should also care about the number of reviews
behind that averaged number of stars. Intuitively, you know that a product with
2 reviews, both 5 stars, may not be better than a competing product with 100
reviews and an average of 4.5 stars, especially if these 100 reviews are all 4 and 5
stars and the reviewers are somewhat trustworthy. We will see how such intuition
can be sharpened.
In most online review systems, each review consists of three fields:

1. Rating (a numerical score often on the scale of 1-5 stars). This is the focus of
our study.

2. Review (text).

3. Review of review (often a binary up or down vote).

Rarely do people have time to read through all the reviews, so a summary
review is needed to aggregate the individual reviews. What is a proper aggrega-
tion? That is the subject of this chapter.
Ratings are often not very trustworthy, and yet they are important in so many

contexts, from peer reviews in academia to online purchases of every kind. The
hope is that the following two approaches can help:

5.1 A Short Answer 89

First, we need methods to ensure some level of accuracy, screening out the
really bad ones. Unlimited and anonymous reviews have notoriously poor quality,
because a competitor may enter many negative reviews, the seller herself may
enter many positive reviews, or someone who has never even used the product or
service may enter random reviews. So before anything else, we should first check
the mechanism used to enter reviews. How strongly are customers encouraged,
or even rewarded, to review? Do you need to enter a review of reviews before you
are allowed to upload your own review? Sometimes a seemingly minor change in
formatting leads to significant di↵erences: Is it a binary review of thumbs up or
down, followed by a tally of up vs. down votes? What is the dynamic range of
the numerical scale? It has been observed that the scale of 1-10 often returns 7
as the average and then a bimodal distribution around it. A scale of 1-3 gives a
very di↵erent psychological hint to the reviewers compared to a scale of 1-5, or
a scale of 1-10 compared to -5 to 5.
Second, the review population size needs to be large enough to wash out the

inaccurate ones. But how large is large enough? And can we run the raw ratings
through some signal processing to get the most useful aggregation?
These are tough questions with no good answers yet, not even well formulated

problem statements. The first question depends on the nature of the product
being reviewed. Movies (e.g., on IMDB) are very subjective, whereas electron-
ics (e.g., on Amazon) are much less so, with hotels (e.g., on tripadvisor) and
restaurants (e.g., on opentable) somewhere in between. It also depends on the
quality of the review, although reputation of the reviewer is a di�cult metric to
quantify in its own right.
The second question depends on the metric of “usefulness.” Each user may

have a di↵erent metric, and the provider of the service or product may use yet
another one. This lack of clarity in what should be optimized is the crux of the
ill-definedness of the problem at hand.
With these challenges, it may feel like opinion aggregation is unlikely to work

well. But there have been notable exceptions recorded for some special cases. A
famous example is Galton’s 1906 observation on a farm in Plymouth, UK, where
787 people in a festival there participated in a game of guessing the weight of
an ox, each writing down a number independent of others. There was also no
common bias; everyone could take a good look at the ox. While the estimates by
each individual were all over the place, the average was 1197 pounds. It turned
out the ox weighed 1198 pounds. Just a simple averaging worked remarkably
well. For the task of guessing the weight of an ox, 787 was more than enough to
get the right answer (within a margin of error of 0.1%).
But in many other contexts, the story is not quite as simple as Galton’s ex-

periment. There were several key factors here that made simple averaging work
so well:

• The task is relatively easy; in particular, there is a correct objective answer
with a clear numerical meaning.

90 When can I trust an average rating on Amazon?

• The estimates are both unbiased and independent of each other.

• There are enough people participating.

More generally, three factors are important in aggregating individual action:

• Definition of the task : Guessing a number is easy. Consensus formation in
social choice is hard. Reviewing a product on Amazon is somewhere in
between. Maybe we can define “subjectivity” by the size of the review
population needed to reach a certain “stabilization number.”

• Independence of reviews: As we will see, the wisdom of crowds, if there is
one to the degree we can identify and quantify, stems not from having
many smart individuals in the crowd, but from the independence of each
individual’s view from the rest. Are Amazon reviews independent of each
other? Kind of. Even though you can see the existing reviews before enter-
ing your own, usually your rating number will not be significantly a↵ected
by the existing ratings. Sometimes, reviews are indeed entered as a reac-
tion to recent reviews posted on the website, either to counter-argue or to
reinforce points made there. This influence from the sequential nature of
review systems will be partially studied in Chapter 7.

• Review population: For a given task and degree of independence, there is
correspondingly a minimum number of reviews, a threshold, needed to give
a target confidence of trustworthiness to the average. If these ratings pass
through some signal processing filters first, then this threshold may be
reduced.

What kind of signal processing do we need? For text reviews, there needs to
be natural language tools, e.g., detecting inconsistencies or extreme emotions
in a review and discounting it and its associated rating. We in academia face
this problem in each decision on a peer-reviewed paper, a funding proposal, a
tenure-track position interview, and a tenure or promotion case.
For rating numbers, some kind of weighting is needed, and we will discuss

a particularly well-studied one soon. In Chapter 6, we will also discuss voting
methods, including majority rule, pairwise comparison, and positional counting.
These voting systems require each voter to provide a complete ranking, possibly
implicitly, with a numerical rating scale. Therefore, we will have more informa-
tion, perhaps too much information, as compared to our current problem.

5.2 Challenges of rating aggregation

Back to rating aggregation. Here are several examples illustrating three of the
key challenges in deciding when to trust ratings on Amazon.
Example 1. Many online rating systems use a naive averaging method for their

product ratings. Moreover, given that di↵erent products have di↵erent numbers

5.2 Challenges of rating aggregation 91

of reviews, it is hard to determine which product has a better quality. For ex-
ample, in Figure 5.1, Philips 22PFL4504D HDTV has 121 ratings with a mean
of 4, while Panasonic VIERA TC-L32C3 HDTV has 55 ratings with a mean of
4.5. So the customer is faced with a tradeo↵ between choosing a product with
a lower average rating and a larger number of reviews versus one with a higher
average rating and a smaller number of reviews.

Figure 5.1 Tradeo↵ between review population and average rating score. Should a
product with fewer reviews but higher average rating be ranked higher than a
competing product with more ratings but lower average rating?

Example 2. Consider 2 speaker systems for home theater. Both RCA RT151
and Pyle Home PCB3BK have comparable mean scores around 4. 51.9% of users
gave RCA RT151 a rating of 5 stars while 7.69% gave 1 star. On the other hand,
54.2% of users gave 5 stars to Pyle Home PCB3BK while 8.4% gave 1 star. So
Pyle Home PCB3BK speaker has not only a higher percentage of people giving
it 5 stars than RCA RT151, but also has a higher percentage of people giving
it 1 star. There is a larger variation in the ratings of Pyle Home PCB3BK than
RCA RT151.

Figure 5.2 How to view the aggregated ratings: should it be based on helpful ratings
or on the latest trend? Here the same set of iPod touch ratings on Amazon is used to
extract two di↵erent subsets of ratings, and their values are quite di↵erent.

Example 3. In Figure 5.2, we compare the mean rating of the first 60 “most

92 When can I trust an average rating on Amazon?

helpful” reviews of iPod3 Touch (32 GB) on Amazon with the mean from the 60
most recent ratings. The ratings are on the y-axis and the times of the ratings
(index) are on the x-axis. The mean of the most recent ratings is 1.5 times greater
than the mean corresponding to the most helpful reviews. Is this a “real” change
or just noise and normal fluctuation? What should the timescale of averaging
be?
At the heart of these problems is the challenge of turning vectors into scalars,

which we will meet again in Chapter 6. This can be a “lossy compression” with
very di↵erent results depending on how we run the process, e.g., just look at the
di↵erence between mean and median.

5.3 Beyond basic aggregation of ratings

We may run a time-series analysis to understand the dynamics of rating. In
Figure 5.3, the three curves of ratings entered over a period of time give the
same average, but “clearly” some of them have not converged to a stable average
rating. What kind ofmoving window size should we use to account for cumulative
average and variance over time?

g

5

1

R (t)

t
(a)

5

1

R (t)

t
(b)

5

1

R (t)

t
(c)

Figure 5.3 Three time series with the same long-term average rating but very di↵erent
stabilization behavior. The time axis scale is in the order of weeks. (a) shows
continued cyclic fluctuations of ratings R over time t. (b) shows a clear convergence.
(c) shows promising signs of convergence but it is far from clear that the ratings have
converged. Of course, the timescale also matters.

We may consider detecting anomalous ratings and throwing out the highly
suspicious ones. If we detect a trend change, that may indicate a change of
ownership or generational upgrade. And if such detection is accurate enough, we
can significantly discount the ratings before this time. For ratings on the scale
of 1-5, the coarse granularity makes this detection more di�cult.

5.4 A Long Answer 93

We may consider zooming into particular areas of this vector of ratings, e.g.,
the very satisfied customers and the very dissatisfied ones, although it is often the
case that those who care enough to enter ratings are either extremely satisfied or
reasonably dissatisfied. There might be a bimodal distribution in the underlying
customer satisfaction for certain products, but for many products there is often
another bimodal distribution on the biased sampling based on who cared enough
to write reviews.
Across all these questions, we can use the cross-validation approach from Chap-

ter 4 to train and test the solution approach. If we can stand back 1 year and
predict the general shape of ratings that have unfolded since then, that would
be a strong indicator of the utility of our signal processing method.
But these questions do not have well-studied answers yet, so we will now focus

instead on some simpler questions as proxies to our real questions: Why does
simple averaging sometimes work, and what to do when it does not?

5.4 A Long Answer

5.4.1 Averaging a crowd

We start from a significantly simplified problem. Take the Galton example, and
say the number that a crowd of N people wants to guess is x, and each person
i in the crowd makes a guess yi:

yi(x) = x+ ✏i(x),

i.e., the true value plus some error ✏i. The error depends on x but not other j; it is
independent of other errors. This error can be positive or negative, but we assume
that it averages across di↵erent x to be 0; it has no bias. In reality, errors are
often neither independent nor unbiased. Sequential estimates based on publicly
announced estimates made by others may further exacerbate the dependence
and bias. We will see examples of such information cascades in Chapter 7.
We measure error by mean squared error (MSE), just like what we did in

Chapter 4. We want to compare the following two quantities:

• The average of individual guesses’ errors.

• The error of the averaged guess.

The average of errors and the error of the average are not the same, and we will
see how much they di↵er. Since x is a number that can take on di↵erent values
with di↵erent probabilities, we should talk about the expected MSE, where the
expectation Ex is the averaging procedure over the probability distribution of x.
The average of (expected, mean squared) errors (AE), by definition, is

EAE =
1

N

NX

i=1

Ex

⇥
✏2i (x)

⇤
. (5.1)

94 When can I trust an average rating on Amazon?

On the other hand, the (expected, mean squared) error of the average (EA) is

EEA = Ex

2

4

1

N

NX

i=1

✏i(x)

!
2

3

5 =
1

N2

Ex

2

4

NX

i=1

✏i(x)

!
2

3

5 (5.2)

since the error term is now

1

N

X

i

yi � x =
1

N

X

i

yi �Nx

!
=

1

N

X

i

(yi � x)

!
=

1

N

X

i

✏

!
.

It looks like (5.1) and (5.2) are the same, but they are not: sum of squares
and square of sum are di↵erent. Their di↵erence is a special case of Jensen’s
inequality on convex quadratic functions. There are many terms in expanding
the square in (5.2), some are ✏2i , and others are ✏i✏j where i 6= j. For example, if
N = 2, we have one cross-term:

(✏
1

+ ✏
2

)2 = ✏2
1

+ ✏2
2

+ 2✏
1

✏
2

.

These cross terms {✏i✏j} take on di↵erent values depending on whether the
estimates {yi} are independent or not. If they are independent, we have

Ex[✏i(x)✏j(x)] = 0, 8i 6= j.

In that case, all the cross terms in expanding the square are zero, and we have

EEA =
1

N
EAE . (5.3)

If you take the square root of MSE to get RMSE, the scaling in (5.3) is then
1/
p
N .

This may appear to be remarkable. In such a general setting and using such
an elementary derivation, we have mathematically crystallized (a type of) the
wisdom of crowds in terms of e�ciency gain: error is reduced by a factor as
large as the size of the crowd if we average the estimates first, provided that
the estimates are independent of each other. But this result holds for a crowd
of 2 as much as it holds for a crowd of 1000. Some people think there must be
something beyond this analysis, which is essentially the Law of Large Numbers
at work: variance is reduced as the number of estimates go up. There should be
some type of the wisdom of crowd that only shows up for a large enough crowd.
Furthermore, we have so far assumed there is no systematic bias; averaging will
not help reduce any bias that is in everyone’s estimate.
The 1/N factor is only one dimension of the wisdom of crowds, what we refer to

as “multiplexing gain” from independent “channels.” We will later see “diversity
gain,” symbolically summarized as 1� (1� p)N .
What if the estimates are completely dependent? Then the averaged estimate

is just the same as each estimate, so the error is exactly the same, and it does
not matter how many reviews you have:

EEA = EAE . (5.4)

5.4 A Long Answer 95

In most cases, the estimates are somewhere in between completely independent
and completely dependent. We have seen that each person in the crowd can be
quite wrong. What is important is that they are wrong in independent ways. In
statistical terms, we want their pairwise correlations to be small. Of course, if we
could identify who in the crowd have the correct estimates, we should just use
their estimates. So the wisdom of crowds we discussed is more about achieving
robustness arising out of independent randomization than getting it right by
identifying the more trustworthy estimates.

5.4.2 Bayesian estimation

Bayesian analysis can help us quantify the intuition that the number of ratings,
N , should matter. Let us first get a feel for the Bayesian view with a simple,
illustrative example. We will then go from one product to many products being
ranked in the Bayesian way.
Suppose you run an experiment that returns a number, and you run it n times

(the same experiment and independent runs). Suppose that s times it returns
an outcome of 1. What do you think is the chance that the next experiment, the
(n+1)th one, will return an outcome of 1 too? Without going into the foundation
of probability theory, the answer is the intuitive one:

s

n
.

Now if you know the experiment is actually a flip of a biased coin, what do
you think is the chance that the next experiment will be positive? Hold on, is
that the same question?
Actually, it is not. Now you have a prior knowledge: you know there are two

possible outcomes, one with probability p for head, and the other 1 � p for
tail. That prior knowledge changes the derivation, and this is the essence of the
Bayesian reasoning.
We first write down the probability distribution of p given that s out of n

flips showed heads. Intuitively, the bigger s is, the more likely the coin is biased
towards head, and the larger p is. This is the essence of the Bayesian view: more
observations makes the model better.
Now, if p were fixed, then the probability of observing s heads and n� s tails

follows the Binomial distribution:
✓

n
s

◆
ps(1� p)n�s. (5.5)

So the probability distribution of p must be proportional to (5.5). This is the key
step in Laplace’s work that turned Bayes insights into a systematic mathematical
language.
This is perhaps less straightforward that it may sound. We are “flipping the

table” here. Instead of looking at the probability of observing s out of n heads

96 When can I trust an average rating on Amazon?

for a given p, we looking at the probability distribution of p that gave rise to
this observation in the first place, since we have the observation but not p.
Once the above realization is internalized in your brain, the rest is easy. The

probability distribution of p is proportional to (5.5), but we need to divide it by
a normalization constant so that it is between 0 and 1. Knowing p 2 [0, 1], the
normalization constant is simply:

Z
1

0

✓
n
s

◆
ps(1� p)n�sdp.

Using beta function to get the above integral, we have:

f(p) =

✓
n
s

◆
ps(1� p)n�s

R
1

0

✓
n
s

◆
ps(1� p)n�sdp

=
(n+ 1)!

s!(n� s)!
ps(1� p)n�s.

Finally, since conditional probability of seeing a head given p is just p, the
unconditional probability of seeing a head is simply

Z
1

0

pf(p)dp,

an integral that evaluates to
s+ 1

n+ 2
.

A remarkable and remarkably simple answer, this is called the rule of succes-
sion in probability theory. It is perhaps somewhat unexpected. The intermediate
step to understanding p’s distribution is not directly visible in the final answer,
but that was in the core of the innerworking of Bayesian analysis. It is similar in
spirit to the latent factor model in Chapter 4, and to other hidden-factor models
like hidden Markov models used in many applications, from voice recognition to
portfolio optimization.
Why is it not s/n? One intuitive explanation is that if you know the outcome

must be success or failure, it is as if you have already seen 2 experiments “for
free”, 1 success and 1 failure. If you incorporate the prior knowledge in this way,
then the same intuition on the case without prior knowledge indeed gives you
(s+ 1)/(n+ 2).

5.4.3 Bayesian ranking

So why is Bayesian analysis related to ratings on Amazon? Because ratings’
population size matters. Back to our motivating question: should a product with
only 2 reviews, even though both are 5 stars, be placed higher than a competing
product with 100 reviews that averages 4.5 stars? Intuitively, this would be
wrong. We should somehow weight the raw rating scores with the population
sizes, just like we weighted a node’s importance by the in-degree in Chapter

5.5 Examples 97

3. Knowing how many reviews there are gives us a prior knowledge, just like
knowing a coin shows up heads 100 times out of 103 flips is a very di↵erent
observation than knowing it shows up heads 3 times out of 13 flips.
More generally, we can think of a “sliding ruler” between the average rating

of all the products, R, and the averaged rating of brand i, ri. The more reviews
there are for brand i relative to the total number of reviews for all the brands,
the more trustworthy ri is relative to R. The resulting Bayesian rating for brand
i is

r̃i =
NR+ niri
N + ni

. (5.6)

We may also want to put an upper bound on N , for otherwise as time goes by
and N monotonically increases, the dynamic range of the above ratio can only
shrink.
Quite a few websites adopt Bayesian ranking. The Internet Movie DataBase

(IMDB)’s top 250 movies ranking follows (5.6) exactly. So the prior knowledge
used is the average of all the movie ratings.
Beer Advocate’s top beer ranking e.g., http://beeradvocate.com/lists/popular

uses the following formula:
NminR+ niri
Nmin + ni

,

where Nmin is the minimum number of reviews needed for a beer to be listed
there. Perhaps a number in between N and Nmin would have been a better
choice, striking a tradeo↵ between following the Bayesian adjustment exactly
and avoiding the saturation e↵ect (when some beers get a disproportionately
large numbers of reviews).
All of the above su↵er from a drawback in their assuming that there is a single,

“true” value of a product’s ranking, as the mean of some Gaussian distribution.
But some products simply create bipolar reactions: some love it and some hate
it. The idea of Bayesian ranking can be extended to a multinomial model and
the corresponding Dirichlet prior.
Of course, this methodology only applies to adjusting the ratings of each brand

within a comparable family of products, so that proper ranking can be achieved
based on {r̃i}. It cannot adjust ratings without this backdrop of a whole family
of products that provides the scale of relative trustworthiness of ratings. It is
good for ranking, but not for rating refinement, and it does not take into account
time series analysis.

5.5 Examples

5.5.1 Bayesian ranking changes order

Consider Table 5.5.1, a compilation of ratings and review populations for Mac-
Books. The items are listed in descending order of their average rating. Following

98 When can I trust an average rating on Amazon?

(5.6), the Bayesian rankings for each of the five items can be computed. First,
we compute the product NR as follows:

NR =
X

i

niri = 10⇥4.920+15⇥4.667+228⇥4.535+150⇥4.310+124⇥4.298 = 2332.752

Then, with N =
P

i ni = 527, we apply (5.6) to each of the items:

r̄
1

=
2332.752 + 10⇥ 4.920

527 + 10
= 4.436,

r̄
2

=
2332.752 + 15⇥ 4.667

527 + 15
= 4.433,

r̄
3

=
2332.752 + 228⇥ 4.535

527 + 228
= 4.459,

r̄
4

=
2332.752 + 150⇥ 4.310

527 + 150
= 4.401,

r̄
5

=
2332.752 + 124⇥ 4.298

527 + 124
= 4.402.

These calculations and the Bayesian-adjusted rankings are shown in Table
5.5.1. All of the MacBook’s ranking positions change after the adjustment is
applied, because Bayesian adjustment takes into account the number of reviews
as well as the average rating for each item. The third MacBook (MB402LL/A)
rises to the top because the first and second were rated by far less people, and
as a result, the ratings of both of these items drop significantly.

MacBook Total Ratings Average Rating Rank Bayes Rating Bayes Rank

MB991LL/A 10 4.920 1 4.436 2
MB403LL/A 15 4.667 2 4.433 3
MB402LL/A 228 4.535 3 4.459 1
MC204LL/A 150 4.310 4 4.401 5
MB061LL/A 124 4.298 5 4.402 4

Table 5.1 An example where average ratings and Bayesian-adjusted ratings lead to
entirely di↵erent rankings of the items. For instance, though the first listed MacBook
(MB991LL/A) has the highest average, this average is based on a small number of ratings
(10), which lowers its Bayes ranking by two places.

5.5 Examples 99

5.5.2 Bayesian ranking quantifies subjectivity

Sometimes Bayesian adjustment does not alter the ranked order of a set of com-
parable products, but we can still look at the “distance” between the original
average rating and the Bayesian adjusted average rating across these products,
e.g., using l-2 norm of the di↵erence between these two vectors.
For example, the adjusted rating for a set of digital cameras and women’s shoes

is computed in Table 5.2 and Table 5.3, respectively. This distance, normalized
by the number of products in the product category, is 0.041 for digital cameras
and 0.049 for shoes. This di↵erence of almost 20% is a quantified indicator about
the higher subjectivity and stronger dependence on review population size for
fashion goods compared to electronic goods.

Digital Camera Number of reviews, ni Mean Rating, ri Bayesian Rating, r̃i

Canon Powershot 392 4.301 4.133
Nikon S8000 163 3.852 4.008
Polaroid 10011P 168 3.627 3.965

Table 5.2 Bayesian adjustment of ratings for 3 digital cameras, with a total of 723
ratings. The L-2 distance between the vector of mean ratings and that of Bayesian ratings
is 0.023.

Women’s Shoes Number of reviews, ni Mean Rating, ri Bayesian Rating, r̃i

Easy Spirit Traveltime 150 3.967 4.182
UGG Classic Footwear 148 4.655 4.289
BearPaw Shearling Boots 201 4.134 4.204
Skechers Shape-Ups 186 4.344 4.245
Tamarac Slippers 120 3.967 4.189

Table 5.3 Bayesian adjustment of ratings for 5 women’s fashion shows, with a total of
805 ratings. The L-2 distance between the vector of mean ratings and that of Bayesian
ratings is 0.041, about twice the di↵erence in the case of digital camera example.

5.5.3 What does Amazon do

On Amazon, each individual product rating shows only the raw scores (the aver-
aged number of stars), but when it comes to ranking similar products by “average
customer review,” it actually follows some secret formula that combines raw score
with three additional elements:

• Bayesian adjustment by review population

100 When can I trust an average rating on Amazon?

• Recency of the reviews
• Reputation score of the reviewer (or quality of review, as reflected in review of

review). See for example www.amazon.com/review/top-reviewers-classic
for the hall of fame of Amazon reviewers.

The exact formula is not known outside of Amazon. In fact, even the reviewer
reputation scores, which leads to a ranking of Amazon reviewers, follows some
formula that apparently has been changed three times in the past years and
remains a secret. Obviously, how high a reviewer is ranked depends on how many
yes/useful votes (say, x) and no/not-useful votes (say, y) are received by each
review she writes. If x is larger than a threshold, either x itself or the fraction
x/(x+y) can be used to assess this review’s quality. And the reviewer reputation
changes as some moving window average of these review quality measures change
over time. The e↵ect of fan vote or loyalty vote, where some people always vote
yes on a particular reviewer’s reviews, is then somehow subtracted. We will see
in Chapter 6 that Wikipedia committee elections also follow some formula that
turns binary votes into a ranking.
Let us consider the list of the top 20 LCD HDTVs of size 30 to 34 inches

in April 2012, “top” according to average customer reviews. It can be obtained
from Amazon by the following sequence of filters: Electronics > Television &
Video > Televisions > LCD > 30 to 34 inches.
There are actually three rank ordered lists:

• The first is the ranking by Amazon, which orders the list in Table 5.5.3.
• Then there are the numerical scores of “average customer review”, which, in-

terestingly enough, does not lead to the actual ranking provided by Ama-
zon.

• There are also the averaged rating scores, which lead to yet another rank
order.

First, we look at the di↵erence between the Amazon ordering and how the
HDTVs would have been ranked had they been sorted based only on the average
customer ratings. The two lists are as follows:

• 1, 2, 7, 12, 14, 3, 4, 5, 8, 9, 15, 16, 20, 6, 10, 11, 18, 13, 17, 19.
• 1, 7, 12, 14, 2, 5, 4, 8, 3, 9, 15, 16, 20, 18, 6, 10, 11, 13, 17, 19.

Clearly, the average customer review ranking is closer to the actual ranking.
It follows the general trend of the actual ranking, with a few outliers: 7, 12, 14,
20, and 13 all seem to be strangely out of order. Let us try to reverse-engineer
what other factors might have contributed to the actual ranking:

1. Bayesian adjustment : The population size of the ratings matter. The raw
rating scores must be weighted with the population size in some way.

2. Recency of the reviews: Perhaps some of the reviewers rated their HDTVs
as soon as they purchased them, and gave them high ratings because the
products worked initially. But, especially with electronics, sometimes faulty

5.5 Examples 101

HDTV Total reviews 5 star 4 star 3 star 2 star 1 star Avg. Avg.
review rating

1 47 37 8 1 1 0 4.7 4.723
2 117 89 19 0 3 6 4.6 4.556
3 315 215 61 19 9 11 4.5 4.460
4 180 116 47 9 2 6 4.5 4.472
5 53 36 12 3 1 1 4.5 4.528
6 111 71 19 6 6 9 4.2 4.234
7 22 16 4 2 0 0 4.6 4.636
8 56 43 5 3 1 4 4.5 4.464
9 130 89 22 8 4 7 4.4 4.400
10 155 96 26 11 9 13 4.2 4.181
11 231 135 48 17 15 16 4.2 4.173
12 8 5 3 0 0 0 4.6 4.625
13 116 55 35 9 5 12 4.0 4.000
14 249 175 60 3 3 8 4.6 4.570
15 8 5 1 2 0 0 4.4 4.375
16 34 20 8 4 0 2 4.3 4.294
17 47 20 14 6 5 2 4.0 3.957
18 44 20 20 1 1 2 4.2 4.250
19 56 24 17 4 5 6 3.9 3.857
20 7 3 3 1 0 0 4.3 4.286

Table 5.4 List of the top twenty 30 to 34 inch LCD HDTVs on Amazon when sorted by
average customer review.

components cause equipment to stop working over time. As a result, recent
reviews should be considered more credible.

3. Quality of the reviewers or reviews: (a) Reputation score of the reviewer:
Reviewers with higher reputations should be given more “say” in the average
customer review of a product. (b) Quality of review: The quality of a review
can be measured in terms of its length or associated keywords in the text.
(c) Review of review: Higher review scores indicate that customers found the
review “helpful” and accurate. (d) Timing of reviews: Review spamming from
competing products can be detected based upon review timing.

Bayesian adjustment will be performed using equation (5.6). Here, R is the
averaged rating of all the products (here assumed to be the top 20), and N is
either the total number of reviews or, as in the Beer Advocate’s website, is the
minimum number of reviews necessary for a product to be listed, or possibly
some mid-range number. Some number in-between these extremes is most likely,
as lots of reviews are entered on Amazon, and the Bayesian adjustment will
saturate as N keeps increasing and become simply R. From the above table,
we can compute R =

P
i niri/

P
i ni = 4.36. Now, what to choose for N? We

compare the Bayesian adjustment rankings for Nmin = 7, which is the lowest
number of reviews for any product (20), Nmax = 249, which is the highest
number of reviews for any product (14), Navg = 100, which is the average of

102 When can I trust an average rating on Amazon?

the reviews across the products, and Nsum = 1986, the total number of reviews
entered for the top 20 products. The results are as follows:

• Nmin: 1, 7, 14, 2, 5, 12, 4, 3, 8, 9, 15, 20, 16, 18, 6, 10, 11, 13, 17, 19

• Nmax: 1, 14, 2, 3, 4, 5, 7, 8, 9, 12, 15, 20, 16, 18, 6, 17, 10, 11, 19, 13

• Navg: 14, 1, 2, 3, 4, 5, 7, 8, 9, 12, 15, 20, 16, 18, 6, 10, 11, 17, 19, 13

• Nsum: 14, 18, 2, 1, 3, 4, 7, 8, 9, 20, 6, 13, 10, 17, 5, 11, 12, 19, 15, 16

Clearly, having N too large or too small is undesirable: Both result in rankings
that are far out of order. Both Nmax and Navg give better results, at least in
terms of grouping clusters together. Still, there are some outliers in each case:
14, 15, 20, 6, 10, and 11 are considerably out of order.
We notice that products 12, 15, and 20 all have a very small number of ratings,

specifically 8, 8, and 7, respectively. But even so, why would they be placed so
far apart in the top 20? To answer this, we take into account the review of
reviews: In the case of product 12, for instance, the “most helpful” review had
26 people find it helpful, whereas in the cases of products 15 and 20 it was 6
and 3, respectively. In addition, we can look at the recency of the reviews: The
“most helpful” review for product 12 was made on November of 2011. Product
15’s “saving grace” is that its corresponding review was more recent, made in
December of 2011, which would push it closer to product 12 in the rankings.
On the other hand, Amazon may have deemed that product 20’s review in July
of 2011 was too outdated. Finally, product 12 had an extremely high quality of
review in its descriptive listing the pros and cons in each case. Amazon probably
trusts this integrity.
On the other hand, why would Amazon decide to rank an item such as 6 so

high, given that the Bayesian adjustment places it around rank 15? Well, when
we look at item 6, we see that its “most helpful” review had 139 out of 144 people
find it helpful, and similar percentages exist for all reviews below it. Further, the
reviewers all have high ratings, one of which is an Amazon “top reviewer”.
The final point of discussion is why product 14 is ranked so low in the top

20, but has one of the first three positions on each of the Bayesian adjustments.
This can be explained by a few factors:

• The most helpful review was from 2010, extremely outdated.

• The 8 reviewers who gave it 1 star all said that the TV had stopped working
after a month, many of whom were high up in the “helpful” rankings. These
reviewers dramatically increased the spread of the ratings and opinions for
this product.

To summarize, the following set of guidelines is inferred from this (small)
sample on how Amazon comes up with its rankings:

1. An initial Bayesian ranking is made, with N chosen to be somewhere around
Nmax or Navg.

5.6 Advanced Material 103

2. Products that have small numbers of reviews or low recency of their most
helpful reviews are ranked separately amongst themselves, and re-distributed
in the top 20 at lower locations (e.g., products 12, 15, and 20).

3. Products that have very high quality, positive reviews from top reviewers are
bumped up in the rankings (e.g., product 6).

4. Products that could cause a potential risk to their sales due to the possibility
of faulty electronics (e.g., product 14) are severely demoted in the rankings.

5.6 Advanced Material

As we just saw, review of review can be quite helpful: higher scores means more
confidence in the review, and naturally leads to a heavier weight for that review.
If a review does not have any reviews, we may take some number between the
lowest score for a review and the average score for all reviews. More generally,
we may take the Bayesian likelihood approach to determine the trustworthiness
of a review based on the observation of the reviews it receives.
While a systematic study of the above approach for rating analytics is still

ongoing, this general idea of weighting individual estimates based on each esti-
mate’s e↵ectiveness has been studied in a slightly di↵erent context of statistical
learning theory, called boosting. If we view each estimator as a person, boosting
shows how they can collaborate, through sequential decision making, to make
the resulting estimate much better than any individual one can be.

5.6.1 Adaptive boosting

Ada Boost, short for adaptive boosting, captures the idea that by sequentially
training estimators, we can make the average estimator more accurate. It is like
an experience many students have while reviewing class material before an exam.
We tend to review those points that we already know well (since that makes us
feel better), while the right approach is exactly the opposite: to focus on those
points that we do not know very well yet.
As in Figure 5.4, consider N estimators yi(x) that each map an input x into

an estimate, e.g., the number of stars in an aggregate rating. The final aggregate
rating is a weighted sum:

P
i ↵iyi, where {↵i} are scalar weights and {yi} are

functions that map vector x to a scalar. The question is how to select the right
weights ↵i. Of course, those yi that are more accurate deserve a larger weight
↵i. But how much larger?
Let us divide the training data into M sets indexed by j: x

1

,x
2

, . . . ,xM . For
each training set, there is a right answer tj , j = 1, 2, . . . ,M , known to us since we
are training the estimators. So now we have N estimators and M data sets. As
each estimator yi gets trained by the data sets, some data sets are well handled
while others are less so. We should adapt accordingly, and give challenging data

104 When can I trust an average rating on Amazon?

{W1j}

Min

y1

Ë1

{W2j}

Min

y2

Ëiyi

{Wnj}

Min

yn

ËnË2

N
Æ
i = 1

g

Figure 5.4 The schematic of Ada Boosting. There are N estimators, indexed by i:
{yi}, and M training data sets, indexed by j. Training is done to minimize weighted
errors, where the weights wij are sequentially chosen from i to i+ 1 according to how
well each training data set is learned so far. The final estimator is a weighted sum of
individual estimators, where the weights {↵i} are also set according to the error of
each estimator yi.

sets, those leading to poor performance thus far, more weight w in the next
estimator’s parameter training.
So both the training weights {wij} and the estimator combining weights {↵i}

are determined by the performance of the estimators on the training sets.
We start by initializing the training weights w

1j for estimator 1 to be even
across the data sets:

w
1j =

1

M
, j = 1, 2, . . . ,M.

Then sequentially for each i, we train estimator yi by minimizing:

MX

j=1

wij1y
i

(x

j

) 6=t
j

,

where 1 is an indicator function, which returns 1 if the subscript is true (the
estimator is wrong) and 0 otherwise (the estimator is correct).
After this minimization, we get the resulting estimator leading to an error

indicator function abbreviated as 1ij : the optimized error indicator of estimator
i being wrong on data set j.
The (normalized and weighted) sum of these error terms becomes:

✏i =

P
j wij1ijP
j wij

.

Let the estimator combining weight for estimator i be the (natural) log scaled

5.6 Advanced Material 105

version of this error term:

↵i = log(1/✏i � 1).

Now we update the training weights for the next estimator i+ 1:

wi+1,j = wije
↵

i

1

ij ,

which turns into wij if estimator i gets data set j right, and wij(1/✏i� 1) other-
wise. If the jth training data set is poorly estimated, then wi+1,j > wi,j in the
next estimator, just as we desired.

Now we repeat the above loop for all the estimators i to compute all the ↵i.
Then the aggregate estimator is

y(x) =
NX

i=1

↵iyi(x).

Clearly, we put more weight on estimators that are more accurate; the smaller
✏i, the bigger ↵i. This Ada Boost method is illustrated in Figure 5.5.

Training
Order

y1

y2

y3

y4

y =

E1

. . .
. . .

.

W11 W12

W21 W22

W31 W32

E2

∑i

X1 X2 X3

Ëi yi

Ë1

Ë2. . .

Figure 5.5 A detailed view of the sequence of the steps in the iterations of adaptive
boosting. Each column represents a training data set. Each row represents an
estimator. Sequential training happens down each column and across the rows.
Performance per row is summarized by ↵i, which defines the linear combination y as
the final estimator derived from the wisdom of crowds.

106 When can I trust an average rating on Amazon?

Further reading

There is a gap between the rich theory of signal processing, statistical learning,
and Bayesian analysis on the one hand, and the simple but tricky question of
when can I trust a product rating average on Amazon.

1. The following blog provides a concise summary of Bayesian ranking:
http://www.thebroth.com/blog/118/bayesian-rating

The next blog adds further details:
http://andrewgelman.com/2007/03/bayesian-sortin/

And this one too, especially on using a Dirichlet prior for a multinomial model:
http://masanjin.net/blog/how-to-rank-products-based-on-user-input

2. The following popular science book has a basic mathematical treatment of
averaging e↵ect (in the Notes of the book):
[Fis09] L. Fisher, The Perfect Swarm, Basic Books, 2009.

3. A standard textbook on machine learning, including di↵erent ways to com-
bine estimators like Ada Boost, is
[Bis06] C. M. Bishop, Pattern Recognition and Machine Learning, Springer,

2006.

4. For a graduate level comprehensive treatment on the subject of Bayesian
approach to data analysis, the following is a standard choice:
[GCSR04] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian

Data Analysis, 2nd Ed., Chapman and Hall/CRC, 2004.

5. The following is an excellent book organizing the methodologies of analyzing
patterned structures in signals around 6 prominent applications:
[MD10] D. Mumford and A. Desolneux, Pattern Theory: The Stochastic Anal-

ysis of Real-World Signals, A. K. Peters, 2010.

Problems

5.1 Bayesian ranking ?

Suppose there are 50 total ratings for printers with an average score of 4. Given
rankings 5,5,5 for printer brand Canot, and ratings 4.5, 5, 4, 5, 4, 5, 3, 5, 4.5,
3.5 for Hewlett-Backward, calculate ranking by mean rating and the Bayesian
ranking.

5.2 Averaging a crowd ?

Suppose the estimation errors ✏i are independent and identically distributed

5.6 Advanced Material 107

random variables that takes values 1 and -1 with equal probability. X is a uni-
form random variable that takes on 100 possible values (P (X = x) = 1

100

, x =
1, 2, . . . , 100). Calculate EAE and EEA for N = 100. Does the relationship be-
tween EAE and EEA hold?

Let N = 1000 and let X take on 1000 possible values uniformly. Plot the
histogram of 1

N

PN
i=1

✏i(x) over all trials of X. What kind of distribution is the
histogram? What is the variance? How does this relate to EAE?

5.3 Averaging a dependent crowd ??

Consider 3 people making dependent estimates of a number, with the following
expectations of errors and correlations of errors:

E[✏2
1

] = 1773

E[✏2
2

] = 645

E[✏2
3

] = 1796

E[✏
1

✏
2

] = 1057

E[✏
1

✏
3

] = 970

E[✏
2

✏
3

] = 708

Compute the average of errors and the error of the average in this case.

5.4 Independence of random variables ??

Many types of logical relationships can be visualized using a directed acyclic
graph. It is a graphical model with directed links and no cycles (a path that
ends at the same node where it starts). Here is an important special case. A
belief network visualizes a distribution of the following form:

p(x
1

, x
2

, . . . , xn) =
nY

i=1

p(xi|Parent(xi)),

where Parent(x) is the set of parental (conditoining set of) random variables of
random variable x. For example, we can write a generic joint distribution among
three random variables as

p(x
1

, x
2

, x
3

) = p(x
3

|x
1

, x
2

)p(x
2

|x
1

)p(x
1

).

We can now represent dependence among random variables in a directed
acyclic graph. Each node i in this graph corresponds to a factor p(xi|Parent(xi)).
A (directed) link in this graph represent a parental relationship. Look at the
graph in Figure 5.6. Is (a, c) independent of e?

108 When can I trust an average rating on Amazon?

a

f

b

e

c

d

Figure 5.6 A belief network with six random variables. Their dependence relationships
are represented by directed links.

5.5 Analyzing Amazon data ? ? ?

Given the rating data in worksheet “raw” of amazon data.xls for the iPod
touch, address the following:

(a) Compute the mean and adjusted mean. Here, we define the adjusted mean
as
P

(rating ⇥ number of helpful of reviews) / total number of helpful reviews.
(b) Plot the monthly mean.
(c) How does the pattern of the monthly mean inform your perception of the

product quality?
(d) Which metric (raw mean, adjusted mean, or monthly mean) is the most

accurate in your opinion? Why? Is a certain combination of the metrics more
useful?

6 Why does Wikipedia even work?

Now we from the recommendation problem to three chapters on influence in
social networks. We start with forming consensus from conflicting opinions in
this chapter before moving onto a collection of influence models in the next two.
Let us compare the four di↵erent consensus models we have covered in Chap-

ters 3-6, as visualized in Figure 6.1:

• Google pagerank turns a graph of webpage connections into a single ranked
order list according to their pagerank scores.

• Netflix recommendation turns a user-movie rating matrix into many ranked
order lists, one list per user based on the predicted movie ratings for that
user.

• Amazon rating aggregation turns a vector of rating scores into a single scalar
for each product.

• Voting systems turn a set of ranked order lists into a single ranked order list,
as we will see in this chapter.

(a) Page Rank (1 2 3 . . .)

(b) Recommendation (2 3 1 . . .)
(3 1 2 . . .)

(c) Rating 3.5(3 5 2 . . .)

(d) Voting (3 5 2 . . .) (2 3 1 . . .)
(1 4 3 . . .)

Figure 6.1 Comparison of the four types of consensus formation mechanisms with
their inputs and outputs. The first three mechanisms have been covered in the last
three chapters, and the last one will be part of this chapter.

110 Why does Wikipedia even work?

6.1 A Short Answer

Crowdsourcing knowledge representation with unpaid and possibly anonymous
contributors is very tricky. It faces many challenges for this idea to “work,” in-
cluding two major ones: how to create incentives for people to keep contributing,
and how to handle disagreements among the contributors.
Launched in 2001, Wikipedia represented a convergence of three forces that

had been gathering momentum: wikis for online collaboration among people, the
free and open software movement, and the appearance of online encyclopedias.
Within a decade, Wikipedia has generated 3.7 million articles in the US and
19 million articles worldwide. It has become one of the most popular sources of
information online. For certain fields, like medicine, the quality of Wikipedia arti-
cles are consistently high. And for many fields, if you google a term, a Wikipedia
entry will likely come up in the top few search results. It is quite amazing that
Wikipedia actually “worked” as much as it did. As we will see in Chapter 11,
when people interact with each other, there is often the risk of tragedy of the
commons. How does Wikipedia turn that into e↵ective collaboration?
Of course, there are also limitations to Wikipedia in its capacity as an ency-

clopedia:

• Misinformation: sometimes information on Wikipedia is plainly wrong, espe-
cially in articles with a small audience. But Wikipedia provides an e↵ective
self-correcting mechanism: it is open to edits from anyone.

• Mistakes: there are also honest mistakes, but again, anyone can edit an article,
and the edit will stay there as long as no other contributor can present a
stronger case otherwise.

• Missing information: no encyclopedia can be truly complete to everyone’s
liking, not even the largest encyclopedia in history.

There have been some high profile cases of limitation and abuse. Still, Wikipedia
stands as a major success of online collaboration.
There had been other e↵orts aimed at creating free, online, open encyclopedia

before, and the success of Wikipedia is often attributed to a “good faith collab-
oration” environment within the Wikipedia contributor community. If we count
the number of pairwise links in a fully connected graph with n nodes, we have on
the order of n2 such links. But if we examine the number of opinion configura-
tions, we have 2n possibilities if each person has 2 choices. This n2 vs. 2n tension
examplifies the positive and the negative sides of the network e↵ect. Converg-
ing on one of these configurations is di�cult, and Wikipedia mostly follows the
principle of “rough consensus”. The process of reaching a rough consensus can
be understood from voting theory (even though it does not explicitly involve
voting by providing a ranked order list) and from bargaining theory.
Wikipedia is free, open, dynamic, interactive, and extensively linked. There

are natural pros and cons associated with such a model of encyclopedia that

6.1 A Short Answer 111

complements other forms of encyclopedia. Let us consider three distinct features
of Wikipedia:

• It is free. How can people be motivated to contribute? Incentives do not have
to be financial; the ability to influence others is a reward in its own right
to most people. This requires the Wikipedia audience to be very large.

• Anyone can write or add to an article, including non-experts, anonymous
writers, and people with conflicts of interest. The key is check and balance.
Precisely because anyone can contribute, Wikipedia has a large body of
writers who check others’ writing frequently through a mechanism for de-
bates and updates. Sometimes, however, a contributor or an IP address may
be blocked if it is detected as a regular source of deliberate misinformation.

• Any subject may be contributed, including controversial ones. Sometimes,
however, certain articles can be “protected” from too frequent edits to give
time for the community of contributors to debate. How does Wikipedia
avoid unbalanced treatment or trivial subjects? It turns out that there are
Policies and Guidelines, and there are conflict resolution by editors.

The first and second features above provide Wikipedia with a strong, positive
networking e↵ect: a larger audience leads to more contributors, which in turn
leads to more audience, provided that the quality of contributions are kept high.
This brings us to the third feature above.
In general, how does Wikipedia enforce quality and resolve conflicting contri-

butions? In addressing this question, we also bear in mind the obvious fact that
Wikipedia is not a sovereign state with the power of a government. So issues
such as voting, decisioning, and free speech do not have the same context.
To start with, there are three core Policies on Wikipedia to help ensure relia-

bility and neutrality as much as possible:

• Verifiability (V): each key point or data in an article must be externally ver-
ifiable, with link to the primary source for verification by readers.

• No Original Research (NOR): this is to prevent people from using Wikipedia
as a publication venue of their new results.

• Neutral Point of View (NPOV): the basic rule is that a reader must not be
able to tell the bias of the author in reading through a Wikipedia article. It
is particularly important for controversial topics, but also the most di�cult
to use exactly in those cases, e.g., contentious political, social, and religious
topics. Unlike the above two policies, it is harder to enforce this one since
“neutrality” is subjective.

Wikipedia also installs several mechanisms for debates and updates. One is
the use of the history page and the talk page, available for public view through
tags on top of each article’s page. All previous versions and all the changes made
are recorded too.
There is also a reputation system for contributors, similar to the reviewer

rating system in Amazon. Each article can be rated on a 1-6 grade scale. For

112 Why does Wikipedia even work?

those who do not reveal their names, it is a reputation system of IP addresses
of the devices from which contributions are sent. In addition, links across article
pages are analyzed similar to Google pagerank’s reputation analysis for ranking
pages in each search.
But perhaps the ultimate mechanism still boils down to people negotiating.

Depending on the stage of the article, expert and non-expert contributors may
join the discussion. There is a hierarchy of Wikipedia communities, and debates
among contributors who cannot come to an agreement will be put forward to a
group of the most experienced editors. This committee of editors acts like a jury,
listening to the various sides of the debate, and then tries to decide by “rough
consensus.”
How do we model the process of reaching a “rough consensus” through “good-

will collaboration?” Not easy. We will see in this chapter two underlying theories:
bargaining theory and voting theory. But much translation is needed to connect
either of these theories to the actual practice of Wikipedia.

• In a bargaining model, the the contributors need to reach a compromise,
otherwise there would be no agreement. Each contributor’s utility function,
and the default position in the case of no agreement, need to reflect the
goodwill typically observed in Wikipedia collaboration.

• In a voting model, each contributor has some partially ordered list of prefer-
ences, and a threshold on how far the group decision can be away from her
own preferences before she vetoes the group decision and thereby prevent-
ing the consensus from being reached. (Sometimes a decision is actually
carried out by explicit votes in the arbitration committee. And the com-
mittee members are also elected through a voting system.) Dealing with
partial ordering, quantifying the distance between two ordered lists, and
modeling the veto decision threshold are still much under-explored in the
study of group interaction dynamics.

In contrast to coordination through well-defined pricing feedback signals that
we will see in several later chapters, coordination though bargaining or voting is
much harder to model. In the next section, we will present the basics of the rich
theory of voting and social choice. Then in Advanced Material, we will briefly
discuss the mathematical language for bargaining and cooperative games.

6.2 A Long Answer

Wikipedia consensus formation illustrates important issues in the general case of
reaching consensus among a group of individuals that is binding for everyone, i.e.,
how to sign a social contract with a binding force. This is di↵erent from present-
ing the rank ordered list for each individual to evaluate individually (like Netflix
recommendation). It is di↵erent from coordinating individual actions through

6.2 A Long Answer 113

pricing (like web auction and Internet congestion control). Ranking preferences
is also di↵erent from ranking objects (like webpages or products).

Voting is obviously essential for elections of those who will make and execute
binding laws to be imposed on those casting the votes. It is also useful for many
other contexts, from talent competitions to jury decisions. It is a key component
of the social choice theory, and how individual preferences are collected and
summarized.

Voting theory studies how to aggregate vectors, where the vectors are col-
lections of individual preferences. We will see an axiomatic treatment of voting
methods in this section. Later in Chapter 20, we will see another axiomatic
treatment of scalarizing a vector of resource allocations. In both cases, turning
a not-well-ordered input into an ordered output must satisfy certain intuitive
properties, and it is often tricky to accomplish that.

6.2.1 Major types of voting

A voting system is a function that maps a set of voters’ preferences, called a
profile, to an outcome. There are N voters and M candidates. A profile in this
chapter is a collection of ranked order lists, one list per voter that lists all the
candidates. An outcome is a single ranked order list.

The requirement of complete ranked order lists as inputs can be too stringent.
When there are many candidates, often a coarser granularity is used. For exam-
ple, Wikipedia’s arbitration committee members are elected by a binary voting
system. Each voter divide the list of candidates into just two parts: those she
votes “for” and those she votes “against”. Then the percentage of “for” votes,
out of all the votes received by each candidate, is calculated to rank order the
candidates. The tradeo↵ between user-interface simplicity and voting result’s
consistency and completeness is something interesting to explore but does not
have as many results as voting systems with complete ranked order input lists.

A voting system aggregates N lists into 1 list, like squeezing a 3 dimensional
ball into a 2 dimensional “paste”. Naturally, some information in the original set
of N lists will be lost after this mapping, and that sometimes leads to results
not conforming to our (flawed) intuition. We will focus on three commonly used
voting systems to illustrate key points.

Perhaps the most popular voting system is plurality voting. We simply count
the number of voters who put a candidate j in the first position in their lists.
Call these numbers {Vj}, and the candidate j with the largest Vj wins and is put
on the first position of the list in the outcome. Put the candidate with the second
largest Vj in the second position, and so on. To simplify the discussion, we will
assume no ties. There is also a variant called the Kemeny rule, where we count
how many “least-liked” votes a candidate receives, and rank in reverse order of
those numbers. There are other voting systems that try to determine the least ob-
jectionable candidate to help reach consensus. Plurality voting sounds reasonable

114 Why does Wikipedia even work?

and is often practiced, but there are many profiles that lead to counter-intuitive
results.
A generalization of plurality voting is positional voting. Looking at a voter’s

list, we assign some numbers to each candidate based on its position in the list.
The most famous, and the only “right” positional voting that avoids fundamental
dilemmas in voting, is the Borda count. It is named after the French mathe-
matician in the 18th century who initiated the scientific study of voting systems.
By Borda count, the first position candidate in each list gets M � 1 points, the
second position one gets M � 2 points, and so on, and the last position one gets
0 point, since being the last one in a list that must be complete carries no infor-
mation about a voter’s preference at all. Then, across all the lists, the candidate
are ranked based on their total points across all the voters.
Yet another method is Condorcet voting, named after another French math-

ematician who founded the research field of voting study shortly after Borda. It
is an aggregation of binary results from pairwise comparisons. All voting para-
doxes must have at least three candidates. When M = 2, the result is always
clear-cut, since each voter’s preference can be characterized by one number, and
aggregating scalars is unambiguous. So how about we look at each possible pair
of candidates (A, B), and see how many voters think one is better than the
other? This unambiguously decides the winner out of that pair: if more voters
think A is better than B, denoted as A>B, then A is placed higher than B in the
aggregated ranked order list. Now, if the pairwise decisions generate a consistent
ranked order list, we are done. But it may not be able to, for example, when
the three individual input lists for three candidates are: A>B>C, B>C>A, and
C>A>B. We can see that pairwise comparison between A and B is A>B, sim-
ilarly B>C and C>A. But that is cyclic, and thus logically inconsistent. There
is no Condorcet voting output that is self consistent in this case.

6.2.2 A counter-intuitive example

Suppose the editors of Wikipedia need to vote on a contentious line in an article
on “ice cream” about which flavor is the best: chocolate (C), vanilla (V), or
strawberry (S); with M = 3 candidates and N = 9 voters. There are 6 positional
possibilities for 3 candidates, and it turns out that half of these receive zero votes,
while the other three possibilities of ranked-order receive the following votes:

• C V S: 4 votes
• S V C: 3 votes
• V S C: 2 votes

What should the aggregated ranked order list look like?
By plurality vote, the aggregation is clear: [C S V]. But something does not

sound right. Here, those who favor strawberry over chocolate outnumbers those
who favor chocolate over strawberry. So how could [C S V] be right?
Well, let us look at Condorcet voting then.

6.2 A Long Answer 115

• C or V? Pairwise comparison shows V wins.

• S or V? Pairwise comparison shows V wins again.

• C or S? Pairwise comparison shows S wins.

The above 3 pairwise comparisons are all we need in this case, and aggregation
is clear: V wins over both C and S, so it should come out first. Then S wins over
C. So the outcome is clear: [V S C]. But wait, this is exactly the opposite of the
plurality vote’s outcome.
How about the Borda count? V gets 11 points, C 8 points, and S 8 points too.

So V winns and C and S tie.
Three voting methods gave three di↵erent results. Weird. You may object:

“But this profile input is synthesized artificially. Real world ones will not be like
this.”
Well, first of all, this synthesized input is indeed designed to highlight that our

intuition of what constitutes an accurate aggregation of individual preferences is
incomplete at best.
Second, there are many more paradoxes like this. In fact, we will go through a

method that can generate as many paradoxes as we like. This is not an isolated
incident.
Third, how do you define “real world cases”? Maybe through some intuitively

correct statements that we will take as true to start the logical reasoning process.
We call those axioms. But some seemingly innocent axioms are simply not
compatible with each other. This is the fundamental, negative result of Arrow’s
Impossibility Theorem in social choice theory.

6.2.3 Arrow’s impossibility results

Let us look at the following five statements that sound very reasonable about
any voting system, i.e., axioms that any voting system must satisfy. Two of
them concern a basic property called transitivity, a logical self-consistency
requirement: if there are three candidates (A, B, C), and in a list A is more
preferred than B, and B is more preferred than C, then A is more preferred than
C. Symbolically, we can write this as A>B>C) A>C. Had this not been true,
we would have a cyclic, thus inconsistent preference: A>B>C>A.
Now the five axioms proposed by Arrow:

1. Each input list (in the profile) is complete and transitive.

2. The output list (in the outcome) is complete and transitive.

3. The output list cannot just be the same as one input list no matter what the
other input lists are.

4. (Pareto Principle) If all input lists prefer candidate A over candidate B, the
output list must do so too.

5. (IIA Principle) If between a given pair of candidates (A,B), each input list’s
preference does not change, then even if their preferences involving other

116 Why does Wikipedia even work?

candidates change, the output list’s preference based on A and B does not
change.

The last statement above is called Independence of Irrelevant Alternatives
(IIA), or pairwise independence. As we will see, these alternatives are actually
not irrelevant after all.
You might think there should be a lot of voting systems that satisfy all the

five axioms above. Actually, as soon as we have M = 3 candidates or more, there
are none. If the surprise factor is a measure of a fundamental result’s elegance,
this impossibility theorem by Arrow in his Ph.D. thesis in 1950 is among the
most elegant ones we will see.
How could that be? Something is wrong with the axioms. Some of them are

not as innocent as they might seem to be at first glance. The first two axioms
are about logical consistency, so we have to keep them. The third one is the un-
derlying assumption of social choice, without which aggregation becomes trivial.
So it must be either the Pareto axiom or the IIA axiom.
Usually in an axiomatic system, the axiom that takes the longest to describe

is the first suspect for undesirable outcomes of the axiomatic system. And IIA
looks suspicious. Actually, how A and B compare with each other in the aggregate
output list should depend on other options, like candidate C’s ranking in the
individual input lists. To assume otherwise actually opens the possibility that
transitive inputs can lead to cyclic output. When a voter compares A and B,
there may be a C in between or not, and that in turn determines if the outcome
is transitive or not. IIA prohibits the voting system from di↵erentiating between
those input lists that lead to only transitive outputs and those that may lead to
cyclic outputs.
This will be clearly demonstrated in the next section, where we will see that

a group of input rank lists, each transitive, can be just the same as a group of
input rank lists where some of them are cyclic. Clearly, when an input is cyclic,
the output may not be transitive. In the language of axiomatic construction, if
axiom 5 can block axiom 2, no wonder this set of axioms is not self-consistent.
The negative result is really a positive highlight on the importance of maintaining
logical consistency and the flawed intuition in IIA.
In hindsight, Arrow’s impossibility theorem states that when it comes to rank-

ing three or more candidates, pairwise comparisons are inadequate. Then the
next question naturally is: what additional information do we need? It turns out
that scale, rather than just relative order, will lead to a “possibility result”.

6.2.4 Possibility results

What is the true intention of the voters? Well, the answer is actually obvious:
the entire profile itself is the true intention. Voting can be no more universally
reflective of the “true intent” of voters than two points, say (1,4) and (3,2), on
a 2D plane be compared to decide which is bigger.

6.3 Examples 117

Voting in political systems, despite the occurrence of counter-intuitive results
stemming from our flawed intuition, is a universal right that provides the basic
bridge between individuals and the aggregate, an e↵ective means to provide
check and balance against absolute power, and the foundation of consent from
the governed to the government. No voting system is perfect, but it is better
than the alternative of no voting. Moreover, some voting systems can achieve a
possibility result.
For example, by replacing IIA with the Intensity form of IIA (IIIA), there

are voting systems that can satisfy all the axioms. What is IIIA? When we write
A>B, we now also have to write down the number of other candidates that sit
in between A and B, this is the intensity. If none, intensity is zero. IIIA then
states that, in the outcome list, the ranking of a pair of candidates depends only
on the pairwise comparison and the intensity.
While the original 5 axioms by Arrow are not compatible, it turns out that

the modified set of axioms, with IIA replaced by IIIA, is: the Borda count is a
voting system that satisfies all five axioms now. This stems from a key feature
of Borda count: the point spread between two adjacent positions in a rank list is
the same no matter which two positions we are looking at. In essence, we need
to count (the gaps between candidates) rather than just order (the candidates).
We have not, however, touched on the subject of manipulation, collusion, or

strategic thinking, based on information or estimates about others’ votes. For
example, Borda count can be easily manipulated if people do not vote according
to their true rank ordered list. In Chapter 7, we will look at information cascade
as a particular example of influencing people’s decision.

6.3 Examples

6.3.1 Sen’s result

Another fundamental impossibility theorem was developed by Sen in the 1970s.
This time, it turns out the following four axioms are incompatible:

1. Each input list is complete and transitive.

2. The output list is complete and transitive.

3. If all input lists prefer candidate A over candidate B, the output list must
too.

4. There are at least two decisive voters.

The first three are similar to what are in Arrow’s axioms, and the last one con-
cerns a decisive voter: a voter who can decide (at least) one pair of candidates’
relative ranking for the whole group of voters, i.e., other voters’ preferences do
not matter for this pairwise comparison.
Just like Arrow’s impossibility theorem, the problematic axiom, in this case

axiom 4, precludes the insistency of transitivity of the output list. What axiom 4

118 Why does Wikipedia even work?

implies is actually the following: one voter can impose strong negative externality
on all other voters. This is illustrated next.

6.3.2 Constructing any counter examples you want

All examples of Sen’s result can be constructed following a procedure illustrated
in a small example.
Suppose there are N = 5 candidates and M = 3 voters. Voter 1 is the decisive

voter for (A,B) pairwise comparison, voter 2 for (C,D) pair, and voter 3 for
(E,A) pair. These will be marked in bold in tables that follow. We will show how
decisive voters can preclude transitivity in the output list.
Let us start with a cyclic ranking for every voter: A>B>C>D>E>A, as shown

in Table 6.1.

Table 6.1 Step 1 of constructing examples showing inconsistency of Sen’s axioms. Each
row represents the draft preferences of a voter. The columns contain a subset of the
pairwise comparisons between 5 candidates. Pairwise preferences in bold indicate that
they come from decisive voters.

A,B B,C C,D D,E E,A

1 A>B B>C C>D D>E E>A

2 A>B B>C C>D D>E E>A

3 A>B B>C C>D D>E E>A

We do not want input rankings to be cyclic, so we need to flip the pairwise
comparison order at least at one spot for each voter. But we are guaranteed to
find, for each voter, two spots where flipping the order above will not change
the outcome. Those are exactly the two pairwise comparisons where some other
voter is the decisive voter. So flip the order in those two spots and you are
guaranteed a transitive ranking by each voter. The resulting output, however,
remains cyclic, as shown in Table 6.2.
This example not only demonstrates how easy it is to generate examples il-

lustrating Sen’s negative result, but also that each decisive voter is actually
destroying the knowledge of the voting system on whether transitivity is still
maintained. If a decisive voter ranks A>B, and another voter ranks not just
B>A, but also B> k other candidates>A, then we say the decisive voter im-
poses a k strong negative externality to that voter. In cyclic ranking in Sen’s
system, each voter su↵ers strong negative externality from some decisive voter.
This example highlights again the importance of keeping track of the position

of candidates in the overall ranking list by each voter, again motivating the
Borda count. We simply cannot consolidate ranking lists by extracting some
portion of each list in isolation. “Sensible voting” is still possible if we avoid that
compression of voters’ intentions.

6.4 Advanced Material 119

Table 6.2 Step 2 of constructing examples showing the inconsistency of Sen’s axioms.
Pairwise preferences in quotation marks are those are flipped from the draft version in
Table 6.1 to turn input rankings transitive without destroying the cyclic nature of the
outcome ranking.

A,B B,C C,D D,E E,A

1 A>B B>C “D>C” D>E “A>E”

2 “B>A” B>C C>D D>E “A>E”

3 “B>A” B>C “D>C” D>E E>A

Outcome A>B B>C C>D D>E E>A

6.3.3 Connection to prisoner’s dilemma

In fact, the prisoner’s dilemma we saw back in Chapter 1 is a special case of Sen’s
negative result, and similar dilemmas can be readily constructed now. Recall that
there are four possibilities: both prisoners 1 and 2 do not confess (A), 1 confesses
and 2 does not (B), 1 does not confess and 2 does (C), and both confess (D).

Table 6.3 Prisoner’s dilemma as a special case of Sen’s impossibility result. Think of the
two prisoners as two voters, and the four possible outcomes as four candidates. Four pairs
of candidates are compared since they are the four individual actions a↵orded to the two
prisoners. Those pairwise preferences that do not matter are marked in “-” since the other
prisoner is the decisive voter for that pair. An additional pairwise comparison is obvious:
both do not confess (candidate A) is better than both confess (candidate D).

A,B B,D A,D C,D A,C

Prisoner 1 B>A - A>D D>C -

Prisoner 2 - D>B A>D - C>A

Outcome B>A D>B A>D D>C C>A

Prisoner 1 is the decisive voter on (A,B) pair and (C,D) pair. Prisoner 2 is the
decisive voter on (A,C) pair and (B,D) pair. Together with the obvious consensus
A>D, we have an outcome that contains two cyclic rankings: D>B>A>D and
A>D>C>A, as shown in Figure 6.2. This presence of cyclic output rankings in
the outcome is another angle to understand the rise of the socially-suboptimal
equilibrium D as the Nash equilibrium.

6.4 Advanced Material

The second conflict resolution mechanism, in a Wikipedia editorial decision as
well as in many other contexts, is bargaining. Each bargaining party has a selfish

120 Why does Wikipedia even work?

Prisoner 1

Prisoner 2

Cooperate

Cooperate

Defect

Defect

A B

DC

Figure 6.2 Prisoner’s dilemma produces two cycles of ranking orders: D>B>A>D and
A>D>C>A. This leads to a special case of Sen’s impossibility result.

motivation and yet all the parties want to achieve some kind of agreement. If
no agreement is achieved, then each party goes back to its own disagreement
point. This interaction is studied in cooperative game theory.
We will first follow the more intuitive approach by Rubenstein in the 1980s

before turning to Nash’s axiomatic approach in his Ph.D. thesis in 1950, almost
at the same time as Arrow’s thesis. We will see an IIA style axiom too. But this
time it is a possibility theorem that followed, in fact, a unique function modeling
bargaining that satisfies all the axioms.

6.4.1 Bargaining: Interactive o↵ers

Suppose there are two people, A and B, bargaining over how to divide a cake of
size 1. This cake-cutting problem will be picked up again in Chapter 20 in our
study of fairness, with extensions like “one cuts, the other chooses.”
For now, consider the following procedure. At the end of each of the discrete

timeslots with duration T , each person takes a turn to o↵er the other person
how to share the cake. It is essentially a number x

1

2 [0, 1] for A and x
2

= 1�x
1

for B. This iterative procedure starts with the initial o↵er at time 0 from A to
B. If the o↵er is accepted, an agreement is reached. If it is rejected, the other
person makes another o↵er at the next timeslot.
But wait a minute. This bargaining process can go on forever. Why would

either person be motivated to accept an o↵er (other than one that gives her
the whole cake)? There must be a price to pay for disagreeing. In Rubenstein’s
model, the price to pay is time. If an agreement is reached at the kth iteration,
a person’s payo↵ is

ui = xie
�r

i

kT , i = 1, 2,

6.4 Advanced Material 121

where ri is a positive number capturing “the tolerance to wait and keep bar-
gaining.” So the payo↵ depends on both the deal itself (xi) and when you seal
the deal (k), with the second dependence sensitive to each person’s bargaining
power: the one with a larger ri has more to lose by hanging on to keep bargaining
for and rejecting o↵ers.
We will not go into the details of the equilibrium properties of this procedure.

But it is intuitively clear that if waiting for the next round of negotiation gives
me the same payo↵ as accepting this round’s o↵er, I might as well accept the
o↵er. Indeed, it can be shown that the equilibrium o↵ers (x⇤

1

, x⇤
2

) from each side
satisfy the following two equations simultaneously:

1� x⇤
1

= x⇤
2

e�r2T

1� x⇤
2

= x⇤
1

e�r1T .

There is a unique solution to the above pair of equations:

x⇤
1

=
1� e�r2T

1� e�(r1+r2)T

x⇤
2

=
1� e�r1T

1� e�(r1+r2)T
.

As the bargaining rounds get more e�cient, i.e., T ! 0, the exponential
penalty of disagreement becomes linear: exp(�riT)! 1� riT , and the solution
simplifies to the following approximation for small T :

x⇤
1

=
r
2

r
1

+ r
2

x⇤
2

=
r
1

r
1

+ r
2

.

This proportional allocation makes sense: a bigger r
2

means a weaker hand of
B, thus a bigger share to A at equilibrium.

6.4.2 Bargaining: Nash bargaining solution

Iterative bargaining is just one mechanism of bargaining. The model can be made
agnostic to the mechanism chosen.
Let the payo↵ function Ui map from the space of allocation [0, 1] to some real

number. Assume these are “nice functions:” strictly increasing and concave. If
no agreement is reached, a disagreement point will be in e↵ect: (d

1

, d
2

). Assume
disagreement is at least as attractive as accepting the worst agreement: di �
Ui(0), 8i.
The set of possible agreement points is

X = {(x
1

, x
2

) : x
1

2 [0, 1], x
2

= 1� x
1

}.

The set of possible utility pairs is

U = {(u
1

, u
2

) : there is some (x
1

, x
2

) 2 X such that U
1

(x
1

) = u
1

, U
2

(x
2

) = u
2

}.

122 Why does Wikipedia even work?

Nash showed that the following four reasonable statements about a payo↵
point u⇤ = (u⇤

1

, u⇤
2

) can be taken as axioms that lead to a unique and useful
solution:

1. (Symmetry) If two players, A and B, are identical (d
1

= d
2

and U
1

is the
same as U

2

), the payo↵s received are the same too: u⇤
1

= u⇤
2

.

2. (A�ne Invariance) If utility functions or disagreement points are scaled and
shifted, the resulting u⇤ is scaled and shifted in the same way.

3. (Pareto E�ciency) There cannot be a strictly better payo↵ pair than u⇤.

4. (IIA) Suppose A and B agree on a point x⇤ that lead to u⇤ in U . Then if in
a new bargaining problem, the set of possible utility pairs is a strict subset of
U , and u⇤ is still in this subset, then the new bargaining’s payo↵s remain the
same.

The first axiom on symmetry is most intuitive. The second one on a�ne in-
variance says changing your unit of payo↵ accounting should not change the
bargaining result. The third one on Pareto e�ency prevents clearly inferior allo-
cation. The fourth one on IIA is again the most controversial one. But at least
it does not preclude other axioms here, and indeed the above set of axioms are
consistent.
Nash proved that there is one and only one solution that satisfies the above

axioms, and it is the solution to the following maximization problem, which
maximizes the product of the gains (over the disagreement point) by both A and
B, over the set of payo↵s that is feasible and no worse than the disagreement
point itself:

maximize (u
1

� d
1

)(u
2

� d
2

)
subject to (u

1

, u
2

) 2 U
u
1

� d
1

u
2

� d
2

variables u
1

, u
2

(6.1)

This solution (u⇤
1

, u⇤
2

) is called the Nash Bargaining Solution (NBS).
Obviously there is a tradeo↵ between possible u

1

and possible u
2

. If A gets
payo↵ u

1

, what is the payo↵ for B? Using the above definitions, it is:

u
2

= g(u
1

) = U
2

(1� U�1
1

(u
1

)).

We just defined a mapping, g, from player 1’s payo↵ value to player 2’s. This
allows us to draw a g as a curve in the payo↵ plane. It is a similar visualization
to the SIR feasibility region in Chapter 1.
If this function g is di↵erentiable, we can di↵erentiate the objective

(u
1

� d
1

)(g(u
1

)� d
2

)

with respect to u
1

, set it to zero, and obtain:

(u
1

� d
1

)g0(u
1

) + (g(u
1

), d
2

) = 0.

6.4 Advanced Material 123

g

U2

d1

d2

U1

(U1*, U2*)

(U1-d1)(U2-d2) = C

Figure 6.3 Nash bargaining solution illustrated on the two-player payo↵ plane. It is
the intersection of the g curve, which captures the feasible tradeo↵ between the two
players’ payo↵s, and the straight line normal to g and originating from the
disagreement point (d1, d2).

Since g(u
1

) = u
2

, we have

g0(u
1

) = �u
2

� d
2

u
1

� d
1

.

This has a geometric interpretation, as illustrated in Figure 6.3. NBS (u⇤
1

, u⇤
2

) is
the unique point on the graph of g where the line from the disagreement point
(d

1

, d
2

) intersects g perpendicular to the slope of g. This clearly illustrates that
the bigger the ratio d

1

/d
2

, i.e., the bigger A’s bargaining power relative to B’s,
the more favorable will u

1

be relative to u
2

at NBS.
For example, if both payo↵ functions are linear (which actually violates the

strictly increasing property we assumed of Ui), then the cake cutting NBS has a
simple solution: each person first takes the disagreement point allocation away,
and then evenly splits the rest of the cake.

x⇤
1

= d
1

+ 0.5(1� d
1

� d
2

)

x⇤
2

= d
2

+ 0.5(1� d
1

� d
2

).

There is another way to model bargaining power: turn the objective function
to

(u
1

� d
1

)✓(u
2

� d
2

)1�✓,

where ✓ and 1� ✓, for ✓ 2 [0, 1], are the normalized bargaining power exponents
for A and B, respectively. There is an interesting connection between the iterative
bargaining solution and this axiomatically developed NBS. In the limit of T ! 0,
the iterative bargaining solution is the same as the NBS solution with asymmetric

124 Why does Wikipedia even work?

bargaining power (✓ = r
2

/r
1

+ r
2

, 1 � ✓ = r
1

/r
1

+ r
2

) and disagreement point
(0, 0).

Further Reading

There is very little mature work on mathematically modeling Wikipedia, but a
rich research literature on both voting theory and bargaining theory.

1. A comprehensive survey of the features in Wikipedia, including the policies,
guidelines, and editorial procedure, can be found in the following book.

[AMY08] P. Ayers, C. Matthews, and B. Yates, How Wikipedia Works, No
Starch Press, 2008.

2. Arrow’s impossibility theorem was part of Arrow’s Ph.D. dissertation, and
originally published in 1950 and then in his book in 1951:

[Arr51] K. Arrow, Social Choice and Individual Values, Yale University Press,
1951.

3. One of the foremost researchers in voting theory today is Saari, who pub-
lished several books interpreting and overcoming the negative results of Arrow
and of Sen. Our treatment of IIIA, construction of examples of Sen’s results, and
connection to Prisoner’s dilemma, all follow Saari’s books. The following one is
an accessible and rigorous survey:

[Saa06] D. Saari, Dethroning Dictators, Demystifying Voting Paradoxes, 2006.

4. Nash bargaining solution was axiomatically constructed as part of Nash’s
Ph.D. dissertation, and originally published in the following paper in 1950:

[Nas50] J. Nash, “The bargaining problem,” Econometrica, vo. 18, pp. 155-
162, 1950.

5. Among the many books devoted to bargaining theory since then is a concise
and rigorous survey in the following book:

[Mut99] A. Muthoo, Bargaining Theory with Applications, Cambridge Univer-
sity Press, 1999.

Problems

6.1 Di↵erences between Borda count, Condorcet voting and plurality voting ?

Consider an election which consists of 31 voters and 3 candidates A, B, C with
the profile summarized as follows:

6.4 Advanced Material 125

list voters

C > A > B 9
A > B > C 8
B > C > A 7
B > A > C 5
C > B > A 2
A > C > B 0

What is the voting result by (a) Plurality voting (b) Condorcet voting (c) Borda
count?

6.2 List’s list ?

A three-member faculty committee must determine whether a student should
be advanced to Ph.D candidacy or not by the student’s performance on both the
oral and written exams. The following table summarizes the evaluation result of
each faculty member:

Professor Written Oral

A Pass Pass
B Fail Pass
C Pass Fail

(a) Suppose the student’s advancement is determined by a majority vote of
all the faculty members, and a professor will agree on the advancement if and
only if the student passes both the oral and written exams. Will the committee
agree on advancement?

(b) Suppose the student’s advancement is determined by whether she passes
both the oral and written exams. Whether the student passes an exam or not is
determined by a majority vote of the faculty members. Will the committee agree
on advancement?

6.3 Anscombe’s paradox ??

Suppose there are three issues where a “yes” or “no” vote indicates a voter’s
support or disapproval. There are two coalitions of voters, the majority coalitions
A = {A

1

, A
2

, A
3

} and the minority coalitions B = {B
1

, B
2

}. The profile is
summarized as follows:

126 Why does Wikipedia even work?

Voter Issue 1 Issue 2 Issue 3

A
1

Yes Yes No
A

2

No Yes Yes
A

3

Yes No Yes

B
1

No No No
B

2

No No No

(a) What is the majority voting result of each issue?
(b) For each member in the majority coalition A, how many issues out of three

does she agree with the voting result?
(c) Repeat (b) for the minority coalition B.
(d) Suppose the leader in A enforces “party discipline” on all members, namely,

members in coalition A first vote internally to achieve agreement. Then on the
final vote where B is present, all members in A will vote based on their internal
agreement. What happens then to the final voting result?

6.4 Nash Bargaining Solution ??

Alice (Bargainer A) has an alarm clock (good A
1

) and an apple (good A
2

);
Bob (Bargainer B) has a bat (good B

1

), a ball (good B
2

), and a box (good B
3

).
Their utilities for these goods are summarized as follows:

Owner Goods Utility to Alice Utility to Bob

Alice Alarm Clock (A
1

) 2 4
Alice Apple (A

2

) 2 2

Bob Bat (B
1

) 6 3
Bob Ball (B

2

) 2 1
Bob Box (B

3

) 4 2

What is the Nash bargaining result between Alice and Bob?

6.5 Wikipedia (Open-ended question)

Take a look at the History pages and Discussion pages of two Wikipedia ar-
ticles: “Abortion”, and “Pythagorean Theorem”. Summarize 3 key (qualitative)
di↵erences you can see between them.

7 How do I viralize a YouTube video
and tip a Groupon deal?

A quick recap of where we have been so far in the space of online services and
web 2.0. In Chapter 3, we discussed recommendation of webpages with objective
metrics computed by Google from the graph of hyperlinked webpages. In Chapter
4, we discussed recommendation of movies with subjective opinions estimated
by Netflix from movie-user bipartite graphs.
Then we investigated the wisdom of crowds. In Chapter 5, we discussed aggre-

gation of opinion in (more or less) independent ratings on Amazon. In Chapter
6, we discussed centralized resolution of opinion conflicts in Wikipedia.
In this chapter, we will talk about dependence of opinions, taking a macro-

scopic, topology-agnostic approach, and focusing on the viral e↵ect in YouTube
and tipping Groupon. Then in the next chapter, we will talk about the e↵ect of
network topology on the dependence of opinion.
As will be further illustrated in this and the next chapters, networking e↵ects

can be positive or negative. They can also be studied as externalities (coupling in
the objective function or the constraint functions), or as information dependence.

7.1 A Short Answer

7.1.1 Viralization

YouTube is a “viral” phenomenon itself. In the space of user-generated video
content, it has become the dominant market leader, exhibiting the “winner takes
all” phenomenon. More recently it has also featured movies for purchase or rental,
and commissioned professional content, to compete against Apple’s iTunes and
the studios.
YouTube started in February 2005 and was acquired by Google in 2006. Within

several years people watched videos on YouTube so much that it became the
second largest search engine with 2.6 billion searches in August 2008, even though
we normally would not think of YouTube as a search engine. Its short video
clip format, coupled with its recommendation page, is particularly addictive.
In summer 2011, more than 40% of Internet videos were watched on YouTube,
with over 100 million unique viewers each month just in the U.S. Each day over
a billion video plays are played, and each minute more than 24 hours of new
video clips are uploaded.

128 How do I viralize a YouTube video and tip a Groupon deal?

There are interesting analytic engines like “YouTube Insight” that highlight
the aggregate behavior of YouTube watching. Some videos have gone viral, the
most extreme example being “Charlie bit my finger - again,” a less-than-one-
minute clip that has generated 370 million views as of August 2011. If you just
look at the viewer percentage across all the videos on YouTube, it exhibits the
heavy tail distribution that we will discuss in Chapter 10.
There has been a lot of social media and web 2.0 marketing research on how to

make your YouTube video go viral, including practical advice on the four main
paths that lead a viewer to a YouTube clip:

• Web search

• Subscription to a YouTube channel

• Referral through email or twitter

• Browsing through YouTube recommendation page.

It is also interesting to see that YouTube does not use a pagerank-style algo-
rithm for ranking the video clips, since linking the videos by tags is too noisy.
Nor does it use the sophisticated recommendation engine such as Netflix Prize
solutions, since viewing data for short clips is too noisy and YouTube videos
often have short lifecycles.
Instead, YouTube recommendation simply uses video association through co-

visitation count: how often each pair of videos is watched together by a viewer
over, say, 24 hours. This gives rise to a set of related videos for each video, a link
relationship among the videos, and thus a graph with the videos as nodes. From
the set of videos in k hops from a given video, together with explicit ratings by
users and matching of keywords in the video title, tags, and summary, YouTube
then generates a top n recommendation page. It has also been observed that
often only those videos with a watch count number similar to, or slightly higher
than, that of the current video are shown in the recommendation page. This
makes it easier for widely watched videos to become even more widely watched,
possibly becoming viral.
Now, how do you even define “viral”? There is no commonly accepted defini-

tion, but probably the notion of “viral” means that the rate-of-adoption curve
should exhibit three features, like curve (c) shown in Figure 7.1:

• High peak

• Large volume, i.e., the adoption lasts long enough in addition to having a
high peak

• A short time to rise to the peak.

7.1.2 Tipping

Another web 2.0 sensation that has gone viral is the daily deal service, such as
Groupon and LivingSocial. Groupon was formed in 2008, and after two years
was generating over $300 million annual revenue from more than 500 cities.

7.1 A Short Answer 129

p

t

n (t)

(a)

(b)
(c)

Figure 7.1 A few typical shapes of adoption trajectory n(t) over time t. (a) stays at a
low level. (b) rises very quickly but then dies out very quickly too. (c) has a
reasonably sharp rise to a high level and a large area under the curve. We can also
have combinations of these curves, e.g., a curve with a sharp rise to a high level and
stays there.

The e↵ectiveness of Groupon (and the like) for the suppliers and the consumers
is still somewhat under-studied. In a detailed study by Dhulakia in 2011, 324
businesses in 23 US markets were surveyed. Some interesting results emerged:
close to 80% of deal users were new customers, but only 36% of them spent
beyond the deal’s face value, and only 20% returned to buy at full price later.
On the supplier side, 55% made money from the deals, but 27% lost money, and
less than half of them expressed interest to participate in the future, restaurants
and salons being particularly negative. Across hundreds of daily deals websites,
there are few di↵erentiation factors at this point. It is projected that the cut into
the deals’ revenues by these websites will have to be lowered in the future as the
industry consolidates.

In a daily deal operation, a supplier of some goods or services announces a
special discount, which must have a large enough number of users signed up
within a 24-hour period. If the number of users exceeds the target threshold,
the deal is tipped, and each user has, say, 3 months to redeem the coupon.
The supplier’s hope is that the discount is in part compensated for by the high
volume, and the possibility of repeat customers who will return in the future and
pay the full price. This is the power of crowds in action. More specifically, a
daily deal tipping needs a su�ciently large number of people to make the same
decision within a su�ciently small window of time.

This chapter presents models that can be used to characterize and understand
phenomena such as viralization, tipping, and synchronization.

130 How do I viralize a YouTube video and tip a Groupon deal?

7.2 A Long Answer

There are two distinct reasons for popularity of a product:

1. Intrinsic value: you may enjoy certain music or buy a particular product just
because you like it, whether the rest of the world agrees or not.

2. Network e↵ect : your decision depends on what others do, either because (a)
the fact that others like a product gives you information, possibly leading to
what we call information cascades, an example of the fallacy of crowds, or
(b) because the value of the service or product depends on the number of
people who use it, like the fax machine or Wikipedia, an example of positive
externality.

We will first discuss models of 2(a), such as information cascade studied
in the political economy literature and tipping from an unstable equilibrium
towards a stable equilibrium. Then in Advanced Material, we will discuss the
combination of 1 and 2(b), called the intrinsic factor and the imitation factor
in di↵usion models studied in the marketing literature, as well as a synchro-
nization model.
All the models in this chapter are population-based and agnostic of the actual

topologies, although information cascade implicitly assumes a linear topology.
In the next chapter, we will focus on topology-based models in the study of
influence.
The models in both chapters are summarized in Table 7.1. Except for the

synchronization and random walk models, all assume the nodes (the people)
have discrete, often binary, states of mind. We will also see that some of these
models become similar when generalized a little.
Which model to use really depends on what we are trying to model: many

people acting at the same time? Or a few early adopters changing others’ minds?
Or does one more person carry over the threshold and trigger a change in others’
behavior? Each of these models is motivated by a di↵erent type of influence, and
has its own use and abuse.
Viralizing a YouTube video, tipping a Groupon deal, and influencing via Face-

book and Twitter posts are three particular examples in these two chapters. But
for these emerging tasks involving human psychology factors, we still do not
know much about which of these models and their extensions, if any, fit our
tasks su�ciently well to render predictive power.
Across these models, the following issues are raised and some of them ad-

dressed:

• Distribution at equilibrium
• Time it takes to reach an equilibrium
• More generally, transient behavior before an equilibrium is reached

We first must observe how individual decisions and local interactions lead to a
global property. Then, the general workflow of our modeling process may run as

7.2 A Long Answer 131

Table 7.1 Influence Models in Chapters 7 and 8. Tipping and contagion models are
highly related, as are information cascade and random walk, and di↵usion and infection.
Those models we discuss in Long Answers are in italics, while the other models are in
Advanced Material. The precise forms of deterministic or random interaction models will
be presented as we go through these two chapters.

Deterministic Interaction Model Random Interaction Model

Population based Information cascade Tipping

Synchronization Di↵usion

Topology dependent Contagion Infection

Random walk

follows: pick a curve of adoption evolving over time, like one of those in Figure 7.1,
reverse engineer it through some mathematical languages (di↵erential equation,
dynamic systems, sequential decisioning, selfish optimization, etc.), and finally,
hope it will also shed light on forward engineering. The last step is where the
gap between theory and practice lies. Having said that, let us see what kinds of
explanatory models have been created.

7.2.1 Information Cascade

One of the large scale, controlled experiments that resemble the YouTube ex-
perience was run by Salganik, Dodds, and Watts in 2005. Each of the 14341
participants rated each of the S = 48 (unknown) songs (from unknown bands)
from 1 to 5 stars. There were four di↵erent conditions tested, depending on

• Whether the songs were presented at random, or in descending order of the
current download counts.

• Whether the current download numbers were hidden, or shown next to each
song.

When the current download numbers were shown, social influence was present.
And when the order of the songs followed the download numbers, this influence
became even stronger.
How do we measure the spread of the download numbers of the songs? Let

mi be the percentage of downloads, out of all the downloads, received by song
i, for i = 1, 2, . . . , S. We can examine the (normalized) sum of the di↵erences:P

i,j |mi �mj |, which the experimental data showed to be always larger under
social influence than under the independent condition,
In addition, a heavier social influence also increased the unpredictability of a

song’s popularity. Really good songs (as defined by download popularity under
no social influence) rarely do badly even under social influence, and really bad
ones almost never do very well, but for the majority of the songs in between,
stronger social influence significantly increases their range of popularity.

132 How do I viralize a YouTube video and tip a Groupon deal?

This experiment, together with many other controlled experiments or empirical
social data analyses, demonstrate what we often feel intuitively: we are influenced
by others’ opinions even when we do not know the underlying reasons driving
their opinions.
On YouTube, if many others before us watched a video, we are more likely to

watch it too. We might abort the viewing if we realize we actually do not like it,
but this still counts to the viewing number shown next to the video and partially
drives its place on the recommendation page.
On a street corner, if one person looks up to the sky, you may think she has a

nose bleed or just turned philosophical, and you would pass by. But if ten people
look up to the sky together, you may think there is something wrong up there,
and stop and look up to the sky too. Now that makes the crowd even bigger.
Until someone shouts: “Hey, these two guys have nose bleeds, that is why they
stopped and tilted their heads!” Then you think everyone else, just like you, was
misled, and decide to leave the crowd and keep on walking. Suddenly, the whole
crowd disperses.
These examples, and many others in our lives, from stock market bubbles and

fashion fads to pop stars emerging and totalitarian regimes collapsing, illustrate
several key observations about information cascade as a model for influence in
sequential decision making:

• Each person gets a private signal (my nose starts bleeding) and releases a
public action (let me stop walking and tilt my head to the sky). Subsequent
users can only observe the public action but not the private signal.

• When there are enough public actions of the same type, at some threshold
point, all later users start ignoring their own private signals and simply
follow what others are doing. A cascade, or viral trend, starts, and the
independence assumption behind the wisdom of crowds in Chapter 6 breaks
down.

• A cascade can start easily if people are ready to rely on others’ public ac-
tions in their reasoning, it can accumulate to a large size through positive
feedback, and it can be wrong.

• But a cascade is also fragile. Even if a few private signals are released to
the public, the cascade can quickly disappear or even reverse direction,
precisely because people have little faith in what they are doing even when
there are many of them doing the same thing.

There are many dimensions to understanding the above observations. We focus
in this subsection on a particular model from 1992 for sequential decision making
that leads to information cascades. The simplest version of this model is a binary
number guessing process.
Consider a set of people lined up in sequential order. Each person takes a turn

observing a private signal Xi = {0, 1} and trying to guess if the correct number
is 0 or 1. To simplify the notation a little, we will assume that the correct number

7.2 A Long Answer 133

is equally likely to be 0 or 1, although that does not need to be the case for what
we will see.
The chance that the private signal is the correct number is pi > 0.5, and with

probability 1�pi it is not. It is important that pi > 0.5. We will assume for sim-
plicity that all pi = p. In addition, the private signal is conditionally independent
of other people’s signals, conditioned on the underlying correct number.
Upon receiving her private signal, each user writes down her guess Yi = {0, 1}

on a blackboard and walks away. That is her public action. Since it is a binary
guess, she assesses that one number is more likely than the other, and writes
down her guess accordingly. Every user can see the guesses made by people
before her, but not their actual private signals.
If you are the first person, what should you do? If you see 1, you will guess 1,

since the chance of that being the correct guess is p
1

> 0.5. Similarly, if you see
0, you will guess 0.
If you are the second person, what should you do? You have one private signal

X
2

and one public action recorded from the first person Y
1

. You know how person
1 reasoned : X

1

must be equal to Y
1

, even though you cannot see her X
1

. So, as
the second user, you actually know the first user’s private signal: X

1

= Y
1

. Now
equipped with two private signals {X

1

, X
2

}, you will decide as follows: if both
X

1

and X
2

are 0, then obviously the correct number is more likely to be 0, and
you guess 0. If both are 1, then guess 1. If one is 0 and the other is 1, then flip
a coin and randomly choose 0 or 1.
Now comes the first chance of an information cascade starting. If you are the

third person, what should you do? You have one private signal X
3

, and two
public actions Y

1

, Y
2

.

• If Y
1

6= Y
2

, by reasoning through the first two persons’ reasoning, you know
the public actions by prior users collectively do not tell you anything, and
you should just rely on your own private signal. In this case, you are in
exactly the same shoe as the first user. And the fourth user will be in the
same shoe as the second user.

• However, if Y
1

= Y
2

, and they are both the same as X
3

, you will obviously pick
that number. But even if your private signal X

3

di↵ers, you still will pick
what two public signals suggest. This follows the same Bayesian reasoning
as in Chapter 5. Say Y

1

= Y
2

= 1 and X
3

= 0. What is the probability that
the correct number is 1 given this sequence of (1, 1, 0)? By Bayes’ rule, this
probability, denoted as P [1|(1, 1, 0)], equals

P [1]P [(1, 1, 0)|1]
P [(1, 1, 0)]

=
P [1]P [(1, 1, 0)|1]

P [1]P [(1, 1, 0)|1] + P [0]P [(1, 1, 0)|0] , (7.1)

where P [1] and P [0] denote the probabilities that the correct number is
1 and 0, respectively, P [(1, 1, 0)|1] and P [(1, 1, 0)|0] denote the conditional
probabilities that Y

1

= 1, Y
2

= 1, X
3

= 0 given that the correct number is
1 and 0, respectively.

134 How do I viralize a YouTube video and tip a Groupon deal?

Plugging in the numbers into (7.1), we have

0.5(p2(1� p) + 0.5p(1� p)2)

0.5(p2(1� p) + 0.5p(1� p)2) + 0.5((1� p)2p+ 0.5p2(1� p))

since the sequence of Y
1

= 1, Y
2

= 1, X
3

= 0 could have either come from
X

1

= 1, X
2

= 1, X
3

= 0, or X
1

= 1, X
2

= 0, X
3

= 0 but the second person
flips the coin and so happens to choose Y

2

= 1. Now, is this expression
bigger than half? Certainly. After cancelling p(1� p), we are dividing 2p+
(1 � p) by 2p + (1 � p) + 2(1 � p) + p, which is (1 + p)/3. Since p > 0.5,
that ratio is indeed bigger than 1/2. So person 3 guesses that the correct
number is 1 even when her private signal is 0.

In summary, once an odd-numbered user and then an even-numbered user
show the same public action in a row, the next user will just follow, no matter
what her private signal is. An information cascade thus starts.
The probability of no cascade after two people have received their private

signals and made their public actions is equal to the probability that the first
two private signals are di↵erent. If the correct number is 1, the probability that
X

1

= Y
1

= 1, X
2

= 0 is p(1 � p), and with probability 1/2, user 2 will choose
Y
2

= 0. So the probability of Y
1

= 1, Y
2

= 0 is p(1� p)/2. The probability that
Y
1

= 0 and X
2

= 1, Y
2

= 1 is p(1� p)/2 too, so the probability of Y
1

6= Y
2

, i.e.,
no cascade, is p(1 � p). By symmetry, the answer is the same when the correct
number is 0. In conclusion, the probability of no cascade is

Probno = p(1� p).

And by symmetry, the probability of a cascade of 1’s (call that an “up” cascade)
and that of a cascade of 0’s (call that a “down” cascade) are the same, each
taking half of 1� Probno:

Probup = Probdown =
1� p(1� p)

2
.

Following a similar argument, we see that after an even number, 2n, of people
have gone through the process, we have:

Probno = (p(1� p))n, (7.2)

and

Probup = Probdown =
1� (p(1� p))n

2
, (7.3)

since no cascades happen if each pair of people (1,2), (3,4), (5,6)... take di↵erent
public actions.
Therefore, intuitively and mathematically, we see that cascades eventually will

happen as more people participate. And this conclusion has been proven to hold
for general cases (under some technical conditions), even with multiple levels of
private signals and multiple choices to adopt.

7.2 A Long Answer 135

It is more instructive to look at the probability of correct vs. incorrect cascades,
rather than the symmetric behavior of a up and down cascades. Of course that
depends on the value p: how noisy the private signal is. If the signal is very
noisy, p = 0.5, by symmetry, correct cascades are as likely to happen as incorrect
cascades. But as p approaches 1, the chance of a correct cascade goes up pretty
fast and saturates towards 1. This computation and visualization is shown in an
example later.

How long will a cascade last? Well, forever, unless there is some kind of dis-
turbance, e.g., a release of private signals. Even a little bit of that often su�ces,
because despite the number of people in the cascade, they all know they are just
following a very small sample. This is the counter part of an easy (and possibly
wrong) cascade: the Emperor’s New Clothes e↵ect. Sometimes it only took
one kid’s shouting out a private signal to stop the cascade.

How do we break a cascade? Suppose a cascade of 1’s has started. Now when
one person gets a private signal of 0, she shouts that out, instead of her public
action, which is still to guess that the correct number is 1. If the next person
gets a private signal of 0, she would think that, on the one hand, now there
are two private signals of 0s. On the other hand, there may have been only two
private signals of 1s since that is enough to kick o↵ a cascade of 1s (or even
just one private signal of 1, since the following user receiving a private signal of
0 may break the tie by randomly choosing another 1 as the public action). So
she will decide to guess 0, and break the cascade. Cascades only represent what
happened with few people right around the time it started. If everyone knows
that, another block of a few people may be able to break it.

Sometimes it takes the apparent conformity of more users, e.g., 10 people
standing on a street corner looking up at the sky, since for something with a low
probability (something is wrong in the sky, wrong enough that I want to stop
walking and take a look), you need more public actions to override your private
signal. Back to our nosebleeding-created crowd on a street corner, a passer-by
often needs more convincing than just guessing the right number with higher
than 50% probability. That is why she needs to see a bigger crowd all tilting
their heads on the street corner before she is willing to stop and do the same. A
more curious and less busy person will need a lower threshold of crowd size for
her to stop and do the same.

We have assumed that everyone has the same precision p, but each person i
may have a di↵erent pi. Suppose all people know the values of {pi} for everyone.
Where should the high precision person be placed in the sequence of people (if
you could control that)? If we put the highest precision person first, a cascade
may start right after her. An authoritative person starts leading the pack. So
if you want to start the cascade, that is the right strategy, and it partially
explains why some cascades are di�cult to break as private signals keep getting
overwhelmed by public actions. But if you want a higher chance of reversing a
cascade, you want to put higher precision persons later in the sequence.

136 How do I viralize a YouTube video and tip a Groupon deal?

More importantly, we have assumed that everyone acts rationally. What each
person should do can be quite di↵erent from what she actually does in real life.
There are many implications of this information cascade model, since many

social phenomena exhibit the features of (a) a crowd making a decision that
ignores each individual’s own private information, and yet (b) the chain reaction
is fragile. Information cascade is part of the reason why US presidential primary
elections use Super Tuesday to avoid sequential voting, why teenagers tend to
obtain information from the experiences of peers, and why, once people suspect
the underlying true signal has changed (whether it has actually changed or not),
the ongoing cascade can quickly reverse.
So far we have focused on a model with essentially a linear topology of nodes

(each node is a person) and each node’s local decision is based on strategic think-
ing. In Advanced Material, we move on to a di↵erent model, with a macroscopic
view on the e↵ect of peers on each person without the detailed strategic think-
ing. In the next chapter, we will discuss models where an individual’s decision
depends on her local topology.

7.2.2 Tipping

But first, a di↵erent model that illustrates, in a simple way, the notion of tipping,
and of stability of equilibrium. It has to do with the fundamental idea of positive
feedback, a phenomenon that cuts across many domains, from a microphone
generating excessively high volume during tune-up to high unemployment rate
lasting longer as unemployment benefits extend. In contrast, in Chapter 14 we
will look at also negative feedback in the Internet to help provide stability.
Suppose there are two possible states in each person’s mind. Each person

decides to flip from one state (e.g., not buying an iPad) to the other (e.g.,
buying an iPad) based on whether her utility function is su�ciently high. That
utility function depends on p, the product adoption percentage in the rest of
the population (or just among her neighbors). In the next chapter, we will go
into the details of the best response strategy of a person, who learns that p%
of her neighbors have adopted the product. Right now it su�ces to say that we
have a probability of a person adopting the product as a function of p. Then
taking the average across all users, we have an influence function f that maps
p at time slot t to p at the next time slot t+ 1.
We can readily visualize the dynamics of p by tracing two curves on the

(p, f(p)) plane, as shown in Figure 7.2: the f(p) curve in a solid line, and the
straight line of 45 degrees in a dotted line from the origin. Given a p value at
time t, the future evolution is visualized as the zig zag trajectory bouncing ver-
tically from the 45 degree line to the f(p) curve (carrying out the mapping step
f(p(t))), and then horizontally back to the 45 degree line as the step after that
(carrying out the equality step p(t+1) = f(p)). This is graphically showing one
iteration of p(t+ 1) = f(p(t)).
When the two curves intersect at a point (p⇤, f(p⇤)), we have an equilibrium,

7.2 A Long Answer 137

p
O

f (p)

Stable

I

p
O

f (p)

Unstable

I

p* p*

Figure 7.2 Influence function f(p) is plotted on the graph. Starting from a given p

value, we can move vertically to hit f(p), and then move horizontally to hit the 45
degree line. That represents one iteration of p(t+ 1) = f(p(t)). Graph (a) illustrates a
stable equilibrium, where p = 0 eventually climbs to the equilibrium p = p

⇤ despite
perturbation around it. Graph (b) illustrates an unstable equilibrium, where
perturbation around p

⇤ moves away from it. For f(p) that cuts across the 45 degree
line once, if it is concave before the cross-over point and convex afterwards, that
cross-over point is stable. If it is convex before and concave afterwards, the cross-over
point is unstable.

since if the current p = p⇤, the next p remains the same. There can be zero, one
or many equilibria. The concept of equilibrium here is not the same as strategic
equilibrium in a game, or convergence of an iterative algorithm, but reaching a
fixed point of an update equation.

Some equilibria are stable while others are unstable. A stable equilibrium
here is one where a perturbation around it will converge back to it. And an
equilibrium that is not stable is called unstable. For example, in Figure 7.2, the
equilibrium in (a) is stable, as the trajectory around it converges to it, whereas
the equilibrium in (b) is unstable. The shape of influence function f matters.

Now we can view tipping as when the adoption percentage p reaches past an
unstable equilibrium (p

1

, f(p
1

)), and falls into the attraction region of the
next stable equilibrium (p

2

, f(p
2

)): as more people adopt it, even more people
will adopt it, and this process continues until the adoption percentage is p

2

. This
is similar to the tipping behavior of popular videos on YouTube. As more people
watch a video, its viewer counter increases, and more people think it is worthy of
watching. If you would like to make that happen to your video clip, estimating
f(p) and then getting into the attraction region of an equilibrium with a high p
are the di�cult steps of tipping design.

138 How do I viralize a YouTube video and tip a Groupon deal?

X
1

X
2

F

X
2

F

Y
1

, Y
2

= 0

Y
1

, Y
2

= 1

Y
1

, Y
2

= 0
0

1

Y
1

, Y
2

= 1

0

0

0

0

1

1

Y
1

= 0, Y
2

= 1
1

1

Y
1

= 1, Y
2

= 0

Figure 7.3 An example of information cascade, visualized as a tree. Each branching
level is a new person. F denotes flipping a coin to randomly choose what number to
guess.

7.3 Examples

7.3.1 Information Cascade

First recall what we discussed in Section 7.2.1 about information cascades through
a simple binary number guessing process, and the symmetric behavior of up and
down cascades. The example now further derives the probability of correct vs.
incorrect cascades. Here we assume the correct number is 1. So an up cascade
is a correct one. In contrast, in the last section we did not pre-set the correct
number.

Consider the first two people. The di↵erent cases of X
1

and X
2

are shown in

7.3 Examples 139

Figure 7.3, where F denotes a coin flip by the second user when in doubt. Then

Prob
no

= P (X
1

= 0, X
2

= 1, F = 1) + P (X
1

= 1, X
2

= 0, F = 0)

= (1� p) · p · 1
2
+ p · (1� p) · 1

2
= p(1� p),

Prob
up

= P (X
1

= 1, X
2

= 1) + P (X
1

= 1, X
2

= 0, F = 1)

= p2 +
p(1� p)

2

=
p(1 + p)

2
,

Prob
down

= P (X
1

= 0, X
2

= 0) + P (X
1

= 0, X
2

= 1, F = 0)

= (1� p)2 +
(1� p)p

2

=
(1� p)(2� p)

2
.

Since the correct number is 1, Prob
correct

= Prob
up

and Prob
incorrect

= Prob
down

.
Extending to the general case of 2n people,

Prob
no

= (p(1� p))n,

Prob
correct

=
nX

i=1

P (no cascade before i-th pair, Y
2i�1 = 1, Y

2i = 1)

=
nX

i=1

(p(1� p))i�1
p(p+ 1)

2

=
p(p+ 1)

2

n�1X

i=0

(p(1� p))i

=
p(p+ 1)

2

1� (p(1� p))n

1� p(1� p)

=
p(p+ 1)[1� (p� p2)n]

2(1� p+ p2)
,

and

Prob
incorrect

=
nX

i=1

P (no cascade before i-th pair, Y
2i�1 = 0, Y

2i = 0)

=
nX

i=1

(p(1� p))i�1
(1� p)(2� p)

2

=
(1� p)(2� p)[1� (p� p2)n]

2(1� p+ p2)
.

Figure 7.4 shows the plots of the probabilities as functions of p, for di↵erent
n. The observations are as follows.

140 How do I viralize a YouTube video and tip a Groupon deal?

1. Obviously, a larger p (the probability of a private signal being correct) in-
creases Prob

correct

.

2. Increasing n reduces Prob
no

. When n = 1, Prob
no

is significant. When n is
small, increasing it helps increase Prob

correct

. But the e↵ect of increasing n
quickly saturates. The plots of n = 5 and n = 100 are almost indistinguish-
able.

3. Even for large n, Prob
correct

is significantly less than 1 for a large range of
p. This is somewhat counter-intuitive because when n is large, we expect a
large amount of information to be available and that a correct cascade should
happen with high probability even for small p. But what happens is that
cascades block the aggregation of independent information.

0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

p

Pr
ob

co
rre

ct
 o

r P
ro

b in
co

rre
ct

n = 1
n = 3
n = 5
n = 100

Figure 7.4 Probabilities of information cascade. As the probability p (of each person
getting the correct private signal) increases, the probability of forming a correct
cascade increases roughly linearly. Once the number of people n reaches 5, the curves
are almost identical even as n increases further.

7.3.2 Tipping

Now recall what the influence function f that evolves the product adoption
percentage p in Section 7.2.2. The following example illustrates the notion of

7.3 Examples 141

tipping. Consider two influence functions:

f
1

(p) =
1

1 + e�12(p�0.5)
(7.4)

f
2

(p) = 0.5 +
1

12
log
⇣ p

1� p

⌘
. (7.5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

f(p
)

f1(p)
f2(p)

Figure 7.5 A tipping example, with two di↵erent reaction functions f(p). One leads to
a stable equilibrium at (0.5, 0.5), and the other to an unstable equilibrium at the
same point.

Figure 7.5 shows the plots of both functions, each with three equilibrium points
p⇤ = 0.00255, 0.5, 0.997, where f(p⇤) = p⇤. For f

1

(p) the equilibria 0.00255 and
0.997 are stable, while for f

2

(p) the equilibrium 0.5 is stable.

Now consider what happens when we try to tip from an unstable equilibrium.
For f

1

(p), we start at p
0

= 0.5� 0.001 = 0.499 and iteratively update pi (where
i = 0, 1, 2, . . .) as

pi+1

= f(pi),

then pi updates as 0.499, 0.497, 0.491, 0.473, 0.419, 0.276, 0.0639, 0.00531,
0.00264, 0.00255, 0.00255 . . . and pi eventually stops changing when it reaches
the stable equilibrium p⇤ = 0.00255.

For f
2

(p), we iterate from p
0

= 0.00255 + 0.00001 = 0.00256, and pi updates
as 0.00256, 0.0134, 0.141, 0.350, 0.448, 0.483, 0.494, 0.498, 0.499, 0.500, 0.500 . . .
Again pi stops changing when it reaches the stable equilibrium p⇤ = 0.5.

142 How do I viralize a YouTube video and tip a Groupon deal?

7.4 Advanced Material

7.4.1 Synchronization

Sometimes herding or tipping manifests on the time dimension too, when many
people’s behaviors are synchronized. This is one step beyond just converging on
the same public action (in information cascade) or on adoption percentage (in
tipping). The study of synchronization started with clocks. Two clocks hang
on the wall next to each other. Vibration propagating through the wall produces
a coupling between the two clocks. Soon their ticking will be synchronized. Syn-
chronization happens a lot in nature: from fireflies glowing to crickets chirping,
and from people walking to pacemakers adjusting.
The standard model to study synchronization is coupled oscillators. We will

look at a weak form of coupling called pulse-coupling. Later we will also study
decoupling over a network in Chapter 14, and how to use very little and implicit
communication, plus a little randomization, to avoid synchronization in Chapter
18.
We will focus on the case of 2 weakly pulse-coupled oscillators: A and B, and

visualize the dynamics in a state-phase diagram in the [0, 1] ⇥ [0, 1] grid. Each
oscillator’s state x evolves over time, with magnitude normalized to [0, 1]. We
parameterize this movement not directly as a function of time t, but instead by
a phase parameter that keeps track of the asynchronism between A and B. The
state x depends on the phase �:

x(t) = f(�(t)),

where � 2 [0, 1] is the phase variable, itself moving over time steadily as d�/dt =
1/T for cycle period T , thus driving x over time as well. We can think of �(t)
as the degree marked on the clock by an arm, and x(t) the state of the spring
behind the arm. The boundary conditions are f(0) = 0 and f(1) = 1, as shown
in Figure 7.6.
A simple and important model of f(�) is the “pacemaker trajectory:”

f�(�) = (1� e��)(1� e���),

where � is a constant in the pacemaker model. Strictly speaking, the upper
bound on the state x is now (1� e��)2 (close to 1 for large � but not exactly 1),
achieved when phase � is 1.
When x = 1 for, say, oscillator A, three things happen:

• Oscillator A “fires.”

• xA goes back to 0.

• The other oscillator B gets a “kick:” its own xB goes up to xB(t) + ✏, unless
that value exceeds 1, in which case B fires too, and the two oscillators are
synchronized from that point onward.

7.4 Advanced Material 143

So if we can show that, no matter what the initial condition, the two os-
cillators A and B will eventually fire together, then we will have shown that
synchronization must happen.

O

A

B

I

I

ß

φ

Figure 7.6 Trajectory of two pulse-coupled oscillators: A and B, shown on the
state-phase plane. As time passes by, both A and B follow the trajectory f . When
either reaches (1, 1), it fires, returns to the origin, and kicks the other vertically by ✏.
Once they fire at the same time, they are synchronized as they will travel together on
this plane from that point onwards.

As shown in Figure 7.6, A and B move along curve f with a constant horizontal
distance between them until one of them reaches the firing threshold, fires, drops
back to the origin, and causes the other one to jump vertically by ✏.

Before walking through a proof that synchronization will happen, let us first
look at a numerical example. Oscillators A and B have initial phases 0.4 and
0.6, respectively. Consider the pacemaker trajectory with � = 2, thus the trigger
threshold is (1� exp��)2 = 0.7476. The coupling strength is ✏ = 0.01. The two
oscillators start out at di↵erent trajectories, and as they oscillate, whenever one
oscillator “fires” and drops down, the other oscillator’s trajectory is “kicked”
upwards, increasing by a small quantity ✏ = 1/100. The time of synchronization,
t = 3181, is the first instance both oscillators achieve threshold in the same time
interval, as illustrated by the dotted blue line in Figure 7.7.

Now our reasoning through the general case. Suppose A just fired, and B has
phase �. This is an abuse of notation, as we now use � as a specific phase rather
than a generic notation of the phase axis. What will be the phase of B after the
next firing of A? We hope A and B will be closer to being synchronized. Call the
answer to this question the image of a return function R(�).

First, it is clear that after A’s firing, B is leading A now. After a phase shift
of 1� �, B fires, when A is at phase 1� �, and with state xA = f(1� �). Right

144 How do I viralize a YouTube video and tip a Groupon deal?

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Synchronizing Trajectories

Timestep (1/5000 sec)

Tr
aj

ec
to

ry

Figure 7.7 An illustration of the synchronization of two weakly coupled oscillators.
The phases get closer and closer over time and become synchronized at t = 3181.

after B fires, A’s state jumps to

xA = f(1� �) + ✏, (7.6)

if it is less than 1. Of course, if it is not less than 1, it must be 1, thus achieving
synchronization between A and B’s firing. So let us say it is less than 1. Obviously,
for that to happen, ✏ needs to be less than 1 (thus the assumption of weak
coupling here), and � needs to be su�ciently away from 0: since f(1��)+✏ < 1,
we know

� > �min = 1� f�1(1� ✏).

Now back to (7.6), the corresponding phase is

�A = f�1(f(1� �) + ✏) = h(�), (7.7)

where h is a shorthand notation, standing for “half” of a complete round.
In summary, after one firing, i.e., half of a return round, we go on the state-

phase plane from

(�A,�B) = (0,�)

to

(�A,�B) = (h(�), 0).

Applying h one more time, we will get to

(�A,�B) = (0, h(h(�))).

So the return function is simply

R(�) = h(h(�)),

7.4 Advanced Material 145

y p

full
return

half
return

B

A

¶ 11-

1
"

B

A
¶ 1

1

B

A

1

¶R() 1

B

A

1

¶R() 1

Figure 7.8 Pictorial illustration of the proof of synchronization. h indicates half of a
return (from A firing to B firing). R indicates a full return (from A firing to A firing
again). We want to show that if �, the phase of B at A firing, is smaller than a
threshold, B will be closer to phase 0 after one return. And if � is larger than that
threshold, B will be closer to phase 1 after one return. Either way, A and B are driven
closer to synchronization after each return.

where h is defined as in (7.7). This is illustrated in Figure 7.8.

Now we want to show that as A and B each gets to fire, they will be closer on
the (�, x) plane, either towards � = 0 or � = 1, so eventually they must meet.
This is a contraction mapping argument.

So, we want to show that there is a unique �⇤, such that R(�) > � if � > �⇤

and R(�) < � if � < �⇤. This will prove that synchronization must eventually
happen.

So, we want to first show that there is a unique fixed point �⇤ of R. If h has
a unique fixed point, obviously R has too.

Does h has a unique fixed point? Or, equivalently, is there one, and only one
point �⇤, such that

F (�⇤) = 0,

where F (�) = � � h(�)? Well, we can easily check that �min < h(�min), and
consequently, flipping the arrow of time, h�1(�min) > h(h�1(�min)) = �min.
That means

F (�min) < 0 and F (h�1(�min)) > 0.

There must be some �⇤ 2 [�min, h�1(�min)] such that F (�⇤) = 0, i.e., a fixed
point. We have proved the existence of fixed points.

But there might be many fixed points in the above interval. Let us check F ’s

146 How do I viralize a YouTube video and tip a Groupon deal?

first derivative 1� h0(�). By the chain rule, we know that

h0(�) = �f�1
0
(✏+ f(1� �))

f�10(f(1� �))
.

Since f is increasing and concave, we know f�1
0
is increasing and convex, the

above ratio must be less than -1. That means F 0 must be greater than 2, thus
F is monotonically increasing. This proves that not only are there fixed points,
but also there is a unique fixed point of h.
Therefore, R also has a unique fixed point �⇤. By the chain rule, we know

h0 < �1 implies R0 > 1. So if � > �⇤, after two rounds of firing, one by A
and another by B, the system is driven toward � = 1. If � < �⇤, it is driven
toward � = 0. Either way, it is driven closer to synchronization. More rounds
will eventually lead to synchronization.
The above derivation does not use a di↵erential equation approach as we will

see next in the di↵usion model. That would have been a non-scalable proof
technique as we generalize from 2 oscillators to N of them. Instead, this fixed
point approach readily generalizes itself to all N , and for all increasing and
concave trajectories too, without having to write down the di↵erential equation.
It goes straight to the root cause that leads to synchronization.
Over the past two decades, there have also been other generalizations: to

di↵erent types and representations of coupling, to network topology-dependent
coupling, and to synchronization even with delay in coupling.

7.4.2 Di↵usion

The tipping model is based on population dynamics. It can be further elaborated
in various ways. Consider a fixed market of size M people that a new product
(or a song, or an app) wants to di↵use into. Each user chooses between adopting
or not, again in a binary state of mind, based on two factors:

• Something intrinsic about the product itself, independent of how many other
people have adopted it. Some call this the innovation or external compo-
nent. We will refer to it as the intrinsic factor.

• The networking e↵ect: either because more adopters change the value of the
product itself, or because of the information cascade e↵ect. Some call this
the internal component. We will refer to this as the imitation factor.

At time t, the number of adopters is n(t), and the cumulative number of
adopters is N(t). The following equation is the starting point of the Bass model
in 1969:

n(t) =
dN(t)

dt
=

p+ q

N(t)

M

�
(M �N(t)), (7.8)

where p is the intrinsic factor coe�cient, and q the imitation factor co-
e�cient, which multiplies the fraction of adopters in the market. The sum of

7.4 Advanced Material 147

the two e↵ects is the growth factor, which when multiplied with the number of
non-adopters left in the population, gives the number of new adopters at time
slot t. Let us assume at time 0, N(0) = 0: the product starts from zero market
di↵usion.
This population-based model, captured through a simple di↵erential equation,

has been extensively studied and generalized in the marketing literature. The
basic version above has a closed-form solution. Solving the di↵erential equation
(7.8) with zero initial condition, we see that, at each time t, the number of new
adopters is

n(t) = M
p(p+ q)2 exp(�(p+ q)t)

(p+ q exp(�(p+ q)t))2
. (7.9)

Further integrating the resulting n(t) over time, the number of total adopters at
to that point is

N(t) = M
1� exp(�(p+ q)t)

1 + q
p exp(�(p+ q)t)

. (7.10)

t

Non-Cumulative

t

Cumulative

Figure 7.9 Two typical graphs illustrating the Bass di↵usion model. The
non-cumulative adoption rate is shown on the left, rising initially and then quiet
down as the market saturates. The cumulative adoption population is shown on the
right as a sigmoidal curve.

Figure 7.9 shows the typical evolution of di↵usion over time: the cumulative
adoptionN(t) climbs up toM through a sigmoidal function: convex first and then
concave past the inflection point. The reason is clear: the adoption rate curve
n(t) rises initially because there are still many non-adopters, but eventually, the
market saturates and there are not enough non-adopters left.
What is interesting is to see the breakdown of N(t) into those adoptions due to

the intrinsic factor, which monotonically decreases over time because of market
saturation, and those due to the imitation factor, which rises for a while, as the

148 How do I viralize a YouTube video and tip a Groupon deal?

imitation e↵ect overcomes the market saturation e↵ect. The peak of this rise,
and the rise of n(t), happens at time

T =
1

p+ q
log(

q

p
).

This makes sense since it is the ratio of the two coe�cients that determines the
relative weight of the two curves, and the faster the overall adoption coe�cient,
the earlier the market reaches its peak rate of adoption.
As a numerical example, we take p = 0.01 and q = 0.1 or 0.2. The di↵usion

behavior is shown in Figures 7.10 and 7.11. From both graphs, we see that when
q is larger, the adoption happens faster.

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

t

N
(t)

q = 0.1
q = 0.2

Figure 7.10 A numerical example of the trajectory of Bass model for di↵usion. The
cumulative adoption is shown over time, for two di↵erent values of the imitation
factor coe�cient q. Both curves are sigmoidal: convex first and then concave.

But how do we pick p and q values? That is often done through a parameter
training phase like the baseline predictor in the Netflix Prize in Chapter 4, using
known marketing data, or a new product trial. Once p and q are fixed, we can
run the model for prediction and planning purposes.
There have been many extensions in the past four decades of the basic model

above:

• Incorporate individual decision-making processes.

• Divide the population into groups with di↵erent behaviors.

• Allow the market size M to vary with the e↵ectiveness of adoption rather
than fixed a priori.

7.4 Advanced Material 149

0 20 40 60 80 100
0

100

200

300

400

500

600

t

n(
t)

q = 0.1
q = 0.2

Figure 7.11 A numerical example of the trajectory of Bass model for di↵usion. The
rate of adoption is shown over time, for two di↵erent values of the imitation factor
coe�ciente q. Both curves rise up to a peak value and then decay to zero when
everyone has adopted.

• Others like time-varying nature of innovation, limitation of supply, and non-
binary choices by consumers.

There have also been many refinements of the coe�cient models, especially the
imitation factor coe�cient q. We highlight a particularly interesting one that has
the element of time explicitly modeled: flexible logistic growth model. Here
we have

q(t) = q(1 + kt)
µ�k

k ,

where k and µ are two parameters modeling the increasing, decreasing, or con-
stant power of imitation over time, and their values, when properly chosen, can
allow the model to put the inflection point anywhere between 0 and 100% market
di↵usion.
The resulting cumulative adoption population has a somewhat complicated

form. In the simpler case when p = 0, it is:

N(t) =
M

1 + exp(�(c+ qt(µ, k)))
,

where c is some constant, and the function t(µ, k), when µ 6= 0 and k 6= 0, is

(1 + kt)µ/k � 1

µ
,

150 How do I viralize a YouTube video and tip a Groupon deal?

and, when µ = 0, k 6= 0, is

1

k
log(1 + kt).

One can also think of a model where the market size is essentially infinite,
and there is no market saturation e↵ect. For example, the change in N(t) is the
product of imitation e↵ect qN(t) and a penalty term D(t) that decreases the
attractiveness of the product as time goes on. This then leads to the following
di↵erential equation:

n(t) =
dN(t)

dt
= qN(t)D(t)�N(t).

So, when time t is such that D(t) < 1/q, the market adoption rate will decrease
even without a fixed market size.
No matter which model we use, there are two essential ingredients: an imitation

e↵ect q and a shrinkage e↵ect (either because of time passing D(t), or because
of a fixed market size M), as well as an optional ingredient of intrinsic e↵ect p.

Further Reading

The material in this chapter comes from a diverse set of sources: political econ-
omy, marketing, physics, and sociology.

1. On information cascade model, we follow the classical work below:
[BHW92] S. Bikhchandani, D. Hirshleifer, and I. Welch, “A theory of fads,

fashion, custom, and cultural change as information cascades,” Journal of Polit-
ical Economy, vol. 100, no. 5, pp. 992-1026 , October 1992.

2. On synchronization model, we follow the seminal paper using fixed point
techniques to analyze synchronization:
[MS90] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-coupled

biological oscillators”, SIAM Journal of Applied Mathematics, vol. 50, no. 6, pp.
1645-1662, December 1990.

3. On di↵usion model, an extensive survey of the research area since 1968 can
be found at:
[MMB90] V. Mahajan, E. Muller, and F. M. Bass, “New product di↵usion

models in marketing: A review and directions for research”, Journal of Market-
ing, vol. 54, no. 1, pp. 1 - 26, January 1990.

4. A class work on threshold models in sociology is the following one:
[Gra78] M. Granovetter, “Threshold models of collective behavior,” Americal

Journal of Sociology, vol. 83, no. 6, 1978.

7.4 Advanced Material 151

5. The music market’s trends under social influence were studied in the fol-
lowing experiment, which we summarized in this chapter:
[SDW06] M. J. Salganik, P. S. Dodds, and D. J. Watts, “Experimental study

of inequality and unpredictability in an artificial cultural market,” Science, vol.
311, pp. 854 - 856, February 2006.

Problems

7.1 A citation network ?

1

3 4

7

2

5 6

8

Figure 7.12 A citation network.

Consider a set of eight papers with their citation relationships represented by
the graph in Figure 7.12. Each paper is a node, and a directed edge from node
i to node j means paper i cites paper j.
(a) Write down the adjacency matrix A, where the (i, j) entry is 1 if node i

and node j are connected, and 0 otherwise.
(b) Compute the matrix C defined as

C = ATA

and compare the values C
78

and C
75

. In general, what is the physical interpre-
tation of the entries Cij?

7.2 Physical interpretation of matrix multiplication ?

(a) Refer to the graph in Figure 7.12. Compute

A2 = AA,

A3 = A2A.

(b) Is there anything special about A3? In general, what do the entries in Am

(where m = 1, 2, . . .) represent?

152 How do I viralize a YouTube video and tip a Groupon deal?

7.3 Hypergraphs and bipartite graphs ??

1

3 4

7

2

5 6

8

Physics Chemistry

Figure 7.13 Hypergraphs allow each link to connect more than two nodes.

Suppose the papers are in the fields of physics or chemistry. Group member-
ship, i.e., to which field a papers belongs, is presented as a hypergraph in
Figure 7.13: each dotted area is a group or a hyperedge, which is a generaliza-
tion of an undirected edge to connect possibly more than two nodes. Note that
papers 4 and 5 are “interdisciplinary” papers, so their nodes are contained in
both hyperedges.
(a) We can transform the hypergraph in Figure 7.13 into an undirected bi-

partite graph by introducing two more nodes, each representing one of the hy-
peredges, and linking a “standard” node with a “hyperedge” node with an edge
if the former is contained in the corresponding hyperedge. Draw this bipartite
graph.
(b) Define an incidence matrix B of size 2⇥ 8 with

Bij =

(
1 node j is contained in group i,

0 otherwise,

where group 1 is “Physics” and group 2 is “Chemistry”. Write down B for this
graph.
(c) Compute the matrix BTB. What is its interpretation?
(d) Compute the matrix BBT . What is its interpretation?

7.4 Perturbing flipping behaviors ??

(a) Consider the f(p) function in Figure 7.14, which has four equilibria p⇤ =
0, 1

3

, 2

3

, 1. Suppose we start with p
0

= 0.01 (or some constant slightly greater
than 0), find the equilibrium fraction p1.
(b) Suppose f(p) is slightly modified as in Figure 7.15, such that the point

7.4 Advanced Material 153

1

1
p

f(p)

O

f(
p)
=
p

Figure 7.14 An original curve to model
flipping.

1

1
p

f(p)

O

f(
p)
=
p

Figure 7.15 The curve is modified.

p = 0 is no longer an equilibrium, i.e., f(0) > 0. Again use a graphical argument
to find p1, starting at p

0

= 0.

(c) Suppose f(p) is further slightly modified as in Figure 7.16, such that
f(p) > p for 0 p < 1. Find p1 starting at p

0

= 0.

7.5 Flocking birds ? ? ?

In our study of the dynamics of collective behavior, we are often intrigued
by the process that goes from individual actions and local interactions to large-
scale, global patterns. This happens in many ways in human crowds, bird flocks,
fish schools, bacteria swarms, etc. A simple and powerful illustration is Conway’s
game of life.

(A comprehensive survey of animal behavior can be found in I. D. Couzin and

154 How do I viralize a YouTube video and tip a Groupon deal?

1

1
p

f(p)

O

f(
p)
=
p

Figure 7.16 The curve is modified again.

J. Krause, “Organization and collective behavior in vertebrates,” Advances in
the Study of Behavior, 2003.)
Here is a very simple model for bird flocks that assumes away many features

but su�cies to illustrate the point in a homework problem. Suppose there is a
2-dimensional plane and N points moving in it. Each point has neighbors, which
are the points within a circle of radius r units. All the points move with the same
constant speed, say, 1 unit, but along di↵erent directions. At each time slot, each
point’s direction is updated as the average of its current direction and all the
directions of its neighbors. We can think of a graph where each node is a point,
and each link is a neighbor relationship. But this graph evolves over time as the
points’ positions change.
In this homework problem, you are asked to random place 100 points in a

10 by 10 units square, and initialize their directions randomly. You should try
di↵erent values of r. Simulate the above model over time, and see what happens
to the directions of the points.
(For more details, see T. Vicsek, A. Czirok, E. Ben Jacob, I. Cohen, and O.

Schochet, “Novel type of phase transitions in a system of self-driven particles,”
Physics Review Letter, vol. 75, pp. 1226-1229, 1995.)

8 How do I influence people on
Facebook and Twitter?

To study a network, we have to study both its topology (the graph) and its
functionalities (tasks carried out on top of the graph). This chapter on topology-
dependent influence models indeed pursues both, as do the next two chapters.

8.1 A Short Answer

Started in October 2003 and formally founded in February 2004, Facebook has
become the largest social network website, with 750 million users worldwide and
140 million unique monthly visitors in the U.S. as of summer 2011. Many links
have been formed among these nodes, although it is not straightforward to define
how many frequent mutual activities on each other’s wall constitute a link.
Founded in July 2006, Twitter attracted more than 200 million users in 5

years. In summer 2011, over 200 million tweets were handled by Twitter each
day. Twitter combines several functionalities into one platform: microblogging
(with no more than 140 characters), group texting, and social networking (with
one-way following relationship, i.e., directional links).
Facebook and Twitter have become two of the most influential communication

modes, especially among young people. In summer 2011’s east coast earthquake
in the US, tweets traveled faster than the earthquake itself from Virginia to
New York. They have also become a major mechanism in social organization. In
summer 2009, Twitter became a significant force in how the Iranians organized
themselves against the totalitarian regime, and again in 2011 during the Arab
Spring.
There have been all kinds of attempts at figuring out

• (a) how to measure the influential power of individuals on Facebook or Twit-
ter;

• (b) how to leverage the knowledge of influential power’s distribution to actu-
ally influence people online.

Question (a) is an analysis problem and question (b) a synthesis problem.
Neither is easy and there is a significant gap between theory and practice. Later
in this chapter we will visit some of the fundamental models that have yet to

156 How do I influence people on Facebook and Twitter?

make a significant impact on characterizing and optimizing influence over these
networks.
But the di�culty did not prevent people from trying out heuristics. Regarding

(a), for example, there are many companies charting the influential power of
individuals on Twitter, and there are several ways to approximate that influential
power: by the number of followers, by the number of retweets (with “RT” or “via”
in the tweet), or by the number of reposting of URLs. There are also companies
data mining the friendship network topology of Facebook.
As to (b), Facebook uses simple methods to recommend friends, often based on

email contact lists or common backgrounds. Marketing firms also use Facebook
and Twitter to stage marketing campaigns. Some “buy o↵” a few influential
individuals on these networks, while others buy o↵ a large number of randomly
chosen, reasonably influential individuals.
It is important to figure out who are the influential people. An often-quoted

historical anectode are the night rides by Paul Revere and by William Dawes on
18-19 April in 1775. Dawes left Boston earlier in the evening than Revere. They
took di↵erent paths towards Lexington, and then rode together from Lexington
to Concord. Revere alerted influential militia leaders along his route to Lexing-
ton, and was much more e↵ective in spreading the word of the imminent British
military action, leading to winning on the next day the first battle that started
the American Revolutionary War.
How do we quantify which nodes are more important? The question dates back

thousands of years, and one particularly interesting example occurred during the
Renaissance in Italy. The Medici family was often viewed as the most influential
among the 15 most prominent families in Florence in the 15th and 16th century.
As shown in Figure 8.1, it sat in the “center” of the family social network through
strategic marriages. We will see several ideas quantifying the notion of centrality.
How do we quantify which links (and paths) are more important? We will de-

fine strong vs. weak ties. Their e↵ects can be somewhat unexpected. For exam-
ple, Granovetter’s 1973 survey in Amherst, Massachusetts showed the strength
of weak ties in communicating. We will see another surprise of weak ties’ roles
in social networks, on six degree separation in Chapter 9.
Furthermore, how do we quantify which subset of nodes (and the associated

links) are connected enough among themselves, and yet disconnected enough
from the rest of the network, that we can call them a “group”? We save this
question for Advanced Material.
Before proceeding further, we first formally introduce two commonly used ma-

trices to describe graphs. We will construct a few other matrices later as concise
and useful representations of graphs. We will see that properties about a graph
can often be summarized by linear-algebraic quantities about the corresponding
matrices.
First is the adjacency matrix A, of dimension N by N , of a given graph G

with N nodes connected through links. For the graphs we deal with in this book,
Aij is 1 if there is a link from node i to j, and 0 otherwise. We mostly focus on

8.1 A Short Answer 157

Medici

Strozzi

Medici

Guadagni

Figure 8.1 The central position of the Medici family in Renaissance Florence. Each
node is a family, three of them shown with their names. Each link is a marriage or
kinship relationship. The Medici family clearly had the largest degree, but its
influential power relative to the other families was much more than the degree
distribution would indicate. Other measures of centrality, especially betweenness
centrality, reveal just how influential the Medici family was.

undirected graphs in this chapter, where each link is bidirectional. Given
an undirected graph, A is symmetric: Aij = Aji, 8i, j. If a link can be uni-
directional, we have a directed graph, like the Twitter following relationship
graph.

Second and less used in this book is the incidence matrix Â, of dimension
N by L, where N is again the number of nodes and L the number of links. For an
undirected graph, Âij = 1 if node i is on link j, and 0 otherwise. For a directed
graph, Âij = 1 if node i starts link j, Âij = �1 if node i ends link j, and Âij = 0
otherwise.

Straightforward as the above definitions may be, it is often tricky to define
what exactly constitutes a link between two persons: known by first-name as
in Milgram’s small world experiment? Or friends on Facebook who have never
met or communicated directly? Or only those with whom you text at least one
message a day? Some links are also directional: I may have commented on your
wall postings on Facebook but you never bothered reading my wall at all. Or I
may be following your Tweets, but you do not follow mine.

Even more tricky is to go beyond the simple static graph metrics and into the
functionalities and dynamics on a graph. But that is much tougher a subject,
and we start with some simple static graph metrics first.

158 How do I influence people on Facebook and Twitter?

8.2 A Long Answer

8.2.1 Measuring node importance

You must be in many social networks, online as well as o✏ine. How important
are you in each of those networks? Well, that depends on how you define the
“importance” of a node. Eventually it depends on the specific functionalities we
are looking at and it evolves over time, but we shall restrict ourselves to just
static graph metrics for now. And it is not easy to discover the actual topology
of the network. But let us say for now that we are given a network of nodes and
links.
There are at least four di↵erent approaches to measuring the importance, or

centrality of a node, say node 1.
The first obvious choice is degree: the number of nodes connected to node 1.

If it is a directed graph, we can count two degrees: the in-degree: the number of
nodes pointing towards node 1, and the out-degree: the number of nodes that
node 1 points to. Dunbar’s number, usually around 150, is often viewed as the
number of friends a typical person may have, but the exact number of course
depends on the definition of “friends”. The communication modes of texting,
tweeting, and blogging may have created new shades of definition of “friends”.
In Google+, you can also create your own customized notions of friends by
creating new circles.
But we will see there are many issues with using the degree of a node as its

centrality measure. One issue is that if you are connected to more important
nodes, you will be more important than you would be if you were connected to
less important nodes. This reminds you of the pagerank definition in Chapter 3.
Indeed, we can take pagerank as a centrality measure.
A slightly simpler but still useful view of centrality is to just look at the

successive multiplication of the centrality vector x by the adjacency matrix A
that describes the network topology, starting with an initialization vector x(0):

x(t) = Atx(0).

In a homework problem, you will discover a motivation for this successive mul-
tiplication.
We can always write a vector as a linear combination of the eigenvectors {vi}

of A, arranged in descending order and indexed by i, for some weight constants
{ci}. For example, we can write the vector x(0) as follows:

x(0) =
X

i

civi.

Now we can write x(t) at any iteration t as a weighted sum of {vi}:

x(t) = At
X

i

civi =
X

i

ciA
tvi =

X

i

ci�
t
ivi, (8.1)

where {�i} are the eigenvalues of A.

8.2 A Long Answer 159

As t ! 1, the e↵ect of the largest eigenvalue �
1

will dominate, so we ap-
proximate by looking only at the e↵ect of �

1

. Now the eigenvector centrality
measures {xi} constitute a vector that solves:

Ax = �
1

x,

which means

xi =
1

�
1

X

j

Aijxj , 8i. (8.2)

We can also normalize the eigenvector centrality x.
The third notion, closeness centrality, takes a “distance” point of view.

Take a pair of nodes (i, j) and find the shortest path between them. It is not
always easy to compute shortest path, as we will see in Chapters 9 and 13. But
for now, say we have found these shortest paths, and denote their length as dij .
The largest dij across all (i, j) pairs is called the diameter of the network. The
average of dij for a given node i across all other n�1 nodes is an average distanceP

j dij/(n� 1). Closeness centrality is the reciprocal of this average:

Ci =
n� 1P

j dij
. (8.3)

We have used the arithmetic mean, but could also have used other “averages”,
such as the harmonic mean.
Closeness centrality is quite intuitive: the more nodes you know or closer you

are to other nodes, the more central you are in the network. But there is another
notion that is just as useful, especially when modeling influence and information
exchange: betweenness centrality. If you are on the (shortest) paths of many
other pairs of nodes, then you are important. We can also extend this definition
to incorporate more than just the shortest paths, as in the context of Internet
routing in Chapter 13.
Let gst be the total number of shortest paths between two di↵ferent nodes,

source s and destination t (neither of which is node i itself), and ni
st be the

number of such paths that node i sits on. Then betweenness centrality of node
i is defined as

Bi =
X

st

ni
st

gst
. (8.4)

A node with a large closeness centrality may not have a large betweenness
centrality, and vice versa. In fact, many social networks exhibit the small world
phenomenon as explained in Chapter 9, and the closeness centrality values of
di↵erent nodes tend to be close to each other. Betweenness centrality values
tend to have a larger dynamic range.
We can also think of hybrid metrics. For example, first weight each node by

eigenvector centrality, then weight each node pair by the product of their eigen-
vector centrality values, and then calculate betweenness centrality by weighting
each (st) term in (8.4) accordingly.

160 How do I influence people on Facebook and Twitter?

1

2

5

4

7

6

8

3

Figure 8.2 An example network to illustrate node importance metrics, link importance
metrics, and group connectedness metrics. For example, how much more important
node 1 is relative to node 2 depends on which centrality metric we use.

In the Renaissance Florence family relationship graph, it is obvious that the
Medici family has the largest degree, 6, but the Strozzi and Guadagni families
degrees are not too far behind: 4 for both. But if we look at the betweenness
centrality values, Medici family has a value of 50.83, which is 5 times as central
as Strozzi and twice as central as Guadagni, not just a mere factor of 1.5.
Now let us take a look at how di↵erent node importance metrics turn out to

be for two of the nodes, 1 and 2, in the small network in Figure 8.2.
For degree centrality, obviously d

1

= d
2

= 3. But nodes 1 and 2 cannot be the
same in their importance according to most people’s intuition that says nodes
gluing the graph together are more important.
Let us compute eigenvector centrality next. From the adjacency matrix

A =

2

666666666664

0 1 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 0 0 0 0 1 1 1
1 1 0 0 1 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 1
0 0 1 0 0 0 1 0

3

777777777775

,

we can solve for

Ax = �
1

x

to obtain

�
1

= 2.8723,

x = [0.4063, 0.3455, 0.4760, 0.3455, 0.2406, 0.2949, 0.3711, 0.2949]T .

So node 1 is slightly more important than node 2: 0.4063 > 0.3415. But is it
really just slightly more important?

8.2 A Long Answer 161

To compute closeness centrality, we first write out the pairwise (shortest) dis-
tances from node 1 to the other nodes, and from node 2 to the other nodes:

d
12

= 1, d
13

= 1, d
14

= 1, d
15

= 2, d
16

= 2, d
17

= 2, d
18

= 2,

d
21

= 1, d
23

= 2, d
24

= 1, d
25

= 1, d
26

= 3, d
27

= 3, d
28

= 3.

Then, we can see that node 1 is again only slightly more important:

C
1

=
7

1 + 1 + 1 + 2 + 2 + 2 + 2
= 0.6364

C
2

=
7

1 + 2 + 1 + 1 + 3 + 3 + 3
= 0.5.

Finally, to compute betweenness centrality, it helps to first write out the quan-
tities of interest. Let G be the matrix with Gij = gij , N1 be the matrix with
N1

ij = n1

ij for node 1, and N2 be the matrix with N2

ij = n2

ij for node 2. Also
let X denote a matrix entry that is not involved in the calculations (a “don’t
care”). Then, we have

G =

2

666666666664

X 1 1 1 2 1 1 1
1 X 1 1 1 1 1 1
1 1 X 1 2 1 1 1
1 1 1 X 1 1 1 1
2 1 2 1 X 2 2 2
1 1 1 1 2 X 1 2
1 1 1 1 2 1 X 1
1 1 1 1 2 2 1 X

3

777777777775

,

N1 =

2

666666666664

X X X X X X X X
X X 1 0 0 1 1 1
X 1 X 1 2 0 0 0
X 0 1 X 0 1 1 1
X 0 2 0 X 2 2 2
X 1 0 1 2 X 0 0
X 1 1 0 2 0 X 0
X 1 0 1 2 0 0 X

3

777777777775

,

N2 =

2

666666666664

X X 0 0 1 0 0 0
X X X X X X X X
0 X X 0 1 0 0 0
0 X 0 X 0 0 0 0
1 X 1 0 X 1 1 1
0 X 0 0 1 X 0 0
0 X 0 0 1 0 X 0
0 X 0 0 1 0 0 X

3

777777777775

.

Applying (8.4), we clearly see an intuitive result this time: node 1 is much more

162 How do I influence people on Facebook and Twitter?

important than node 2:

B
1

= 12,

B
2

= 2.5.

8.2.2 Measuring link importance

Not all links are equally important. Sometimes there is a natural and opera-
tionally meaningful way to assign weights, whether integers or real numbers,
to links. For example, the frequency of Alice retweeting Bob’s tweets, or of re-
posting Bob’s URL tweets, can be the weight of the link from Bob to Alice.
Sometimes there are several categories of link strength. For example, you may
have 500 friends on Facebook, but those with whom you have had either one
way or mutual communication might be only 100, and those with whom you
have had mutual communication might be only 20. The links to these di↵erent
types of Facebook friends belong to di↵erent strength classes. Weak links might
be weak in action, but strong in information exchange.

A link can also be important because it “glues” the network together. For
example, if a link’s two end points A and B have no common neighbors, or more
generally, do not have any other paths of connection with k hops or less, this link
is locally important in connecting A and B. Links that are important connecting
many node pairs, especially when these nodes are important nodes, are globally
important in the entire network. These links can be considered as weak, since
they connect nodes that otherwise have no, or very little, overlap. (The opposite
is “triad closure” that we will see in the next chapter.)

But these weak links are strong precisely for the reason that they open up
communication channels across groups that normally do not communicate with
each other, as seen in Granovetter’s 1973 experiment. One way to quantify this
notion is link betweenness: similar to the betweenness metric defined for nodes,
but now we count how many shortest paths a link lies on.

Back to Figure 8.2, we can compute B
(i,j), the betweenness of link (i, j) by

B
(i,j) =

X

st

n(i,j)
st

gst
, (8.5)

where n(i,j)
st is the number of shortest paths between two nodes s and t that

traverse link (i, j).

Let N(i,j) be a matrix with the (s, t) entry as n(i,j)
st . We can compare, e.g., the

8.2 A Long Answer 163

betweenness values of the links (1, 3) and (1, 2).

N(1,3) =

2

666666666664

X 0 1 0 0 1 1 1
0 X 1 0 0 1 1 1
1 1 X 1 2 0 0 0
0 0 1 X 0 1 1 1
0 0 2 0 X 2 2 2
1 1 0 1 2 X 0 0
1 1 0 1 2 0 X 0
1 1 0 1 2 0 0 X

3

777777777775

,

N(1,2) =

2

666666666664

X 1 0 0 1 0 0 0
1 X 1 0 0 1 1 1
0 1 X 0 1 0 0 0
0 0 0 X 0 0 0 0
1 0 1 0 X 1 1 1
0 1 0 0 1 X 0 0
0 1 0 0 1 0 X 0
0 1 0 0 1 0 0 X

3

777777777775

.

Now we can compute link importance by (8.5). We have the intuition quantified:
link (1,3) is much more important than link (1,2) as it glues together the two
parts of the graph:

B
(1,3) = 16,

B
(1,2) = 7.5.

8.2.3 Contagion

Now that we have discussed the basic (static) metrics of a graph, we continue
with our influence model discussions with the help of network topology.
Remember the last chapter’s section on tipping behavior under best response

strategy? In this 2-state model, the initialization has a subset of the nodes adopt-
ing one state, for example, the state of 1, while the rest of the nodes adopt the
other state, the state of 0. We can consider the state-1 nodes as the early adopters
of a new product, service, or trend, so it is likely they would be a small minority
in the network and not necessarily aggregated together.
Now the question is: when, if at all, will all the nodes flip to the new trend,

i.e., flip from state-0 to state-1?
Unlike the di↵usion model in the last chapter, now it is the local population,

the set of neighbors of each node, rather than the global population, that matters.
One possible local flipping rule is a memoryless, threshold model: if p% or more
of your neighbors flipped to state-1, you will flip too. For now, let us say all the
nodes have the same flipping threshold: the same p for all nodes.
An example is shown in Figure 8.3 with a flipping threshold of p = 0.49,

and the highlighted node being initialized at state-1. At time 1, the leftmost

164 How do I influence people on Facebook and Twitter?

01

1 2

3

3

4

4

5

5

Figure 8.3 Example for contagion model with flipping threshold p = 0.49. Numbers in
nodes indicate the times at which they change from state-0 to state-1: at time 1 the
leftmost two nodes flip because one of their two neighbors is in state-1, then this
triggers a cascade of flips from left to right.

two nodes flip, and that triggers a cascade of flipping from left to right of the
network.

In general, the first question we would ask is: will the entire network flip?
It turns out there is a clear-cut answer: if and only if there is no cluster of
density 1� p or higher, in the set of nodes with state-0 at initialization. As will
be elaborated in Advanced Material, a cluster of density p is a set of nodes
such that each of these nodes has at least p% of its neighbors also in this set.
For example, in Figure 8.4, the set of nodes forming the lower left triangle is a
cluster with density 0.5, whereas the set of nodes forming the square is a cluster
with density 2/3.

Figure 8.4 A small graph illustrating clusters with various densities.

Without going through the proof of this answer, the “if” direction of the proof
is intuitively clear: a cluster of density p, all with state-0, will never see any of
its node flip since the inertia from within the cluster su�ces to avoid flipping.
Homophily creates a blocking cluster in the network.

The second question is: if the entire network eventually flips, how many iter-
ations will that take? And the third question is: if only part of the network flips

8.2 A Long Answer 165

in the end, how big of a portion will flip (and where is it in the network)? These
two questions are much harder to answer, and depend a lot on the exact network
topology.

But perhaps the most useful question to answer for viral marketing is one
of design: suppose each node in a given, known graph can be influenced at the
initialization stage: if you pay node i $xi, it will flip. Presumably those nodes
that perceive themselves as more influential will charge a higher price. Under a
total budget constraint, which nodes would you buy (pay it to change its state
and advertise that to neighbors) in order to maximize the extent of flipping at
equilibrium, and furthermore, minimize the time it takes to reach that equilib-
rium?

While this question is hard to answer in general, some intuitions are clear.
If you can only buy one node , it should be the most important one (by some
centrality measure). But once you can buy two nodes, it is the combined influ-
ential power of the pair that matters. For example, you want the two nodes to
be close enough to ensure some nodes will flip, but also want them to be far
apart enough from each other so that more nodes can be covered. This tradeo↵
is further influenced by the heterogeneity of flipping thresholds: for the same
cost, it is more e↵ective to influence those eaiser to flip. Network topology is also
important: you want to flip them in order to create a cascade so some nodes can
help flip others.

8.2.4 Infection: Population based model

We have already seen five influence models between the last and this chapter.
There is another model frequently used in modeling the spread of infectious
disease. Compared to the other models, this one has a state transition, between
two, three, or even more states that each node may find itself in. We will first
describe the interaction using di↵erential equations and assuming that each node
can interact with any other node (which could have been introduced in the last
chapter since this model does not depend on the topology). And then bring in
network topology so that a node can only directly interact with nodes around it.

These variants of the infection model di↵er from each other based on the kind
of state transitions are allowed. We will only cover 2-state and 3-state models.
As shown in Figure 8.5, S stands for susceptible, I stands for infected, and R
stands for recovered, and the symbols above the state transition arrows represent
the rates of those transitions: how many switch per unit of time. We will use
S(t), I(t), R(t) to represent the proportion of population in that state at time t.
The initial condition at time 0 is denoted as S(0), I(0), R(0).

The first model is called SI model, and is very similar to the Bass model
for di↵usion in the last chapter, described by the following pair of di↵erential
equations, where the transition rates are proportional to the product S(t)I(t) at

166 How do I influence people on Facebook and Twitter?

R

S I

S I

S I

β

γ

β

β γ

Figure 8.5 Three of the simplest state transition models for infection: SI model, SIS
model, and SIR model. S stands for susceptible population, I infected, and R
recovered. Each model can be mathematically described through a system of
di↵erential equations, some of which have analytic solutions while others need to be
numerically solved. One caveat in this graphic representation of the di↵erential
equations: the � arrows indicate the transition rate that multiplies the product of the
S and I populations, while the � arrows indicate the transition rate that multiplies
just the I population.

each time t:

dS(t)

dt
= ��S(t)I(t) (8.6)

dI(t)

dt
= �S(t)I(t). (8.7)

We could have also used just one of the two equations above and the normal-
ization equation: all population proportions need to add up to 1: S(t)+ I(t) = 1
at all times t. Substituting S(t) = 1� I(t) into (8.6), we have

dI(t)

dt
= �(1� I(t))I(t) = �(I(t)� I2(t)).

This is a simple second-order di↵erential equation just like what we used in
the last chapter’s Bass model. The closed-form solution is indeed a special case
of the Bass model, a sigmoidal curve for the infected population over time, pa-
rameterized as a logistic growth equation:

I(t) =
I(0)e�t

S(0) + I(0)e�t
. (8.8)

And of course, S(t) = 1� I(t).
We do not go through di↵erential equation solvers here, but it is easy to verify

through di↵erentiation, that the above equation indeed matches the di↵erential
equations of SI model.

8.2 A Long Answer 167

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

S(t)
I(t)

Figure 8.6
Population
evolution over
time for SI
model.
Eventually
everyone is
infected.

When t is small, the numerator dominates and I(t)’s growth is similar to
exponential growth. When t becomes large, the ratio in (8.8) approaches 1. The
whole curve is shown in Figure 8.6.
The SI model assumes that once infected, a person stays infected forever. In

some diseases, a person can become non-infected but still remain susceptible to
further infections. As in Figure 8.5, this SIS model is described by the following
equations:

dS(t)

dt
= �I(t)� �S(t)I(t) (8.9)

dI(t)

dt
= �S(t)I(t)� �I(t). (8.10)

Without even solving the equations, we can guess that, if � < �, the infected
proportion dies out exponentially. If � > �, we will see a sigmoidal curve of I(t)
going up, but not to 100% since some of the infected will be going back to the
susceptible state. The exact saturation percentage of I(t) depends on �/�.
These intuitions are indeed confirmed in the closed-form solution. Again using

S(t) = 1� I(t) and solving the resulting di↵erential equation in I(t), we have

I(t) = (1� �/�)
ce(���)t

1 + ce(���)t
, (8.11)

for some constant c that depends on the initial condition. A sample trajectory,
where � > �, is shown in Figure 8.7.
Indeed, the growth pattern depends on whether � > � or not, and the I(t)

saturation level (as t ! 1) depends on �/� too. There is a name for this
important constant

� = �/�,

168 How do I influence people on Facebook and Twitter?

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

S(t)
I(t)

Figure 8.7
Population
evolution over
time for SIS
model. At
equilibrium,
some people
are not
infected.

the basic reproduction number.
Both the SI and SIS models miss a common feature in many diseases: once

infected and then recovered, a person becomes immunized. This is the R state.
In the SIR model (not to be confused with the Signal to Interference Ratio in
wireless networks in Chapter 1), one of the most commonly used, simple models
for infection, the infected population eventually goes down to 0. As shown in
Figure 8.5, the dynamics are described by the following equations:

dS(t)

dt
= ��S(t)I(t) (8.12)

dI(t)

dt
= �S(t)I(t)� �I(t) (8.13)

dR(t)

dt
= �I(t). (8.14)

Here, � = �/� is the contact rate � (per unit time) times the average infection
period 1/�. We can run substitution twice to eliminate two of the three equations
above, but there is no closed-form solution to the resulting di↵erential equation.
Still, we can show that �S(0) plays the role of threshold level that determines
whether I(t) will go up first before coming down. The trajectory of this SIR
model has the following properties over a period of time [0, T]:

• If �S(0) 1, then I(t) decreases to 0 as t ! 1. There is not enough S(0)
initially to create an epidemic.

• If �S(0) > 1, then I(t) increases to a maximum of

Imax = I(0) + S(0)� 1/� � log(�S(0))/�,

8.2 A Long Answer 169

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

S(t)
I(t)
R(t)

Figure 8.8
Population
evolution over
time in SIR
model, for
�S(0) > 1.
Eventually
everyone is
recovered.

then decreases to 0 as t ! 1. This is the typical curve of an epidemic
outbreak.

• S(t) is always a decreasing function, the limit S(1) as t ! 1 is the unique
root in (0, 1/�) of the following equation:

I(0) + S(0)� S(1) +
1

�
log

✓
S(1)

S(0)

◆
= 0.

A typical picture of the evolution is shown in Figure 8.8. Eventually everyone
is recovered.
There are many other variants beyond the simplest three above, including the

SIRS model where the recovered may become susceptible again, models where
new states are introduced, and models where new births and deaths (due to
infection) are introduced.

8.2.5 Infection: Topology based model

Up to this point, we have assumed that only the global population matters: each
node feels the averaged influence from the entire network. This is sometimes
called the meanfield approximation approach to enable mathematical analysis’
tractability.
But in reality, of course infectious diseases spread only between two neighbors

in a graph (however you may define the “link” concept for each disease). The
di↵erence between the contagion model and the infection model, as well as with
random walk model, now boils down to how we model the local processing.
As illustrated in Figure 8.9: in contagion each node makes a deterministic

decision of flipping or not (based on whether local influence is strong enough),

170 How do I influence people on Facebook and Twitter?

whereas in infection each node is imposed with a probabilistic “decision”, the
likelihood of catching the disease, with the rate of change of that likelihood
dependent on the amount of local influence. So the discrete state actually turns
into a continuous state representing the probability of finding a node in that
state.

0

(a)

0

Threshold

(b)

0

(c)

ÌSi

g

Figure 8.9 Local node processing models, the rate of change of node i’s state (y-axis)
vs. its neighbors’ influence (x-axis), for (a) random walk, (b) contagion, and (c)
infection. Contagion exhibits a flipping threshold, while infection has a linear
dependence of rate of change on neighbor influence.

Intuitively, if the topology is such that there is a bottleneck subset of nodes,
it will be harder to spread the disease to the entire network. More precisely, we
need to include the adjacency matrix in the update equation.
For example, take the simplest case of SI model, now we have for each node i

the following di↵erential equation:

dSi(t)

dt
= ��

X

j

Aij [Si(t)Ij(t)] (8.15)

dIi(t)

dt
= �

X

j

Aij [Si(t)Ij(t)]. (8.16)

There are two tricky points in this seemingly simple translation from the orig-
inal population-based model to this topology-based model. First, quantities Si

and Ii should be read as the probability of node i in state S or I, respectively.
Second, it is tempting to pull Si out of the summation over j, but actually we
need to read SiIj as one quantity: the joint probability that node i is state S
and its neighbor node j in state I. So the above notation is actually wrong. But
to estimate this joint probability, we need to know the probability that some
neighbor of node j (other than node i) was in state I while node j itself was in
state S, for that is the only way we can get to the current state of i in S and j in

8.2 A Long Answer 171

I. Following this line of reasoning, we have to enumerate all the possible paths of
evolution of global states across the whole network over time. That is too much
computation, and we have to stop at some level and approximate.
The first order of approximation is actually to break the joint probability

exactly as in (8.15): the joint probability of node i in state S and node j in state
I is approximated as the product of the individual probabilities of node i in state
S and of node j in state I.
For many other network computation problems, from decoding over wireless

channels to identifying people by voice recognition, it is a common technique to
reduce computational load by breaking down global interactions to local inter-
actions. For certain topologies like trees, a low order approximation can even be
exact, or at least accurate enough for practical purposes.
With this first order approximation, we have the following di↵erential equa-

tion for the SI model (which can also be readily extended to Bass model) with
topology taken into account:

dIi(t)

dt
= �Si(t)

X

j

AijIj(t) (8.17)

= �(1� Ii(t))
X

j

AijIj(t). (8.18)

The presence of quadratic term and of the adjacency matrix makes it di�cult
to solve the above equation in closed-form. But during the early times of the
infection, Ii(t) is very small, and we can approximate the equation as a linear
one by ignoring Ii(t). In vector form, it becomes:

dI(t)

dt
= �AI. (8.19)

Here, I is not an identity matrix, but a vector of the probabilities of the nodes be-
ing in state I. We can, as in (8.1), decompose I as a weighted sum of eigenvectors
{vk} of A, and the weights wk(t) solve the following linear, scalar, di↵erential
equation for each eigenvector k:

dwk(t)

dt
= ��kwk(t),

giving rise to the solution

wk(t) = wk(0)e
��

k

t.

Since I(t) =
P

k wkvk, the solution to (8.19) is

I(t) =
X

k

wk(0)e
��

k

tvk.

So the growth is still exponential at the beginning, but the growth exponent is
weighted by the eigenvalues of the adjacency matrix A now.
Another approximation is to assume that all nodes of the same degree at the

same time have the same S or I value. Like the order-based approximation above,

172 How do I influence people on Facebook and Twitter?

it is clearly incorrect, but useful to generate another tractable way of solving the
problem.
So far we have assumed a detailed topology with an adjacency matrix given.

An alternative is to take a generative model of topology that gives rise to features
like small-world connectivity, and run infection models on those topologies. We
will be studying generative models in the next two chapters.
We can also randomly pick a link in the given topology to be in an “open” state

with probability p that a disease will be transmitted from one node to another,
and in a “closed” state with 1 � p. Then from any given initial condition, say,
an infected node, there is a set of nodes connected to the original infected node
through this maze of open links, and another set of nodes not reachable since
they do not lie on the paths consisting of open links. This turns the infection
model into the study of percolation.

8.3 Examples

8.3.1 Seeding a contagion

01

2

Figure 8.10 Example for contagion model with p = 0.49. One node is initialized to be
at state-0, and the eventual number of flips is 3. The dark node with 0 written in it
represents the initial seed at iteration 0. Nodes with numbers written in it are flipped
through the contagion, and the number indicates the iteration at which each is
flipped.

0

1

1

0

2

3

3

Figure 8.11 Example for contagion model with p = 0.49. Two nodes are initialized to
be at state-0, and the eventual number of flips becomes 7.

8.3 Examples 173

Contagion depends on the topology. The graph in Figure 8.10 is obtained by
repositioning 3 (out of 16) edges in the graph in Figure ??. Suppose the same
node is initialized as state-1, the number of eventual flips decreases sharply from
10 to 3. This shows how sensitive contagion outcome is with respect to network
topology. We can also check that the density of the set of state-0 nodes is 2/3
after the left-most two nodes flip, which is higher than 1 minus the flipping
threshold p = 0.49, thus preventing a complete flipping of the entire network.
Suppose now you want to stage a social media compaign by hiring twitter,

facebook, and blog writers to spread their influence. Next consider the problem
of buying, or seeding, nodes, assuming each node can be bought at the same
price and the aim is to maximize the number of eventual flips. If we can buy
o↵ only one node, choosing the node highlighted in Figure 8.10 is actually the
optimal strategy. If we can buy o↵ two nodes, Figure 8.11 shows the optimal
strategy and the eventual number of flips is 7, a significant improvement.
We also see that the nodes to be initialized as state-1 (seeded) in the two-node

example do not include the one seeded in the one-node example. Optimal seeding
strategies cannot be successively refined.

8.3.2 Infection: A case study

Just like the Netflix recommendation algorithm in Chapter 4 and the Bass dif-
fusion model in Chapter 7, we actually do not know the model parameter values
until we have some trial or historical data to train the model first.
In SIR model, we can observe through historical data for each disease the initial

population S(0) and final population S(1) of susceptible people, and assume
the initial infected population is negligible. This means we can approximate the
key parameter � as

� =
log(S(0)/S(1))

S(0)� S(1)
. (8.20)

In public health decision making, a crucial one is the target vaccination rate
for herd immunity: we want the immunized population to be large enough that
infection does not go up at all, i.e., S(0) < 1/�, or,

R(0) > 1� 1/�. (8.21)

That means the fraction of population with immunity, either through getting
and recovering from the disease, or through vaccination (the more likely case),
must be large enough. Using (8.20) to estimate �, we can then estimate the
vaccination rate R(0) needed. These estimates are not exact, but at least they
provide a sense of relative di�culty in controlling di↵erent infectious diseases.
Let us take a look at the case of measles. It causes about 1 million deaths

worldwide each year, but in developed countries it is su�ciently vaccinated that
it only a↵ects very few. Its � is quite large, estimated to be 16.67. By (8.21),
this translates into a vaccination rate of 94% needed for herd immunity. But the

174 How do I influence people on Facebook and Twitter?

vaccine e�cacy is not 100%, more like 95% for measles. So the vaccination rate
needs to be 99% to achieve herd immunity. This is a very high target number,
and can only be achieved through a two-dose program, more expensive than the
standard single dose program.
When measles vaccination was first introduced in 1963 in the US, the measles

infection population dropped but did not disappear: it stayed at around 50,000
a year. In 1978, the US government increased coverage of immunization in an
attempt to eliminate measles, and infection population further dropped to 5,000,
but still not near 0. In fact the number went back up to above 15,000 in 1989-
1991. Just increasing the coverage of immunization did not make the immuniza-
tion rate high enough. In 1989, the US government started using the two-dose
program for measles: one vaccination at around 1 year old and another in around
5 years time. This time the immunization rate went up past the herd immunity
threshold of 99% before children reach school age. Consequently, the number of
reported cases of measles dropped to just 86 ten years later.
In a 2011 U.S. movie “Contagion” (we use “infection” for spreading of dis-

ease), the interactions among social networks, information networks, and disease
spreading networks were depicted. Kate Winslet explained the basic reproduc-
tion number too (using the notation R

0

, which is equivalent to � for the cases
we mentioned here). Some of the scenes in this drama actually occurred in real
life during the last major epidemic, SARS, that started in China in 2003, includ-
ing some governments suppressing news of the disease, some healthcare workers
staying on their jobs despite very high basic reproduction number and mortal-
ity rate, and the speed of information transmission faster than that of disease
transmission.

8.4 Advanced Material

8.4.1 Random walk

One influence model with network topology has already been introduced in Chap-
ter 3: the pagerank algorithm. In that chapter, we wanted to see what set of num-
bers, one per node, is self-consistent on a directed graph: if each node spreads its
number evenly across all its outgoing neighbors, will the resulting numbers be
the same? It is a state of equilibrium in the influence model, where the influence
is spread across the outgoing neighbors.
In sociology, the DeGroot model is similar, except that it starts with a given

set of numbers v, one per node (so the state of each node is a real number rather
than a discrete one), and you want to determine what happens over time under
the above influence mechanism.
The evolution of x(t), over time slots indexed by t, can be expressed as follows:

x(t) = Atv. (8.22)

8.4 Advanced Material 175

Here A is an influence relationship adjacency matrix. If Aii = 1 and Aij = 0 for
all j, that means node i is an “opinion seed” that is not influenced by any other
nodes.
We have seen this linear equation many times by now: power control, pagerank,

centrality measures. It is also called random walk on graph. When does it
converge? Will it converge on a subset of nodes (and the associated links)?
Following standard results in linear algebra, we can show that, for any subset

of nodes that is closed (no link pointing from a node in the subset to a node
outside), the necessary and su�cient conditions on matrix A for convergence
are:

• Irreducible: an irreducible adjacency matrix means that the corresponding
graph is connected: there is a directed path from any node to any other
node.

• Aperiodic: an aperiodic adjacency matrix means that the lengths of all the
cycles in the directed graph have the greatest common denominator of 1.

What about the rate of convergence? That is much harder to answer. But to
the first order, an approximation is that the convergence rate is governed by
the ratio of the second largest eigenvalue �

2

and the largest eigenvalue �
1

. An
easy way to see this is to continue the eigenvector centrality development (8.2).
The solution to (8.22) can be expressed through the eigenvector decomposition
v =

P
i civi:

x(t) = At
X

i

civi =
X

i

ci�
t
1

✓
�i

�
1

◆t

vi.

Dividing both sides by the leading term c
1

�t
1

, since we want to see how accurate
is the first order approximation, and rearranging the terms, we have:

x(t)

c
1

�t
1

= v
1

+
c
2

c
1

✓
�
2

�
1

◆t

v
2

+ . . . ,

which means that the leading term of the error between x(t) and the first-order
approximation c

1

�t
1

v
1

is the second-order term in the eigenvector expansion,
with a magnitude that evolves over time t proportional to:

✓
�
2

�
1

◆t

.

For certain matrices like the Google matrix G, the largest eigenvalue is 1.
Then it is the second largest eigenvalue that governs the rate of convergence.
As a small example, consider the network shown in Figure 8.12 consisting of

two clusters with a link between them. Each node also has a self-loop. Suppose
the state of each node is a score between 0 and 100, and the initial score vector
is

v =
⇥
100 100 100 100 0 0 0

⇤T

176 How do I influence people on Facebook and Twitter?

1

2

3

4 5

6

7

Figure 8.12 Example for DeGroot model and contagion model. The initial scores on
nodes 1-4 eventually spread evenly to all nodes. The rate of convergence to this
equilibrium is governed by the second largest eigenvalue of the adjacency matrix.

i.e., all nodes in the left cluster have an initial score of 100, and the right cluster
has an initial score of 0.
From the network we can also write out A:

A =

2

6666666664

1/4 1/4 1/4 1/4 0 0 0
1/4 1/4 1/4 1/4 0 0 0
1/4 1/4 1/4 1/4 0 0 0
1/5 1/5 1/5 1/5 1/5 0 0
0 0 0 1/4 1/4 1/4 1/4
0 0 0 0 1/3 1/3 1/3
0 0 0 0 1/3 1/3 1/3

3

7777777775

.

Then we iterate the equation

x(t) = Ax(t� 1)

to obtain

x(0) =
⇥
100 100 100 100 0 0 0

⇤T

x(1) =
⇥
100 100 100 80 25 0 0

⇤T

x(2) =
⇥
95 95 95 81 26.25 8.333 8.333

⇤T

x(3) =
⇥
91.5 91.5 91.5 78.45 30.98 14.31 14.31

⇤T

...

x(1) =
⇥
62.96 62.96 62.96 62.96 62.96 62.96 62.96

⇤T
.

We see that the network is strongly connected, i.e., A is irreducible. The exis-
tence of self-loops ensures the network is also aperiodic. The scores at equilibrium

8.4 Advanced Material 177

are biased towards the initial scores of the left cluster because it is the larger
cluster.

8.4.2 Measuring subgraph connectedness

We have finished our tour of 7 influence models in two chapters. We conclude this
cluster of chapters with a discussion of what constitutes a group in a network.
Intuitively, a set of nodes form a group if there is a lot of connections (counting

links or paths) among them, but not that many between them and other sets
of nodes. Suppose we divide a graph into two parts. Count the number of links
between the two parts; call that A. Then for each part of the graph, count the
total number of links with at least one end in that part, and take the smaller
of this number from the two parts; call that B. A di↵erent way to divide the
graph may lead to a di↵erent ratio A/B. The smallest possible A/B is called the
conductance of this graph. It is also used to characterize convergence speed in
random walk.
To dig deeper into what constitutes a group, we need some metrics that quan-

tify the notion of connectedness in a subgraph: a subset of nodes, and the links
that start or end with one of these nodes. First of all, let us focus on end-to-end
connectedness, i.e., the existence paths. We say a subset is a connected com-
ponent, or just a component, if each node in the subset can reach any other
node in the subset through some path. For directed graphs, the path needs to
be directed too, and it is called a strongly connected component. We can
also further strengthen the notion of component to k-component: a maximal
subset of nodes in which each node can be connected to any other node through
not just one path, but k node-disjoint paths.
As is typical in this subsection, to make the definitions useful, we refer to the

maximal subset: you cannot add another node (and the associated links) to the
subset and still satisfy the definition. Then a component is the largest subset
in which every possible node pair is connected by some path. In almost all our
networks, there is just one component: the entire network itself.
What if we shift our attention from end-to-end path connectedness to direct,

one-hop connectedness? We call a maximal subset of nodes a clique if every
node in the subset is every other node’s neighbor, i.e., there is a link between
every pair of nodes in the subset. It is sometimes called a full mesh.
A clique is very dense. More likely we will encounter a cluster of density p as

defined before in the analysis of the contagion model: a maximal subset of nodes
in which each node has at least p% of its neighbors in this subset.
In between a component and a clique, there is a middle ground. A k-clique is

a maximal subset of nodes in which any node can reach any other node through
no more than k links. If these k links are also in between nodes belonging to this
subset, we call the subset a k-club.
We have so far assumed that geographic proximity in a graph reflects social

distance too. But that does not have to be the case. Sometimes, we have a system

178 How do I influence people on Facebook and Twitter?

of labeling nodes by some characteristics, and we want a metric quantifying the
notion of associative mixing based on this labeling: that nodes which are alike
tend to associate with each other.
Consider labeling each node in a given graph as belonging to one of M given

types, e.g., M social clubs, M undergraduate majors, or M dorms. We can easily
count the number of links connecting nodes of the same type. From the given
adjacency matrix A, we have

X

ij2same type

Aij . (8.23)

But this expression is not quite right to use for our purpose. Some nodes have
large degrees anyway. So we have to calibrate with respect to that. Consider an
undirected graph, and pick node i with degree di. Each of its neighbors, indexed
by j, has a degree dj . Let us pick one of node i’s links. What is the chance that
on the other end of a link is node j? That would be dj/L, where L is the number
of links in the network. Now multiply by the number of links node i has, and
sum over node pairs (ij) of the same type:

X

ij2same type

didj
L

. (8.24)

The di↵erence between (8.23) and (8.24), normalized by the number of links
L, is the modularity Q of a given graph (with respect to a particular labeling
of the nodes):

Q =
1

L

X

ij2same type

✓
Aij �

didj
L

◆
. (8.25)

Q can be positive, in which case we have associative mixing: people of the same
type connect more with each other (relative to a random drawing). It can be
negative, in which case we have dissociative mixing: people of di↵erent types
connect more with each other. With the normalization by L in its definition, we
know Q 2 [�1, 1].
Still using the same graph in Figure 8.2, we consider a labeling of the nodes

into two types. In the following, nodes enclosed in dashed lines belong to type
1, and the remaining nodes belong to type 2.
Obviously the degrees are

d =
⇥
3 3 4 3 2 2 3 2

⇤T
.

We also have

L = 11⇥ 2 = 22,

since the links are undirected. In the computation of modularity, all pairs (ij)
(such that ij 2 same type) are considered, which means every undirected edge
is counted twice, thus the normalization constant L should be counted the same
way.

8.4 Advanced Material 179

1

2

5

4

7

6

8

3

Figure 8.13 An associative labeling of the example network. Nodes close to each other
are labeled into the same type, and modularity Q is positive.

Now consider associative mixing with the grouping in Figure 8.13. The mod-
ularity can be expressed as

Q =
1

L

X

ij2same type

✓
Aij �

didj
L

◆

=
1

L

X

ij

Sij

✓
Aij �

didj
L

◆
,

where index Sij denotes whether i and j are of the same type as specified by the
labeling. We can also collect these indices into a (0, 1) matrix:

S =

2

666666666664

0 1 0 1 1 0 0 0
1 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1
1 1 0 0 1 0 0 0
1 1 0 1 0 0 0 0
0 0 1 0 0 0 1 1
0 0 1 0 0 1 0 1
0 0 1 0 0 1 1 0

3

777777777775

.

Given S,A and d, we can compute Q. We see the modularity value is indeed
positive for this labeling system, and reasonably high:

Q = 0.5413.

180 How do I influence people on Facebook and Twitter?

1

2

5

4

7

6

8

3

Figure 8.14 A disassociative labeling of the example network. Nodes close to each
other are labeled into di↵erent types, and modularity Q is negative.

But suppose the labeling is changed to what is shown in Figure 8.14, i.e.,

S =

2

666666666664

0 0 0 0 1 1 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 0 1 0
0 1 1 0 0 0 1 0
1 0 0 0 0 1 0 1
1 0 0 0 1 0 0 1
0 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0

3

777777777775

.

Then the modularity value is negative, as we would expect from dissociative
mixing:

Q = �0.2025.

8.4.3 Graph partition and community detection

It is actually not easy to infer either the network topology or the tra�c pattern
from limited (local, partial, and noisy) measurement. In the last part of this
chapter, we assume someone has built an accurate topology already, and our
job is to detect the non-overlapping communities, or subgraphs, through some
centralized, o↵-line computation.
The easiest version of the problem statement is that we are given the number

of communities and the number of nodes in each community. This is when you
have a pretty good prior knowledge about the communities in the first place. It
is called the graph partition problem. We will focus on the special case where
we partition a given graph into two subgraphs, the graph bisection problem,
with a fixed target size (number of nodes) in each subgraph. The input is a graph
G = (V,E), and the output is two sets of nodes that add up to the original node
set V .

8.4 Advanced Material 181

How do we even define that one graph partition is better than another? One
metric is the number of links between the two subgraphs, called the cut size.
Later you will see the max flow min cut theorem in routing in Chapter 13. For
now, we want to find a bisection that minimizes the cut size.

An algorithm that is simple to describe although heavy in computational load
is the Kernighan Lin algorithm. There are two loops in the algorithm. In
each step of the outer loop indexed by k, we pick any initialization of bisection:
graphs G

1

[k] and G
2

[k]. To initialize the first outer loop, we put some nodes in
subgraph G

1

[1] and the rest in the other subgraph G
2

[1].

Now we go through an inner loop, where at each step we pick the pair of nodes
(i, j), where i 2 G

1

and j 2 G
2

, such that swapping them reduces the cut size
most. If cut size can only be increased, then pick the pair such that the cut size
increases by the smallest amount. After each step of the inner loop, the pair that
has been swapped can no longer be considered in future swaps. When there are
no more pairs to consider, we complete the inner loop and pick the configuration
(G⇤

1

[k], G⇤
2

[k]) (i.e., which nodes belong to which subgraph) with the smallest
cut size c⇤[k].

Then we take that configuration (G⇤
1

[k], G⇤
2

[k]) as the initialization of the next
step k + 1 in the outer loop. This continues until cut size cannot be decreased
further through the outer loops. The configuration with the smallest cut size:

min
k

{c⇤[k]}

is the bisection returned by this algorithm.

More often, we do not know how many communities there are, or how many
nodes are in each. That is part of the job of community detection. For ex-
ample, you may wonder about the structure of communities in the graph of
Facebook connections. And we may be more interested in the richness of con-
nectivity within each subgraph than the sparsity of connectivity between them.
Again, we focus on the simpler case of two subgraphs (G

1

, G
2

), but this time not
imposing the number of nodes in each subgraph a priori.

Modularity is an obvious metric to quantify how much more connected a set
of nodes is relative to the connectivity if links were randomly established among
the nodes. Modularity is defined with respect to a labeling system. Now there
are two labels, those belonging to G

1

and those to G
2

.

So we can simply run the Kernighan-Lin algorithm again. But instead of pick-
ing the pair of nodes to swap across G

1

and G
2

in order to minimize the cut
size, now we select one node to move from G

1

to G
2

(or the other way around),
in order to maximize the modularity of the graph.

A di↵erent approach gets back to the cut size minimization idea, and tries to
disconnect the graph into many pieces by deleting one link after another. This is
useful for detecting not just two communities, but any number of communities.
Which link to delete first? A greedy heuristic computes the betweenness metric of
all the links (8.5), and then deletes the link with the highest betweenness value. If

182 How do I influence people on Facebook and Twitter?

Figure 8.15 The original graph of the Florence families, viewed as a single community.

that does not break the graph into two subgraphs, then compute the betweenness
values of all the remaining links, and delete the link with the highest value again.
Eventually, this process will break the graph and give you 2 subgraphs (and
3, 4, . . . , N graphs as you keep deleting links).
As an example, we consider the Renaissance Florence family graph again,

shown in Figure 8.15.
Now we run the following community detection algorithm:

1. From graph G = (V,E), find the adjacency matrix A.

2. Compute the betweenness of all links (i, j) 2 E from A.

3. Find the link (i, j)⇤ that has the highest betweenness value. If more than one
such link exists, select one of these randomly.

4. Remove link (i, j)⇤ from G. Check to see if any communities have been de-
tected, and return to step 1.

The betweenness values of all the links in the initial graph are shown in Table
8.4.3
The largest betweenness is that of link (9,14): 26. As a result, it will be elimi-

nated from the graph. The result is shown in Figure 8.16 below. As one can see,
removing (9,14) has created two distinct communities: the first is the node set
V
1

= {1, ..., 13}, and the second is the set V
2

= {14, 15}.
Next, the adjacency matrix is modified according to the new graph, and the

betweenness values are calculated again. The results are shown in Table ??.
The largest betweenness is that of link (4,5): 17.5. As a result, it will be elim-

inated from the graph. However, removing this link does not extract additional
communities, so the process is repeated. Running betweenness with (4,5) elim-
inated, the maximum is that of link (8,9): 25.5. Again, this link is eliminated.
Finally, after running the procedure again, link (7,9) is found to have the highest

8.4 Advanced Material 183

Link Betweenness Link Betweenness

(1,2) 5.0000 (5,11) 17.0000
(1,3) 6.0000 (7,9) 19.0000
(1,7) 13.0000 (8,9) 18.1667
(2,3) 4.0000 (9,10) 15.5000
(2,4) 9.5000 (9,11) 23.0000
(2,8) 13.5000 (9,13) 14.0000
(3,4) 8.0000 (9,14) 26.0000

(4,5) 18.8333 (11,12) 14.0000
(5,6) 14.0000 (14,15) 14.0000
(5,10) 12.5000 – –

Table 8.1 Betweenness values of the links from the initial graph. Link (9,14) has the
largest betweenness and will be eliminated first.

Figure 8.16 Eliminating the link with the highest betweenness, (9,14), detects two
communities within the graph: Node sets V1 = {1, ..., 13} and V2 = {14, 15}.

betweenness value of 42 and is eliminated. This separates the graph into three
communities: V

1

= {1, 2, 3, 4, 7, 8}, V
2

= {5, 6, 9, 10, 11, 12}, and V
3

= {14, 15},
as shown in Figure 8.17.
In addition to modularity maximization and betweenness-based edge removal,

there are several other algorithms for community detection, including graph
Laplacian optimization, maximum likelihood detection, and latent space model-
ing. When it comes to a large scale community detection problem in practice,
it remains unclear which of these will be most helpful in attaining the eventual
goal of detecting communities and remain robust to measurement noise.
Instead of deleting links, we can also add links from a set of disconnected

nodes. This way of constructing communities is called hierarchical clustering.
Now, finding one pair of similar nodes is easy, for example, by using node

184 How do I influence people on Facebook and Twitter?

Link Betweenness Link Betweenness

(1,2) 5.0000 (5,11) 14.3333
(1,3) 5.0000 (7,9) 14.0000
(1,7) 10.0000 (8,9) 12.5000
(2,3) 3.0000 (9,10) 10.8333
(2,4) 8.8333 (9,11) 16.3333
(2,8) 9.8333 (9,13) 12.0000
(3,4) 8.0000 (9,14) –
(4,5) 17.5000 (11,12) 12.0000
(5,6) 12.0000 (14,15) 1.0000
(5,10) 9.8333 – –

??

Table 8.2 Betweenness values of the links from the two-component graph. Link (4,5) has
the largest betweenness and will be eliminated.

Figure 8.17 Eliminating links (4,5), (8,9), and (7,9) detects three communities: Node
sets V1 = {1, 2, 3, 4, 7, 8}, V2 = {5, 6, 9, 10, 11, 12}, and V3 = {14, 15}.

similarity metrics like cosine coe�cient in Chapter 4. The di�culty is in defining
a consistent and useful notion of similarity between two sets of nodes, based on
a particular similaritiy metric between two nodes.

If there are N
1

nodes in G
1

and N
2

nodes in G
2

, there are then N
1

N
2

node
pairs. Therefore, there are N

1

N
2

similarity metric values. We needd to scalarize
this long vector. We can take the largest, smallest, average, or any scalar repre-
sentation of this vector of values as the similarity metric between the two sets of
nodes.

Once a similarity metric is fixed and a scalarization method is picked, we can
hierarchically run clustering by greedily adding nodes, starting from a pair of
nodes until there are only two groups of nodes left.

8.4 Advanced Material 185

Further Reading

Similar to the last chapter, there is a gap between the rich foundation of graph
theory and algorithms and the actual operation of Facebook and Twitter and
their third party service providers.

1. The standard reference on contagion models is the following one
[Mor00] S. Morris, “Contagion,” Review of Economic Studies, vol. 67, pp. 57-

78, 2000.

2. Our discussion of infection models follows the comprehensive survey article
below:
[Het00] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Re-

view, vol. 42, no. 4, pp. 599-653, 2000.

3. A classical work on innovation di↵usion, both quantitative models and qual-
itative discussions, can be found in the following book:
[Rog03] E. M. Rogers, Di↵usion of Innovation, 5th Ed., Free Press, 2003.

4. There are many additional approaches developed and questions asked about
social influence. A recent survey from the field of political science is the following
paper:
[Sie09] D. Siegel, “Social networks and collective action,” American Journal

of Political Science, vol. 53, no. 1, pp. 122-138, 2009.

5. Many graph theoretic quantities on node importance, link importance, and
group connectedness can be found in the following textbook:
[New10] M. E. J. Newman, Networks: An Introduction, Oxford University

Press, 2010.

Problems

8.1 Computing node centrality ?

Compute the degree, closeness and eigenvector centralities of all nodes in the
graph in Figure 8.18.

8.2 Computing betweenness ?

Refer to the graph in Figure 8.18.

(a) Compute the node betweenness centrality of nodes 2 and 3.

(b) Compute the link betweenness centrality of the edges/links (3, 4) and (2, 5).

186 How do I influence people on Facebook and Twitter?

1

2

5

3 4

Figure 8.18 A simple network for computing centrality measures.

8.3 SIRS infection model ??

We consider an extension to the SIR model that allows nodes in state R to go
to state S. This model, known as the SIRS model, accounts for the possibility
that a person loses the acquired immunity over time.

S I R
� �

⌫

Figure 8.19 The state transition diagram for the SIRS infection model.

Consider the state diagram in Figure 8.19. We can write out the set of di↵er-
ential equations as

dS(t)

dt
= ��S(t)I(t) + ⌫R(t)

dI(t)

dt
= �S(t)I(t)� �I(t)

dR(t)

dt
= �I(t)� ⌫R(t).

Modify the Matlab code for the numerical solution of the SIR model and solve
for t = 1, 2, . . . , 200 (set the tspan vector in code accordingly) with the follow-
ing parameters and initial conditions: � = 1, � = 1/3, ⌫ = 1/50, I(0) = 0.1,
S(0) = 0.9, R(0) = 0. Briefly describe and explain your observations.

8.4 Advanced Material 187

8.4 Contagion ?

Consider the contagion model being run in the graph in Figure 8.20 with
p = 0.3.

3 4

7

5 6

8

21

Figure 8.20 A simple network for studying contagion model.

(a) Run the contagion model with node 1 initialized at state-1 and the other
nodes initialized at state-0.

(b) Run the contagion model with node 3 initialized at state-1 and the other
nodes initialized at state-0.

(c) Contrast the results from (a) and (b) and explain in terms of the cluster
densities of the sets of initially state-0 nodes.

8.5 Networked sampling ? ? ?

In sociology, estimating the percentage of a hidden population, e.g., AIDS
infected population, is di�cult. One approach is to start with a few sampled
“seeds”, and then ask current sample members to recruit future sample members.
The question is how to produce unbiased estimates.

Respondent driven sampling is a method to address this question, and it
is used by many institutions including the US Center for Disease Control and
UNAIDS. The basic methodology is random walk on graphs, similar to what we
saw in this chapter and in Chapter 2.

(a) First let us characterize the sampling distribution at equilibrium. Let ⇡i

be the stationary distribution of reaching person i.

LetKij be the probability of person i referring to person j. If each bidirectional
link (i, j) has a weight w

(i,j), and the probability of person i recruits person j is
directly proportional to w

(i,j), we have a recruiting mechanism similar to Google

188 How do I influence people on Facebook and Twitter?

pagerank’s spread of importance score:

P [i! j] =
w

(i,j)P
k w(i,k)

.

At equilibrium, what is the probability ⇡i that person i has been sampled?

(b) We follow a trajectory of sampling, starting with, say, one person, and
runs through n people sampled. If a person i on the trail of sampling has AIDS,
we add the counter of the infected population by 1. If we simply add these up
and divide by n, it gives a biased estimate. The importance sampling method
weight each counter by 1/(N⇡i). But we often do not know the value of N . So
in respondent-driven sampling, the estimate becomes:

(Harmonic mean of ⇡i)
X

infected i

1

⇡i
.

Suppose we have two social groups, A and B, of equal size forming a network,
and that the infection rates are pA and pB , respectively. Between groups, links
have weights c, where c 2 (0, 0.5). Within each group, links have weights 1� c.
If we follow respondent driven sampling, what do you think intuitively will

happen? Confirm this with a simulation.
(For more details, see S. Goel and M. Salganik, “Respondent-driven sampling

as Markov chain Monte Carlo”, Statistics in Medicine, vol. 28, pp. 2202-2229,
2009.)

9 Can I really reach anyone in 6
steps?

In the last two chapters, we saw the importance of topology to functionality.
In this and the next chapters, we will focus on generative models of network
topology and reverse-engineering of network functionality. These are mathemat-
ical constructions that try to explain widespread empirical observations about
social and technological networks: the small world property and the scale free
property. We will also highlight common misunderstanding and misuse of gen-
erative models.

9.1 A Short Answer

Since Milgram’s 1967 experiment, the small world phenomenon, or the six
degrees of separation, has become one of the most widely known stories in
popular science books. Milgram asked 296 people living in Omaha, Nebraska to
participate in the experiment. He gave each of them a passport-looking letter, and
the destination was in a suburb of Boston, Massachusetts, with the recipient’s
name, address, and occupation (stock broker) shown. Name and address sound
obvious, and it turned out that it was very helpful to know the occupation. The
goal was to send this letter to one of your friends, defined as someone you knew
by first name. If you did not know the recipient by first name, you had to send
the letter via others, starting with sending it to a friend (one hop), who then sent
it to one of her friends (another hop), until the letter finally arrived at someone
who knew the recipient by first name and sent it to the recipient.
Of these letters, 217 were actually sent out and 64 arrived at the destination,

a seemingly small percentage of 29.5% but actually quite impressive, considering
that a later replica of the experiment via email only had a 1.5% arrival rate.
The other letters might have been lost along the way, and needed to be treated
carefully in the statistical analysis of this experiment’s data. But out of those 64
that arrived, the average number of hops was 5.2 and the median 6, as shown in
Figure 9.2.
Researchers have long suspected that the social distance, the average number

of hops of social relationships it takes (via a short path) to reach anyone in a
population, grows very slowly as the population size grows, often logarithmically.
Milgram’s celebrated experiment codified the viewpoint. From the 1970s to the

190 Can I really reach anyone in 6 steps?

source

destination

long
-ran

ge

Figure 9.1 A picture illustrating the Milgram experiment in 1967. A key phenomenon
is that there is one or two long range links in these short paths between Omaha and
Boston. It turns out that they substantially reduced the shortest and the searchable
path lengths without reducing the clustering coe�cient significantly in the social
network.

18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 9 10

Figure 9.2 The histogram of the length of the chains from di↵erent sources in Omaha
to the common destination in Boston in Milgram’s experiment. The median value is
6, leading to the famous 6 degree separation observation.

online social media era, much empirical evidence suggested the same: from Erdos
number among mathematicians to co-starring relationships in IMDB.

Should we be surprised by this seemingly universal observation of social net-
works? There are two issues here, echoing the dichotomy between topology and
functionality we saw in Chapter 8.

9.1 A Short Answer 191

• One is structural : there are short paths in social networks.

• Two is algorithmic: with very limited local information a node can navigate
through a social network and find a short path to a given destination.

The second is more surprising than the first and requires more careful modeling
of the functionality of social search. For example, a report in November 2011
computed the degrees of separation on Facebook to be 4.74. That only concerned
with the existence of short paths, not the more relevant and more surprising
discoverability of short paths from local information. As we will see, it is also
more di�cult to create a robust explanation to the observation of an algorithmic
small world.
But first, we focus on the existence of short paths. On the surface, it seems

fascinating that you can reach anyone likely in 6 steps or less. Then, on second
thought, you may reason that, if I have 20 friends, and each of them has 20
friends, then in 6 steps, I can reach to 206 people. That is already 64 million
people. So of course 6 steps often su�ce.
But then, on an even deeper thought, you realize that social networks are filled

with“triangles,” or triad closures, of social relationships. This is illustrated in
Figure 9.3: if Alice and Bob both know Chris, Alice and Bob likely know each
other directly too. This is called transitivity in a graph (not to be confused
with transitivity in voting). In other words, the catch of the 206 argument above
is that you need your friend’s 20 friends to not overlap with your own set of
20 friends. Otherwise, the argument fails. But of course, many of your friend’s
friends are your own friends too. There is a lot of overlap. The phenomenon of
people who are alike tend to form social links is called homophily, and it can
be quantified by the clustering coe�cient as discussed later. Now, six degrees
of separation is truly surprising.
Milgram-type experiments suggest something even stronger: not only are there

short paths, but they can be discovered by each individual node using very
limited information about the destination and its local view of the network.
Compared to routing packets through the Internet, social search in this sense is
even harder since nodes do not pass messages around to help each other construct
some global view of the network topology. That help is implicitly embedded in the
address and occupation of the recipient, and possibly the name that can reveal
something about the destination’s sex and ethnicity. Some kind of distance
metric must have been constructed in each person’s mind throughout Milgram’s
experiment. For example, New York is closer to Boston than Chicago is, on the
geographic proximity scale measured in miles. Or, a financial adivser is perhaps
closer to a stock broker than a nurse is, on some occupation proximity scale,
which is more vague but nonetheless can be grossly quantified. Suppose each
person uses a simple, “greedy” algorithm to forward the letter to her friend who
is closest to the destination, where “closeness” is defined by a composite of these
kinds of scales. Is it a coincidence this social search strategy discovers a short
path?

192 Can I really reach anyone in 6 steps?

c

a b

Chris

BobAlice

t ad

Figure 9.3 An illustration of triad closure in social networks. If Alice knows Chris and
Bob knows Chris, it is likely that Alice and Bob also know each other. If so, the
connected triple forms a triangle. The clustering coe�cient quantifies the ratio
between connected triples and triangles in a graph.

We will walk through several models that can address the above issues.

9.2 A Long Answer

9.2.1 Structural small worlds: Short paths

There are several ways to measure how “big” a (connected) graph is. One is
diameter: it is the length of the longest shortest path between any pair of
nodes. Here, “shortest” is with respect to all the paths between a given pair of
nodes, and “longest” is with respect to all possible node pairs.
When we think of a network as small world, however, we tend to use the

median of the shortest paths between all node pairs, and look at the growth of
that metric as the number of nodes increases. If it grows on the order of the log
of the number of nodes, we say the network is (structurally) small world.
Suppose we are given a fixed set of n nodes, and for each pair of nodes decide

with probability p if there is a link between them. This is the basic idea of a
Poisson random graph, or the Erdos Renyi model.
Of course this process of network formation does not sound like most real

networks. It turns out that it also does not provide the same structures we
encounter in many real networks. For example, while in a random graph, the
length of the average shortest path is small, it does not have the right clustering
coe�cient. For a proper explanatory model of small world networks, we need
the shortest path to be small and the clustering coe�cient to be large.
What is the clustering coe�cient? Not to be confused with the density of a

9.2 A Long Answer 193

1 2

43
Figure 9.4 A small example for the
cluster coe�cient calculation.
C = 3/5 in this graph.

cluster from Chapter 7, it is a metric to quantify the notion of triad closure. As
in Figure 9.3, we define a set of three nodes (a, b, c) in an undirected graph as a
connected triple, if there is a path connecting them:

• If there are links (a, b), (b, c) (whether there is a link (a, c) or not), we have a
connected triple (a, b, c).

• Similarly, if there are links (a, c), (c, b), we have a connected triple (a, c, b).
• If there are links (b, a), (a, c), we have a connected triple (b, a, c).

But if there are links (ab, bc, ca), we have not just a connected triple, but also a
triangle. We call this a triad closure.
The clustering coe�cient C summarizes the above countings in the graph:

C =
Number of triangles

Number of connected triples/3
. (9.1)

The division by 3 normalizes the metric, so that a triangle’s clustering coe�cient
is exactly 1, and that C 2 [0, 1].
For example, consider the toy example in Figure 9.4. It has one triangle

(1, 2, 3), and the following five connected triples (2, 1, 3), (1, 2, 3), (1, 3, 2), (1, 2, 4),
(3, 2, 4). Hence, its clustering coe�cient is

C =
1

5/3
=

3

5
.

It is easy to see that the expected clustering coe�cient of a random graph is

C =
c

n� 1
,

where c is the average degree of a node and n the total number of nodes. This
is because the probability of any two nodes being connected is c/(n � 1) in a
random graph, including the case when the two nodes are known to be indirectly
connected via a third node. So if there are 100 million people, and each has 1000
friends, the clustering coe�cient is about 10�3, way too small for a realistic social
network.
What about a very regular ring like in Figure 9.5 instead? This regular graph

194 Can I really reach anyone in 6 steps?

Figure 9.5 An example of a regular graph, with n nodes living on a ring and each
having c links. In this example, n = 12 and c = 4. Each node has 2 links pointing to
the right and 2 to the left. The clustering coe�cient C is independent of n and grows
as c becomes larger.

is parameterized by an even integer c: the number of neighbors each node has.
Because all the nodes “live” on a ring, each node can have c/2 number of left-
pointing links to its closest c/2 neighbors, and similarly c/2 on the right.
It is easy to see that the clustering coe�cient is large for a regular graph.

• To form a triangle, we need to go along one direction on the ring two steps,
then take one step back towards where we started. And the farthest we
can go along the ring in one direction and still be back in one hop is c/2.
So, the number of triangles starting from a given node is simply c/2 choose
2, the number of distinct choices of picking two nodes out of c/2 of them.
This gives us 1

2

c
2

(c
2

� 1) triangles per node.

• On the other hand, the number of connected triples centered on each node is
just c choose 2, i.e., 1

2

c(c� 1).

So the clustering coe�cient is:

C =
1

2

c
2

(c
2

� 1)

(1
2

c(c� 1))/3
=

3(c� 2)

4(c� 1)
. (9.2)

It is independent of the number of nodes n. This makes intuitive sense since the
graph is symmetric: every node looks like any other node in its neighborhood
topology.

• When c = 2, the smallest possible value of c, we have a circle of links, so there
are obviously no triangles. Indeed, C = 0.

• But as soon as c = 4, we have C = 1/2, which is again intuitively clear and
shown in another way by drawing a regular ring graph with c = 4 in Figure
9.6.

• When c is large, the clustering coe�cient approaches the largest it can get on

9.2 A Long Answer 195

a regular ring topology: 3/4. This is many orders-of-magnitude larger than
that of a random graph.

.

Figure 9.6 Another way to draw a regular ring graph with c = 4. This visualization
clearly shows that half of the triad closures are there in the graph, and C should be
0.5.

The regular (ring) graph model stands in sharp contrast to the random graph
model: it has a high clustering coe�cient C, which is realistic for social networks,
but has a large value of the (median or average, across all node pairs) shortest
path’s distance L, since there are only short-range connections. Random graph
networks are exactly the opposite: small L but also small C. If only we could
have a “hybrid” graph that combines both models to get a small L and a large
C on the same graph.
That is exactly what the Watts Strogatz model accomplished in 1998. It

is the canonical model explaining small world networks with large clustering
coe�cients. As shown in Figure 9.7, it has two parameters:

Figure 9.7 An example of the Watts Strogatz model. It adds random links, possibly
long-range ones, to a regular ring graph. When there is a short-range link (a link in
the regular ring graph), there is now a probability p of establishing a long-range link
randomly connecting two nodes. The resulting graph has both a large clustering
coe�cient C and a small expected shortest distance L.

196 Can I really reach anyone in 6 steps?

10−3 10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

C/Cmax
L/Lmax

Figure 9.8 A numerical example of the impact of p on C and L in the Watts Strogatz
model. When p is small, like 0.01, C is almost the same as in a regular ring graph but
L is substantially smaller.

• c is the number of nearest neighbors each node has.

• p is the probability that any pair of nodes, including those far apart, are
connected by a link whenever there is a short-range link.

Actually, the Watts Strogatz model deletes one regular link for each of the ran-
dom links added. The model we just showed does not include the deletion step.
But the main analysis for our purpose remains e↵ectively the same.

The key point is that with the additional links, we get to preserve the large
clustering coe�cient of a regular graph while achieving the small world e↵ect.
With just a little randomization p, the expected shortest path’s distance can be
reduced substantially.

How much randomization do we need? While we postpone the detailed calcula-
tion of C and L to Advanced Material, it su�ces to summarize at this point that,
as long as p is small, e.g., 0.1, its impact on the clustering coe�cient is almost
negligible. Yet the average shortest path distance behaves like a small world: it
grows in the order of log n. It fundamentally changes the order of growth of L
with respect to the number of nodes in the network. This is illustrated in Figure
9.8. Fixing n = 600 and c = 6, we plot C/Cmax and L/Lmax against p, where
Cmax and Lmax are their respective maxima over all computed values. A large
C and small L is the first definition of a small world network.

Where does this asymmetry in p’s impact come from? Fundamentally it has
to do with the very definition of our metrics:

9.2 A Long Answer 197

• Shortest path is an extremal quantity: we only care about the shortest path,
there is no need to reduce all the paths’ lengths. Just add a few long-range
links, and even add them randomly, and then the shortest path will be
much shorter.

• In contrast, clustering coe�cient is an average quantity: it is defined as the
average number of triangles involving a node divided by the average number
of connected triples centered at the node. So adding a small proportion of
non-triangular, connected triples does not hurt the clustering coe�cient
that much.

There lies the magic of small world with a large clustering coe�cient: we have
triad closure relationships with most of our friends, but a very small fraction of
our friends are outside our normal social circle. All Milgram needed to observe
six degrees of separation was that very small fraction of long-range links.
However, this begs a deeper question: to be “fair” with respect to how we define

clustering coe�cients, why not define a small world network as one where, for
most node pairs, the average, not just the shortest, path length between these two
nodes is small? “Average” here refers to the average over all the paths between a
given pair of nodes. Well, we believe that for social search, we do not need that
stringent a definition. The existence of some short paths su�ces. This means we
implicitly assume the following: each node can actually find a short path with
a hop count not much bigger than that along the shortest path. How that can
be accomplished with only local information per node is a deeper mystery than
just the existence of short paths.
Before we move on to look at models explaining this, we should mention that

a little randomization also showed up in Google pagerank in Chapter 3, and a
locally dense but globally sparse graph will be a key idea in constructing near-
optimal peering graphs in P2P content distribution in Chapter 15.

9.2.2 Algorithmic small worlds: Social search

If you were one of those people participating in Milgram’s experiment, or one
of those along the paths initiated by these people, how would you decide the
next hop by just looking at the destination’s name, address, and occupation?
You probably would implicitly define a metric that can measure distance, in
terms of both geographic proximity (relatively easy) and occupational proximity
(relatively hard). And then you would look at all your friends whom you know
by first name, and pick the one closest to the destination in some combination
of these two distances. This is a greedy social search, with an average length
(i.e., hop count) of l. And we wonder if it can discover very short paths: can l be
close to L? One could also have picked the friend with the highest degree, and
we will soon reach the hub. But we will not consider this or other alternative
strategies.
Compared to IP routing in the Internet in Chapter 13, social search is even

198 Can I really reach anyone in 6 steps?

harder, since people do not pass messages to tell each other exactly how far they
are from the destination. But here, we are not asking for an exact guarantee of
discovering the shortest path either.
There have been several models for social search in the past decade beyond

the original Watts Strogatz model. The first was the Kleinberg model, and
was defined for any dimension d. We examine the 1-dimensional case now, like a
ring with n nodes, which is really a line wrapped around so that we can ignore
edge e↵ect. Links are added at random as in the Watts Strogatz model. But
the random links are added with a refined detail in the Kleinberg model. The
probability of having a random link of length r is proportional to r�↵, where
↵ � 0 is another model parameter. The longer the link, the less likely it will
show up. When ↵ = 0, we are back to the Watts Strogatz model.
It turns out that only when ↵ = 1 will the small world e↵ect appear: l is upper

bounded by log2 n. It is not quite log n, but at least it is an upper bound that is
a polynomial function of log n.
When ↵ 6= 1, l grows as a polynomial of n, and thus is not a small world. This

is even under the assumption that each node knows the exact locations of the
nodes it is connected to, and therefore the distances to the destination.
In the homework, we will see that the exponent ↵ needs to be exactly two

for a network where nodes live on a 2-dimensional rectangular grid. Generally,
the exponent ↵ must be exactly the same as the dimension of the space where
the network resides. The intuition is clear: in k-dimensional space, draw spheres
with radius (r, 2r, . . .) around any given node. The number of nodes living in
the space between a radius-r sphere and radius-2r sphere is proportional to rk.
But according to the Kleinberg model, the probability of having a link to one of
those nodes also drops as r�k. These two terms cancel each other out, and the
probability of having some connection d hops away becomes independent of d.
This independence turns out to give us the desired searchability as a function
of n: l grows no faster than a polynomial function of log n.
The underlying reasoning is therefore as follows: the chance of you having a

friend outside of your social/residential circle gets smaller and smaller as you go
farther out, but the number of people also becomes larger and larger. If the two
e↵ects cancel each other out, you will likely be able to find a short path.
A similar argument runs through the Watts, Dodds, Newman model. In

this hierarchical model shown in Figure 9.9, people live in di↵erent “leaf nodes”
of a binary tree that depicts the geographic, occupational, or their combination’s
proximity. If two leaf nodes, A and B, share the first common ancestry node that
is lower than that shared by A and C, then A is closer to B than to C.
For simplicity, let us assume each leaf node is a group of g people. So there

are n/g leaf nodes (for notational simplicity, assume this is an integer), and
log

2

(n/g) levels in the binary tree. For example, if there are n = 80 people in
the world, and g = 10 people live in a social circle where they can reach each
other directly, we have a log(80/10) = 3-level tree.
In this model, each person A measures distance to another person B by count-

9.2 A Long Answer 199

Figure 9.9 An example of Watts Dodds Newman’s model. The 3-level hierarchy is
represented through a binary tree. Each leaf node of this tree has a population of g
people who are directly connected to each other. The probability that two people
know each other decays exponentially with m, the level of their first common ancestry
node.

ing the number of tree levels it needs to go up before finding the first common
ancestry node between A and B. We also assume that the probability that two
people know each other decays exponentially with m, the level of their first com-
mon ancestry node, with an exponent of ↵:

pm = K2�↵m, (9.3)

where K is a normalization constant so that
P

m pm = 1. You probably can rec-
ognize the similarity between this way of assigning probabilities and the random
link probabilities in Kleinberg’s model. Indeed, the results are similar.
The expected number of people that a person can be connected to through her

m-th ancestry, denoted as Nm, is clearly the product of two numbers: g2m, the
number of people connectable through them-th ancestry, and pm, the probability
that the level of first common ancestry is indeed m:

Nm = g21⇥mpm.

We highlight the fact that the number of levels in a tree grows exponentially in
m and the exponent of this growth is 1. This turns out to be the mathematical
root cause for the main result below.
Plugging in the formula for pm (9.3), we have:

Nm = gK2(1�↵)m. (9.4)

In passing the message toward the destination, if the first common ancestry
level shared by a node with the destination is m, the expected number of hops it
needs to pass the message (before getting to someone who is on the same side of

200 Can I really reach anyone in 6 steps?

the m-th hierarchy as the destination) is simply 1/Nm. Summing over all levels
m, we determine the expected length of the path by greedy search is

l =
X

m

1

Nm
=

1

Kg

log(n/g)�1X

m=0

2↵�1m =
1

Kg

(n/g)↵�1 � 1

2↵�1 � 1
. (9.5)

But we cannot directly use (9.5) yet, because there is a normalization constant
K that depends on n/g. We need to express it as a function of observable quan-
tities in the tree. Here is one approach: summing Nm in (9.4) over all m levels,
we get the average degree d̄ of a person:

d̄ =
X

m

Nm =

log(n/g)�1X

m=0

Kg2(1�↵)m = Kg
(n/g)1�↵ � 1

21�↵ � 1
. (9.6)

Now we express K in terms of (d̄, g, n,↵) from (9.6), and plug it back into (9.5):

l =
1

d̄

(n/g)↵�1 � 1

2↵�1 � 1

(n/g)1�↵ � 1

21�↵ � 1
. (9.7)

Since we want to understand the behavior of l as a function of n when n grows,
we take the limit of (9.7) as n becomes large.

• If ↵ 6= 1, by (9.7), clearly l as a function of n grows like (n/g)|↵�1|, a polyno-
mial in n.

• If ↵ = 1, we can go back to the formula of Nm in (9.4), which simplifies to just
Nm = gK independent of the level m. This independence is the critical rea-
son why the small world property now follows: it becomes straightforward
to see that l now grows like log2(n/g), i.e., the square of a logarithm:

1

Kg

log(n/g)�1X

m=0

1 =
1

g
log(n/g)

1

K
=

1

d̄
log2(n/g).

One interpretation of the above result is as follows: since a binary tree is really
a 1-dimensional graph, we need ↵ to be exactly the same as the number of
dimensions to get an algorithmic small world.
This condition on ↵ makes these algorithmic small world’s explanatory models

brittle, in contrast to the robust explanatory model of Watts and Strogatz where
p can be over a range of values and still lead to a structural small world. In our
three dimensional world, ↵ does not always equal 3, and yet we still observe al-
gorithmic small worlds. In Advanced Material, we will summarize an alternative,
less brittle explanatory model of algorithmic small world.

9.3 Examples

We numerically illustrate the social search model by Watts Dodds and Newman.
Fix g = 100 (as in the original paper), d̄ = 100 (a number close to Dunbar’s

9.4 Advanced Material 201

0 2 4 6 8 10
x 106

0

5

10

15

20

25

30

35

40

n

l

α=0.5
α=0.9
α=1.15
α=1.55

Figure 9.10 Impact of n in Watts Dodds Newman model. When the population grows
from 1 million to 10 million, a factor of two increase on log scale, the length of greedy
social search’s path barely increases, as long as ↵ is close to 1. But when ↵ is a little
farther from 1, l increases almost 20-fold.

number). Figure 9.10 shows how l grows with an increasing population n. Then
Figure 9.11 shows the scaling behavior of l with respect to n for di↵erent values
of ↵. l grows much more slowly when ↵ is right around 1.

9.4 Advanced Material

9.4.1 Watts Strogatz model: Clustering coe�cient and shortest path length

Consider the Watts Strogatz model, with n nodes, c short-range links per node,
and probability p of long-range link. We wan to first count C and then approxi-
mate L.
The number of triangles remains the same whether it is before or after the

long-range links are added. But there are more connected triples thanks to the
long-range links:

• The expected number of long-range links is 1

2

ncp, since for each node’s short-
range links, there is a probability p of establishing a long-range link, and

202 Can I really reach anyone in 6 steps?

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

120

140

160

180

200

α

l

Figure 9.11 Impact of ↵ in Watts Dodds Newman model. The value of n is 1 million.
When ↵ is very close to 1, the dimension of the binary tree, l remains very small. But
as ↵ moves away from 1, l quickly becomes very large.

there are nc such opportunities altogether. The factor 1/2 just avoids dou-
ble counting, since each link has two end points. Each of these long-range
links, together with the c short-range links per node, can form two con-
nected triples. So we multiply 1

2

ncp by 2c, and this gives rise to nc2p con-
nected triples.

• The long-range links themselves can also create connected triples similar to the
short-range links, with an expected total number of 1

2

nc2p2, since starting
from each of the n nodes, we need two long-range links to be there and the
probability of that is c2p2.

So the clustering coe�cient now becomes:

C =
n
2

c
2

(c
2

� 1)�
n
2

c(c� 1) + nc2p+ 1

2

nc2p2
�
/3

=
3(c� 2)

4(c� 1) + 8cp+ 4cp2
. (9.8)

Staying with the Watts Strogatz model, the derivations of L are too technically
involved for inclusion here. But the following is one of the possible approxima-
tions when ncp is large:

L ⇡ log(ncp)

c2p
. (9.9)

9.4 Advanced Material 203

We can clearly see that for small p, C(p) behaves like 1/p. But L(p) is almost
constant since log p is like p and cancels p in the denominator when p is small.
This is the mathematical representation of our discussion before: C becomes
large but L is small as we add just a few long-range links.

9.4.2 Generalized Watts Strogatz model: search path length

We have argued intuitively why the dimension of the space in which the graph
lives must be equal to the rate of exponential decay in the probability of having
a long-range link. But they must be exactly the same. Maybe if the probability
decay model is not exactly exponential, we will not need ↵ to be exactly the
same as the space dimension.
It turns out that we do not need p to decay like r�↵ (for some definition of

distance r) in order to get searchability and an algorithmic small world. Back to
the Watts Strogatz model, where ↵ is e↵ectively 0. Long-range links are created
independent of distance, and follow some probability distribution, e.g., binomial,
geometric, Poisson, or Pareto (which we will discuss when introducing scale free
network in the next chapter). This we call a Generalized Watts Strogatz
model.
For this model, we can show that l is small. In fact, we can show this through

an analytic recursive formula for the entire distribution of search path lengths
(not just the average), and for any general metric space (not just a ring or grid).
For example, consider a ring network with n nodes and c short-range links per
node. Suppose each long-range link is independently established, and the number
of long-range connections is drawn from Poisson distribution with rate �. If the
source-destination distance is between kc and (k + 1)c for some integer k, the
expected search length for such a source-destination pair is

lk = 1 +
k�1X

j=1

jY

i=1

exp(��(1� �i)M), (9.10)

where M is the largest number of long-range links, and

�i =
⇡ � ic/2n

⇡ � c/2n
.

What happens in this model, and in empirical data from experiments, is that
short-range links are used, and l increases linearly as the distance between the
source and destination rises but remains small. When this distance becomes
su�ciently large, long-range links start to get used, often just 1 or 2 of them and
often at the early part of the social search paths. Then l quickly saturates and
stays at about the same level even as the source-destination distance continues
to rise.
We have seen 4 small world models. In the end, it is probably a combina-

tion of the Generalized Watts Strogatz model and the Kleinberg model that
matches reality the best, where we have a nested sequence of social circles, with

204 Can I really reach anyone in 6 steps?

distance-dependent link formation within each circle and distance-independent
link formation across the circles.

Further Reading

There are many interesting popular science books on six degrees of separation,
including Six Degrees, Linked, Connected, and many more. The analytic models
covered in this chapters come from the following papers.

1. The experiment by Travers and Milgram was reported in the following
heavily cited paper:
[TM69] J. Travers and S. Milgram, “An experimental study of the small world

problem,” Sociometry, vol. 32, no. 4, pp. 425-443, 1969.

2. The Watts Strogatz model is from the following seminal paper explaining
the six degrees of separation:
[WS98] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world

networks,” Nature, vol. 393, pp. 440-442, 1998.

3. The Kleinberg model explaining the short length of social search’s path is
from the following paper:
[Kle00] J. M. Kleinberg, “The small world phenomenon: An algorithmic per-

spective,” Proceedings of ACM Symposium on Theory of Computing, 2000.

4. The related Watts Dodds Newman model is from the following paper:
[WDN02] D. J. Watts, P. S. Dodds, and M. Newman, “Identity and search in

social networks,” Science, vol. 296, pp. 1302-1304, 2002.

5. The following recent paper presented Generalized Watts Strogatz model
(called Octopus Model in the paper) that explains short length of social search’s
path without imposing the condition of ↵ equal to the dimension d of the space
that the graph resides in.
[ICP12] H. Inaltekin, M. Chiang, and H. V. Poor, “Delay of social search on

small-world random geometric graphs,” Journal of Mathematical Sociology, 2012.

Problems

9.1 Computation of C and L ?

(a) Manually compute C and L for the graph in Figure 9.12.

(b) Compute the clustering coe�cient C and the average shortest path length
L for the two graphs in Figure 9.13. There is no need to use any code, and you

9.4 Advanced Material 205

Figure 9.12 A simple graph for computing network measures.

Figure 9.13 The Watts-Strogatz model with n = 8, c = 4.

can just easily calculate these by hand. Contrast their values between the graphs.

9.2 Generalization of Triadic Closure ??

We have seen the definition of the clustering coe�cient, which quantifies the
amount of triadic closure. In general, “closure” refers to the intuition that if there
are many pairwise connections among a set of nodes, there might be connection
for any pair in the set as well. There is no specific reason to limit closure to only
node triples as in triadic closure.

Here we consider the simple extension called “quad closure”. As shown in
Figure 9.14: if node pairs (a, b), (a, c), (a, d), (b, c), (b, d) are linked, then the
pair (c, d) is likely to be linked in the future.

To quantify the amount of quad closure, we define a “quad clustering coe�-
cient” as

Q =
Number of cliques of size 4

Number of connected quadruples with 5 edges/k

where k is some normalizing constant. But this definition is incomplete unless
we specify the value of k to normalize Q. Find the value of k such that the value
of Q for a clique is exactly 1.

206 Can I really reach anyone in 6 steps?

a b

c d

a b

c d

Figure 9.14 Quad closure: for nodes a, b, c and d if currently 5 out of all 6 possible
links exist (Left), then the remaining link is likely to appear in the future (Right).

9.3 Metrics of class social graph ??

In a class graph, where each student is a node, and a link between A and B
means that A and B know each other on a first name basis before coming to this
class. Download an anonymized class graph from
http://scenic.princeton.edu/network20q/hw/class graph.graphml

and use your favorite software (e.g., NodeXL, gephi, Matlab toolboxes), or by
hand, to:
(a) Compute C and L.
(b) Compute eigenvector centrality.
(c) Partition the graph into communities.
Attach a few screenshots to show the results.

9.4 Kleinberg model ??

In this question, log(·) is in base 2 and ln(·) is in base e.

(1, 1) (1, n)(1, 2) (1, 3)

(2, 1)

(n, 1)

(2, n)

(n, n)

Figure 9.15 A 2D lattice to illustrate the Kleinberg model.

Consider the 2D lattice in Figure 9.15 with n2 nodes labelled in 2D coordi-
nates (1, 1), (1, 2), . . . , (n, n). The distance between two nodes u = (x

1

, y
1

) and

9.4 Advanced Material 207

v = (x
2

, y
2

) is d(u, v) = |x
1

� x
2

|+ |y
1

� y
2

|.

(a) What is the number of nodes of distance 1 from node (1, 1), excluding
itself? How about of distance 2, 3? And of general distance i, where 1 i n?

(b) Let Bj be the set of nodes of distance at most 2j from node (1, 1), excluding
itself. Calculate the size of Bj for 0 j log n. Use the summation identity

rX

k=1

k =
k(k + 1)

2
.

(c) Let Rj be the set of nodes contained in Bj but outside Bj�1, i.e., Rj =
Bj \ Bj�1 for j � 1 and R

0

= B
0

. Calculate a lower bound on the size of Rj .
Specifically, if you obtain something of the form

2s + 2t

with s > t > 0, you should report 2s as your answer.

(d) Let ↵ = 2. By the Kleinberg model, given two nodes u and v are separated
by distance r, the probability of the nodes being linked by a random link is lower
bounded as follows:

Pr(u$ v) � r�↵

4ln(6n)
.

Given that node (1, 1) has only one random link, use the result from (c) to
lower bound the probability that node (1, 1) has a random link to a node in Rj ,
Pr(u$ Rj), for 0 j log n. Does the answer depend on the value of j?

(e) What happens to the result in (d) if ↵ = 1 or ↵ = 3?

9.5 De Bruijn sequence, Eulerian cycle, and card magic ? ? ?

A de Bruijn sequence of order k is a binary vector of 2k 0’s or 1’s, such that
a sequence of k 0’s or 1’s appears only once in the vector (wrapping around the
corner). For example, 0011 is a de Brujin sequence of order k = 2 because each
of the sequences 00, 01, 10, 11 appears only once as shown in Figure 9.16.
There are two questions regarding de Brujin sequences: for any order k, (1)

do they exist? and (2) how to find one?
The answers can be obtained by studying a de Bruijn graph. Consider the case

of k = 3 with the corresponding 2-dimensional de Bruijn graph shown in Figure
9.17. We traverse the graph (starting at any node) while writing down the labels
(0 or 1) on the edges. It is not di�cult to see that for any Eulerian cycle on
the graph, i.e., a traversal of the graph using every edge once and only once,
the corresponding sequence of edge labels is a de Bruijn sequence. Hence the
problem of finding a de Brujin sequence reduces to finding an Eulerian cycle in

208 Can I really reach anyone in 6 steps?

0

0

1

1

00

01

Figure 9.16 Illustration of de Bruijn sequence. Dotted/dashed area is a window which
shifts in clockwise direction, covering all possible combinations of 0’s and 1’s of length
2.

00

11

0110

0

1

1
1

0

0

10

Figure 9.17 A de Bruijn graph.

the corresponding de Bruijn graph, and this answers question (2). For question
(1), the answer is a�rmative if every de Bruijn graph has an Eulerian cycle,
which indeed is true because each node’s in-degree and out-degree are equal (a
basic result in graph theory due to Euler).

So what are de Bruijn sequences good for? Among their important applications
is a famous card trick, where the magician can name the card held by k people
in the audience even after random cuts have been made to the deck of cards.
(The details can be found in a unique book by Persi Diaconis and Ron Graham:
Magical Mathematics: The Mathematical Ideas that Animate Great Magic Tricks,
Princeton University Press, 2011.)

Now, your task for this homework problem: For k = 3 there are two distinct de
Brujin sequences. Sequences 01011 and 00111 are distinct, but sequences 01011
and 10101 are not (try to write out the sequences as in Figure 9.16). Draw clearly

9.4 Advanced Material 209

two distinct Eulerian cycles on the graph in Figure 9.17, and report the two dis-
tinct de Bruijn sequences found.

10 Does the Internet have an Achilles’
heel?

10.1 A Short Answer

It does not.

10.2 A Long Answer

10.2.1 Power law distribution and scale-free networks

Sure, the Internet has many security loopholes, from cyber attack vulnerability
to privacy intrusion threats. But it does not have a few highly connected routers
in the center of the Internet that an attacker can destroy to disconnect the
Internet. So why would there be rumors that the Internet has an Achilles’ heel?
The story started in the late 1990s with an inference result: the Internet topol-

ogy exhibits a power law distribution of node degrees. Here, the “topology”
of the Internet may mean any of the following:

• The graph of webpages connected by hyperlinks (like the one we mentioned
in Chapter 3).

• The graph of Autonomous Systems (AS) connected by peering relationship
(we will talk more about that in Chapter 13).

• The graph of routers connected by physical links (the focus of this chapter).

For the AS graph and the router graph, the actual distribution of the node de-
grees (think of the histogram of the degrees of all the nodes) are not clear due
to measurement noise. For example, the AS graph data behind power law distri-
bution had more than 50% links missing. Internet exchange points further lead
to many peering links among ASs. Theses are shortcuts that enable settlement-
free exchange of Internet tra�c, and cannot be readily measured using standard
network measurement probes.
To talk about the Achilles’ heel of the Internet, we have to focus on the graph

of routers as nodes, with physical links connecting the nodes. No one knows for
sure what that graph looks like, so people use proxies to estimate it through
measurements like trace-route. Studies have shown that such estimates lead to
biased sampling in the first place, due to the way the Internet protocol reacts to
trace-route measurements. In addition, there are other measurement deficiencies

10.2 A Long Answer 211

(a) (b)

Figure 10.1 (a) Gaussian vs. (b) long tail distribution. Gaussian distribution has a
characteristic scale, e.g., standard deviation from the mean, whereas long tail
distribution does not.

arising from resolving address ambiguity. There is also no scalable measurement
platform with enough vantage points at the network edge to detect the high-
degree nodes there. Therefore, it remains unclear if the Internet router graph
has a power law degree distribution or not.
But in this chapter we will assume that these graphs exhibit a power law dis-

tribution of their node degrees. Even then, the actual graphs and their properties
can be tricky to analyze
So, what is a power law distribution? Many distributions, like Gaussian and

Exponential distributions, have a characteristic scale, defined by the mean and
standard deviation as shown in Figure 10.1(a). And the probability that the
random variable following such distribution has a value above a given number x,
i.e., the tail probability, becomes small very quickly as x becomes large. It is not
likely to be far away from the mean. This leads to what is called a homogeneous
network, defined here as a network where the degrees of the nodes are more or
less similar.
In sharp contrast, as shown in Figure 10.1(b), a long tail distribution does

not have a characteristic scale, leading to the so-called scale-free network that
is inhomogeneous in its node degrees. The tail probability Prob[X � x] of a
long tail distribution exhibits the following characteristics:

Prob[X � x] ⇡ kx�↵,

where k is a normalization constant, ↵ is the exponent of the exponential decay,
and ⇡ here means “equal” in the limit as x becomes large, i.e., it eventually
follows a power law distribution.
The most famous special case of long tail distribution is the Pareto distribu-

212 Does the Internet have an Achilles’ heel?

y

Log P [X ≥ x]

Log X

Figure 10.2
Pareto
distribution on
a log-log plot
is a straight
line. This is
the visual
signature of
any long tail,
or power law,
distribution.

tion, with the following tail distribution for x � k:

Prob[X � x] =
⇣x
k

⌘�↵
. (10.1)

Di↵erentiating the above expression, we see that the Probability Density Func-
tion (PDF) for Pareto distribution also follows the power law, with the power
exponent �(↵+ 1):

Prob[X = x] = p(x) = ↵k↵x�(↵+1) (10.2)

In sharp contrast, for any x 2 (�1,1), the Gaussian probability distribution
function (pdf) follows:

p(x) =
1p
2⇡�

e�
(x�µ)2

2�2 ,

where µ is the mean and � the standard deviation.
Just to get a feel (ignoring the normalization constant) for the di↵erence be-

tween exponential of square and 1 over square: following the Gaussian distri-
bution’s shape, we have e�x

2

= 0.018 when x = 2. But following the Pareto
distribution’s shape, we have x�2 = 0.25 when x = 2, a much larger number.
We can plot either the tail distribution (10.1), or the probability density func-

tion (10.2), on a log-log scale, and get a straight line for the Pareto distribution.
This can be readily seen:

log Prob[X � x] = �↵ log x+ ↵ log k.

The slope is �↵, as shown in Figure 10.2. A straight line on log-log plot is the
visual signature of power law distribution. It has been reported that the power
exponent is -2.1 for in-degree of webpage graph, -2.4 for out-degree of webpage
graph, and -2.38 for router graph.
Just to clarify: scale-free network is not the same as small-world network.

As we saw in the last chapter, a network is called small-world if short paths
between any pair of nodes exist and can be locally discovered. A network is
called scale-free if its node degree distribution follows a power law, such as the
Pareto distribution.

10.2 A Long Answer 213

• Scale-free is a topological property concerning just the node degree distribu-
tion. It is not a functionality property. A scale-free network does not have
to be small world.

• Small world is a topological and functionality property that can arise from
di↵erent node degree distributions. For example, the Watts Strogatz graph
is small world but not scale-free, as its node degree distribution does not
follow a power law.

• In many social networks, evidence suggests that they are both small world
and scale-free. For example, the last model in Chapter 9, the Generalized
Watts Strogatz model, can generate such networks.

Back to scale-free networks. Researchers have worked out di↵erent generative
models, but one of them, the preferential attachment model, gained the most
attention. As explained in detail in Advanced Material, preferential attachment
generates a type of scale-free network that has highly connected nodes in the
center of the network.

In 2000, researchers in statistical physics suggested that, unlike networks with
an exponential distribution of node degrees, scale-free networks are robust to
random errors, since chances are that the damaged nodes are not highly con-
nected to cause too much damage to the network. But a deliberate attack that
specifically removes the most connected nodes will quickly fragment the network
into disconnected pieces. The nodes with large degrees sitting in the center of
the network become easy attack targets to break the whole network. Since the
Internet, even at router level, follows power law degree distribution too, it must
be vulnerable to such attacks on its Achilles’ heel.

The argument sounds plausible and the implication alarming, except that it
does not fit reality.

10.2.2 Internet reality

Two networks can have power law degree distribution and yet have very di↵erent
features otherwise, with very di↵erent implications to functional properties, such
as robustness to attacks.

For example, what if the high variability of node degrees happens at the net-
work edge rather than at the center? That is unlikely if networks were randomly
generated according to the model of preferential attachment, where nodes attach
to more popular nodes. In the space of all graphs with power law degree distri-
butions, degree variability tends to arise out of the di↵erence between highly
connected core nodes and sparsely connected edge nodes.

But what if this unlikely topology is the actual design? Cisco cannot make a
router that has both a large degree and a large bandwidth per connection. Each
router has a limitation on its total bandwidth: the maximum number of packets
it can process at each time. So there is an inevitable tradeo↵ between the number

214 Does the Internet have an Achilles’ heel?

Figure 10.3 Bandwidth vs. connectivity constraint sets for di↵erent routers from
[Ald+05]. State-of-the-art core routers’ capabilities in 2003 are shown. As the degree
of the node (i.e., port number per router) goes up, the total bandwidth rises initially,
but then drops as more ports force the per-port bandwidth to decrease faster.

of ports (node degree) and speed of each port (bandwidth per connection) on
the router. This is illustrated in Figure 10.3.

In addition, the Internet takes layers of aggregation to smooth individual
users’ demand fluctuations through statistical multiplexing. A user’s tra�c goes
through an access network like WiFi, cellular, DSL, or fiber networks, then
through a metropolitan network, and finally, enters the core backbone network.
Node bandwidth is related to its placement. The bandwidth per connection in
the routers goes up along the way from edge to core.

This implies that nodes in the core of the Internet must have large bandwidth
per connection, and thus small degree. For example, an AT&T topology in 2003
showed that the maximum degree of a core router was only 68 while the maximum
degree of an edge router was almost five times as large: 313.

In summary, access network node degrees have high variability. Core network
node degrees do not. Attacks on high degree nodes can only disrupt access routers
and do not disrupt the entire network. Attacks on medium to small degree nodes

10.2 A Long Answer 215

Figure 10.4 Achilles’ heel or not, from [Ald+05]. (b) is a typical topology from
preferential attachment mechanism. (e) is a typical topology of the real Internet. Both
satisfy a power law degree distribution. But (b) has Achilles’ heel whereas (e) does
not.

have a high chance of hitting the access routers because there are many more of
them than core routers.
Moreover, there are also protocols that take care of detecting and mitigating

failures even when routers are down, as we will briefly discuss in a homework
problem. Robustness of a network is not just about connectivity pattern in the
graph.
To summarize, the flaws of “The Internet has an Achilles’ heel” are three-fold:

• Incomplete measurements skews the data.

• Power law degree distribution does not imply preferential attachment.

• Functional protection sits on top of topological property.

10.2.3 Functional model

The Internet might be viewed as “self organizing,” but that is achieved by design
and protocols based on constrained optimization. There is a way to more pre-
cisely define the tradeo↵ between performance and likelihood of vastly di↵erent
topologies all exhibiting power law degree distributions.
One of the several ways to capture the aggregate throughput of the Internet,

as its performance metric, is through the following optimization problem:

maximize
P

i xi

subject to
P

i Rkixi bk, 8k
xi = ⇢yS

i

yD
i

, 8i
variables ⇢, {xi}.

(10.3)

Here, an end-to-end session i’s rate xi is proportional to the overall tra�c demand
yS

i

at its source node Si and yD
i

at its destination node Di (i.e., x is generated
by y in this tra�c model), ⇢ being the proportionality coe�cient and the actual
optimization variable. Each entry in the routing matrix Rki is 1 if session i passes
through router k, and 0 otherwise. The constraint values {bk} capture the router

216 Does the Internet have an Achilles’ heel?

bandwidth-degree feasibility constraint. The resulting optimal value of the above
problem is denoted as P (G): the (throughput) performance of the given graph
G. Clearly, P (G) is determined by the throughput vector x, which is in part
determined by the routing matrix R, which is in turn determined by the graph
G.
On the other hand, we can define the likelihood S(G) of a graph G with node

degrees {di} as

S(G) =
s(G)

smax
, (10.4)

where

s(G) =
X

(i,j)

didj

captures the pairwise connectivity by summing the degree products didj , over
all (i, j) node pairs that have a link between them, similar to the metric of
modularity in Chapter 8. And smax is simply the maximum s(G) among all the
(simple, connected) graphs that have the same set of nodes and the same node
degrees {di}. These {di}, for example, can follow a power law distribution.
Now we have P (G) to represent performance and S(G) to represent the like-

lihood of a scale-free network. As shown in Figure 10.5, if we were drawing a
network from the set of scale-free networks at random, high performance topolo-
gies like the one exhibited by the real Internet are much less likely to be drawn.
But the Internet was not developed by such a random drawing. It came through
constrained-optimization-based design. Performance of the topology generated
by (10.3) is 2 orders of magnitude higher than that of the random graph gener-
ated by preferential attachment, even though it is less than one-third likely to
be picked at random.
The poor performance of graphs with highly connected core nodes is actually

easy to see: a router with a large degree cannot support high bandwidth links, so
if it sits in the core of the network it becomes a performance bottleneck for the
whole network. Since “Archilles’ heel nodes” would also have been performance
bottleneck nodes, they were simply avoided in the engineering of the Internet.
We will see this problem again in Chapter 16, when we discuss cloud services
and large-scale data centers.
In summary, the Internet router graph is performance driven and technologi-

cally constrained. Concluding that there is an Achilles’ heel is a story that illus-
trates the risk of overgeneralizing in a “network science” without domain-specific
functional models.
As to the AS graph, the topology can be quite di↵erent as it is driven by

inter-ISP pricing economics. The webpage graph exhibits yet another topology,
increasingly shaped by search engine optimizers in response to Google search
methods in Chapter 3, and the extremely popular aggregation websites like
Wikipedia and Youtube that we saw in Chapters 6 and 7.
The story of the Internet’s (non-existing) Achilles’ heel is part of a bigger pic-

10.2 A Long Answer 217

Figure 10.5 Performance vs. likelihood of two topologies, both following a power law
degree distribution. Topology I, which stands for the Internet, is much less likely to
be picked up if a graph is drawn at random from the set of graphs satisfying power
law degree distribution. But it also has much higher performance, as measured by
total throughput. Topology PA, which stands for Preferential Attachment, is much
more likely but has much lower performance.

ture about generative models of power law distribution: what might have given
rise to these ubiquitous power law distributions in graphs we find in many ar-
eas? It dates back to over a century ago, when linguist Zipf first documented
that the kth popular word in many languages roughly has a frequency of 1/k in
its appearance. Since then Pareto, Yule, and others documented more of these
power laws in the distributions of income and of city size. In the 1950s, there
was an interesting debate between Mandelbrot and Simon on the choice of gen-
erative models for power law, and on the modeling abilities of fractal/Pareto vs.
Poisson/Gaussian. These questions have continued to the present day.
There are several explanatory models of scale-free networks, two of which are

well-established and complementary:

• Preferential Attachment : the key idea is that as new nodes are added to a
graph, they are more likely to connect to those with a lot of connections
already. Conceptually, it says that a self-organizing growth mechanism of
graphs leads to power law distribution. Mathematically, it turns out that
sampling by density leads to a di↵erence equation whose equilibrium sat-
isfies power law, as we will see in Section 10.4.1.

• Constrained Optimization: the key idea is that the graph topology is designed
with some objective function and constraint in mind, and the resulting
topology shows power law distribution. Conceptually, it says that power
law is a natural outcome of constrained optimization. Mathematically, it
turns out that either entropy or isoelastic utility maximization under linear

218 Does the Internet have an Achilles’ heel?

1

2

4

3

1

2

5

3

4 5

Figure 10.6 Two network topologies G1 and G2, both with node degrees {3,2,2,2,1}.
G1 has a smaller S, but much larger P compared to G2 that maximizes S but su↵ers
from a small P .

constraints gives rise to power law distribution, as we will see in Section
10.4.2. In fact, constrained optimization is not just one single model but a
general approach to model functionalities.

Advanced Material will continue this discussion with the debate between pref-
erential attachment and constrained optimization as two options of generative
models.

10.3 Examples

Suppose we have a network with graph G
1

shown in Figure 10.6(a). We will
calculate S(G

1

) and P (G
1

).

First of all, we have

s(G
1

) = d
1

d
2

+ d
1

d
3

+ d
1

d
5

+ d
2

d
4

+ d
3

d
4

= (3)(2) + (3)(2) + (3)(1) + (2)(2) + (2)(2)

= 23.

(10.5)

Among all the (connected) graphs with node degree distribution the same as
G

1

, the graph with the greatest S(G) is shown in Fig. 10.6(b). Call this graph
G

2

. A graph that maximizes S(G) generally has more connections between nodes
of higher degree. For example, we should swap the 1 in the third term in the
sum above with the 2 in the fifth term. We can readily reason that the largest

10.3 Examples 219

s(G) must be:

smax = s(G
2

)

= d
1

d
2

+ d
1

d
3

+ d
1

d
4

+ d
2

d
4

+ d
3

d
5

= (3)(2) + (3)(2) + (3)(2) + (2)(2) + (2)(1)

= 24.

(10.6)

Therefore, S(G
1

) = s(G1)

s
max

= 23

24

.

Now we turn to calculating P (G
1

). Assume we have sessions that wish to
connect from each node to each other node, so 10 sessions in total. Let session
1 denote the connection between node 1 and 2, session 2 denote the connection
between node 1 and 3, and so forth. Let the node demands be denoted by yj
Gbps, with values y

1

= 5, y
2

= 2, y
3

= 4, y
4

= 4, y
5

= 2. Let the bandwidth-
degree constraint be bk = dk for all k.

To build the routing matrix R, we determine the shortest path between each
source-pair destination and write down which routers the path uses. Ties are
broken arbitrarily. For example, the shortest path in graph G

1

from node 2! 5
is 2 ! 1 ! 5. That translates to the 7th column [1 1 0 0 1]T in the routing
matrix.

After the above construction, the routing matrix is as follows, with 10 sessions,
one per column, and 5 nodes, one per row, e.g., the first column corresponds to
session 1, from node 1 to node 2:

R =

2

66664

1 1 1 1 1 0 1 0 1 1
1 0 1 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 1
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

3

77775
(10.7)

The demand vector is found by multiplying appropriate entries of yk. For
example, since session 10 routes from node 4 to node 5, we multiply y

4

⇥ y
5

to
find the demand constraint yS10yD10 .

220 Does the Internet have an Achilles’ heel?

2

G1
4

3

0.95 1

P(G)

G2

S(G)

Figure 10.7 P(G) versus S(G) for the simple topology in our numerical example. The
less likely graph is the one with much higher total throughput.

The optimization problem is therefore:

maximize x
1

+ x
2

+ x
3

+ x
4

+ x
5

+ x
6

+ x
7

+ x
8

+ x
9

+ x
10

subject to

2

66664

1 1 1 1 1 0 1 0 1 1
1 0 1 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 1
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

3

77775

2

6666666666666664

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

3

7777777777777775

2

66664

3
2
2
2
1

3

77775

x = ⇢[10 20 20 10 8 8 4 16 8 8]T

variables ⇢,x.

Solving this numerically, we find that

x⇤ =
⇥
0.33 0.67 0.67 0.33 0.27 0.27 0.13 0.53 0.27 0.27

⇤T
Gbps,

and ⇢⇤ = 0.033. The maximized objective function value gives P (G
1

) = 3.73
Gbps.

Now, we repeat the procedure to find S(G
2

) and P (G
2

). By definition, S(G
2

) =

10.4 Advanced Material 221

1. For P (G
2

), the routing matrix changes and the optimization problem is:

maximize x
1

+ x
2

+ x
3

+ x
4

+ x
5

+ x
6

+ x
7

+ x
8

+ x
9

+ x
10

subject to

2

66664

1 1 1 1 1 0 1 1 0 1
1 0 0 0 1 1 1 0 0 0
0 1 0 1 1 0 1 1 1 1
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

3

77775

2

6666666666666664

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

3

7777777777777775

2

66664

3
2
2
2
1

3

77775

x = ⇢[10 20 20 10 8 8 4 16 8 8]T

variables ⇢,x

Solving this numerically, we find that

x⇤ =
⇥
0.27 0.54 0.54 0.27 0.22 0.22 0.11 0.43 0.22 0.22

⇤T
Gbps,

and ⇢⇤ = 0.027. Now the total throughput is P (G
2

) = 3.02 Gbps.

We compare graph G
1

and G
2

’s performance metric to the likelihood metric
in Figure 10.7. We are constrained to a small example that allows us to run
through a detailed numerical illustration. So the S(G) dynamic range is small.
But qualitatively, we see that, compared to G

2

, G
1

has a smaller likelihood of
getting picked if a graph is randomly drawn from the set of all the graphs with
power law degree distributions, but a much higher performance in terms of total
throughput.

10.4 Advanced Material

Underlying the Achilles-heel-Internet conclusion is the following chain of log-
ical implications: scale-free networks imply they arise from the mechanism of
preferential attachment, and preferential attachment always leads to an Achilles
heel. The logical fallacy in this chain of reasoning is that, while preferential
attachment generates scale-free networks, scale-free networks do not imply the
necessity of preferential attachment. There are other mechanisms that generate
scale-free networks just like preferential attachment, but lead to other properties
that fit reality better. In the case of Internet router graph, preferential attach-
ment necessarily leads to performance bottlenecks, whereas the Internet must
avoid such bottlenecks because core routers with large degree implies that the
per-port bandwidth must be small.

222 Does the Internet have an Achilles’ heel?

10.4.1 Preferential attachment generates power law

Suppose a graph starts with just one node with a link back to itself. At each of
the discrete timeslots, a new node shows up. With probability ✓ 2 [0, 1], it picks
an existing node in proportion to the in-degree of each node. With probability
✓̄ = 1 � ✓, it picks an existing node randomly (similar to the randomization
component of pagerank). Then it connects to the node picked. The bigger ✓, the
more prominent is the preferential attachment e↵ect: a new node is more likely
to connect to a popular node. The smaller ✓, the more prominent is the random
attachment e↵ect.
Now, look at the evolution of Ni(t), the number of nodes with in-degree i

when there are t nodes in the network (t is also the timeslot counter since we
add one node each time). We will see that attaching to more popular nodes
naturally makes them even more popular, which makes them even more likely
to be attached to by future new nodes. This leads to the power law distribution.
Mathematically, this can be readily reasoned. Ni increases by 1, if the new

node picks an existing node with i� 1 in-degree, thus pushing its in-degree to i.
The probability of that happening is

✓
(i� 1)Ni�1

t
+ ✓̄

Ni�1
t

=
✓(i� 1)Ni�1 + ✓̄Ni�1

t
.

The key observation is that (i� 1) multiplies Ni�1 in the first term. This is the
source of the“more popular gets more popular” phenomenon.
On the other hand, Ni decreases by 1, if the new node picks an existing node

with i in-degree, thus pushing its in-degree to i + 1. The probability of that
happening is

✓iNi + ✓̄Ni

t
.

The net change in Ni is the di↵erence of the above two expressions:

✓((i� 1)Ni�1 � iNi) + ✓̄(Ni�1 �Ni)

t
. (10.8)

At equilibrium of the growth rates of nodes with di↵erent degrees, we can
express the number of nodes with i in-degrees as follows:

Ni(t) = pit,

where pi 2 [0, 1] is the proportion of nodes with in-degree i. So the net change
of Ni with respect to t is just pi:

@Ni(t)

@t
= pi.

But we just showed that the same quantity can be expressed as in (10.8) too.
Setting pi =(10.8) and simplifying the equation, we have:

pi(1 + ✓̄ + i✓) = pi�1(✓̄ + (i� 1)✓).

10.4 Advanced Material 223

The key observation is that pii shows up on the left side, and pi�1(i� 1) on the
right.
From this balance equation, we can examine the ratio pi/pi�1:

pi
pi�1

= 1� 1 + ✓

1 + ✓̄ + i✓
.

Since we care about the tail of the distribution, we focus on the asymptote where
i becomes large and dominates the denominator:

pi
pi�1

⇡ 1�
✓
1 + ✓

i✓

◆
. (10.9)

Let us see what kind of distribution of {pi} satisfies the above equation. Maybe
power law distribution? If the distribution of {pi} follows power law:

pi ⇡ k
1

i�(1+✓)/✓, (10.10)

where k
1

is a normalization constant independent of i, then the asymptote (10.9)
is indeed satisfied, since for large enough i,

pi
pi�1

=

✓
i� 1

i

◆ 1+✓

✓

=

✓
1� 1

i

◆ 1+✓

✓

⇡ 1�
✓
1 + ✓

✓

◆✓
1

i

◆
,

where the approximation ⇡ is by Taylor’s expansion. We can also verify that
(10.10) is also the only way to satisfy this asymptote.
In addition to the probability distribution {pi}, the tail of the distribution

qj =
P

i�j pi also follows the power law and is proportional to

k
2

j�1/✓, (10.11)

where k
2

is another normalization constant independent of j.
For example, for the power exponent to be �2, ✓ should be 0.5: follow prefer-

ential attachment as much as random attachment.

10.4.2 Constrained optimization generates power law

While preferential attachment is a plausible model that can generate power law
distribution, it is not the only one. Another major generative model, especially
for engineered networks, is constrained optimization. The power law distribution
of node degrees then follows as the consequence of a design that maximizes some
objective function subject to technological and economic constraints. The opti-
mization model for Internet topology earlier in this chapter is such an example.
There are more examples, mathematically simple and precise. We will go

through one now (maximizing entropy subject to linear cost constraints), and
save another for homework (maximizing utility functions subject to linear re-
source constraints). We can also turn a constrained optimization to a multi-
objective optimization, where, instead of forming a constraint, we push it into

224 Does the Internet have an Achilles’ heel?

the objective function. Either way, it is a model of a tradeo↵: the tradeo↵ between
performance and resource cost.

Suppose we want to explain the empirically observed power law distribution
of word lengths in a code or a language. For simplicity of exposition, assume
each word has a di↵erent length. A word with length i has a probability pi of
being used, and the cost of the word is the number of bits to describe it: log i.
The average cost is

P
i pi log i. The information conveyed by the code is often

measured by its entropy: �
P

i pi log pi. We now have the following constrained
optimization, where C is a given upper bound on the average cost:

maximize �
P

i pi log pi
subject to

P
i pi log i C

variables {pi}.
(10.12)

We can normalize p later .

We can figure out the structure of the optimizer {p⇤i } to the above problem by
looking at the Lagrange dual problem, an important approach that we will mo-
tivate and explain in detail in Chapter 14. But briefly, we weight the constraints
with Lagrange multipliers, and hope that

• When these multipliers are chosen properly, maximizing a weighted sum of
the objective function and these constraints will be equivalent to solving
the original constrained optimization problem.

• Even when these multipliers are not picked to be exactly the “right” ones,
useful structures of the optimal solution can still be revealed.

First we form the weighted sum L, with a Lagrange multiplier � > 0:

L(p,�) = �
X

i

pi log pi � �

X

i

pi log i� C

!
.

From Lagrange duality theory, it is known that the optimizer {p⇤i } to (10.12)
must be a maximizer of L. So taking the partial derivative of L with respect to
pj and setting it to 0, we have:

� @L

@pj
=

@(pj log pj)

@pj
+ �

@(pj log j)

@pj
= log pj + 1 + � log j

= 0.

Therefore, we have

p⇤j = exp(�� log j � 1) =
1

e
j��, 8j,

a power law distribution with power exponent ��, just as we had hoped for.

10.4 Advanced Material 225

10.4.3 Broader implications

Which is the “true” explanation of power law: preferential attachment (PA) or
constrained optimization (CO)? There is no universally true explanation for all
networks. If the network at hand has some elements of design or optimization,
CO is more insightful. If not, PA is the more natural explanation. Since they
are “just” explanatory models and both options give rise to the same power law,
either could work for that purpose, and it does not matter which we choose. The
only way to di↵erentiate between the two is to compare attributes beyond just
the power law.
Here lies a relatively under-explored topic, as compared to gathering data and

plotting the frequency on log-log scale to detect a straight line: what kind of pre-
dictions can generative models make about topological or functional properties
of a given network? In the case of Internet topology, empirical data shows that
CO correctly predicts the Internet topology, whereas PA does not.
This is part of an even bigger picture of the debate between Self-Organized

Criticality (SOC) and Highly Optimized Tolerance (HOT) models in the
study of networks and complexity. In short, in SOC theory, complex behaviors
emerge from the dynamics of a system evolving through “meta-stable” states into
a “critical” state. In HOT theory, complex behaviors emerge from constrained
design aiming at high e�ciency and robustness to designed-for uncertainty (but
has high sensitivity to design flaws and unanticipated perturbations). If the sys-
tem exhibits nongeneric, structured configurations, HOT is a better model. HOT
also fits fractal and scaling slopes of power law better. A fundamental watershed
is that the source of randomness is topological in SOC but functional in HOT.
Power laws can be found in very di↵erent types of networks:

• Biological networks, e.g., brain, species population.

• Human or business networks, e.g., webpage, AS, citation, city growth, income
distribution.

• Technology networks, e.g., the Internet at router level.

• A mixture of natural and engineered networks, e.g., forest fire, language.

The third and fourth types of networks tend to have strong constraints and key
objectives, and HOT tends to explain them better. Even the first and second
types of networks often have constraints, e.g., how many friends one individual
can keep is upper bounded by a human being’s ability to keep track of friends,
thus cutting o↵ the long tail of degree distribution.
The real question is whether the long tail is still there at the regime that mat-

ters to the network function under study. However, in some areas in economics
and sociology, we cannot easily run controlled, reproducible experiments to fal-
sify a theory, and there are too many self-consistent yet mutually-incompatible
theories to di↵erentiate based on historical data.
There are also other ways to generate power law beyond the two in this chap-

ter. This begs the question: if power law is so universally observed and easily

226 Does the Internet have an Achilles’ heel?

generated, maybe we should no longer be surprised by discovering it, just like
we are not surprised when observing that the sum of many independent random
variables (with finite means and variances) roughly follow the Gaussian distri-
bution. This is especially true when networks having power law can still have
diagonally opposite behaviors in properties that matter, such as resilience to at-
tack (in the case of router topology) and peering economics (in the case of AS
topology).
Before leaving this chapter, we highlight two interesting messages. First, this

and the previous chapter are mostly about reverse engineering, and we saw the
use of optimization in explanatory models.
Second, we see the importance of domain-specific knowledge that can correct

misleading conclusions drawn from a generic network science, the importance of
reality check and falsification against generic topological properties, and the im-
portance of protocol specifics on top of the generic principle of self-organization.

Further Reading

There is a wide literature on power law and long-tail distribution, and on scale-
free graphs found in biological, social, and technological networks.

1. The following paper suggested the existence of Achilles’ heel in Internet
router level topology:
[AJB00] R. Albert, H. Jeong, and A. L. Barabasi, “Error and attack tolerance

of complex networks”, Nature, July 2000.

2. The following paper refuted the above paper in theory and through data. It
also developed an optimization model of Internet router level topology that we
followed in this chapter:
[Ald+05] D. Alderson, L. Li, W. Willinger, and J. C. Doyle, “Understanding

Internet topology: Principles, models, and validation,” IEEE/ACM Transactions
on Networking, vol. 13, no. 6, pp. 1205-1218, 2005.

3. The following paper summarizes many of the key issues in both the collection
and the interpretation of Internet measurement data, especially at AS level. The
same special issue of this journal also contains other relevant articles.
[Rou11] M. Roughan, W. Willinger, O. Maennel, D. Perouli, and R. Bush,

“10 lessons from 10 years of measuring and modeling the Internet’s autonomous
systems,” IEEE Journal of Selected Areas in Communications, 2011.

4. The following survey paper traces the history back to Pareto’s and Zipf’s
study of power law distribution, Yule’s treatment of preferential attachment, and
the Mandelbrot vs. Simon debate on generative models of power law distribution
in the 1950s:

10.4 Advanced Material 227

[Mit03] M. Mitzenmacher, “A brief history of generative models for power law
and lognormal distributions”, Internet Mathematics, vol. 1, pp. 226-249, 2003.

5. The following best-seller o↵ers many interesting insights to modeling via
Gaussian vs. modeling via heavy tail:
[Tal10] N. N. Taleb, The Black Swan, 2nd Ed., Random House, 2010.

Problems

10.1 Probability distributions ?

The log-normal distribution has probability density function given by f(x) =
1

x
p
2⇡�2

e�
(ln x�µ)2

2�2 and cumulative density function given by �(ln x�µ
�), where �

is the cumulative density function of the normal distribution. µ and � are the
mean and standard deviation of the corresponding normal distribution.
Plot the PDF of the following distributions on domain [1,5] with granularity

0.01, all on the same graph for contrast, first using linear and then (natural)
log-log scale:
• Pareto distribution with xm = 1,↵ = 1.
• Normal distribution with µ = 1,� = 1.
• Log-normal distribution with µ = 1,� = 1.
Does the tail of the log-normal distribution look like the normal distribution

or the Pareto distribution?

10.2 Utility maximization under linear constraints ??

We will examine another generative model for power law distribution. Consider
the case of nodes communicating to each other over a set of shared links. Each
node’s utility is a function of the rate it receives. Specifically, we choose the ↵-fair
(also called isoelastic) utility function, where ↵ � 0 is a fairness parameter. We
can formulate this as:

maximize
x

X

j

x1�↵
j

1� ↵

subject to Ax b

x � 0,

where bi is the capacity of link i, and xj is the rate of session j, and A is the
routing matrix between sessions and links:

Aij =

(
1 if session j is present on link i

0 otherwise.

Show that xj follows a power law (for fixed ↵), and give an intuition for your

228 Does the Internet have an Achilles’ heel?

answer.

10.3 Preferential attachment ??

Recall the preferential attachment model, where a new node attaches with
probability ✓ to another node proportional to its indegree. Specifically, the prob-
ability of the new node attaching to node k is ⇡(k) = d

kP
j

d
j

where dk is the

indegree of node k.

Run a simulation of preferential attachment with ✓ = 0.5 for 500 time steps.
Plot pi versus i. Does it follow the power law distribution as expected?

10.4 Backup routing topology design ??

Consider the topology in Fig. 10.8. Nodes a, b, c are end hosts and nodes A, B,
C, D are routers. Each link is 10 Mbps. There are two sessions going on: node a
sends to node c, and node b sends to node c. Each session can split tra�c across
multiple paths. A link’s bandwidth is shared equally between the two sessions if
they happen to go through the same link.

(a) For a fixed source and destination, node-disjoint paths are paths that
do not share any nodes. How many node-disjoint paths are there between a and
c? Between b and c? If a and b split their tra�c evenly across their disjoint paths,
how much bandwidth are a and b able to send to c concurrently?

(b) If router A fails, what happens? Repeat (a).

(c) If routers A and B both fail, what happens? Repeat (a).

10.5 Wavelength assignment in optical networks ? ? ?

In an optical network for the Internet backbone, each link has a number
of wavelengths. An end-to-end path is called a lightpath. A lightpath must be
assigned the same wavelength on all of the links along its route. And no two
lightpaths can be assigned the same wavelength on any link. For a given graph
G and routing, we want to solve this wavelength assignment problem.

(a) Show that the wavelength assignment problem on G is equivalent to the
graph coloring problem on a related graph G̃. The gaph coloring problem asks
for the most e�cient (using the smallest number of colors) assignment of one
color to each node of a graph so that no adjacent nodes have the same color.
What is this G̃?

(b) Let L be the maximum number of lightpaths on any link in a graph. Many
optical networks are rings. Show that for any set of lightpaths requests, at most

10.4 Advanced Material 229

a c

b

A B

C D

Figure 10.8 A network with 4 routers and 3 end hosts.

2L � 1 wavelengths are required, by constructing a greedy algorithm of wave-
length assignment on a ring.

11 Why do AT&T and Verizon
Wireless charge me $10 a GB?

11.1 A Short Answer

Almost all of our utility bills are based on consumption amount: water, electricity,
gas, etc. But when it comes to pricing Internet access, including wireless cellular
access where capacity is expensive to provide and di�cult to crank up, consumers
in some countries like the U.S. have been enjoying flat rate bu↵ets for many years.

In April 2010, AT&T announced its usage-based pricing for 3G data users. This
was followed in March 2011 by Verizon Wireless for its iPhone and iPad users,
and in June 2011 for all of its 3G data users. In July 2011, AT&T started charging
fixed broadband users on U-Verse services based on usage too. In March 2012,
AT&T announced that those existing customers on unlimited cellular data plans
will see their connection speeds throttled significantly once the usage exceeds 5
GB, e↵ectively ending the unlimited data plan and leaving usage-based plan as
the only option. Similar measures have been pursued, or are being considered,
in many other countries around the world.

How much is 1 GB of content? If you watch 15 minutes of medium resolution
YouTube videos a day, and do nothing else with your Internet access, that is
about 1 GB a month. If you stream one standard definition movie, it is about 2
GB. With the proliferation of capacity-hungry apps, high resolution video con-
tent, and cloud services (we will discuss video and cloud networking in Chapters
17 and 16), more users will consume more GBs. With the 4G LTE speed much
higher than 3G (we will also look into the details of speed calculation in Chapter
19), many of these GBs will be consumed on mobile devices and fall into the
$10/GB bracket. Those who are used to flat rate bu↵et style pricing will nat-
urally find this quite annoying. And if content consumption is suppressed as a
result (which does not have to be the case as we will see in the next chapter),
usage pricing influences the entire industry ecosystem, including consumers, net-
work providers, content providers, app developers, device manufacturers, and
advertisers.

And yet we will see there are several strong reasons, including those in the
interests of consumers, that support usage based pricing as a better alternative
to flat rate pricing. Whether $10/GB is the right price or not is another matter.
We will investigate the pros and cons of usage based pricing from all these angles.

11.2 Factors behind pricing plan design 231

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

140

Monthly Usage (GB)

C
os

t (
$)

Verizon Wireless Data Plans

Figure 11.1 Verizon Wireless data plan pricing in 2012. The plans have a flat rate
component then a usage based component, e.g., $10 per GB, beyond that.

Despite the di↵erent names attached to them, there are two common charac-
teristics of these pricing plans:

• Charge based on total monthly usage. It does not matter when you use it, or
what you use it for.

• There is a baseline under which the charge is still flat rate. Then a single
straight line with one slope, as the usage grows. The actual numbers in
Verizon Wireless cellular data plans in 2012 are shown in Figure 11.1.

11.2 Factors behind pricing plan design

Charging based on consumption probably should have sounded intuitive. That
is how utilities and commodities are charged. But to those who are used to flat
rate Internet connectivity, it represents a radical break. There are two typical
precursors to the introduction of usage pricing:

• Network usage surges across many demographics and is projected to climb
even higher and faster, e.g., after any mobile carrier introduces iPhones, An-
droid smartphones, and iPads. These devices dramatically enhance the mo-
bile Internet experience and o↵er many capacity-intensive applications. An

232 Why do AT&T and Verizon Wireless charge me $10 a GB?

Demand

Time

pp y

Supply / $

Figure 11.2 The trend of demand and supply/$ of wireless cellular access capacity over
time. Demand has caught up with supply per dollar of cost in recent years and, more
importantly, is projected to keep growing at ever faster pace.

ISP’s profit is the di↵erence between revenue and cost. While the amount
of demand is rapidly increasing, per-unit-of-demand revenue also needs to
catch up with the cost of supporting the rising demand.

• Government regulation allows pricing practices that match cost. There are
other regulatory issues that we will discuss soon, but allowing the monthly
bill to be proportional to the amount of usage is among the least contro-
versial ones.

So why did the Internet Service Providers (ISP) in countries like the U.S.
avoid usage pricing for many years? There were several reasons, including the
following two:

• As the mobile Internet market picked up, each carrier had to fight to capture
market share. A flat rate scheme is the simplest and easiest one to both
increase the overall market acceptance and a particular carrier’s market
share.

• The growth in the supply of capacity per dollar (of capital and operational
expenditure) could still match the growth in demand of capacity.

And why did the carriers change to usage pricing in 2011?

• As illustrated in Figure 11.2, demand growth is outpacing supply/$ growth,
and the gap between the two curves is projected to widen even further in
the coming years. Once the device suppliers and application communities,
such as Apple and iOS app developers, figured out how to make it easy
and attractive for users to consume mobile Internet capacity, innovation
in those spaces proceeds faster than the supply side can keep up with.

11.2 Factors behind pricing plan design 233

Heavy
Users

y

Median
Users

Probability

Usage

Figure 11.3 Distribution of users’ capacity demand, with a heavy tail. The tail users
dictate an ISP’s cost structure in both capital expenditure and operational
expenditure. If the revenue model is based on the median user, the mismatch between
cost and revenue will grow as the tail becomes heavier.

Cisco predicts that the mobile Internet demand will keep doubling every
year. That is more than 64 times after 5 years. No technology can double
supply/$ each year forever. The gradient of human need for capacity has
become much larger than the gradient of what Maxwell’s equations and
Shannon’s formula provide.

• If we look at the distribution of capacity demand, the tail of that distribution,
shown in Figure 11.3, is often the dominant factor in an ISP’s cost structure.
That tail has always been long, but is getting longer and longer now. If the
ISP still collects revenue based on the median user, the di↵erence between
cost and revenue will be too big.

Usage pricing is not the only choices to tackle the above issues. ISPs have
other choices, such as:

• Increase the flat rate for everyone as demand increases. With a su�ciently high
flat rate, the revenue collected will be adequate. But clearly this creates
a↵ordability and fairness issues.

• Cap heavy users’ tra�c. Once you exceed a cap, you can no longer use the
network, or throttle the speed to the point that the quality of service be-
comes too low for practical use. This is actually a special case of usage
pricing: the pricing slope becomes infinite beyond the baseline.

• Slow down certain classes of tra�c. For example, for a period of time, Comcast
throttled BitTorrent users, who often had massive amounts of file sharing
and movie downloads using the popular P2P service. This may raise net
neutrality concerns.

234 Why do AT&T and Verizon Wireless charge me $10 a GB?

• Smarter versions of usage pricing in the next chapter.

Most of the ISPs have realized the problem and started pursuing the usage
pricing solution. What are the criteria that we can use to compare alternative
solutions to the exploding demand of mobile Internet? There are too many to
list here, but the top ones include the following:

• Economic viability : as profit-seeking companies, ISPs need to first recover cost
and then maximize profit. Their profit margins are in general declining, as
many other transportation businesses have seen in the past. Mobile and
wireless networks are bright spots that they need to seize.

• Fairness : consumer A should not have to use her money to subsidize the
lifestyle of consumer B.

• Consumer choice: consumers need to be able to choose among alternatives,
e.g., spend more money to get premium services, or receive standard ser-
vices with a cost saving.

Along all of the above lines, usage pricing makes more sense than fixed pricing,
although it can be further enhanced with more intelligence as we will describe in
the next chapter. The key advantages of usage pricing are listed below and will
be analyzed in detail in the next section.

• Usage pricing produces less “waste” and matches cost.

• Usage pricing does not force light users to subsidize heavy users.

• Usage pricing helps with better di↵erentiation in the quality of using the
Internet.

11.3 Network neutrality debates

Before we move to the next section, it is worthwhile to mention “network neutral-
ity,” a central policy debate especially in the U.S. Counter-productive to useful
dialogues, this “hot” phrase has very di↵erent meanings to di↵erent people. Usu-
ally there are three layers of meanings:

• Access/choice: consumers should have access to all the services o↵ered over
the Internet, and a choice of how they consume capacity on the Internet.

• Competition/no monopoly : ISPs should have no monopoly power and the
market place needs to have su�cient competition.

• Equality/no discrimination: All tra�c and all users should be treated the
same. This may actually contradict the requirement of access/choice.

While the last point might sound like an ideal target, it is sometimes neither
feasible nor helpful to carry out. There are four types of “no discrimination,”
based on what “discrimination” means:

11.3 Network neutrality debates 235

p

Content/App Consumer

Distribution Operator

Transportation Operator

Content/App Producer

Vendor

Figure 11.4 5-party interactions in the industry. Content/app producers include
studios and YouTube, transportation operators include AT&T and Comcast,
distribution operators include Akamai and Bit Torrent. “Shortcuts” have been
created in the traditional food chain, from content/app producers directly to
distribution operators, and from transportation operators directly to consumers,
further complicating the industry interaction.

• Service limitation: e.g., because of vertical integration, an ISP also becomes a
content owner, possibly blocking access to other content. Or an ISP could
block access to voice call apps on iPhone in order to generate more revenue
for its own voice business.

• Protocol-based discrimination: e.g., certain protocols generate a significant
amount of heavy tra�c, e.g., Bit Torrent, and get blocked.

• Di↵erentiation of consumer behaviors, e.g., usage pricing is one of the simplest
ways to correlate pricing with consumer behavior: if consumer A takes up
more capacity, she pays more.

• Tra�c management and Quality-of-Service provisioning, e.g., have more than
one queue in a router, schedule tra�c with weighted fair queuing, allow
emergency tra�c like healthcare monitor signals to take higher priority
than non-essential software updates. (We will discuss quality of service
mechanisms in Chapter 17.)

While neutrality against service limitation is essential to have, neutrality against
protocol-discrimination is debatable, neutrality against consumer behavior dif-
ferentiation is harmful, and neutrality against tra�c management is downright
impossible: if having more than one queue is anti-neutrality, then the Internet
has never been and will never be neutral.
In fact, a naive view of “equality” harms the tenet of providing access and

choice to consumers, a more important component of neutrality. As summa-
rized by the Canadian Radio, Television and Communications o�ce: “economic
practices are the most transparent Internet tra�c management practices,” and

236 Why do AT&T and Verizon Wireless charge me $10 a GB?

y

U (x)

x

(a)
(b)

(c)

Figure 11.5 Three types of utility function shapes: (a) concave, (b) discontinuous, and
(c) sigmoidal. Eventually utility functions all become concave as marginal returns
diminish. Maximizing concave and smooth utility functions is easier than maximizing
sigmoidal or discontinuous utility functions.

“match consumer usage with willingness to pay, thus putting users in control
and allowing market forces to work.”
There is much more to network neutrality than we have space for in this

chapter. This is further complicated by the fairness and e�ciency issues arising
out of the 5-party interactions shown in Figure 11.4.

11.4 A Long Answer

11.4.1 Utility maximization model

In order to proceed further to understand Internet access pricing, we need to
build some model of consumer demand. Utility function is a common modeling
tool in economics to capture “how happy” a user would be if a certain amount
of resource is allocated. In Chapters 1 and 3, we saw payo↵ functions in games.
Utility functions are a generalization of these. They further lead to models of
strategic thinking by users, based on assumptions in the expected utility theory
and its many extensions.
A typical utility function is shown as curve (a), a log function, in Figure

11.5. We denote the utility function of session i as Ui(xi), where xi is some
performance metric like throughput. Maximizing the sum of utilities across all
users,

P
i Ui(xi), is referred to as social welfare maximization. It is that

theme of scalarization of vectors again, as we saw in social choice theory in
Chapter 6 and will see again in fairness definition in Chapter 20.
Where do these utility function models come from? One source is human

11.4 A Long Answer 237

subject experiment. For example, researchers run tests with a focus group, trying
di↵erent rates, delays, and jitters of voice calls, and ask them to quantify how
happy they are in each case. This leads to utility models for various multimedia
applications.
Another is demand elasticity modeling, which relies on observed consumer

behavior. Given a utility function U(x), we also have an associated demand
function, capturing the volume of demand as a function of price o↵ered. Think
about the following net utility maximization: a user picks the x that maxi-
mizes the di↵erence between utility and total price paid:

U(x)� px,

where p is the unit-price. If U is a concave function, it is easy to solve this
optimization over one variable: just take the derivative with respect to x and let
it be 0: U 0(x) = p. Since U 0 is invertible, we can write x, the resulting demand,
as a function of p. We call U

0�1 the demand function D, and it is always a
decreasing function, with a higher price inducing a lower demand:

x = U
0�1(p) = D(p).

So, a utility function determines the corresponding demand function. It also de-
termines demand elasticity, defined as (normalized) price sensitivity of demand:

⌘ = �@D(p)/@p

D(p)/p
.

For example, if utility is logarithmic, then the demand function is x = 1/p and
the elasticity is 1.
The third ground on which we pick utility models is fairness. We will later

devote a whole chapter on fairness of resource allocation. At this point, we will
just bring up one approach. There is a class of utility functions called ↵-fair
utility functions, parameterized by a positive number ↵ � 0, and if you maxi-
mize them you will get optimizers that satisfy the definition of ↵-fairness. It is
also called isoelastic utility functions.
Now the details. We call a feasible resource vector x ↵-fair, if any other feasible

resource vector y satisfies the following condition:

X

i

xi � yi
x↵
i

 0. (11.1)

That means, roughly speaking, that the (normalized) deviation from x does not
pay o↵.
It turns out that if you maximize the following function parameterized by

↵ 2 [0,1):

U↵(x) =

⇢
x1�↵/1� ↵ ↵ 6= 1
log x ↵ = 1,

(11.2)

the optimizer is ↵-fair. This result says that you can choose utility models by

238 Why do AT&T and Verizon Wireless charge me $10 a GB?

looking at which fairness notion you would like to impose. Three points are
particularly useful:

• ↵ = 0 is simply sum resource maximization and often unfair as some user i
may receive 0 resource.

• ↵ = 1 is called proportional fairness: just look at (11.1) with ↵ = 1.
• ↵ ! 1 is called max-min fairness: you cannot increase some xi without

reducing some other xj that is already smaller than xi. This is a “stronger”
requirement than Pareto e�ciency we saw in Chapter 1.

We have not really justified why bigger ↵ is more fair, and this fairness met-
ric is only achieved by the optimizer at the equilibrium. We will come back to
these points in later chapters. And in a homework question, you will derive the
elasticity of ↵-fair utility functions. The smaller ↵, the more elastic the demand.
However constructed, this utility function could be a function of all kinds of

metrics of interest. Here we are primarily interested in either utility as a function
of data rate (in bits per second) or of data volume (in bytes). But in general it
could also be a function that depends on delay, jitter, distortion, or energy.
Utility functions are increasing functions (U 0 � 0). They are often assumed

to be smooth (e.g., continuous and di↵erentiable) and concave (U 00 0), even
though that does not have to be the case. In some cases, utility is 0 when x is
below a threshold and a constant otherwise, leading to a discontinuous utility
function, like curve (b) in Figure 11.5. In other cases, it starts out as a con-
vex function: not only is the user happier as x becomes larger, but the rate at
which her happiness rises also increases. But after an inflection point, it becomes
concave: more x is still better, but the incremental happiness for each unit of
additional x drops as x becomes larger. Such functions are called sigmoidal func-
tions, as shown in curve (c) in Figure 11.5. Due to the principle of diminishing
marginal return, utility functions eventually become concave, possibly flat, for
su�ciently large x.

11.4.2 Tragedy of the commons

The “network e↵ect” is often summarized as follows: the benefit of having one
more node in a network goes up as the square of the size of the network. The un-
derlying assumptions are that the benefits increase proportionally as the number
of links in the network, and that everyone is connected to pretty much everyone
else.
There is also a famous downside of having a group of people: “tragedy of the

commons.” This concept was sketched by Lloyd in 1833 and made popular by
Hardin’s article in 1968. Consider a group of N farmers sharing a common parcel
of land to feed their cows. If there are too many cows, the land will be overgrazed
and eventually all cows will die. Should a farmer get a new cow? The benefit of
having a new cow goes entirely to him, whereas the cost of overgrazing is shared
by all N farmers, say, 1/N of the cost. So each farmer has the incentive to

11.4 A Long Answer 239

P=C

B
A

P

D(p)

C

C
z *(c)

zf
D

P

D(p)

z *(c)

Figure 11.6 Under usage pricing, the surplus (utility bigger than cost) is area A. Flat
rate creates waste (cost bigger than utility) and reduces consumer surplus by area D.

acquire more cows, even though this collectively leads to overgrazing, the worst
case scenario for everyone. This is one more example of negative externality, since
it is not represented by pricing signals. It is another of those mutually-destructive
phenomena like the Nash equilibrium in the prisoner’s dilemma in Chapter 1.
One solution is to charge each farmer a cost proportional to N , to compensate

for the inadequate incentive. This amounts to changing the net utility calculation
of each farmer from

maximize U(x)� x

to

maximize U(x)�Nx.

This process of assigning the right price is called internalizing the externality.
If the utility function is logarithmic, the demand drops from x⇤ = 1 to x⇤ = 1/N
now.
We will see in Chapter 14 how TCP essentially uses congestion pricing to

internalize the externality of congestion in the Internet shared by many users,
and in Chapter 15 how P2P protocols use tit-for-tat to internalize the externality
of free riders in file sharing networks.

11.4.3 Comparison between flat rate and usage price

There have been many studies comparing usage based pricing with flat rate
pricing, from those in the late 1980s for the broadband network ISDN envisioned
then to empirical studies like the UC Berkeley INDEX experiment in 1998. The
main conclusions can be summarized in three graphs.
These graphs chart the demand function D(p) = U

0�1(p), as a function of

240 Why do AT&T and Verizon Wireless charge me $10 a GB?

P

D(P)

Pf

xf

yf

zf

R

Figure 11.7 Flat rate pricing penalizes light users in favor of heavy users. The average
user’s demand curve intercepts y-axis at yf , whereas the light user’s intercepts at xf

and heavy user’s at zf . Light users receive negative surplus and subsidize the heavy
user’s utility.

price p. (In economics literature, we usually plot p vs. D(p), which is the inverse
demand function.) For simplicity, let us say the demand functions are linear.
In Figure 11.6, we see that if the charge is usage based and the price is pu,

the incremental cost for the ISP to provide this much capacity, then the corre-
sponding demand is xu = D(pu).

• Since D�1 = U 0, the utility to the user is the area (integration) under the
inverse demand curve, i.e., area A+B.

• The cost to the user is the rectangle puxu, i.e., area B.

• So the user surplus, defined as the di↵erence between utility and cost, is
area A.

In contrast, under flat rate pricing instead of usage-based pricing, the user
will consume all the way to xf . The extra utility achieved compared to the case
of usage pricing is area C, whereas the extra cost is area C+D, which creates a
waste, i.e., negative surplus, of area D.
Now we consider three types of users: an average user’s demand curve is in the

middle of Figure 11.7. A light user’s demand curve is the lower one, and a heavy
user’s the higher one. In order for the ISP to recover cost, it has to set the flat
rate charge so that the revenue based on the average user is large enough, i.e.,
set pf so that area R is large enough to recover capacity costs. Since the utility
to a user is the triangle’s area, clearly the surplus for light users can be negative,
whereas that for heavy users is positive. Light users subsidize heavy users under
flat rate.
This becomes even more of a problem if the ISP wants to o↵er an upgrade,

11.5 Examples 241

P

D(P)

Pf
Pf

Figure 11.8 Flat rate pricing discourages higher quality service adoption by light
users. A service upgrade is represented by pushing the demand curve to the right as a
parallel line. Surplus can be bigger for lower quality service than that for higher
quality service.

say, in the Internet access speed. This shifts the demand curve to the right, as
there will be higher demand if the price remains the same while the service is
enhanced. It shifts the cost-recovering flat rate price too, from pf to p̄f . It is
possible that, for a light user shown in Figure 11.8, the di↵erence between utility
(the triangle area) and the cost (the rectangle area) is bigger under the lower
speed service than under the higher speed service. So the light user sticks to the
worse service. This is due to the fact that recovering cost through a flat rate is
inflexible.

11.5 Examples

We consider a simple numerical example with just one user, before moving into
the more general case with many users sharing a link with fixed capacity in
Advanced Material. The user has a weighted log utility function, with a positive
multiplicative weight �:

U(x) = � log x.

The usage-based price is the combination of baseline flat rate and usage fee:

p(x) = g + hx.

Strictly speaking, it should be g+h(x�x
0

) where x
0

is the baseline usage covered
by the flat rate, but we will ignore this to simplify the presentation without losing
the essence of the result.
The questions we face are: given (g, h) from the ISP, what would be user’s

242 Why do AT&T and Verizon Wireless charge me $10 a GB?

demand x⇤(g, h)? And should the ISP charge a lower flat rate g dollar, but a
steeper slope h dollars per GB? Or should it charge the other way around?
The first question is readily answered from the demand function for weighted

log utility function. Di↵erentiating

� log x� (g + hx)

with respect to x, and setting that to zero, we have

x⇤ =
�

h
.

The second question depends on the market power of the ISP. If it is a
monopoly ISP with price-setting power, it can push the user’s net utility (the
di↵erence between utility and cost) to 0:

� log x = g + hx.

Using the expression for x⇤, we have

� log
⇣�
h

⌘
= g + h

�

h
.

This means we can express the flat rate fee as a function of the usage based fee:

g = �
⇣
log
⇣�
h

⌘
� 1
⌘
.

In Advanced Material, we will see how a common h across all users can be set
to avoid the sum of user demand exceeding a fixed capacity. For now, we can
explore some typical h values. Suppose the user’s utility level is � = 100.

• If h = $2/GB, g equals $70, and the total revenue to the ISP is g+hx⇤ = $170,
with the flat rate component g/(g + hx⇤) = 41% of the revenue.

• If h = $5/GB, g equals $30, and the total revenue to the ISP is g+hx⇤ = $130,
with the flat rate component g/(g + hx⇤) = 23% of the revenue.

For this user’s demand elasticity, it is better for the ISP to charge a higher flat
rate fee g and a shallower slope of usage fee h.
In this example, you probably have spotted the trend: a smaller h means that

g can a↵ord to be higher and x will go up, to the point that the total revenue
sees a net increase. So we might as well make h arbitrarily close to 0. This is an
artifact of three simplifying assumptions in the model:

• The ISP, as a monopoly, has complete price-setting power.
• There is only one bottleneck link.
• There is no capacity constraint or cost, so it is always advantageous to the

ISP to increase demand.

In the next section, we will still keep first two assumptions but eliminate the
third one, which leads to a more insightful analysis. Then, in congestion control
in Chapter 14, we will further remove the other two assumptions in a di↵erent
timescale of machine protocol reaction.

11.6 Advanced Material 243

11.6 Advanced Material

11.6.1 Structure of usage price

The congestion constraint faced by an ISP is on the peak aggregate consumer
data-rate. In contrast, the access price is based on the volume of data consumed
over a specified time period t. Pricing data volume is equivalent to pricing the
average data rate over time t. Therefore an ISP faces a mismatch, because its
revenue is accrued on the average data rate but congestion cost is incurred on
the peak data rate. This mismatch will be addressed in the next chapter.

For now, we note that the di↵erence between peak data rate and the average
data rate is reduced when measured over smaller time periods. Consider a unit
time interval t that is su�ciently small so that the peak data rate demand of a
consumer in that time interval is a close approximation to the average data rate
in that interval.

Let f 2 F be a consumer data flow, and the data rate for flow f in the interval
[(t � 1), t] be given by xt

f . The data volume consumption over time T is then

given by xf =
PT

t=1

xt
f , and the capacity constraint C applies at every time

instant t on a single bottleneck link (often the access link) across all the flows:

X

f

xt
f C, 8t.

The shape of the utility function depends on the application’s performance
sensitivity to varying data rates, and the utility level represents the consumer’s
need for the application or content. This motivates us to assume that the con-
sumer’s utility level varies in time, but the shape of the utility function does not.
Let �t

fUf (xt
f) be the utility to a consumer associated with flow f at time in-

stant t, with factor �t
f denoting the time dependency of consumer’s utility level,

leaving the utility shape independent of time t.

Faced with time-varying consumer utilities, the ISP can charge a time-dependent,
flow-dependent price rtf (x

t
f), as a function of the allocated data rate xt

f . Con-
sumers maximize the net utility for each flow f :

maximize �t
fUf (xt

f)� rtf (x
t
f)

variable xt
f

(11.3)

The most common form of the price r is a flat rate baseline g, followed by a
linear increase as a function of data-rate with slope h, like what we saw in Figure
11.1:

rtf (x
t
f) = gtf + ht

fx
t
f . (11.4)

The flat price gtf is fixed for the duration of the time interval, irrespective of the
allocated data rate. The usage based component is based on a price ht

f per unit
data consumption.

244 Why do AT&T and Verizon Wireless charge me $10 a GB?

The demand function for this form of the price is

Dt
f (g

t
f , h

t
f) =

(
U 0f
�1(ht

f/�
t
f) if gtf + ht

fy
t
f �t

fUf (ytf)

0 otherwise.
(11.5)

The condition �t
fUf (xt

f) � gtf � ht
fx

t
f � 0 ensures that consumers have non-

negative utility, by making g su�ciently small. To simplify notation, we often
use Dt

f (h
t
f) = U 0f

�1(ht
f/�

t
f), with the implicit assumption that the flat price is

low enough to ensure non-negative consumer net-utility.
The revenue maximization problem for a monopoly ISP can be defined by

the following: maximize total revenue subject to the capacity constraint and the
consumer demand model:

maximize
P

t

P
f (g

t
f + ht

fx
t
f)

subject to
P

f x
t
f C, 8t

xt
f = U 0f

�1(ht
f/�

t
f), 8t, f

�t
fUf (xt

f)� gtf � ht
fx

t
f � 0, 8t, f

variables {gtf , ht
f , x

t
f}

(11.6)

The variables {gtf , ht
f} are controlled by the ISP, and {xt

f} are the reactions from
the users to the ISP prices.
We still have not incorporated any routing matrix that couples the distributed

demands in more interesting ways. In Chapter 14 we will bring routing (over a
general network topology) into the formulation.
Since we assumed a monopoly ISP market, the ISP has complete pricing power,

which is not the case in reality. We will see an example of competitive ISP market,
the other end of abstraction of ISP market power, in the next chapter.
Obviously, ISP revenue increases with a higher flat fee component gtf , which

can be set so that the consumer net utility is zero. The revenue from each flow
is then gtf + ht

fx
t
f = �t

fUf (xt
f), which can be realized by any combination of flat

and usage fee that can support a data-rate of xt
f .

If the usage fee ht
f is such that the consumer demandDt

f (h
t
f) is greater than the

ISP provisioned data rate xt
f , then flow’s packets have to be dropped. However,

the ISP can avoid packet drops by setting a su�ciently high usage price to reduce
the consumer demand so that the aggregate demand is within the available
capacity. It follows that xt

f = Dt
f (h

t
f).

Therefore, the ISP revenue maximization problem (11.6) simplifies to:

maximize
P

t

P
f �

t
fuf (Dt

f (h
t
f))

subject to
P

f D
t
f (h

t
f/�

t
f) C, 8t

variables {ht
f}.

(11.7)

The capacity inequality should be achieved with equality at optimal prices. It
su�ces to have the optimal usage fee ht be the same across all flows f , since
it will be used to avoid capacity waste in the sum of demands across all the
flows (an argument that will be rigorously developed in a homework problem).

11.6 Advanced Material 245

The optimal flat fee gtf is flow dependent, allowing the ISP to fully extract the
consumer net-utility.
Therefore, an optimal pricing scheme that achieves the maximum in (11.7) is

given by the following: for each t, the per-unit usage price ht is set such that the
resulting demands fully utilize the link capacity C on the only bottleneck link in
the network:

X

f

xt
f =

X

f

Dt
f (h

t) = C,

and the flat rate baseline prices {gtf} are set such that the maximum revenue is
generated out of the consumer demand:

gtf = �t
fUf (x

t
f)� htxt

f .

Let R⇤F be the revenue from the flat component of the optimal price, and R⇤S
the revenue from the usage component. In a homework problem, by using the
above solution structure, we can derive the ratio between the flat and usage
components. In an exemplary special case, if utility functions are ↵-fair with
↵f = ↵ for all f , the ratio of flat revenue to usage dependent revenue becomes:

R⇤F
R⇤S

=
↵

1� ↵
. (11.8)

This reveals that usage dependent revenue dominates with linear utilities (↵!
0), while revenue from flat rate components dominates with log utilities (↵! 1).
The flat price is a significant component in the extraction of consumer net-utility
if the consumer price sensitivity is low.
Consider a monopolist ISP providing connectivity service to 10 flows over an

access link of capacity C = 10Mbps. We generate the utility levels {�t
f} randomly

the range [�
0

,�
1

].
The upper graph in Figure 11.9 illustrates the average revenue (per unit time

and per unit flow) received by the monopolist ISP:

• The flat component of the revenue, which enables the monopolist ISP to com-
pletely extract the consumer net-utility, increases with decreasing elasticity
of demand.

• The usage component of the revenue decreases with decreasing elasticity of
demand.

The lower graph in Figure 11.9 plots the ratio of the flat component to the
usage component of the revenue, demonstrating the increased reliance on revenue
from flat price at low demand elasticity.
The ISP pricing flexibility, in practice, is restricted along time and across flows.

• Fixing {g, h} to be the same for all times t leads to a tradeo↵ between oversub-
scribing link capacity and dropping packets on the one hand, and under-
utilizing link capacity and losing revenue on the other hand.

246 Why do AT&T and Verizon Wireless charge me $10 a GB?

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Inverse elasticity: �

R
ev

en
ue

 ($
)

Total
Flat
Usage

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Inverse elasticity: �

R
f* /R

s*

Figure 11.9 Comparison of revenue from flat pricing to usage based pricing at di↵erent
consumer demand elasticity. All users have ↵-fair utility functions with the same ↵.
As ↵ increases and elasticity drops, the flat rate component’s fraction of the overall
revenue to the monopoly ISP increases.

• Fixing {g, h} to be the same for all the flows leads to a loss of revenue, which
can be mitigated by allowing nonlinear pricing: discounted per-GB pricing
at high volume to encourage higher utilization. This is called the second
order price discrimination.

So far we have focused only on the question of “How much to charge”. In
the next chapter and its homework problems, we will continue to discuss three
other questions of consumer pricing on the Internet: “How to charge,” “What to
charge,” and “Whom to charge.”

Further Reading

There is a growing research literature on network economics, including Internet
access pricing.

1. An excellent edited volume back in 1998 has many insightful chapters still
relevant today, especially those written by Clark, by Kelly, and by Varian:

11.6 Advanced Material 247

[MB98] L. W. McKnight and J. P. Bailey, Ed., Internet Economics, The MIT
Press, 1998.

2. A more recent survey article of the subject can be found at:
[Wal09] J. Walrand, “Economic models of communication networks,” 2009.

3. Our treatment of the basic intuitions between flat rate and usage based
pricing follows those reported in the summary of the INDEX experiment in the
late 1990s:
[EV99] R. Edell and P. Varaiya, “Providing Internet access: What we learn

from INDEX”, IEEE INFOCOM Keynote, 1999.

4. Our treatment of utility maximization model of flat rate vs. usage based
pricing follows this recent paper:
[Han09] P. Hande, M. Chiang, A. R. Calderbank, and J. Zhang, “Pricing under

constraints in access networks: Revenue maximization and congestion manage-
ment,” Proc. IEEE INFOCOM, 2009.

5. The following classical paper describes the tragedy of the commons:
[Har68] Hardin, “The tragedy of the commons,” Science, vol. 162, pp. 1243-

1248, 1968.

Problems

11.1 ↵-fair utility function ?

Plot ↵-fair utility functions with ↵ = 0, 1

5

, 1

2

, 1, 2, 5, 100 in one graph, and com-
pare them.

11.2 Demand function and demand elasticity ?

(a) Derive the demand and the demand elasticity as functions of price, if util-
ity function is u(x) = arctan(x)

(b) Repeat (a) for ↵-fairness utility functions.

11.3 Demand v.s. supply curves ??

In microeconomics the demand D(p) and supply S(p) as a function of price
p can be defined as follows:

D(p) =u0
�1

(p)

S(p) =c0
�1

(p)

248 Why do AT&T and Verizon Wireless charge me $10 a GB?

where u(xb) is the utility of buyer as a function of the amount purchased (xb),
c(xs) is the cost of producer as a function of the amount produced (xs). Fig.11.10
gives an illustration with capital latters indicating the corresponding areas.

(a) Assume u(0) = 0, prove that u(x
0

) = A+B+C, therefore the buyer’s net
utility is u(x

0

)� p
0

x
0

= A

(b) Assume c(0) = 0, prove that c(x
0

) = C, therefore the seller’s profit is
p
0

x
0

� c(x
0

) = B

(c) At which price p⇤ does the social welfare u(x⇤) � c(x⇤) take maximum
value, where x⇤ = min{D(p⇤), S(p⇤)}?

S(p)

p p0

x0

x

0

A B

C

D

E

D(p)

Figure 11.10 Demand and supply curves as a function of price.

11.4 Flat component v.s. usage component ? ? ?

As in Advanced Material, the simplified revenue maximization problem for the
monopoly ISP is:

maximize
P

t,f �
t
fuf (Dt

f (h
t
f))

subject to
P

f D
t
f (h

t
f) C, 8t

variables {ht
f}.

(11.10)

Let ht
f
⇤
be the usage price that solves the above maximization problem, and

the resulting volume consumption of consumption and the flat rate price are

xt
f
⇤
= Dt

f (h
t
f
⇤
),

gtf
⇤
= �t

fuf (D
t
f (h

t
f
⇤
))� ht

f
⇤
xt
f
⇤
.

(a) DefineR⇤f =
P

t,f g
t
f
⇤
as the revenue from flat component,R⇤s =

P
t,f h

t
f
⇤
xt
f
⇤

11.6 Advanced Material 249

as the revenue from usage component. Prove that

R⇤f
R⇤s

=

P
f,t �

t
fuf (xt

f
⇤
)

P
t,f �

t
fu
0
f (x

t
f
⇤)xt

f
⇤ � 1.

(Hint: Use �t
fu
0
f (D

t
f (h

t
f)) = ht

f .)

(b) Show that if uf (x) is ↵-fair utility function (↵ 6= 1) for all flow f , then

R⇤f
R⇤s

=
↵

1� ↵
.

(c) Argue that ht
f
⇤
= ht⇤, i.e., the optimal price is independent of flow f .

11.5 Braess’ paradox ? ? ?

Consider a road network as illustrated in Figure 11.11(b), on which 3000
drivers wish to travel from node Start to node End. Denote by x the number of
travelers passing through edge Start! A, and y the number of travelers passing
through edge B ! End. The travel time of each edge in minutes are labeled
next to the corresponding edges. Suppose everyone chooses its route from Start
to End by which the total travel time is minimized.

B A

Start

End

50 10 + ß ___
100

10 + y ___
100 50

B A

Start

End

50

5

10 + ß ___
100

10 + y ___
100 50

Figure 11.11 The Braess’s paradox: dding a link hurts performance.

(a) What is the resulting tra�c and the total travel time for each commuter?

(b) Suppose the government built a shortcut from node A and B with travel
time labeled as illustrated in Figure 11.11(b). What is the resulting tra�c and

250 Why do AT&T and Verizon Wireless charge me $10 a GB?

the total traveling time for each commuter?

(c) This is the famous Braess’ paradox. Suggest a way to avoid it.

12 How can I pay less for my Internet
connection?

12.1 A Short Answer

12.1.1 Variants of Internet Pricing

ISPs charging residential consumers based on usage is just one corner of the
overall landscape of Internet economics. There are many other key questions:

• The formation of the Internet is driven in part by economic considerations.
Di↵erent ISPs form peering and transit relationships based on business and
political decisions as much as on technical ones.

• The invention, adoption, and failure of Internet technologies are driven by the
economics of vendor competition and consumer adoption.

• The investment of network infrastructure, from purchasing wireless licensed
spectrum to deploying triple play broadband access, is driven by the eco-
nomics of capital expenditure, operational expenditure, and return on in-
vestment.

The economics of the Internet are interesting because the technology-economics
interactions are bidirectional : economic forces shape the evolution of technology,
while disruptive technologies can rewrite the balance of economic equations. It is
also challenging to study because of the lack of publicly available data on ISPs’
cost structure and the di�culty of collecting well-calibrated consumer data.
There is a rapidly growing research field and industry practice on network

access pricing. What we described on usage pricing in the last chapter, in the
form of tiered and then metered/throttled plans, is just a starter.
In static pricing, there are several variants:

• The hourly rate model, e.g., Mobinil in Egypt charges data connection by the
hours of usage.

• Expected capacity pricing relies on resource allocation driven by the need of
di↵erent sessions. Characterizing an application’s needs, however, can be
tricky, even after a period of performance observation during trials.

• Priority pricing, where you can pay more to get a higher speed, such as the pri-
ority pass service by SingTel in Singapore. A turbo mode of anti-throttling
is also being considered in the U.S. for heavy users whose speed is throttled
once usage exceeds some threshold. In an elaborate form, priority pricing

252 How can I pay less for my Internet connection?

may even take the form of auction where the price reflects the negative
externality imposed on other users by boosting your speed.

• Location-dependent pricing, which is also used in certain transportation in-
dustries, e.g., downtown London and Singapore.

• Time-dependent pricing, which is also used in certain utility industries and
will be elaborated in this chapter.

• Two-sided pricing, where an ISP charges either the content consumers or the
content producers or both. It is used by e.g., Telus in Canada and TDC in
Denmark. This can also become an application-dependent pricing method.

In dynamic pricing, network access prices are continuously adjusted to reflect
the state of the network. We will see that congestion control in Chapter 14 can be
interpreted as a type of dynamic pricing. If user applications’ performance needs,
such as delay elasticity, are also taken into account, we can view congestion-
dependent pricing as a generalization of time-dependent pricing.
In this chapter, we bring up several topics that illustrate some central themes

in the field. One is charging based on when the Internet is used, and the other is
di↵erentiating service qualities by simply charging di↵erent prices. We will also
explore the question of whom to charge through two-sided pricing. These are
some of the possibilities to help the entire ecosystem, from consumers to ISPs,
from content providers to ad agencies, move from the shadow of $10/GB to a
win-win system.

12.1.2 Time-dependent pricing

Pricing based just on monthly bandwidth usage still leaves a timescale mismatch:
ISP revenue is based on monthly usage, but peak-hour congestion dominates its
cost structure. Ideally, ISPs would like bandwidth consumption to be spread
evenly over all the hours of the day. Time-Dependent usage Pricing (TDP)
charges a user based on not just “how much” bandwidth is consumed but also
“when” it is consumed, as opposed to Time-Independent usage Pricing (TIP),
which only considers monthly consumption amounts. For example, the day-time
(counted as part of minutes used) and evening-weekend-time (free) pricing, long
practiced by wireless operators for cellular voice services, is a simple 2-period
TDP scheme. Multimedia downloads, file sharing, social media updates, data
backup, and non-critical software downloads all have various degrees of time
elasticity.
An idea as old as the cyclic patterns of peak and o↵-peak demand, TDP has

the potential to even out time-of-day fluctuations in bandwidth consumption.
As a pricing practice that does not di↵erentiate based on tra↵ic type, protocol,
or user class, it also sits lower on the radar screen of network neutrality scrutiny.
TDP time-multiplexes tra�c demands. We will encounter tra�c multiplexing
several times in future chapters, such as cloud services in Chapter 16. It is a

12.2 A Long Answer 253

counterpart to spatial multiplexing in Chapter 13 and to frequency multiplexing
in Chapter 18.
Much of the pricing innovation in recent years has occurred outside the US.

Network operators in highly competitive and lucrative markets, e.g., in India
and Africa, have adopted innovative dynamic pricing for voice calls:

• An African operator MTN started “dynamic tari↵ing,” a congestion-based
pricing scheme in which the cost of a call is adjusted every hour in each
network cell depending on the level of usage. Using this pricing scheme,
instead of a large peak demand around 8 pm, MTN Uganda found that
many of its customers were waiting to take advantage of cheaper call rates,
thus creating an additional peak at 1 am.

• A similar congestion-dependent pricing scheme for voice calls was also launched
in India by Uninor. It o↵ers discounts to its customers’ calls based on
the network tra↵ic condition in the location of the call’s initiation (i.e.,
location-based pricing).

• Orange has been o↵ering “happy hours” data plans during the hours of 8-9am,
12-1pm, 4-5pm, and 10-11pm.

The question we have to face here are: Can we e↵ectively parametrize delay
sensitivity in setting the right prices? Are users willing to defer their Internet
tra↵ic in exchange for a reduced monthly bill?

12.2 A Long Answer

12.2.1 Thinking about TDP

Usage-based pricing schemes use penalties to limit network congestion by re-
ducing demand from individual heavy users. However, they cannot prevent the
peak demand from all users concentrating during the same time periods. ISPs
must provision their network in proportion to these peak demands, leading to
a timescale mismatch: ISP revenue is based on monthly usage, but peak-hour
congestion dominates its cost structure. Empirical usage data from typical ISPs
show large fluctuations even on the timescale of a few minutes. Thus, usage can
be significantly evened-out if TDP induces users to shift their demand by a few
minutes. However, a simple two-period, time-dependent pricing is inadequate as
it can incentivize only the highly price-sensitive users to shift some of their non-
critical tra↵ic. Such schemes often end up creating two peaks; one during the
day and one at night.
In general, all static pricing schemes su↵er from their inability to adapt prices

in real time to respond to the usage patterns, and hence fail to exploit the
dynamic range of delay tolerance as many types of applications proliferate.
Dynamic pricing, on the other hand, is better equipped to overcome these

issues and does not require pre-classification of hours into peak and o↵-peak

254 How can I pay less for my Internet connection?

Figure 12.1 A simplified schematic of TDP architecture. The core computational
module is price optimization that takes into account prediction of user reaction
through the profiling module. The user interface needs to be user-friendly, and allow
both user-generated decisions and auto-pilot decisions to run in real time on behalf of
the user.

periods. However, the current dynamic time- or congestion-dependent pricing
schemes are for voice tra�c. They rely on simple heuristics and have been ex-
plored mainly for voice tra�c, which is very di↵erent from data in its delay sen-
sitivity, activity patterns, and typical duration. Unlike voice calls, certain classes
of mobile data tra�c o↵er greater delay tolerance. They can be completed either
pre-emptively or in small chunks whenever the congestion conditions are mild.
Users of such applications can therefore be incentivized to shift their usage with
optimized, time-dependent pricing for their mobile data tra↵ic.
Time-dependent pricing can be further extended to congestion-dependent

pricing by shrinking TDP’s timescale. Instead of on a timescale of hours or
minutes, each period may be only several seconds when channel conditions or
mobility may rapidly change congestion conditions. Even during busy hours and
over heavily used spectra, there are occasional periods of time with little usage,
which we call flashy whitespaces. ISPs can o↵er low spot prices in these less
congested time slots, enabling cost-conscious users to wait for these low prices.
In such cases (and for general timescales), TDP can be put on “auto-pilot”
mode, where a user need not be bothered in real time once she preconfigures her
usage requirements and expectations, e.g., the maximum monthly bill, which
applications should never be deferred, etc.
Pushing the auto-pilot TDP approach further, ISPs can o↵er intelligent flat-

rate data plans to complement more traditional TDP pricing plans. Users may
pay a flat rate in exchange for automated delaying of their tra↵ic. The auto-pilot
mode adjusts a user’s tra↵ic profile so that the user’s charge under TDP is less
than or equal to the flat rate which the user pays.
TDP, whose schematic is shown in Figure 12.1, is a tra�c shaper that time-

shifts capacity demands so that the multiplexing e↵ect of a network can be
most e↵ectively leveraged. And the degree of freedom in this shaper is the pricing
signals that change consumer behavior.
When determining optimal prices, an ISP tries to balance the cost of demand

12.2 A Long Answer 255

exceeding capacity, e.g., the capital expenditure of capacity expansion, with the
cost of o↵ering reduced prices to users willing to move some of their sessions to
later times.

12.2.2 Modeling TDP

A user is modeled here as a set of application sessions, each with a waiting
function: the willingness to defer that session for some amount of time under a
price incentive for doing so. Pictorially, an ISP uses TDP to even-out the “peaks”
and “valleys” in bandwidth consumption over the day. The ISP’s problem is then
to set its prices to balance capacity costs and costs due to price incentives, given
its estimates of user behavior and the willingness to defer sessions at di↵erent
prices.
Waiting functions are functions of both the reward and the amount of time

deferred: w = w(p, t), where p is the reward o↵ered to the user for waiting t
amount of time. Each application of each user in each period has a di↵erent
waiting function; the users’ willingness to defer applications depends on the
type of application being deferred, the user’s patience, and the period that the
application is being deferred from. For instance, I might be generally more willing
to defer downloading a software update than a YouTube video, and more willing
to defer a YouTube video for 10 minutes at 8pm than at 11am.
For a constant p, w(p, t) should decrease in t. And for a constant t, w(p, t)

should be increasing in p. Following the principle of diminishing marginal utility,
we can say that w is concave in p with constant t. For waiting functions to
be useful, we need some method for estimating them. To make this estimation
easier, we parametrize the waiting functions. Thus, each waiting function has
the same form but a di↵erent parameter; our job is then to estimate the waiting
function parameters. For instance, we might take

w(p, t) =
p

(t+ 1)�
,

with the parameter � � 0 specifying how much the users’ willingness to shift
their tra�c falls o↵ with time. With large �, users do not want to defer for a
long time; with smaller �, users are more willing to defer their tra�c. Table
12.1 shows realistic � values for di↵erent applications. These are estimated from
consumer surveys conducted in the United States and India.
In practice, it is impossible to estimate waiting function parameters for each

type of application for each user during each period because there are too many
of them. Instead, we use an aggregate approach: several applications for some
users are assumed to have the same waiting function. For instance, I might be
equally willing to defer a YouTube video at 9pm as my friend is willing to defer
watching Hulu at 10pm. We then have the same waiting function parameters.
Now we know exactly what parameters need to be estimated: the waiting func-

tion parameters in each period and the fraction of tra�c that they correspond to.

256 How can I pay less for my Internet connection?

Table 12.1 Estimated patience indices from survey

YouTube Software Movie
Updates Downloads

U.S. 2.027 0.5898 0.6355

India (DP) 2.796 1.486

India (no DP) 2.586 1.269

DP: data plan

The next step is to do the actual estimation. We can estimate using the di↵erence
between tra�c before TDP and tra�c after TDP. This di↵erence must be equal
to the amount of tra�c “deferred in”, less the amount “deferred out”. But we
can now calculate the amount deferred in: it is the sum of the amount deferred
from each period, which can be easily calculated using the waiting functions in
these periods. Given the period in which an application session originated, we
know how long the tra�c was deferred and what reward was o↵ered.
We can then write the di↵erence between tra�c volume before and after TDP

as a function of the parameters to be estimated. These di↵erences are now func-
tions of the rewards o↵ered and the parameters to be estimated. In a trial, we
can o↵er a range of rewards and observed the corresponding di↵erence in tra�c
before and after TDP, we can choose the waiting function parameters to fit with
the data we observe (e.g., using least-squares).
Then, given the estimation of waiting functions, the ISP needs to decide the

price per time period. The ISP’s decision can also be formulated in terms of
rewards, i.e., price discounts, as in our formulation. These rewards are defined
as the di↵erence between TIP and optimal TDP prices.
Finally, the ISP’s objective is to minimize the weighted sum of the cost of

exceeding capacity and of o↵ering reduced prices (i.e., rewards). The optimiza-
tion variables are these rewards, which give users incentives to defer bandwidth
consumption.

12.2.3 Implementing TDP

Taking a pricing idea from its mathematical foundation to a deployment in oper-
ational networks is not easy. The process involves computer simulations, testbed
emulations, proof-of-concept implementations, small scale user trials, and even-
tually to large scale commercial trials. For example, in the case of TDP for mobile
(and wireline) networks, an end-to-end system was implemented and consumer
trials were carried out at Princeton University in 2012. The system involves many
components:

• Graphic User Interface connected into the operating systems of iPhones,
iPads, Android phones and tablets, and Windows PC.

12.2 A Long Answer 257

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Peak−to−Average Ratio

Pr
ob

ab
ili

ty
 C

D
F

Before TDP
With TDP

Figure 12.2 A cumulative distribution chart, using empirical data from a Princeton
trial of TDP in 2012, shows that TDP reduces the peak-to-average ratios.

• Tra�c measurement partly on end user devices and partly in network gate-
ways, so as to ensure security and privacy needed.

• A database of usage, tra�c, prices, and network conditions on servers.

• The computational engines of user profiling and price optimization, again split
across end user devices, network gateways, and servers.

• Softwares that take the output of these computational engines to control net-
work scheduling.

Initial results from this trial of 50 users indicate that TDP can be e↵ective
in reducing the network load, as measured by the peak-to-average ratio (PAR).
This metric is defined as the peak amount of tra�c in one hour, divided by the
average tra�c over that day. Figure 12.2 shows the distribution of daily PARs
both before and after TDP was introduced. The maximum PAR decreases by
30% with TDP, and approximately 20% of the PARs before TDP are larger than
the maximum PAR with TDP. Thus, TDP significantly reduced the peak-to-
average ratio, flattening bandwidth demand over the day.

258 How can I pay less for my Internet connection?

0 5 10 15 20 25
50

100

150

200

250

300

Hour

Tr
af

fic
 V

ol
um

e
(k

B
ps

)

Without TDP
With TDP

Figure 12.3 TDP and TIP tra�c patterns for a sample mix of three classes of tra�c
with di↵erent delay tolerance. The aggregate tra�c volume with TDP is much flatter
than without.

12.3 Examples

We present some numerical examples first, before turning to a general formula-
tion of the price optimization module in Advanced Material.

12.3.1 An illustration

We first walk through a larger scale simulation to visualize TDP, using the pa-
tience indices of 0.59 for cloud synchronization, 0.64 for multimedia download,
and 2.03 for YouTube streaming. The usage distribution of the di↵erent tra↵ic
classes were taken from recent estimates, and the TIP data estimates was taken
from empirical data from an ISP. We consider a system with 100 users and 24
one-hour time periods in each day. The ISP’s marginal cost of exceeding capacity
is set to $0.30 per MB.
The results of the simulation are shown in Fig. 12.3, which gives the demand

patterns before and after the use of time-dependent pricing. It demonstrates that
TDP incentivizes users to shift their tra↵ic, which brings the peaks and valleys
closer, i.e., improves the smoothness of the demand over time. The daily cost
per user decreases from $0.21 with TIP to $0.16 with TDP, a 23% savings.
Figure 12.4 shows the optimal rewards (incentives) awarded for di↵erent times

of the day. As might be expected, all hours with positive rewards are at or under
capacity with TDP. Rewards are slightly higher in hours 14 and 15 than in

12.3 Examples 259

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

Hour Deferred to

R
ew

ar
d

fo
r D

ef
er

rin
g

($
)

Figure 12.4 Rewards o↵ered at di↵erent periods, computed by solving the time
dependent price optimization problem that minimizes the overall ISP cost and
incorporates user reaction predicted through waiting function estimation.

subsequent under-capacity hours; hours 14 and 15 represent the under-capacity
times closest to the high-usage hours 1-13.

To quantify tra↵ic’s unevenness over 24 hours, we define the residue spread
as the area between a given tra↵ic profile and the ideal one, where the total usage
remains the same but with usage constant (i.e., “flattened”) across periods in 24
hours. The residue spread decreases 44.8% (from 502.8 MB to 280.3 MB) with
TDP. Maximum usage decreases from 270 to 239 kBps, and minimum usage
increases from 60 to 94 kBps with TDP. Overused periods closer in time to
underused ones have the greatest tra↵ic reduction; users more easily defer for
shorter times. Although TDP does help to even out tra↵ic profiles, some users
are impatient and some sessions are simply too time-sensitive to be deferred;
thus the usage will never be perfectly “flat.”

We next measure our model’s sensitivity. Suppose that demand under TIP
is unchanged, but the ISP incorrectly inferred users’ waiting functions. We use
� = 2.586, 0.8, and 0.3 for YouTube streaming, multimedia downloads, and cloud
synchronization, respectively. The rewards for deferring change as in Table 12.2.
They do not change significantly, because the estimated and perturbed patience

260 How can I pay less for my Internet connection?

−4 −3 −2 −1 0 1 2 3 4 5
200

300

400

500

600

700

800

900

1000

Base 10 Logarithm of Capacity Weight

R
es

id
ue

 S
pr

ea
d

(M
B

)

Figure 12.5 Residue spread for di↵erent costs of exceeding capacity. The ISP never
entirely evens out tra↵ic, even at the very high cost of exceeding capacity.

Table 12.2 Optimal rewards ($) and waiting function perturbation.

Period 1-11, 23-24 12 13 14 15 16

Original 0 0.04 0.09 0.11 0.10 0.10

Adjusted 0 0.04 0.08 0.11 0.10 0.10

Period 17 18 19 20 21 22

Original 0.10 0.09 0.09 0.08 0.07 0.04

Adjusted 0.10 0.09 0.09 0.08 0.06 0

indices are roughly the same. Residue spread decreases by 40.0% from 502.8 MB
under TIP to 298.1 MB under TDP.

You would expect that when exceeding capacity is expensive, the ISP will
o↵er large rewards to even out demand. Figure 12.5 shows residue spread with
TDP versus the logarithm of a, the weight on the cost of exceeding capacity
relative to the cost of handing out rewards. Residue spread decreases sharply
for a 2 [0.1, 10], then levels out for a � 10. For a � 10, demand never exceeds
capacity because the cost of exceeding capacity is too big.

12.3 Examples 261

o t

MB

night day

400
350
300

t

MB

night day

y g

Figure 12.6 In a small numerical example illustrating time-dependent pricing over a
single bottleneck link, the link capacity can handle 300 MB of demand. But day time
demand exceeds that while night time demand under-utilizes capacity. TDP help
provide pricing incentives for users to move some of their day time demand to night
time. In general, we need to keep track of the demand shifted away from a given
period and the demand shifted into that period.

Night Day

Email 200 MB 200 MB

File Downloads 100 MB 200 MB

Table 12.3 Volume of email and file download tra�c during the night and day before
TDP.

12.3.2 A small example

As illustrated in Figure 12.6, we now walk through a small, simplified numerical
example that bridges the general discussion in A Long Answer to the symbolic
representation in Advanced Material. Suppose we have just two periods (e.g.,
night and day) and that we are trying to determine the optimal prices for these
periods.
First, we must characterize the types of tra�c found in these two periods. We

assume two types of applications, one which users are very impatient to use and
one for which they are more patient. For instance, we could have email or twitter
(impatient) and movie downloads or cloud synchronization (patient).
The volume of tra�c taken up by these two applications before TDP is shown

in Table 12.3. We assume that the ISP is at present charging users $0.01/MB
($10/GB) during both the night and the day.
We now need to quantify users’ willingness to shift some of their tra�c from

one period to the other. This willingness is of course influenced by the reward

262 How can I pay less for my Internet connection?

Shift to Night Shift to Day

Email p
n

4 probability, 200 p
n

4 shifted p
d

4 probability, 200 p
d

4 shifted

File Downloads p
n

2 probability, 200 p
n

2 shifted p
d

2 probability, 100 p
d

2 shifted

Table 12.4 Probability of shifting and expected amount of shifting of email and file
download tra�c to the night or day.

o↵ered in the other period. Let pn be the reward during the night and pd the
reward during the day. We express users’ “willingness to wait” as the probability
that the user will wait. To simplify the presentation, let us say this probability is
proportional to the reward reaped by waiting. The probabilities of shifting and
the corresponding expected amount of tra�c shifted are summarized in Table
12.4.
We now formulate the optimization problem. First, consider the cost of o↵ering

rewards, which is just the reward per unit of tra�c times the amount shifted into
a given period. This cost can thus be expressed as

pn
⇣
200

pn
4

+ 200
pn
2

⌘
+ pd

⇣
200

pd
4

+ 100
pd
2

⌘
= 150p2n + 100p2d. (12.1)

Next, we quantify the cost of exceeding capacity. We model this cost as linear
and assume that the capacity is 350 MB. Thus, the ISP exceeds capacity during
the day but not during the night. For each GB over capacity, the ISP must face
a cost of $1.
We now need to find expressions for the volume of tra�c during the night and

day under TDP. Consider the volume of tra�c during the night. Before TDP, it
is 200 + 100 = 300 MB. The amount of tra�c shifted into the night is

200
pn
4

+ 200
pn
2

= 150pn,

and the amount of tra�c shifted from the night into the day is

200
pd
4

+ 100
pd
2

= 100pd.

Thus, the amount of tra�c during the night under TDP, in MB, is

300 + 150pn � 100pd,

and the cost of exceeding capacity during the night is

max {0, 300 + 150pn � 100pd � 350} = max {0,�50 + 150pn � 100pd} ,

where we use monetary units of $10/GB and tra�c volume units of MB. We can
find a similar expression for the cost of exceeding capacity during the day using
the same line of reasoning.
Finally, we have the optimization problem of minimizing the following objec-

tive function:

150p2n + 100p2d +max {0,�50 + 150pn � 100pd}+max {0, 50� 150pn + 100pd} ,

12.4 Advanced Material 263

over the non-negative variables of {pn, pd}, i.e., the per-unit reward amount, or
equivalently, the time-dependent prices.
Solving this optimization problem, we obtain pd = 0, pn = 0.33. Thus, the

ISP discounts prices during the night by $3.33/GB. Intuitively, this makes sense:
rewards during the day should be lower, so that users are induced to shift their
tra�c from the day into the night. Indeed, with this pricing scheme, the ISP
operates at capacity, with a tra�c volume of 350 MB during both the day and
the night.

12.4 Advanced Material

12.4.1 TDP price optimization formulation

Computing the optimal prices per time period, with user reaction anticipated
through waiting function estimation, is a key module in TDP. We consider a
version of this problem formulation that generalizes the small numerical example
we just saw.
Let Xi denote demand in period i under TIP. The phrase “originally in period

i” means that under TIP, this session occurs in period i. Suppose that the ISP
divides the day into n periods, and that its network has a single bottleneck link
of capacity C, where C is the total amount of tra�c that the link can carry
in one time period. This link is often the aggregation link out of the access
network, which has less capacity compared to aggregate demand and is often
oversubscribed by a factor of five or more. The cost of exceeding capacity in
each period i, capturing both customer complaints and expenses for capacity
expansion, is denoted by f(xi � C), where xi is usage in period i. This cost is
often modeled as piecewise-linear and convex.
Each period i runs from time i� 1 to i. A typical period lasts 10-30 minutes.

Sessions begin at the start of the period, an assumption readily modified to a
distribution of starting times. The time between periods i and k is given by i�k,
which is the number b 2 [1, n], b ⌘ i � k (mod n). If k > i, i � k is the time
between period k on one day and period i on the next day.
For each session j originally in period i, define the waiting function wj(p, t) :

R2 ! R, which measures the user’s willingness to wait t amount of time, given
reward p. Each session j has capacity requirement vj , so vjwj(p, t) is the amount
of session j deferred by time t with reward p. To ensure that wj 2 [0, 1] and that
the calculated usage deferred out of a period is not greater than demand under
TIP, we normalize the wj by dividing it by the sum over possible times deferred t
of wj(P, t). Here P is the maximum possible reward o↵ered. The notation j 2 k
refers to a session j originally in period k (in the absence of time-dependent
pricing).
Now we are ready to state the optimization problem. First consider the cost

of paying rewards in a given period i. The amount of usage deferred into period

264 How can I pay less for my Internet connection?

i is
X

k 6=i

yk,i, where yk,i is the amount of usage deferred from period k to period i.

Consider a session j 2 k. The amount of usage in session j deferred from period
k to period i is vjwj(pi, i� k), since such sessions are deferred by i� k amount

of time. Thus, yk,i =
X

j2k
vjwj(pi, i� k), and the ISP’s total cost of rewarding

all sessions in period i is pi
X

k 6=i

X

j2k
vjwj(pi, i� k).

Now consider the cost of exceeding capacity. It is af(xi � C), but how much
is xi? It is the original amount minus the amount moved out of period i by TDP
plus the amount moved into period i by TDP:

xi = Xi �
X

j2i
vj

nX

k=1,k 6=i

wj(pk, k � i) +
nX

k=1,k 6=i

X

j2k
vjwj(pi, i� k). (12.2)

The ISP’s total cost function for period i is then

pi
X

k 6=i

X

j2k
vjwj(pi, i� k) + af(xi � C),

and summing over all periods, indexed by i, yields the desired formulation below:

minimize
nX

i=1

pi

0

@
nX

k=1,k 6=i

X

j2k
vjwj(pi, i� k)

1

A+ a
nX

i=1

f(xi � C)

subject to xi = Xi �
X

j2i
vj

nX

k 6=i

wj(pk, k � i) +
nX

k 6=i

X

j2k
vjwj(pi, i� k), 8i

variables pi � 0, 8i.
(12.3)

If the w(p, t) are increasing and concave in p, and f is convex, the ISP’s price,
or equivalently, reward optimization problem is a convex optimization problem,
as defined in Chapter 4.
The above is a static tra�c model, which does not include stochastic arrival

of new sessions. There are also dynamic models with stochastic arrivals. The f
ixed-size version can be extended to sessions with fixed duration and to online
adjustments that track user behavior.

12.4.2 Paris metro pricing

We have been investigating “how to charge” and “how much to charge.” There
is also the related question of “what to charge.” You would think that a di↵erent
service, e.g., express delivery, would command a di↵erent price. That is true,
but it also works the other way: a di↵erent price can also lead to a di↵erent
service. This idea of intelligent pricing is“pricing-induced quality di↵erentiation.”
Whenever a service’s quality depends on how crowded its consumers are, we can
simply use higher prices to reduce demand in certain portions of the service.
This creates a new category of service tier.

12.4 Advanced Material 265

P

D(P)

P

D(P)

Figure 12.7 Paris metro pricing creates service di↵erentiation through price
di↵erentiation. The left graph shows that lower price increases demand and the
utilization, thus reducing utility for those in that service tier. The right graph shows
that higher price reduces demand and utilization, thus increasing utility for those in
that service tier.

Pricing changes consumer behavior and network congestion, and if di↵erent
congestion levels imply di↵erent service grades, i.e., utility depends on utiliza-
tion, we can complete the feedback loop where di↵erent prices automatically lead
to di↵erent services. This line of reasoning is exemplified in the Paris metro pric-
ing, a thought experiment that Odlyzko presented in 1998 for Internet pricing.
Consider a metro (i.e., subway or underground train) service where two pas-

senger cars are identical, but are charged di↵erently: car A’s charge is twice as
much as car B’s. You might protest: how can they charge di↵erently for the ex-
act same service? Well, they are not the same as soon as consumers react to the
di↵erent prices. Compared to car A, car B will be more crowded as the price is
lower and demand is thus higher. Since the congestion level is a key component
of the quality of service in riding a metro car, we can call car A first-class and
car B coach-class, and their di↵erent prices self-justify. This phenomenon applies
to all cases where utility depends on utilization.
Even though Paris metro pricing is not yet widely implemented in either the

transportation or the Internet industry, it illustrates an interesting feedback
loop between price-setters (a metro company, or an ISP) and intelligent agents
(metro riders choosing between cars, or iPhones network interface cards choosing
between WiFi and 3G connections) reacting to the prices. Let us examine Paris
Metro Pricing from an e�ciency point of view, and discover the downside of
resource pooling.
Suppose an ISP creates two tiers of services on a link: tier A and tier B, and

has two possible prices to o↵er: p
1

and p
2

, with p
2

> p
1

. Demands DA and DB

can be such that the following statements are true:

266 How can I pay less for my Internet connection?

• If the ISP o↵ers p
1

, the demand will be DA(p1)+DB(p1), which is too big and
causes too much congestion for tier A users to find the service A useful. So
tier A drops out at this price p

1

, and the demand becomes just DB(p1),
with revenue p

1

DB(p1) to the ISP.

• If the ISP o↵ers p
2

, the demand will be DA(p2) + DB(p2), which is clearly
smaller than DA(p1) +DB(p1) since price p

2

is higher than p
1

. Let us say
it is small enough that tier A users stay. The revenue becomes p

2

(DA(p2)+
DB(p2)) to the ISP.

So the ISP must choose between the two prices, and the revenue is

max{p
1

DB(p1), p2(DA(p2) +DB(p2))}. (12.4)

Now, consider a di↵erent scheme. The ISP divides the link into two equal
parts. In one part, it sets the price to be p

1

and gets revenue p
1

DB(p1). In the
other part, it sets the price to be p

2

and gets revenue p
2

(DA(p2) +DB(p2)). For
any demand functions (DA, DB), the prices can be set su�ciently high so that
each of these demands can fit into half of the link capacity. Now the revenue
becomes the sum:

p
1

DB(p1) + p
2

(DA(p2) +DB(p2)), (12.5)

clearly higher than (12.4).
This anti-resource-pooling property in revenue maximization through flex-

ible pricing is the opposite of the principle of statistical multiplexing used in
achieving the economy of scale, smoothing time-varying demand, and avoiding
fragmentation of resources, as we will see in Chapter 13 and Chapter 16. In
contrast to those chapters, the purpose here is to maximize revenue through
multi-class pricing. Anti-resource-pooling turns out to be the right way to go
as it provides more granular control of pricing of di↵erent parts of the overall
resource.

12.4.3 Two-sided pricing

In two-sided Internet pricing models, the price of connectivity is shared between
content providers (CP) and end users (EU). ISPs are just the middle man prov-
ing the connectivity between CP and EU. Some ISPs have started exploring this
question of “whom to charge”. A “clearing house” of connectivity exchange mar-
ket will become a major extension of the 1-800 model of phone call services in
the US, which charges the callee rather than the caller.
The tradeo↵ in the resulting economic benefits remain to be quantified. Intu-

itively, end-users’ access prices are subsidized and the ISPs have an additional
source of revenue. More surprisingly, content-providers may also stand to gain
from two-sided pricing if subsidizing connectivity to end-users translates into
a net revenue gain through a large amount of consumption. However, the gain
to content providers is dependent upon the extent to which content-provider

12.4 Advanced Material 267

!" !"#$%" &'#$%" &'(,)q p (,)h g�

Cµ Eµ

!" $%" &'(,)q p (,)h g

!"#$%&'()&*+,-%$&./0

!"#$%&'1)&+,2$34",,42#&&./0*

µ

Figure 12.8 (a): Single representative ISP charging CP a usage-price q and flat-price p

and charging EU a usage-price h and flat-price g. (b): EU-ISP charging a transit price
⇡ to CP-ISP. Capacity cost of EU-ISP is µE and and CP-ISP is µC .

payment translates into end-users’ subsidy, and the demand elasticities of the
consumers. The precise gains to the three entities will depend upon the interplay
among them and their respective bargaining power.
The economic interaction on the flow between the EU and the CP includes

peering and transit arrangements between multiple ISPs, operating the links
between the CP and the EU, and the access fee charged by the ISPs to the EU
and the CP. We can consider an eyeball ISP, referred to as EU-ISP, charging an
access price of g+hx to the EU and a content ISP, referred to as CP-ISP, charging
an access price of p+qx to the CP. The EU-ISP and the CP-ISP can collaborate
when charging the access fees to the EU and CP, or act independently. In a
homework problem, we will model the collaborate through a representative ISP
as shown in Figure 12.8.

Further Reading

There is a growing literature on Internet access pricing, including congestion
pricing that we focused on.

1. A short survey of some common topics in transportation networks and the
Internet can be found at:
[Kel09] F. P. Kelly, “The mathematics of tra�c in networks,” Princeton Com-

panion to Mathematics, Princeton University Press, 2009.

2. Our treatment of time dependent pricing for Internet access follows
[JHC11] C. Joe-Wong, S. Ha, and M. Chiang, “Time dependent pricing: Feasi-

268 How can I pay less for my Internet connection?

bility and benefits,” Proceedings of IEEE International Conference of Distributed
Computing Systems, 2011.

3. A presentation of the Paris metro pricing method can be found at:
[Odl98] A. Odlyzko, “Paris metro pricing for the Internet,” Proceedings of

ACM Conference on Electronic Commerce, 1998.

4. A standard reference of two-sided pricing mentioned in a homework on
whom to charge is
[RT06] J. C. Rochet and J. Tirole, “Two-sided markets: A progress report,”

The RAND Journal of Economics, vol. 35, no. 3, pp. 645-667, 2006.

5. We have assumed a lot on how people make decisions based on pricing signals
in the last two chapters. These assumptions often do not hold. An accessible and
insightful survey is the recent book:
[Kah11] D. Kahneman, Thinking, Fast and Slow, FSG Publisher, 2011.

Problems

12.1 Time dependent usage pricing ??

An ISP tries to even out the capacity demand over day and night by rewarding
its users for delaying their data transmission. There are two types of users, type
A and type B, which have di↵erent willingness to delay their data transmission.
Originally the demand during daytime is in total vA,day + vB,day = 14GB, which
consists of vA,day = 8GB from type A users and vB,day = 6GB from type B
users. The demand during night time is in total vA,night + vB,night = 5GB,
which consists of vA,night = 2GB from type A users and vB,night = 3GB from
type B user.

Since the ISP has capacity C = 10GB and the marginal cost of exceeding
capacity is $1 per GB, it provides reward $p per GB for daytime users to delay
their data transfer until night time. Let wA(p), wB(p) be the proportion of data
from type A,B users respectively to be delayed from day time to night time,
which is specified as follows:

wA(p) = 1� exp

✓
� p

pA

◆
,

wB(p) = 1� exp

✓
� p

pB

◆
.

where parameters pA = 4, pB = 2.

The ISP wishes to find the reward price p⇤ which minimizes its total cost, i.e.,
sum of cost due to exceeding capacity and the rewards given out.

12.4 Advanced Material 269

(a) What is the formulation of the minimization problem?

(b) Solve p⇤ numerically by plotting the curve of profit as a function of reward
price p.

12.2 User type estimation ?

Consider the same model in the above problem, except that now the val-
ues vA,day, vB,day, vA,night, vB,night are unknown. Suppose that originally the de-
mand during daytime is in total 17 GB, and after announcing reward price of
$0.30 per GB the demand during daytime reduces to 15.2 GB in total. What is
vA,day, vB,day?

12.3 TDP for smart grid demand response ??

Smart grid providers often set time-dependent prices for energy usage. This
problem considers a simplified example with two periods, the day-time and the
night-time. The provider can set di↵erent prices for the two periods, and wishes
to shift some night time usage to daytime. The energy provider always o↵ers the
full price during the night, and o↵ers a reward of $p/kWh during the day.

Suppose that with uniform (time-independent) prices, customers vacuum at
night, using 0.2 kWh, and also watch TV, using 0.5 kWh, and do laundry, using
2 kWh. During the day, customers use 1 kWh. The probability of users shifting
vacuum usage from the night to the day is

1� exp

✓
� p

pV

◆
, (12.6)

where pV = 2, and the probability of shifting laundry to the daytime is

1� exp

✓
� p

pL

◆
, (12.7)

where pL = 3. Users never shift their TV watching from the night to the day.

Suppose that the electricity provider has a capacity of 2 kWh during the night
and 1.5 kWh during the day. The marginal cost of exceeding this capacity is
$1/kWh. Assume that energy costs nothing to produce until the capacity is ex-
ceeded.

(a) Compute the expected amount vacuum and laundry energy usage (in kWh)
that is shifted from the night to the day, as a function of p.

(b) Find the reward p which maximizes the energy provider’s profit.

(c) Suppose that if vacuum or laundry usage is shifted from the night to the
day, it is shifted by 12 hours. Compute the expected time shifted of vacuum and

270 How can I pay less for my Internet connection?

laundry using p = p⇤, the optimal reward found above.

12.4 A Paris metro pricing model ? ? ?

Consider a metro system where two kinds of services are provided: Service class
1 and service class 2. Let p

1

, p
2

be the one-o↵ fee charged per user when accessing
service class i. Suppose each user is characterized by a valuation parameter
✓ 2 [0, 1] such that its utility of using service class i is

u✓(i) = (V � ✓K(Qi, Ci))� pi,

where V is the maximum utility of accessing the service, K(Qi, Ci) measures
the amount of congestion of service class i, given Qi � 0 as the proportion of
users accessing service class i, with

P
i Qi = 1, and Ci � 0 is the proportion of

capacity allocated to service class i, with
P

i Ci = 1.

At the equilibrium, i.e., no user switches from his selection, u✓(i) is merely a
linear function of ✓. Suppose the equilibrium is illustrated as in Figure 12.9.

V− 𝑝2

K(𝑄2,𝐶2) K(𝑄1,𝐶1)

𝑈𝜃

𝑈𝜃(2)

𝑈𝜃(1)

Q2

Q1

θ 0

V− 𝑝1

𝜃1 𝜃2

Figure 12.9 Illustration of equilibrium in PMP.

(a) Let ✓
1

be the user who is indi↵erent to joining the first service class or
opting out of all the services, ✓

2

be the user who is indi↵erent to joining the
first service class or the second service class, F (✓) be the cumulative distribution

12.4 Advanced Material 271

function of ✓. Show that

Q
1

=F (✓
1

)� F (✓
2

),

Q
2

=F (✓
2

),

V � p
1

=✓
1

K(Q
1

, C
1

),

p
1

� p
2

=✓
2

(K(Q
2

, C
2

)�K(Q
1

, C
1

)).

(b) Assume ✓ be uniform distributed, i.e., F (✓) = ✓, and the congestion func-
tion defined as

K(Q,C) =
Q

C
.

Solve ✓
1

, ✓
2

as a function of V, p
1

, p
2

.

(Hint: Try p1�p2

V�p1
. You may define intermediate symbols such as k = p1�p2

V�p1

during derivation before the formulas become too complicated.)

(For details, see C. K. Chau, Q. Wang, and D. M. Chiu, “On the Viability
of Paris Metro Pricing for Communication and Service Networks,” Proc. IEEE
Infocom, 2010.)

12.5 Two-sided pricing ??

Consider the model where an ISP charges content provider (CP) usage-price
hCP and flat-price gCP and charges end user (EU) usage-price hEU and flat-price
gEU . Here we assume zero flat-price gCP = gEU = 0. Let µ be the cost of pro-
visioning capacity. The demand functions of CP and EU, denoted as DCP , DEU

respectively, are given as follows:

DEU (hEU) =

(
xEU,max(1� h

EU

h
EU,max

) , if 0 hEU hEU,max

0, , if hEU > hEU,max

DCP (hCP) =

(
xCP,max(1� h

CP

h
CP,max

) , if 0 hCP hCP,max

0, , if hCP > hCP,max.

The parameters are specified as follows:

hCP,max = 2.0µ,

hEU,max = 1.5µ,

xCP,max = 1.0a,

xEU,max = 2.0a.

272 How can I pay less for my Internet connection?

The ISP maximizes its profit by the following maximization problem

maximize (hCP + hEU � µ)x
subject to x min{DCP (hCP), DEU (hEU)}
variables x � 0, hCP � 0, hEU � 0.

(12.11)

Find x⇤, h⇤CP , h
⇤
EU which maximizes the above maximization problem.

13 How does tra�c get through the
Internet?

We have mentioned the Internet many times so far, and all the previous chapters
rely on its existence. It is about time to get into the architecture of the Internet,
starting with these two chapters on the TCP/IP foundation of the Internet.

13.1 A Short Answer

We will be walking through several core concepts behind the evolution of the
Internet, providing the foundation for the next four chapters. So the “short
answer” section is going to be longer than the “long answer” section in this
chapter. It is also tricky to discuss historical evolution of technologyies like the
Internet. Some of what we would like to believe as inevitable result from careful
design are actually the historical legacy of accidents, or the messy requirements
of backward compatibility, incremental deployability, and economic incentives.
It is hard to argue about what could have happened, what could have been
alternative paths in the evolution, and what di↵erent tradeo↵s might have been
generated.

13.1.1 Packet switching

The answer to this chapter’s question starts with a fundamental idea in designing
a network: when your typical users do not really require a dedicated resource,
you should allow users to share resources. The word “user” here is used inter-
changeably with “session.” The logical unit is an application session rather than a
physical user. For now, assume a session has just one source and one destination,
i.e., a unicast session.
In the case of routing, the resource lies along an entire path from one end

of a communication session, the sender, to the other end, the receiver. We can
either dedicate a fixed portion of the resources along the path to each session, or
we can (a) mix and match packets from di↵erent sessions and (b) share all the
paths. This is the di↵erence between circuit-switched and packet-switched
networks.
Before the 1960s, networking was mostly about connecting phone calls in the

circuit-switched Public Switched Telephone Networks (PSTN). There continued

274 How does tra�c get through the Internet?

(a)

1

2

3

f

f

t

t

(b)

Figure 13.1 A simple network with 3 interconnected routers and 3 sessions. (a) circuit
switching: each session gets a dedicated circuit, either a portion of each time slot t or
a fraction of the frequency band f . (b) packet switching: each session sends packets
along one or more paths (when there are packets to send) and all paths are shared.

to be active research all the way to the early 2000s, including dynamic routing
as you will see in a homework problem.

A revolution, which came to be known as the Internet, started during the
1960s-1970s that shifted to packet-switching as the fundamental paradigm of
networking. In the early 1960s, researchers such as Kleinrock formally developed
the idea of chopping up a session’s messages into small packets, and sending them
along possibly di↵erent paths, with each path shared by other sessions. Figure
13.1 contrasts circuit switching with packet switching. Each circuit in circuit-
switching may occupy either a particular frequency band or a dedicated portion
of timeslots. In contrast, in packet switching, there is no dedicated circuit for
each session. All sessions have their packets sharing the paths.

In 1969, sponsored by the US Advanced Research Project Agency (ARPA)
through program manager Roberts, UCLA and three other institutions put to-
gether the first prototype of a packet-switched network, which came to be known
as the ARPANet. The ARPANet started to grow. In 1974, Cerf and Kahn de-
veloped a protocol, i.e., a set of rules for communication among the devices,
for packet switched networks, called TCP/IP. This protocol enabled scalable
connectivity in the ARPANet. In 1985, the US National Science Foundation
(NSF) took over the next phase of development, sponsoring the creation and
operation of an ever-increasing network of networks. This NSFNet grew dra-
matically in the following years, and by 1995 NSF decommissioned the NSFNet
as commercial interests were strong enough to sustain the continuous expansion
of this inter-connected network. Indeed, by 1994, the World Wide Web and web
browser user-interface matured, and the world quickly moved into commercial

13.1 A Short Answer 275

applications built on top of this network, known by then as the Internet. Now
the Internet has blossomed into an essential part of how people live, work, play,
talk, and think. There are now more Internet connected devices than people in
the world, and it is projected that by 2020 there will be 6 times as many con-
nected devices as people. It has been a truly amazing five decades of technology
development.
The debate between dedicated resource allocation and shared resource allo-

cation runs far and deep. In addition to circuit vs. packet switching here and
orthogonal vs. non-orthogonal resource allocation in Chapter 1, we can also see
three more special cases of this design choice: client-server vs. peer-to-peer, lo-
cal storage vs. cloud services, and contention-free scheduling vs. random access:
three important topics in Chapters 15, 16, and 18, respectively.
There is one big advantage of circuit switching, or dedicated resource alloca-

tion in general: guarantee of quality. As each session gets a circuit devoted to it,
throughput and delay performance are accordingly guaranteed, and jitter (vari-
ance of delay) is very little. In contrast, in packet switching, a session’s tra�c is
(possibly) split across di↵erent paths, each of which is shared with other sessions.
Packets arrive out of order and need to be re-ordered at the receiver. Links may
get congested. Throughput and delay performance become uncertain. Internet
researchers call this best e↵ort service that the Internet o↵ers, which is perhaps
more accurately described as no e↵ort to guarantee performance.
On the other hand, there are two big advantages of packet switching: ease of

connectivity and scalability due to e�ciency.
Ease of connectivity is easy to see: there is no need to search for, establish,

maintain, and eventually tear down an end-to-end circuit for each session.
Scalability here refers to the ability to take on many diverse types of sessions,

some long-duration, others short-bursts, and to take on many of them. There are
two underlying reasons for the e�ciency of packet switching, which in turn leads
to high scalability. These two reasons correspond to the “many sessions share a
path” feature and the “each session can use multiple paths” feature of packet
switching, respectively. We call these two features statistical multiplexing and
resource pooling:

• Statistical multiplexing : packet switching can flexibly map demand of capacity
onto supply of capacity. This suits the dynamic, on-demand scenarios with
bursty tra�c. In particular, when a source is idle and not sending any
tra�c onto the network, it does not occupy any resources.

• Resource pooling : this one takes a little math to demonstrate, as we will in a
homework problem. But the basic idea is straightforward: instead of having
two sets of resources (e.g., two links’ capacities) in isolation, putting them
into one single pool lowers the chance that some demand must be turned
down because one set of resources is fully utilized.

In the end, the abilities to easily provide connectivity and to scale up with
many diverse users won the day, although that was not clear until the early 2000s.

276 How does tra�c get through the Internet?

Application

Transport

Network

Link

Physical

Figure 13.2 Modularization in networking: A typical model of layered protocol stack.
Each layer is in charge of a particular set of tasks, using the service provided by the
layer from below and in turn providing a service to the layer above. The horizontal
lines that separate the layers represent some kind of limitation of what each layer can
see and can do. Over the years, the applications have evolved from file transfer based
on command line inputs to all that we experience today. The physical and link layer
technologies have evolved from 32 kbps dial-up modem to 10 Gbps optic fibers and
100 Mbps WiFi. The two middle layers, however, remained largely unchanged over
the years. They are the “thin waist” of the “hour-glass” model of the protocol stack.

Compared to quality guarantee, which is certainly nice to have, these properties
are essential to have for a dynamic and large network like the Internet. Once the
network has grown in an easy and scalable way, we can search for other solutions
to take care of quality variation. But you have to grow the network first, in terms
of the number of users and the types of applications. This is a key reason why
IP took over the networking industry and packet switching prevailed, despite
alternative designs in protocols (that we will not cover here) like X.25, ATM,
frame relay, ISDN, etc.

13.1.2 Layered architecture

Managing a packet-switched network is complicated. There are many tasks in-
volved, and each task requires a sequence of communication and computation
called a protocol to control. It is a natural practice when engineering such a
complex system to break it down into smaller pieces. This process of modu-
larization created the layered protocol stack for the Internet. The idea of
modularizing the design provided not just economic viability through the busi-
ness models of di↵erent companies specializing in di↵erent layers, but also a
special kind of robustness to unforeseen technologies and innovations that may
ride on the Internet. This evolvability is further enhanced by the overlay net-

13.1 A Short Answer 277

works that can create new network topologies and functionalities on top of the
Internet connectivity, as we will see in Chapter 15.
A typical layered protocol stack is shown in Figure 13.2. TCP/IP sits right in

the middle of it. Over the short span of Internet evolution, the physical medium’s
transmission speed went up more than 30,000 times, and the applications went
from command-line-based file transfer to Netflix and Twitter. Yet the Internet
itself continued to work, thanks in large part to the “thin waist” of TCP/IP that
stayed mostly the same as the applications and the communication media kept
changing.
Each layer provides a service to the layer above, and uses a service from the

layer below. For example, the transport layer provides an end-to-end connection,
running the services of session establishment, packet reordering, and congestion
control, to the application layer above it that runs applications such as the web,
email, and content sharing. In turn, the transport layer takes the service from
the network layer below it, including the connectivities established through rout-
ing. The link layer is charged with controlling the access to the communication
medium, and the physical layer controls the actual transmission of information
on the physical medium.
There are functional overlaps across layers. For example, the functionality of

error control is allocated to many layers: there is error control coding in the
physical layer, hop-by-hop retransmission at the link layer, multipath routing
for reliability in the network layer, and end-to-end error check at the transport
layer. Functional redundancy is not a design bug, it is there by design, paying
the price of e�ciency reduction for robustness and clear boundary of layers.
How to allocate functionalities among the layers and put them back together at

the right interface and timescale? That is the question of network architecture
that we will continue to explore in later chapters. For example, the horizontal
lines in Figure 13.2, denoting the boundaries between protocol layers, are actually
very complicated objects. They represent limitation as to what each layer can
do and can see. In the next chapter, we will get a glimpse of some methodologies
to understand this architectural decision of “who does what” and “how to glue
the modules together”.
Just between the transport and network layers, there are already quite a few

interesting architectural decisions made in TCP/IP, the dominant special case
of layers 4/3 protocol. First, the transport layer, in charge of end-to-end man-
agement, is connection-oriented in TCP, whereas the network layer, in charge of
connectivity management, runs hop-by-hop connectionless routing in IP. As an
analogy, calling someone on the phone requires a connection-oriented session to
be established first between the caller and the callee. In contrast, sending mail
to someone only needs a connectionless session since the recipient does not need
to know there is a session coming in. The design choice of connection-oriented
TCP and connectionless IP follows the “end-to-end” principle that end-hosts
are intelligent and the network is “dumb.” Connectivity establishment should be
entirely packet switched in the network layer, and end-to-end feedback run by

278 How does tra�c get through the Internet?

y

Application

Transport

Network

Link

Physical

Application

Transport

Network

Link

Physical

Link

Physical

Network

Link

Physical

Phone Switch Router Server

Figure 13.3 Di↵erent network elements process up to di↵erent layers in the protocol
stack. The end hosts process all the way up to the application layer. Switches that
forward frames process up to the link layer. Routers that move datagrams across the
network process up to the network layer.

the layer above. But this design choice was not the only one that the Internet
tried over its decades of evolution, e.g., a connectionless transport layer on top
of a connection-oriented network layer is also possible and indeed was used.

Second, routing in IP is independent of load condition on the links, whereas
congestion control in TCP takes care of managing capacity demand at the end
hosts in response to link loads. In addition to the end-to-end principle, this
strategy assumes that rate adaptation at the end hosts is easier to stabilize
when compared to route adaptation inside the network.

The application layer runs applications that generate a sequence of messages.
Each of these is divided into segments at the transport layer, with a layer 4
header added in front of the actual content called payload. Then it is passed
onto the network layer, which divides and encapsulates the segments as data-
grams/packets, with a layer 3 header in the front. Each datagram is further
passed on to the link layer, which adds another layer 2 header to form a frame.
This is finally passed on to the physical layer for transmission. These headers
are overheads, but they contain useful, sometimes essential, identification and
control information. For example, the layer 3 header contains the source node’s
address and destination node’s address, no doubt useful to have in routing. We
will examine the impact of these semantic overheads on performance in Chapter
19.

Each network element, e.g., your home gateway, your company’s WiFi con-
troller, the central o�ce equipment near the town center, the big router inside
the “cloud”, runs a subset of the layered protocol stack. And each will decode

13.1 A Short Answer 279

and read the header information associated with its subset. This is illustrated in
Figure 13.3.

13.1.3 Distributed hierarchy

The Internet is not just complex in terms of the number of tasks it has to
manage, but also big in terms of the number of users. While modularization helps
take care of the complexity by “divide and conquer” in terms of functionalities,
hierarchy helps take care of the large size by “divide and conquer” in terms of
the physical span. This is a recurring theme in many chapters. In the current
one, we see that the Internet, this network of networks with more than 30,000
Autonomous Systems (ASs), has several main hierarchical levels as illustrated
in Figure 13.4.

• A few very large ISPs with global footprints are called tier-1 ISP, and they
form a full mesh peering relationship among themselves: each tier-1 ISP
has some connection with each of the other tier-1 ISPs. This full mesh
network is sometimes called the Internet backbone. Examples of tier-1 ISPs
include: AT&T, BT, Level 3, Sprint, etc.

• There are many more tier-2 ISPs with regional footprints. Each tier-1 ISP is
connected to some tier-2 ISPs, forming a customer-provider relationship.
Each of these tier-2 ISPs provides connectivity to many tier-3 ISPs, and
this hierarchy continues. The points at which any two ISPs are connected
are called the Point of Presence (PoP).

• An ISP of any tier could be providing Internet connectivity directly to con-
sumers. Those ISPs that only take tra�c to or from its consumers, but not
any transit tra�c from other ISPs, are called stub ISPs. Typically, campus,
corporate, and rural residential ISPs belong to this group.

Another useful concept in distributed hierarchy is that of domain. Each busi-
ness entity forms a domain called AS. There is often a centralized controller
within each AS. As we will see later this chapter, routing within an AS and
routing across ASs follow very di↵erent approaches.

13.1.4 IP Routing

Packet switching, layered architecture, and distributed hierarchy are three fun-
damental concepts of the Internet. Now with those topics discussed, we can move
on to routing in the Internet.
Transportation networks often o↵er interesting analogies for communication

and social networks. In this case, we can draw a useful analogy from the postal
mail service. In order to route a letter from a sender to the receiver, we need
three main functionalities:

280 How does tra�c get through the Internet?

_ y

Figure 13.4 Hierarchy in networking: Multiple levels of ISPs and their relationships.
Each node in this graph is an ISP, and each link represents a business relationship
and physical connection between two ISPs. The four ISPs in the center are tier-1
ISPs, with peering links among themselves. Each of them provides connectivity to
many customer ISPs. The stub ISPs at the edge do not provide transit service to any
other ISPs. An ISP at any tier may also provide connection to the end users, which
are not shown here.

• Addressing. We first need to attach a unique label to each node in the net-
work, for otherwise we cannot even identify sources and destinations. In
the mail system, the label is the postal address, like street address or mail-
box number. Zip codes can quickly zoom you into a subnetwork of the
country. In the Internet, we use the IP address, a 32 bit number often
represented as four decimal numbers separated by dots. Each of these four
numbers ranges from 0 to 255 since it is specified by 32/4=8 bits, for ex-
ample, 127.12.5.88. “Zip codes” here are called subnet masks, for example,
127.12.5.0/24 means that the first 24 bits give the prefix of all this sub-
net’s IP addresses: each IP address in this subnet must start with 127.12.5,
and can end with any 8 bits. However, in the mail system, an address and
a person’s ID are separated. In the Internet, an IP address is both an ad-
dress for establishing connectivity and an identifier of a device. This double
loading of functionality onto IP addresses caused various control problems
in the Internet.

• Routing. Then you have to decide the paths, either one path for each session
(single path routing) or multiple paths for each session (multipath routing).
Postal mail uses single path routing, and routing decides ahead of time
which intermediate cities the mail goes through in order to reach, say,
Princeton, NJ from Stanford, CA. There are two broad classes of routing
methods: metric-based and policy-based routing. Inside an AS, routing is
based on some kind of metric, either picking the shortest path between the

13.1 A Short Answer 281

given source and destination, or distributing the tra�c across the paths
so that no single path is too loaded. In-between the ASs, however, routing
is based on policies. For example, AS 1 might suspect there are hackers
connected through AS 2, therefore it avoids routing packets along any path
traversing AS 2.

• Forwarding. The actual action of forwarding happens each time a packet is
received at a router, or each letter is received at an intermediate post
o�ce. Some forwarding mechanisms only look at the destination address
to decide the next hop, while others read some labels attached to the packet
that explicitly indicate the next hop. In any case, a forwarding decision is
made and one of the egress links connected to the router is picked to send
the packet. Forwarding implements the routing policy.

Let us look at each of the above in a little more detail now, before focusing
the rest of the chapter on just the routing portion.
There are two versions of IP: version 4 and version 6. IPv4 uses 32 bits for

addresses, which ran out as of early 2011. IPv6 uses four times as many bits, 128
bits, translating into 2128, about 1039, available addresses. That is enough to give,
on average, more than a billion of a billion of a billion addresses to each person
in the world. That might sound like a lot, but with the proliferation of Internet-
connected devices, we are well on our way to using many of these addresses.
One way to upgrade an IPv4 network into IPv6 is to create a “tunnel” between
two legacy IPv4 network elements, where IPv6 packets are encapsulated in IPv4
headers.
How are these IP addresses allocated? They used to be given out in blocks

belonging to di↵erent classes. For example, each class A address block has a
fixed 8 bit prefix, so 232�8 = 224 addresses in a class A block. That is usually
given to a national ISP or a large equipment vendor. Lower classes have fewer
addresses per block. But this coarse granularity of 8-bit blocks introduced a lot
of waste in allocated but unused IP addresses. So the Internet community shifted
to Classless Interdomain Routing (CIDR), where the granularity does not have
to be in multiples of 8 bits.
As a device, you either have a fixed, static IP address assigned to you, or

you have to get one dynamically assigned to you by a controller sitting inside
the operator of the local network. This controller is called the Dynamic Host
Configuration Protocol (DHCP) server. A device contacts the DHCP server,
receives a currently unused IP address, and returns it back to the IP address
pool when no longer needed. You may wonder how a device can communicate
with a DHCP server in the first place. We will address the protocols involved
in Chapter 19. Sometimes the address given to a device within a local network,
e.g., a corporate intranet, is di↵erent from the one seen by the outside world,
and a Network Address Translation (NAT) router translates back and forth.
As mentioned, inter-AS routing is very di↵erent from intra-AS routing. Border-

Gateway Protocol (BGP) is the dominant protocol for inter-AS routing. It

282 How does tra�c get through the Internet?

“glues” the Internet together. However, as a policy-based routing protocol, it
is a complicated, messy protocol, with many gray areas. We will only briefly
describe it in Advanced Material.
Within an AS, there are two main flavors of metric-based routing protocols:

Routing Information Protocol (RIP) uses the distance vector method, where
each node collects information about the distances between itself and other
nodes, and Open Shortest Path First (OSPF) uses the linked state method,
where each node tries to construct a global view of the entire network topology.
We will focus on the simpler RIP in the next section, saving OSPF for Advanced
Material.
When a packet arrives at a router, it is put on one of the input ports. On the

other end of the router is the set of output ports. In-between is the switching
fabric that physically moves the packet from an input port to the right output
port. If packets arrive too fast, congestion occurs inside the router. Sometimes it
occurs because the intended output ports are occupied, sometimes because the
switching fabric is busy, and sometimes because a packet is waiting for its turn
at the input port’s queue, thus blocking all the packets behind it in the same
input queue.
Which output port is the “right” one? That is decided by looking up the for-

warding table, either stored centrally in the router, or duplicated with one copy
at each input port. The forwarding table connects the routing decisions to actual
forwarding actions. A common type of forwarding table lists all the destination
IP addresses in the Internet, and indicates which output port, thus the next
hop router, a packet should go to based on its destination address written in the
header. There are too many IP addresses out there, so the forwarding table often
groups many addresses into one equivalent class of input.
We are now going to study one member of the intra-AS routing family, and

then how forwarding tables are constructed from distributed messages passing
among the routers.

13.2 A Long Answer

Consider a directed graph G = (V,E) representing the topology inside an AS,
where each node in the node set V is a router, and each link in the link set E is
a physical connection from one router i to another router j. A path is just a set
of connected links.
Each link has a cost cij . It is often a number approximately proportional

to the length of the link. If it is 1 for all the links, then minimizing the cost
along a path is the same as minimizing the hop count. If it were dynamically
reflecting the congestion condition on that link, it would lead to dynamic, load-
sensitive routing. IP does not practice dynamic routing, leaving load sensitivity
to congestion control to TCP.
The shortest path problem is an important special case of the network

13.2 A Long Answer 283

i

k

n

kik

k

C

p [t]

k

Figure 13.5 Bellman’s equation for minimum cost routing. The minimum cost from a
node i to destination n is the smallest, among all its neighbors, of the sums of the
cost from i to a neighbor and the cost from that neighbor to n. Node i does not need
to know how its neighbors get to n, just the cost of reaching n.

flow problem, which is in turn an important special case of linear programming.
A more accurate name is the minimum cost path problem, since we are actually
finding the minimum cost path for any pair of nodes in a given graph. “Minimum
cost” would be equivalent to “shortest” only when the link costs are the physical
distances. But still, “shortest path problem” sticks, and we will use that term.

The shortest path problem has been studied extensively since the early 1950s,
and there are several famous approaches: the Bellman Ford algorithm, the Di-
jkstra algorithm, Lagrange duality, etc. We will focus on the Bellman Ford
algorithm, because it is simple, distributed, and illustrates the fundamental
principle of dynamic programming. It also leads to a fully distributed and
asynchronous implementation used in RIP, in part of BGP, and in the routing
method in the original ARPANet.

First, a little bit of notation. For now, fix one destination node n; we can
generalize to multiple destinations readily. Let pi[t] be the length of the shortest
path from node i to destination n using at most t links. It is not a coincidence
that we are using the time symbol t to capture this spatial definition. We will
soon see that t indeed indexes the iterations too.

If node i cannot reach destination n in t hops, we say pi[t] = 1. Obviously,
at initialization pi[0] =1 for all nodes i, unless it is the destination n itself.

Here comes the core idea behind Bellman Ford algorithm. Obviously, i needs
to get to n via some neighbor. And we realize that pi[t + 1] can be decomposed
into two parts, as illustrated in Figure 13.5:

• The cost cik of getting from node i to one of its outgoing neighbors k. An

284 How does tra�c get through the Internet?

outgoing neighbor is a node where there is a link pointing from i to it, and
we denote the set of these neighbors for node i as O(i).

• The minimum cost of getting from that neighbor k to the destination n, using
at most t hops, since we have already used 1 hop (out of t + 1 hops) just
to get to node k.

The minimum cost path takes the neighbor that minimizes the sum of the
above two costs:

pi[t+ 1] = min
k2O(i)

{cik + pk[t]} . (13.1)

Let us assume each node knows the cost to reach to its outgoing neighbors.
Then, by iteratively updating pi[t] and passing a vector describing these updated
numbers to its neighbors, we can execute (13.1) in a distributed way. No wonder
it is called distance vector routing algorithm. Passing the distance vectors
around and initializing the cik values require a little protocol, as we will see soon
with RIP.
A quick detour: there is actually a very broad idea behind the recursive Bell-

man’s equation (13.1). Optimizing over a sequence of timeslots or spatial points
belongs to the research area of dynamic programming. For many system mod-
els where the cost we want to minimize is additive over time or space, and the
dependence between stages of the problem is memoryless (the next stage only
depends on the current one), we know the “tail” of the optimal solution to cost
minimization is the optimal solution to the “tail” of the cost minimization. The
Bellman Ford algorithm is a special case of this general principle.

13.3 Examples

13.3.1 Centralized Bellman Ford computation

First, an example on the Bellman Ford algorithm. Suppose we have a network
topology as in Figure 13.6. The negative link weights are just there to show that
the Bellman Ford algorithm can accommodate them, as long as there are no
negatively weighted cycles since those can reduce some path costs to negative
infinity.
In this small example with four nodes (not counting the destination), we know

we can stop after 4 iterations, since any path traversing 5 nodes or more will have
to go around a cycle, and that can only add to the length, thus never optimal.
But in a real, distributed implementation of distance vector protocol, we do not
know how many nodes there are, so we have to rely on the lack of new messages
to determine when it is safe to terminate the algorithm.
We try to find the minimum path from nodes A,B,C,D to destination n. We

initialize distances pA[0] = pB [0] = pC [0] = pD[0] = 1. And of course it takes
zero cost to reach oneself: pn[t] = 0 at all times t.

13.3 Examples 285

For t = 1, by Bellman’s equation, we have

pA[1] = min{cAB + pB [0], cAC + pC [0], cAD + pD[0]}
= min{8 +1, 6 +1, 4 +1}
=1

pB [1] = min{cBC + pC [0], cBD + pD[0]}
= min{�3 +1, 9 +1}
=1

pC [1] = min{cCn + pn[0], cCD + pD[0], cCA + pA[0]}
= min{6 + 0,�5 +1,�2 +1}
= 6

pD[1] = min{cDn + pn[0]}
= 7 + 0

= 7

Notice that node D has only one outgoing link, so pD = 7 and we do not need
to continue calculating it.

Similarly, for t = 2, we have

pA[2] = min{cAB + pB [1], cAC + pC [1], cAD + pD[1]}
= min{8 +1, 6 + 6, 4 + 7}
= 11

pB [2] = min{cBC + pC [1], cBD + pD[1]}
= min{�3 + 6, 9 + 7}
= 3

pC [2] = min{cCn + pn[1], cCD + pD[1], cCA + pA[1]}
= min{6 + 0,�5 + 7,�2 +1}
= 2

286 How does tra�c get through the Internet?

A

B

C

D

-2

6

-3
48 -5

6

7

9

n

Figure 13.6 An example to illustrate the Bellman Ford algorithm. Here we want to
find out the shortest path from nodes A, B, C, and D to a common destination node
n. There are negatively-weighted links just to illustrate that the algorithm can handle
them. But there are no negatively-weighted cycles, for they would make the problem
ill-defined.

For t = 3:

pA[3] = min{cAB + pB [2], cAC + pC [2], cAD + pD[2]}
= min{8 + 3, 6 + 2, 4 + 7}
= 8

pB [3] = min{cBC + pC [2], cBD + pD[2]}
= min{�3 + 2, 9 + 7}
= �1

pC [3] = min{cCn + pn[2], cCD + pD[2], cCA + pA[2]}
= min{6 + 0,�5 + 7,�2 + 11}
= 2

13.3 Examples 287

For t = 4:

pA[4] = min{cAB + pB [2], cAC + pC [3], cAD + pD[3]}
= min{8� 1, 6 + 2, 4 + 7}
= 7

pB [4] = min{cBC + pC [3], cBD + pD[3]}
= min{�3 + 2, 9 + 7}
= �1

pC [4] = min{cCn + pn[3], cCD + pD[3], cCA + pA[3]}
= min{6 + 0,�5 + 7,�2 + 8}
= 2

We can also readily keep track of the paths taken by each node to reach n: D
directly goes to n, C goes through D to reach n, B goes through C, and A goes
through B.

13.3.2 Distributed RIP

So far we have assumed centralized computation. But imagine you are one of the
nodes trying to figure out how to reach the other nodes in the network. How do
you know the cost to reach di↵erent nodes and how do you even start?
We now describe the message passing protocol in RIP, which allows the discov-

ery and update of cik and pi[t] across the nodes. For simplicity of presentation,
assume all the links are bi-directional: if node i can send messages to node j, so
can j to i.
The message passed around in distance vector routing protocols has the fol-

lowing format: [NodeID, DestinationID, Cost of MinCost Path].
At the very beginning, iteration 0, each node only knows its own existence,

so each node i can only pass around this vector [node i, node i, 0]. But
once each node receives the messages from its neighbors, it can update its list of
vectors.
There are several key features of the message passing:

• Short messages : All the detailed topology information about who connects to
whom and what are the link costs can all be summarized into these lists of
distance vectors.

• Local interaction: Neighbor-to-neighbor message passing is enough to propa-
gate this summary so that the shortest paths can be discovered. No need
for broadcasting all the summaries to all the nodes.

• Local view : Even when these optimal paths are obtained, still each node has
only a local view: it knows only which neighbor to send a packet with a
given destination address, but has no idea what the actual end-to-end path
looks like. As far as forwarding packets based on its destination IP address

288 How does tra�c get through the Internet?

A

C

B

D

3

15

1 2

_ p

Figure 13.7 An example to illustrate the distributed message passing in RIP, where
each node wants to find one of the shortest paths to every other node through
message passing. Again, we choose an extremely small network so that we can go
through the numerical steps in detail. A major challenge in routing in the Internet is
the scale of the network, hence the desire for distributed solutions in the first place.

is concerned, it does not need to because the routers will forward packets
hop by hop.

Here is an example to illustrate this iterative and distributed routing method,
for the small network shown in Figure 13.7.

We try to find the minimum paths between all nodes. We can collect all
the distance vectors [NodeID, DestinationID, Cost of MinCost Path], to-
gether with the next hop decision, into a routing table for each node. Each node
only stores the table where it is the NodeID.

At t = 0, we have the following 4 tables, one per node:

NodeID DestinationID Cost of MinCost Path Next node

A A 0 A

NodeID DestinationID Cost of MinCost Path Next node

B B 0 B

NodeID DestinationID Cost of MinCost Path Next node

C C 0 C

13.3 Examples 289

NodeID DestinationID Cost of MinCost Path Next node

D D 0 D

At each iteration, each node sends the distance vectors (the routing table
above except the next hop information) to its neighbors. For example, at t = 1,
node B receives messages from nodes A,C,D. Node B receives [A,A,0] from node
A; [C,C,0] from node C; and [D,D,0] from node D.

In terms of Bellman’s equation (13.1), this tells node B that pA[0] = 0 for
destination A, pC [0] = 0 for destination C, and pD[0] = 0 for destination C.
All other distances are infinite. Node B then uses (13.1) to calculate the new
distances in the routing table.

Let us work out the calculations for destination A at t = 1.

pA[1] = 0

pB [1] = min{cBA + pA[0], cBC + pC [0], cBD + pD[0]}
= min{3 + 0, 1 +1, 2 +1}
= 3

pC [1] = min{cCA + pA[0], cCB + pB [0]}
= min{1 + 0, 1 +1}
= 1

pD[1] = min{cDA + pA[0], CDB + pB [0]}
= min{5 + 0, 2 +1}
= 5.

For destination B at t = 1, we have:

pA[1] = min{cAB + pB [0], cAC + pC [0], cAD + pD[0]}
= min{3 + 0, 1 +1, 5 +1}
= 3

pB [1] = 0

pC [1] = min{cCA + pA[0], cCB + pB [0]}
= min{1 +1, 1 + 0}
= 1

pD[1] = min{cDA + pA[0], cDB + pB [0]}
= min{5 +1, 2 + 0}
= 2.

290 How does tra�c get through the Internet?

For destination C at t = 1, we have:

pA[1] = min{cAB + pB [0], cAC + pC [0], cAD + pD[0]}
= min{3 +1, 1 + 0, 5 +1}
= 1

pB [1] = min{cBA + pA[0], cBC + pC [0], cBD + pD[0]}
= min{3 +1, 1 + 0, 2 +1}
= 1

pC [1] = 0.

There is no PD[1] since node C does not even realize the existence of node D yet.

For destination D at t = 1, we have:

pA[1] = min{cAB + pB [0], cAC + pC [0], cAD + pD[0]}
= min{3 +1, 1 +1, 5 + 0}
= 5

pB [1] = min{cBA + pA[0], cBC + pC [0], cBD + pD[0]}
= min{3 +1, 1 +1, 2 + 0}
= 2

pD[1] = 0.

Although each set of calculations organized above is for various nodes to a
single destination, during the execution of RIP, it is the other way around: each
node performs calculations for various destinations. At t = 1, each node stores
its own table shown below. C and D cannot reach each other because so far the
message passing only reveals one hop paths and these two nodes require at least
2 hops to connect.

NodeID DestinationID Cost of MinCost Path Next node

A A 0 A
A B 3 B
A C 1 C
A D 5 D

13.3 Examples 291

NodeID DestinationID Cost of MinCost Path Next node

B A 3 A
B B 0 B
B C 1 C
B D 2 D

NodeID DestinationID Cost of MinCost Path Next node

C A 1 A
C B 1 B
C C 0 C

NodeID DestinationID Cost of MinCost Path Next node

D A 5 A
D B 2 B
D D 0 D

Now at t = 2, all nodes send updated distance vectors to their neighbors. For
example,

• Node B receives [A,B,3] [A,C,1] [A,D,5] from node A. This tells node B that
pA[1] = 3 for destination B, pA[1] = 1 for destination C, and pA[1] = 1
for destination D.

• Node B receives [C,A,1] [C,B,1] from node C. This tells node B that pC [1] = 1
for destination A, pC [1] = 1 for destination B, and pC [1] =1 for destina-
tion D.

• Node B receives [D,A,5] [D,B,2] from node D. This tells node B that pD[1] = 5
for destination A, pD[1] = 2 for destination B, and pD[1] =1 for destina-
tion C.

We update all routing tables at t = 2. We focus on node A’s table to illustrate
the derivation. For destination B at t = 2, we have:

pB [2] = min{cAB + pB [1], cAC + pC [1], cAD + pD[1]}
= min{3 + 0, 1 + 1, 5 + 2}
= 2

292 How does tra�c get through the Internet?

For destination C at t = 2, we have:

pC [2] = min{cAB + pB [1], cAC + pC [1], cAD + pD[1]}
= min{3 + 1, 1 + 0, 5 +1}
= 1

For destination D at t = 2, we have:

pD[2] = min{cAB + pB [1], cAC + pC [1], cAD + pD[1]}
= min{3 + 2, 1 +1, 5 + 0}
= 5.

Each node stores its own routing information in a table at t = 2. The above
explains the entries in the first table below, and we also see nodes C and D know
the existence of each other now:

NodeID DestinationID Cost of MinCost Path Next node

A A 0 A
A B 2 C
A C 1 C
A D 5 B

NodeID DestinationID Cost of MinCost Path Next node

B A 2 C
B B 0 B
B C 1 C
B D 2 D

NodeID DestinationID Cost of MinCost Path Next node

C A 1 A
C B 1 B
C C 0 C
C D 3 B

NodeID DestinationID Cost of MinCost Path Next node

D A 5 A
D B 2 B
D C 3 B
D D 0 D

13.4 Advanced Material 293

Similarly, each node stores its own routing information in a table at t = 3:

NodeID DestinationID Cost of MinCost Path Next node

A A 0 A
A B 2 C
A C 1 C
A D 4 C

NodeID DestinationID Cost of MinCost Path Next node

B A 2 C
B B 0 B
B C 1 C
B D 2 D

NodeID DestinationID Cost of MinCost Path Next node

C A 1 A
C B 1 B
C C 0 C
C D 3 B

NodeID DestinationID Cost of MinCost Path Next node

D A 4 B
D B 2 B
D C 3 B
D D 0 D

Further iterations produce no more changes. The routing tables have converged
to the right solution through distributed message passing in RIP.
What about link failures? Is distance vector routing robust to events like a

link breaking? We will find out in a homework problem.

13.4 Advanced Material

In this section, we will go into further detail of routing within an AS and across
ASs. In a homework problem, we will also go through the essential ideas in
switching within a small, local area network and a distributed protocol that
determines a spanning tree to connect a given set of nodes.

294 How does tra�c get through the Internet?

Cost

Load / Capacity
10% 50% 80% 100%

Figure 13.8 A typical cost function C(f): increasing, convex, and piecewise-linear. It
rises sharply as f becomes about 50% of the link capacity, and reaches very highly
values by the time f is 80% of the link capacity.

13.4.1 Link state routing: OSPF

Picking the shortest paths is just one metric out of several reasonable ones.
Another popular metric is the minimization of link loads, where the load of a
link is defined as the percentage of its capacity used. This is carried out through
a procedure called tra�c engineering by the ISPs. The goal is to load-balance
the tra�c across the paths so that all the link loads are as low as possible under
the tra�c demand, or at least no one link load becomes too high and forms a
bottleneck.

The benchmark of tra�c engineering performance is defined by the multi-
commodity flow problem. It is a basic optimization problem encountered in
many networks to design a mapping of flows onto di↵erent paths in a network
with a given topology G = (V,E).

We assume that each destination n has one flow coming to it from various
other nodes in the network. Let fn

ij denote the amount of flow on link (i, j)
destined to node n, and fij the sum of load on link (i, j) across all destinations.
The objective function is to minimize some cost function: the higher the load,
the higher the cost. A typical cost function as a piecewise linear, increasing, and
convex function is shown in Figure 13.8. As the load approaches the link capacity,
the cost rises sharply. The constraint is simply a flow conservation equality: the
incoming tra�c to a node v, plus D(v, n), the tra�c that originates at v and
destined to n, must be equal to the outgoing tra�c from node v.

13.4 Advanced Material 295

Routers
Control
Server Routers

Demand
Estimate Split

RatioWeights

Traffic Load Distribution

Packets

Link
Weight

Computation

Route
Decision

Packet
Forwarding

Figure 13.9 Three main modules in link state routing protocols like OSPF. Link
weight computation is done in a central management server based on an estimation of
tra�c demand. These link weights are then given to the routers, each autonomously
deciding the split ratio for load balancing based on these weights. When a packet
actually arrives at a router, forwarding to the next hop is done based on the reading
the destination IP address.

minimize
P

(i,j) C(fij)

subject to
P

j:(v,j)2E fn
v,j =

P
i:(i,v)2E fn

i,v +D(v, n), for all v 6= n

fij =
P

t f
t
i,j , for all (i, j)

(13.2)

Using the terminology from Chapter 4, we know this problem (13.2) is a lin-
early constrained, convex optimization problem. So it is easy to solve, at least
through a centralized algorithm. And there are many specialized algorithms to
further speed up the computation.
But IP does not allow end-to-end tunneling, so it cannot keep track of the

fn
ij . This is a design choice driven by the simplicity of network management. IP
also does not allow dynamic routing adaptive to link loads, that is the job of
TCP. What actually happens is that the most popular intra-AS routing protocol,
OSPF, solves the above problem indirectly through link weight optimization.
This is illustrated in Figure 13.9 and summarized below.

• Link weight computation. A centralized management server collects or esti-
mates the source-destination tra�c, i.e., all the D(v, n) in (13.2) every 12
hours or so. This timescale is not dynamic at the same timescale as tra�c
fluctuation. Then the server computes a set of link weights, one for each
link in the network, and uploads this information to all the routers. Each
router has a global view of the topology, not just a neighborhood local view
as in distance vector routing.

296 How does tra�c get through the Internet?

• Use link weights to split tra�c. Given the weights computed by the central-
ized management server, each router constructs many paths to each of the
possible destinations. In OSPF, each router constructs just the shortest
paths, under the given link weights, and splits the incoming tra�c equally
among all the shortest paths.

• Forward the packets. As each packet arrives at the router, the next hop is
decided based just on the destination IP address, and the tra�c splitting
decided in the step above. It does not matter what is the source and what
routers the packet has traversed so far. This is called destination-based and
hop-by-hop forwarding.

Comparing link state routing like OSPF with distance vector routing like RIP,
we see that link state routing passes detailed messages about each local topology,
while distance vector routing passes coarser messages about the global topology.
There are also di↵erent tradeo↵s among communication overhead and local com-
putation between link state and distance vector protocols.
Is it easy to turn the knob of link weight, and hope the right weights will

indirectly induce a tra�c distribution {f t
ij} solving (13.2)? The answer is no.

Picking the link weights for OSPF in order to induce a solution to (13.2) is an
NP-hard problem.
But you do not have to use OSPF. There are other members of this family of

link state routing, e.g., PEFT, where link weights are used to define the weight
for all the paths to be used: not just the shortest paths, but also the longer paths
which are used exponentially less. If link weights are used in PEFT fashion, it
turns out computing the right link weights becomes a computationally tractable
problem. Similar to mechanism design, this is a case in the principle of “design
for optimizability”: designing the network protocol so that its operation can be
readily optimized.

13.4.2 Inter-AS routing: BGP

Since the Internet is a network of networks, we need all ASs to cooperate with
each other so that one AS’s customers can reach customers of another AS. Inter-
AS routing glues the entire Internet together, but it is messy, because the best
path (defined by some distance or weight metric) across the ASs is often not
chosen due to policy and economic concerns.
Consider a small scale inter-AS connectivity graph in Figure 13.10. Each AS

has a number called ASN, just like each host and each interface of a router has
an IP address.
BGP governs the routing across the ASs (eBGP session), and moves inter-AS

packets within an AS (iBGP session). Picking the next hop AS in BGP is almost
like picking the next hop router in RIP, as each AS passes a list of BGP attributes
to neighbor ASs. Part of the attributes is called AS-PATH, listing the ASs that
this AS needs to pass in order to reach a certain range of IP addresses.

13.4 Advanced Material 297

Source

Destination

AS1

AS4

AS2

AS3

Figure 13.10 An example of BGP routing a session across multiple ASs in the same
tier. Each node is an AS, and each link is a peering relationship manifested through
some physical connectivity between border routers. Which AS to pick as the next hop
depends on not just performance metrics but also policies based on economic and
security concerns.

Here comes the messy but critical part in eBGP: each AS can have a sequence
of filters that reprioritize the choices of neighboring ASs to go to in order to reach
a certain range of IP addresses. On top of that list of filters is a local preference
policy : AS 1 might decide that it simply does not want to go through AS 3, so
any AS-PATH containing AS 3 is put to the bottom of the priority list. This
decision might be due to security or economic concern: AS 3 may be perceived
by AS 1 as non-secure, or AS 1 may not want to send too much tra�c along to
AS 3 in case it tips the tra�c volume balance between them and results in a new
payment contract between these two peering ASs.

Usually there are multiple border routers connecting two ASs. Which one
should we use? iBGP uses a simple rule: pick the border router that has the
minimum cost to reach (from where the packet is positioned when it enters the
AS). This means each AS wants to get rid of the packet as soon as possible. This
is called hot potato routing.

There is a lot of detail of BGP beyond the above gist, and there has been
an interesting model called the stable path problem that crystallizes the BGP
stability issues.

We conclude this chapter on the fundamentals of the Internet by mentioning
that there are actually many other types of routing in communication networks.
There are specialized routing protocols in wireless mesh networks and optical
networks. There is also much work on routing with a guarantee on quality of
service such as delivery time. Some of these routing protocols are centralized
whereas others are distributed. Some have centralized control planes for param-

298 How does tra�c get through the Internet?

eter optimization, yet distributed data planes that forward the actual packets.
Some of these protocols are static, whereas others are dynamic as a function of
the link loads on a fast timescale.
And there have been years of work in both research community and industry in

implementing multicast routing. We have only been looking at unicast routing:
from one sender to one receiver. As the Internet is used increasingly for content
distribution and video entertainment delivery, often there are many receivers
at the same time. Creating a unicast routing session for each of the receivers
is often ine�cient. But multicasting at the IP layer turns out to be hard to
manage, and has often been replaced by an architectural alternative: application
layer multicasting in an overlay network. We will pick this up in Chapter 15 on
P2P.

Further Reading

There is a whole library of computer networking and Internet textbooks, and
thousands of papers on all kinds of aspects of routing.

1. The following book provides a highly readable and concise overview on
Internet routing protocols:
[Hui99] C. Huitema, Routing in the Internet, 2nd Ed., Prentice Hall, 1999.

2. One of the standard textbooks on computer networking is
[PD12] L. L. Peterson and B. Davie, Computer Networks: A Systems Approach,

Morgan Kau↵man, 2012.

3. A recent research article on link weight optimization in link state rouing is
[XCR12] D. Xu, M. Chiang, and J. Rexford, “Link state routing protocol can

achieve optimal tra�c engineering,” IEEE/ACM Transactions on Networking,
vol. 19, no. 6, pp. 1717-1730, November 2011.

4. We did not have the time to cover BGP in detail. The following is a relatively
recent survey article on BGP:
[CR05] M. Caesar and J. Rexford, “BGP routing policies in ISP networks,”

IEEE Network Magazine, 2005.

5. The following book provides a comprehensive survey of layer 2 switching
and layer 3 routing protocols. And it is a rare example of a book that is devoted
to network protocols and yet can maintain a sense of humor; see Chapter 18 for
example.
[Per99] R. Perlman, Interconnections: Bridges, routers, switches, and inter-

networking protocols, 2nd Ed., Addison-Wesley, 1999.

13.4 Advanced Material 299

Problems

13.1 Packet switching ?

(a) Statistical multiplexing

Suppose you have a 10Mbps link shared by many users. Each user of the link
generates 1Mbps of data 10% of the time, and is idle 90% of the time.

If we use a circuit switched network, and the bandwidth allocation is equal,
how many users can the link support? Call this number N . Now consider a packet
switched network. Say we have M users in total, and we want the probability of
a user being denied service to be less than 1%. Write down the expression that
must be solved in the form of f(M,N) < 0.01. Solve this numerically for M .
(Hint: Use the binomial CDF.)

(b) Resource pooling

We will consider modeling a shared resource and see what happens when both
the demand for the resource and ability to fulfill requests increases. Suppose we
have m servers. When a request comes in, a server answers the request. If all
servers are busy, the request is dropped. The following Erlang formula gives
the probability of a request being denied, given m servers and E units of tra�c:

P (E,m) =
Em

m!Pm
i=0

Ei

i!

.

Calculate P (3, 2). Now calculate P (6, 4). What do you observe? In general,
P (wx,wy) < P (x, y), 8w > 1. This is one way to quantify the notion of re-
source pooling’s benefits.

13.2 RIP ??

Consider the network shown in Figure 13.2.

(a) Run an example of RIP on this network to find the minimum paths be-
tween all nodes. Show the routing tables at each time step.

(b) Now the link between A and C fails, resulting in a cost of 1 for both
directions of transmission. B and C immediately detect the link failure and up-
date their own routing tables based on the information they already have from
their one-hop neighbors. Write down the routing tables for four iterations after
the link failure. You only need to show the routing tables that change. What is
happening to the paths to A?

300 How does tra�c get through the Internet?

A

B C

D

2

3

1

6

Figure 13.11 A network for a RIP example.

(c) Propose a solution to the problem found in (b).

13.3 Ford-Fulkerson algorithm and the max flow problem ? ? ?

You are in the Engineering library studying for your final exam, which will take
place in 1 hour. You suddenly realize you did not attend a key lecture on power
control. Your kind TA o↵ers to send you a video of the lecture. Unfortunately,
she lives o↵ in the Graduate College, which is somewhere way o↵-campus (you
do not even know where).
Since you want to get the video as quickly as possible, you decide to split it

into many pieces before sending it over the Princeton network. The Princeton
network has pipe capacities given in Figure 13.12. How much bandwidth should
you send over each pipe so that you maximize your total received bandwidth?

Mathey Firestone

Graduate
College

Engineering

Whitman Butler

6

6

5

10

4

2

5

Figure 13.12 A simplified Princeton campus network, with the six nodes abbreviated
as G, M, B, W, F, and E.

We will walk through a step-by-step approach for solving this maximum flow
problem. A useful operation will be generating a residual graph, given a flow. For

13.4 Advanced Material 301

each link on the given flow’s path, we draw a backward link with the amount of
flow, leaving a forward link with the remaining capacity of the link. An example
is shown in Figure 13.3.

C

A B
3

1 1

(a)

C

A B2
1

1 1

(b)

Figure 13.13 Example of drawing the residual graph. We decide to push 2 units of flow
from A to B in the left graph, which gives us the residual graph on the right.

(a) Allocate 4 Mbps to the path G-M-B-E. Draw the residual graph.

(b) Allocate 2 Mbps to the path G-W-B-M-F-E on the residual graph from
(a). Draw the new residual graph.

(c) Allocate 2 Mbps to the path G-M-F-E on the residual graph from (b).
Draw the new residual graph.

(d) There are no paths remaining on the residual graph from (c), so the algo-
rithm terminates. The bandwidth allocation is given by the net bandwidth from
steps (a),(b),(c). Draw the graph with the final capacity allocation on each of
the links.

This classic algorithm is called the Ford-Fulkerson algorithm.

13.4 Dynamic alternative routing ??

We did not get a chance to talk about routing in circuit switched networks. A
major brand there is DAR: Dynamic Alternative Routing, which was adopted
by British Telecom in 1996 for their networks.
Suppose that, instead of having fixed paths to route packet from source to des-

tination, we want to have the routes change dynamically in response to network
conditions. One simple and e↵ective scheme is dynamic alternative routing.
We will consider this protocol in the case of a fully-connected graph.
We want the routing to adapt dynamically to the link utilization and select a

new path if the current one is too busy. Each possible session (source-destination
pair) has an associated backup node. When a session is initiated, it first tries
to send its tra�c along the direct link. If the direct link fails because it is full,
the session tries to use the 2-hop path with the backup node. If the backup
path fails too because it is busy, the session fails and selects a new backup node

302 How does tra�c get through the Internet?

D

B

A

C

E

Figure 13.14 An example topology to illustrate DAR.

from the network. Clearly, the backup node should not be the same node as the
destination of the session.

One possible problem with this scheme is if many sessions end up using 2-hop
paths. Then we are not being very e�cient, since we are using double the ca-
pacity compared to a 1-hop path. We would like 1-hop sessions to be serviced.
Therefore, dynamic alternative routing reserves a fraction tl of each link l for
direct sessions (sessions that use the direct link between the source and desti-
nation, as opposed to the backup path). We call this parameter 0 < tl < 1 the
trunk reservation coe�cient. Each link l in the network has an overall ca-
pacity of cl Mbps and is bidirectional. The non-reserved capacity, cl � tlcl, may
be used for either direct or indirect sessions.

(a) Suppose we have the network shown in Figure 13.14. Let cl = 10 Mbps, tl =
0.1, 8l. The backup nodes are initialized as in Table 13.1.

Session Backup node

(B,C) A

(C,B) A

(A,C) E

Table 13.1 Backup nodes for a DARP example.

Link Unreserved capacity used [session] Reserved capacity used [session]

(A,B)

(A,C)

(A,E)

(B,C) 9 Mpbs [9 ⇥ (B,C)] 1 [1 ⇥ (B,C)]

(C,E)

Table 13.2 The table of link utilizations to be filled out in the DAR example.

13.4 Advanced Material 303

The following events occur in sequence.
1. 10 parallel sessions of (B,C) begin.
2. 10 parallel sessions of (C,B) begin.
3. 10 parallel sessions of (A,C) begin.
Assume the sessions last a long time and each session consumes 1 Mbps. Fill

in Table 13.2 after the above sequence of events has occurred. Remember that
sessions and links are di↵erent. One row has been filled out for you as an example.

(b) Repeat (a) without the trunk reservation scheme.

(c) What is e�ciency of link utilization, number of sessions

total network capacity used

, under (a) and
(b)?

(For more details, see R. J. Gibbens, F. P. Kelly, and P. B. Key, “Dynamic
alternative routing,” Routing in Communication Networks, Prentice Hall, 1995.)

13.5 Spanning tree ? ? ?

Routing in an interconnected set of local area networks (LANs), like the
one in a corporation or campus, is much easier than over the entire Internet
globally connecting many di↵erent layers 1 and 2 technologies. The connections
among LANs are called bridges, or switches. Each with multiple ports, with
one port connecting to one LAN. We could configure the LAN IDs on each port
of a bridge, but a more scalable and automated way is for each bridge to listen to
each packet that arrives on a port, and copy the source address in that packet’s
header to a database of hosts reachable from that port.
This learning bridge protocol works well, except when there are loops in the

graph of LANs and bridges. So we need to build a tree that connects all the
LANs without forming any cycles, the so-called spanning tree. Then there
is only one way to forward a packet from one device to another (unless you
traverse the same link multiple times). We will later see building multiple trees
for multicast overlay in P2P networks in Chapter 15.
If each link has a weight, say, the distance of the link, then finding the smallest

weight spanning tree is the well-studied graph-theoretic problem of minimum
spanning tree. If you can add extra intermediate nodes to shorten the total
distance in the tree, it is called the Steiner tree problem. It turns out that some
neurological networks in animals follow the principle of Steiner tree construction.
In this homework problem, we tackle a simpler and still important problem of

distributedly discovering a spanning tree. This protocol was invented by Perlman
in 1985. Like link state routing protocols, the spanning tree protocol we see below
is an example of achieving a globally consistent view of the topology through
only local interactions that eventually propagate throughout the network.
Consider a set of local area segments (each with some devices attached to it)

and bridges depicted in Figure 13.15. Clearly there are cycles in the given graph:

304 How does tra�c get through the Internet?

Figure 13.15 An example of local area networks connected by bridges. There are two
types of nodes in this graph: each local area network (a line with its hosts represented
as small circles) is a node, and each bridge (an oval) is also a node. The links in this
graph connect bridges with local area networks. If all the briges are used, the graph
becomes cyclic. Distributed spanning tree protocols discover an acyclic subgraph that
includes all the local area networks but not all the links.

we can go from one segment through other segments and back to itself without
going through a link twice. We want to determine a cycle-free way to provide
connectivity among all the segments. One way to arrive at a consistent spanning
tree is to have the bridge with the smallest ID number as the root of the tree, and
each of the other bridges reach this root bridge through the smallest-hop-count
path. That is easy, at least for such small networks, if we have a global view.
But how to do that distributedly, with message passing only between neighbors?
How do the nodes even agree on which bridge is the root of the tree?

One possibility is to ask each bridge to announce the following message, con-
sisting of three fields, during each time slot:

• ID of the bridge believed to be the root ID.

• Number of hops to reach that root bridge from this bridge.

• ID of this bridge.

Now, here come the questions:

(a) Initially, each bridge only has local information about itself. What are the
messages from the bridges in Figure 13.15?

(b) Upon receiving a message, each bridge selects the root bridge and discover
the way to reach it based on the following ordered list of criteria:

1. Lower ID number of a bridge wins and becomes he new root bridge as be-
lieved by this bridge.

13.4 Advanced Material 305

2. If there are multiple paths to reach the same root bridge, the path with the
smallest hop count wins.

3. If there are multiple equal-hop-count paths to reach the same root bridge,
the path sent to this bridge from a bridge with a smaller ID number wins.

Each bridge then updates the root bridge field of the message following rule
number 1 above, and increase the hop count by 1. Then it sends the new message
to its neighbors, except of course those neighbors that have a shorter path toward
the same root bridge.
Write down the evolution of the messages for the bridges in Figure 13.15. Does

it converge to a spanning tree?

(c) Even after convergence, the root bridge keeps sending the message once
every regular period. Why is that? Consider what happens when a bridge fails.

14 Why doesn’t the Internet collapse
under congestion?

14.1 A Short Answer

14.2 Principles of distributed congestion control

When demand exceeds supply, we have congestion. If the supply is fixed, we must
reduce demand to alleviate congestion. When demand comes from di↵erent nodes
in a network, we need to coordinate it in a distributed way. As the demand for
capacity in the Internet exceeds the supply every now and then, congestion
control becomes essential.

This was realized in October 1986, when the Internet had its first congestion
collapse. It took place over a short, 3-hop connection between Lawrence Berkeley
Lab and UC Berkeley. The normal throughput was 32 kbps (that is right, kbps,
not the Mbps numbers we hear these days). That kind of dial-up modem speed
was low enough, but during the congestion event, it dropped all the way down
to 40 bps, by almost a factor of 1000.

The main reason was clear as we saw from the last chapter on routing: when
users send so many bits per second that their collective load on a link exceeds
the capacity of that link, these packets are stored in a bu↵er and they wait in
the queue to be transmitted. But when that waiting becomes too long, more
incoming packets accumulate in the bu↵er until the bu↵er overflows and packets
get dropped. This is illustrated in Figure 14.1.

These dropped packets never reach the destination, so the intended receiver
never sends an acknowledgement (an ACK packet) back to the sender, as it
should do in the connection-oriented, end-to-end control in TCP. Internet
design evolution considered di↵erent divisions of labor between layers 3 and layer
4, eventually settling on a connection-oriented layer 4 and connectionless layer
3 as the standard configuration. According to TCP, the sender needs to resend
the unacknowledged packets. This leads to a vicious cycle, a positive feedback
loop that feeds on itself: as the same set of senders that caused congestion in
the first place keeps resending the dropped packets, congestion persists. Packets
keep getting dropped at the congested link, resent from the source, dropped at
the congestion link... Senders need to rethink how they can avoid congestion in
the first place, and they need to back o↵ when congestion happens. We need to
turn the positive feedback loop into a negative feedback loop.

14.2 Principles of distributed congestion control 307

Buffer Router

Link

1 Mbps

2 Mbps 2 Mbps

Dropped

Figure 14.1 An illustration of congestion at one end of a link. Two sessions arrive at
the bu↵er with an aggregate demand of 3 Mbps, but there is only a supply of 2 Mbps
in the outgoing link. The bu↵er is filled up and packets start to get dropped. Which
packets get dropped depends on the details of the queue management protocols.

That was what Van Jacobson proposed in the first congestion control mecha-
nism in 1988, called TCP Tahoe. It has been studied extensively since then, and
improved significantly several times. But most of the essential ideas in congestion
control for the Internet were in TCP Tahoe already:

• End-to-end control via negative feedback. We can imagine congestion control
within the network where, hop by hop, routers decide for the end hosts at
what rates they should send the packets. That is actually what another pro-
tocol, called Asynchronous Transmission Mode (ATM), does to one type
of its tra�c, the Arbitrary Bit Rate tra�c. But TCP congestion control
adopts the alternative approach of intelligent edge network and dumb core
network. The rate at which a sender sends packets is decided by the sender
itself. But the network provides hints through some feedback information
to the senders. Such feedback information can be inferred from the pres-
ence and timing of acknowledgement packets, transmitted from the receiver
back to the sender acknowledging the in-order receipt of each packet.

• Sliding-window-based control. If a sender must wait for the acknowledgement
of a sent packet before it is allowed to send another packet, it can be
quite slow. So we pipeline by providing a bigger allowance. Each sender
maintains a sliding window called the congestion window (cwnd). If the
window size is 5, that means up to 5 packets can be sent before the sender
has to pause, and wait for acknowledgement packets to come back from the
receiver. For each new acknowledgement packet received by the sender, the
window is slid one packet forward and enables the sending of a new packet,
hence the name “sliding window”. This way of implementing a restriction

308 Why doesn’t the Internet collapse under congestion?

g

Slide

Slide

Receive
ACK

Receive
ACK

Transit
Buffer

Send

t

1 2 3

1 2 3

1 2 3
Send

Figure 14.2 An illustration of a sliding window of size 3. When three packets are
outstanding, i.e., have not been acknowledged, transmission has to pause. As each
acknowledgement is received, the window is slid by one packet, allowing a new packet
to be transmitted.

on transmission rate introduces the so-called self-clocking property driven
by the acknowledgement packets. A picture illustrating the sliding-window
operation is shown in Figure 14.2.

• Additive increase and multiplicative decrease. We will not have the time to
discuss the details of how the cwnd value is initialized as a new TCP con-
nection is established, during the so-called slow start phase. We focus on
the congestion avoidance phase instead. If there is no congestion, cwnd
should be allowed to grow, to e�ciently utilize link capacities. Increasing
the cwnd value is di↵erent from sliding the window under the same given
cwnd value: cwnd becomes larger in addition to getting slid forward. And in
TCP, when cwnd grows, it grows linearly : cwnd is increased by 1/cwnd upon
receiving each acknowledgement. That means over 1 round trip time, cwnd
grows by 1 if all ACKs are properly received. This operation is shown in
the space-time graph in Figure 14.3. But if there is congestion, cwnd should
be reduced so as to alleviate congestion. And TCP says when cwnd is cut,
it is cut multiplicatively : cwnd next time is, say, half of its current value. In-
creasing cwnd additively and decreasing it multiplicatively means that the
control of packet injection into the network is conservative. It would have
been much more aggressive if it were the other way around: multiplicative
increase and additive decrease.

• Infer congestion by packet loss or delay. But how do you know if there is
congestion? If you are an iPhone running a TCP connection, you really
have no idea what the network topology looks like, what path your packets
are taking, which other end hosts share links with you, and which links

14.2 Principles of distributed congestion control 309

Sender Receiver
Packet

RTT

cwnd=4

cwnd=2

Network

ACK

Figure 14.3 The space-time diagram of TCP packets being sent and acknowledged.
The horizontal distance between the two vertical lines represents the spatial distance
between the sender and the receiver. The vertical axis represents time. As two
acknowledgements are received by the sender, the congestion window is not only slid,
but also increased by 1.

along the path are congested. You only have a local and noisy view, and
yet you have to make an educated guess: is your connection experiencing
congestion somewhere in the network or not? The early versions of TCP
congestion control made an important assumption: if there is a packet loss,
there is congestion. This sounds reasonable enough, but sometimes packet
loss is caused by a bad channel, like in wireless links, rather than congestion.
In addition, often it is a little too late to react to congestion by the time
packets are already getting dropped. The first problem has been tackled by
many proposals of TCP for wireless. The second problem is largely solved
by using packet delay as the congestion feedback signal. Instead of a binary
definition of congestion or no congestion, delay value implies the degree of
congestion.

• Estimate packet loss and delay by timers. Assuming that you agree packet loss
or delay implies congestion, how can you tell if a packet is lost and how do
you calculate delay? TCP uses two common sense approximations. (1) If the
sender waits for a long time and the acknowledgement does not come back,
probably the packet is lost. How long is a “long time?” Say this timeout
timer is 3 times the normal round trip time (RTT) between the sender
and the receiver. And what is the “normal” RTT? The sender timestamps
each packet, and can tell the RTT of that packet once the acknowledgement
is received at a later time. This is how the sender calculates delay for each
packet. Then it can calculate a moving-averaged RTT. (2) Each packet
sent has a sequence number, and if the sender hears from the receiver

310 Why doesn’t the Internet collapse under congestion?

that several, say three, later packets (numbered 10, 11, and 12) have been
received but this particular packet 9 is still missing, that probably means
packet 9 is lost. Packet 9 may have traversed a di↵erent path with a longer
RTT (as discussed in IP routing in the last chapter), but if as many as
three later packets already arrived, chances are that packet 9 is not just
late but lost.

As mentioned in the last chapter, TCP/IP is the “thin waist” of the Internet
layered protocol stack. It glues the functional modules below it, like the physical
and link layers, to those above it, like the application layer. There are alterna-
tives to TCP in this thin waist, such as the connectionless UDP that does not
maintain an end-to-end feedback control. As part of that thin waist, the above
five elements of congestion control design in TCP lead to a great success. The
reason the Internet has not collapsed, despite the incredible and unstoppable
surge of demand, is partially attributable to its congestion control capability.
Starting with TCP Tahoe in 1988 and its slightly modified variant TCP

Reno in 1990, TCP congestion control had gone through twenty years of im-
provement. For example, TCP Vegas in 1995 shifted from a loss-based conges-
tion signal to a delay-based congestion signal. FAST TCP in 2002 stabilized
congestion control to achieve high utilization of link capacity. CUBIC in 2005
combined loss- and delay-based congestion signals, and is now the default TCP
in the Linux kernel. There have also been many other variants of TCP congestion
control proposed over the past two decades.
If you think about it, for end-to-end congestion control without any message

passing from the network, an end host (like a laptop) really has very little to
work with. Estimates of packet loss and calculations of packet delay are pretty
much the only two pieces of information it can obtain through time-stamping
and numbering the packets.

14.2.1 Loss-based congestion inference

For loss-based congestion control like TCP Reno, a major TCP variant especially
for the Windows operating system, the main operations are:

• If all the w outstanding packets are received at the receiver properly (i.e., in
time and not out-of-order more than twice), increase cwnd window size by
1 each RTT, e.g., from w to w + 1.

• Otherwise, decrease it by cutting in half, e.g., from w to w/2.

There are also other subtle features like Fast Retransmit and Fast Recovery that
we will not have time to get into.
Let us look at an example. For simplicity, let RTT = 1 unit, and assume it is

a constant. Actually, RTT is about 50ms across the USA and varies as conges-
tion condition changes. Initialize cwnd 5. Suppose all packets are successfully

14.2 Principles of distributed congestion control 311

0 1 2 3 4 5 6 7
0

2

4

6

8

Time (s)

cw
n
d Figure 14.4

Zoomed-in
view of cwnd
evolution over
time for TCP
Reno, with
RTT=1 unit
of time.

received and acknowledged (ACK) during each RTT, except at t = 4, when a
packet loss occurs.
At t = 0, cwnd=5, so the sender sends 5 packets and pauses.
At t = 1, the sender has received 5 ACKs, so it slides the congestion window

by 5 packets and increases cwnd by 1. It sends 6 packets.
At t = 2, the sender has received 6 ACKs, so it sends 7 packets.
At t = 3, the sender has received 7 ACKs, so it sends 8 packets.
At t = 4, the sender detects a lost packet. It halves cwnd to 4, and sends 4

packets.
At t = 5, the sender has received 4 ACKs, so it sends 5 packets.
At t = 6, the sender has received 5 ACKs, so it sends 6 packets...
Figure 14.4 shows these values of cwnd over time. When there was no packet

loss (t = 0, 1, 2, 3), cwnd grew linearly. When the packet loss occurred (t = 4),
cwnd decreased sharply, then began growing linearly again (t = 5, 6).
Zooming out, Figure 14.5(a) shows a typical evolution of TCP Reno’s cwnd

over time. The y-axis is the congestion window size. If you divide that by RTT
and multiply it by packet size, you get the actual transmission rate in bps.

14.2.2 Delay-based congestion inference

Now we turn to delay-based congestion control like TCP Vegas. We first have
to appreciate that the total RTT is mostly composed of both propagation
delay, the time it takes to just go through the links, and queuing delay, the
time a packet spends waiting in the queue due to congestion. The heavier the
congestion, the longer the wait. So the sender needs to estimate RTTmin, the
minimum RTT that tells the sender what the delay value should be if there is
(almost) no congestion.
Then, upon receiving each acknowledgement, the sender looks at the di↵erence

between w/RTTmin and w/RTTnow. It is the di↵erence between the transmission
rate (in packets per second) without much congestion delay and that with the
current congestion delay.

312 Why doesn’t the Internet collapse under congestion?

p j y

cwnd

t

cwnd

t

Figure 14.5 Typical evolution of cwnd values in TCP Reno and TCP Vegas. TCP
Reno uses loss as the congestion signal whereas TCP Vegas uses delay as the
congestion signal. The zigzags between overshooting and under-utilizing capacity
tends to be smaller in Vegas if the parameters are properly tuned.

• If this di↵erence is smaller than a prescribed threshold, say 3, that means
there is little congestion, and cwnd is increased by 1.

• If the di↵erence is larger than the threshold, that means there is some con-
gestion, and cwnd is decreased by 1.

• If the di↵erence is exactly equal to the threshold, cwnd stays the same.

• If all sources stop adjusting their cwnd values, an equilibrium is reached.

We can compare this congestion control with the power control in Chapter 1:
at the equilibrium everyone stops changing its variable simultaneously. We would
like to know what exactly is the resource allocation at such an equilibrium, and
if it can be reached through some simple, iterative algorithm.
Figure 14.5(b) shows a typical evolution of TCP Vegas’ cwnd over time. You

can see that the zigzag between a rate that is too aggressive (leading to con-
gestion) and an overly conservative a rate (leading to under-utilization of link
capacities) can be reduced, as compared to TCP Reno. Using delay as a contin-
uous signal of congestion is better than using only loss as a binary signal, and
we will see several arguments for this observation in the next section.

14.3 A Long Answer

Whether distributedly like TCP or through a centralized command system, any
protocol trying to control congestion in a network must consider this fundamental
issue: each link l’s fixed capacity cl is shared by multiple sessions, and each of
these end-to-end sessions traverses multiple links. We assume each source i has
one session and uses a single path routing. So, “flows,” “sessions,” and “sources”

14.3 A Long Answer 313

p gy

A

B
C

1 3 4

2

Figure 14.6 A simple network with 4 links and 3 sessions. Sessions A and B share link
1, and sessions A and C share link 4. Constrained by the fixed capacities on the four
links, it is not trivial to design a distributed algorithm that allocates the capacities in
an e�cient and fair way among the three competing sessions.

are interchangeable terms here. Each link l is shared by a set of sessions S(l),
and each session i uses a set of links L(i) along its path decided by IP routing.

Consider the simple example in Figure 14.6. As we will see in Chapter 19, it
is often accompanied by control signaling that traverses other paths too. Some-
times, the contents of one session also reside at di↵erent locations, e.g., adver-
tisements on a webpage need to be downloaded from a di↵erent server than the
actual content of the webpage. We ignore these factors here.

In this graph, session A originating from node 1 traverses links 1, 3 and 4.
And link 1 is shared by sessions A and B. Even when link 3 is not fully utilized,
we cannot just increase session A’s rate since the bottleneck link for that session
may be link 1.

How can we allocate each link’s capacity so that the sessions collectively use
as much capacity as they can without causing congestion, and their competition
is fairly coordinated? A capacity allocation must first be feasible under the link
capacity constraints, and then, also be e�cient and fair.

In Figure 14.6, consider each link’s capacity as 1 Mbps. One feasible solu-
tion that satisfies all four links’ capacity constraints, thus a feasible solution,
is [0.5, 0.5, 0.5] for the three sessions A, B, and C. In this equal distribution of
end-to-end rates, the e�ciency of link capacity utilization is 3 Mbps across all
the links. For the same capacity utilization, another feasible solution is [1, 0, 0],
which starves sessions B and C, and probably is not viewed as a fair allocation. It
turns out a standard notion of fairness, called proportional fairness, would give
the allocation [1/3, 2/3, 2/3] to the three competing sessions. This may make
intuitive sense to some people, as session A traverses two links that are potential
bottlenecks.

Now we need to write down the problem statement more precisely. We will
call this optimization the basic Network Utility Maximization (NUM) prob-

314 Why doesn’t the Internet collapse under congestion?

lem. It is a networked version of the social welfare problem in Chapter 11. We
will soon present a distributed solution to this problem in this section, leaving
the derivation steps to Advanced Material. Then we will show that TCP Reno
and TCP Vegas actually can be reverse-engineered as solutions to specific NUM
problems.

14.3.1 Formulating NUM problem

We need to address two issues in modeling congestion control: how to measure
e�ciency and fairness, and how to capture capacity constraint?

How do we measure e�ciency and fairness? We use the utility functions intro-
duced in Chapter 11. We then sum up each individual TCP session’s utility to
the end user. We model utility as a function of the end-to-end transmission rate
of a TCP session here, since we are only adjusting these rates and we assume
the application’s performance only depends on this rate. Fairness may also be
captured by some of these utility functions, like the ↵-fair utility functions.

How do we represent the link capacity constraint? On each link l, there’s a
limited capacity cl in bps. The load must be smaller than cl. There are several
ways to express the load on a link in terms of the variable transmission rates at
the sources and the given routing decisions.

We can write the load on link l as the sum of source rates xi across those sources
using this link:

P
i2S(l) xi. Or, we can use Rli as a binary-valued indicator, so

that Rli = 1 if source i’s session traverses link l, and Rli = 0 otherwise. Then
the load on link l is simply

P
i Rlixi. In this notation, you can readily see that

the constraints

X

i

Rlixi cl, 8l, (14.1)

are equivalent to the following linear inequalities in a matrix notation:

Rx c, (14.2)

where between two vectors means component-wise between the correspond-
ing entries of the vectors.

For example, in the network topology in Figure 14.6, the link capacity con-
straint in matrix form becomes

0

BB@

1 1 0
0 1 0
1 0 0
1 0 1

1

CCA

0

@
xA

xB

xC

1

A

0

BB@

c
1

c
2

c
3

c
4

1

CCA .

14.3 A Long Answer 315

14.3.2 Distributed algorithm solving NUM

Now we have completely specified the link capacity allocation problem that pre-
scribes what congestion control should be solving:

maximize
P

i Ui(xi)
subject to Rx c
variables xi � 0, 8i.

(14.3)

We refer to this problem as the basic NUM problem. (14.3) is easy to solve for
several reasons:

• It is a convex optimization problem, as defined in Chapter 4. More precisely,
this time it is maximizing a concave utility function (the sum of all ses-
sions’ utilities) rather than minimizing a convex cost function. Therefore,
it enjoys all the benefits of being convex optimization: a locally optimal
solution is also globally optimal, the duality gap is zero (under some tech-
nical condition satisfied here), and it can be solved very e�ciently in a
centralized computer.

• It is also decomposable. Decomposition here refers to breaking up one op-
timization problem into many smaller ones, somehow coordinated so that
solving them will be equivalent to solving the original one. Why would we
be interested in having many problems instead of just one? Because such
a decomposition leads to a distributed algorithm. Each of these smaller
problems is much easier to solve, often locally at each node in a network.
And if their coordination can be done without explicit message passing, we
have a truly distributed way to solve the problem.

Postponing the derivation of decomposition to Advanced Material, we have
the following solution to (14.3), consisting of source actions and router actions.
At each of the discrete time slots [t], the source of each session simply decides

its transmission rate from its demand function, with respect to the current price
along its path. This path price qi is the sum of link prices pl along all the links
this session traverses: qi =

P
l2L(i) pl.

xi[t] = Di(qi[t]) = U
0�1(qi[t]). (14.4)

Of course, in a sliding window based implementation, the source adjusts its
window size cwnd rather than xi directly. The path price serves as the congestion
feedback signal from the network. We hope it can be obtained without explicit
message passing in actual implementations.
At the same time, the router on each link l updates the “price” on that link:

pl[t] = {pl[t� 1] + � (yl[t]� cl)}+ , (14.5)

where yl is the total load on link l: yl[t] =
P

i2S(l) xi[t]. And {. . .}+ simply says
that if the expression inside the bracket takes on negative value, then just return
0. In this case, it means that link price is never allowed to be negative. This is

316 Why doesn’t the Internet collapse under congestion?

Sources Links

Network

Network

1
2

3

1
2

3

x y

q p

Figure 14.7 The feedback control loop in the distributed solution of NUM. Each
source autonomously adapts its window size (or, transmission rate xi) based on the
path congestion price feedback qi, while each link autonomously adapts its congestion
price pl based on its own load yl.

an interpretation in the language of pricing, not actual money changing hands
between network entities like in Chapters 11 and 12. Parameter � � 0 is the
stepsize that controls the tradeo↵ between a convergence guarantee and the
convergence speed. Think about playing golf: if you hit the ball too hard, even
in the right direction, it will fly by the hole, and you will have to hit backward
again. Stepsize is like the magnitude of your force. If it is su�ciently small, the
above algorithm is guaranteed to converge, and converge to the right solution to
(14.3). If it is too small, the guaranteed convergence becomes too slow. In real
systems, tuning this parameter is not easy.

The feedback loop in the pair of equations (14.4,14.5) is illustrated in Figure
(14.7) . It makes sense from an economic stanpoint. If at time t, there is more load
than there is capacity on link l, then price pl will go up according to (14.5), and
the price for all paths containing link l will rise, in the next timeslot t+1. Higher
price will reduce demand according to (14.4), and xi will drop at all sources that
use link l, helping to restore the balance between demand and supply on link l.
This pricing signal balances the elastic demand and the fixed supply of capacities.
What is interesting is that it carries out this task distributedly through a network
consisting of many links and sessions. Mathematically, these link prices turn out
to be the variables in a “mirror image” of the basic NUM problem: the variables
in the Lagrange dual problem of NUM.

The above algorithm not only solves the basic NUM (for proper �), but solves
it in a very nice way: fully distributed and intuitively motivated.

• As clearly shown in (14.5), each link only needs to measure its own total load.

14.3 A Long Answer 317

It does not need to know any other link’s condition, nor even the load
coming from each of the sources using it.

• As clearly shown in (14.4), each source only needs to know the total price
along the path it is using. It does not need to know any other path or
source’s condition, nor even the price per link along the path that it is
using. If the path price qi can be measured locally at each source i without
explicit message passing, this would be a completely distributed solution.
That is the case for using packet losses as the price in TCP Reno, and
packet delays as the prices in TCP Vegas.

14.3.3 Reverse engineering

At this point, it might feel like the first section of this chapter and the current
section are somehow disconnected. Are the TCP congestion control protocols
implemented in the real world related to the distributed solution of the basic
NUM problem? Roughly a decade after the first TCP congestion control pro-
tocol was invented, researchers reverse engineered these protocols and showed
that they actually can be interpreted, approximately, as solutions to NUM. If
you describe a protocol to me, I can tell you what is the utility function being
implicitly maximized and what are the price variables.
For example, it turns out that TCP Reno implicitly maximizes arctan utilities,

with packet losses as the price. And TCP Vegas implicitly maximizes logarithmic
utilities, with packet delays as the price. In Advanced Material, we will present
the derivation in the case of TCP Reno, and a similar derivation is in a homework
problem for TCP Vegas.
Reverse engineering presents a peculiar viewpoint: give me the solution

and I will tell you what is the problem being solved by this solution. You might
wonder why I would care about the problem if I already have the solution? Well,
discovering the underlying problem being solved provides a rigorous understand-
ing on why the solution works, when it might not work, and how to make it work
better. It also leads to new designs: forward engineering based on insights from
reverse engineering.
Here is an example of the implications on the properties of TCP derived from

reverse engineering. Since TCP Reno implicitly solves NUM with arctan utility,
we know that the equilibrium packet loss rate, i.e., the optimal dual variables,
cannot depend on parameters that do not even show up in NUM. In particular, if
we double the bu↵er size, it will not help reduce the equilibrium packet loss rate,
since bu↵er size does not appear in the NUM problem (14.3). Intuitively, what
happens is that increasing bu↵er size simply postpones the onset of congestion
and packet loss.
Here is another example: since TCP Vegas is reverse engineered as a solution

to log utility maximization, it leads to a proportionally fair allocation of link
capacities. Of course, that does not guarantee TCP Vegas will converge at all.
But if it does converge, we obtain proportional fairness.

318 Why doesn’t the Internet collapse under congestion?

In addition to the mentality of reverse engineering, we have introduced two
important themes in this chapter, themes that run beyond just TCP congestion
control in the Internet:

• Feedback signal can be generated and used in a network for distributed coor-
dination. Selfish interests of the users may be aligned with pricing signals
to achieve a global welfare maximization. In some cases, the pricing sig-
nals do not even require explicit message passing, an additional benefit not
commonly found in general.

• A network protocol can be analyzed and designed as a control law. Proper-
ties of Internet protocols can be analyzed through the trajectories of the
corresponding control law. This might sound straightforward once it has
been stated, but it was an innovative angle when first developed in the
late 1990s, and opened the door to thinking about network protocols not
just as bottom-up, trial-and-error solutions, but also as the output of a
first-principled, top-down design methodology.

14.4 Examples

Consider the network shown in Figure 14.6 again. The routing matrix, where the
rows are the links and the columns are the sources, is

R =

2

664

1 1 0
0 1 0
1 0 0
1 0 1

3

775 .

Assume the capacity on all links is 1 Mbps and the utility function is a log
function for all sources, i.e., Ui(xi) = log xi. Our job is to find the sending rate
of each source: xA, xB , xC . The NUM problem is formulated as:

maximize log(xA) + log(xB) + log(xC)

subject to

2

664

1 1 0
0 1 0
1 0 0
1 0 1

3

775

2

4
xA

xB

xC

3

5

2

664

1
1
1
1

3

775 ,

xi � 0, 8 i.

(14.6)

Recall that the source rates and the link prices converge to the distributed
solution to the NUM problem by the following iterative updates:

xi[t] = U
0�1(qi[t]) =

1

qi[t]
(14.7)

pl[t] = {pl[t� 1] + �(yl[t]� cl)}+ , (14.8)

14.4 Examples 319

where qi is the path price seen by source i (we step over the time index here),
and yl is the total load on link l:

qi[t] =
X

l2L(i)

pl[t� 1]

yl[t] =
X

i2S(l)

xi[t].

Let us initialize the source rates to 0 and the link costs to 1, i.e., xA[0] =
xB [0] = xC [0] = 0 and p

1

[0] = p
2

[0] = p
3

[0] = p
4

[0] = 1. Let stepsize � = 1.

At t = 1, we first update the source rates. Since

qA[1] = p
1

[0] + p
3

[0] + p
4

[0] = 1 + 1 + 1 = 3

qB [1] = p
1

[0] + p
2

[0] = 1 + 1 = 2

qC [1] = p
4

[0] = 1,

we have, in Mbps,

xA[1] =
1

qA[1]
= 0.333

xB [1] =
1

qB [1]
= 0.5

xC [1] =
1

qC [1]
= 1.

We then update the link prices. Since the link loads are, in Mbps,

y
1

[1] = xA[1] + xB [1] = 0.333 + 0.5 = 0.833

y
2

[1] = xB [1] = 0.5

y
3

[1] = xA[1] = 0.333

y
4

[1] = xA[1] + xC [1] = 0.333 + 1 = 1.33,

we have

p
1

[1] = [p
1

[0] + y
1

[1]� c]+ = [1 + 0.833� 1]+ = 0.833

p
2

[1] = [p
2

[0] + y
2

[1]� c]+ = [1 + 0.5� 1]+ = 0.5

p
3

[1] = [p
3

[0] + y
3

[1]� c]+ = [1 + 0.333� 1]+ = 0.333

p
4

[1] = [p
4

[0] + y
4

[1]� c]+ = [1 + 1.33� 1]+ = 1.33.

At t = 2, we update the source rates. Since

qA[2] = p
1

[1] + p
3

[1] + p
4

[1] = 0.833 + 0.333 + 1.33 = 2.5

qB [2] = p
1

[1] + p
2

[1] = 0.833 + 0.5 = 1.33

qC [2] = p
4

[1] = 1.33,

320 Why doesn’t the Internet collapse under congestion?

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

S
o

u
rc

e
 R

a
te

Iteration

source 1

source 2

source 3

Figure 14.8
Source rates
converge over
time in a
congestion
control
example.

we have, in Mbps,

xA[2] =
1

qA[2]
= 0.4

xB [2] =
1

qB [2]
= 0.75

xC [2] =
1

qC [2]
= 0.75.

We then update the link prices. Since the link loads are, in Mbps,

y
1

[2] = xA[2] + xB [2] = 0.4 + 0.75 = 1.15

y
2

[2] = xB [2] = 0.75

y
3

[2] = xA[2] = 0.4

y
4

[2] = xA[2] + xC [2] = 0.4 + 0.75 = 1.15,

we have

p
1

[2] = [p
1

[1] + y
1

[2]� c]+ = [0.833 + 1.15� 1]+ = 0.983

p
2

[2] = [p
2

[1] + y
2

[2]� c]+ = [0.5 + 0.75� 1]+ = 0.25

p
3

[2] = [p
3

[1] + y
3

[2]� c]+ = [0.333 + 0.4� 1]+ = 0

p
4

[2] = [p
4

[1] + y
4

[2]� c]+ = [1.33 + 1.15� 1]+ = 1.48.

These iterations continue. We plot their evolution over time in Figures 14.8
and 14.9.
We see that an equilibrium is reached after about 10 iterations. At this point,

the source rates are:

x⇤A = 0.33 Mbps

x⇤B = 0.67 Mpbs

x⇤C = 0.67 Mbps.

14.5 Advanced Material 321

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

L
in

k
 C

o
s
t

Iteration

link 1

link 2

link 3

link 4

Figure 14.9
Link prices
converge over
time in a
congestion
control
example.

It makes sense that, for proportional fairness, the session that takes up more net-
work resources is given a lower rate: session 1 traverses twice as many bottleneck
links and receives half as much the allocated rate.
As a sanity check, let us make sure that the equilibrium values satisfy the

constraints in (14.6). Obviously, all the x⇤i are non-negative. To check the link
capacity constraint, we see that

2

664

1 1 0
0 1 0
1 0 0
1 0 1

3

775

2

4
xA

xB

xC

3

5 =

2

664

1 1 0
0 1 0
1 0 0
1 0 1

3

775

2

4
0.33
0.67
0.67

3

5 =

2

664

1
0.67
0.33
1

3

775

2

664

1
1
1
1

3

775 .

At equilibrium, the link prices are:

p⇤
1

= 1.5

p⇤
2

= 0

p⇤
3

= 0

p⇤
4

= 1.5.

It makes sense that links 2 and 3 have 0 price at equilibrium, since their ca-
pacity is not fully utilized, as constrained by the way the sessions are routed.
Conversely, links 1 and 4 have strictly positive prices at equilibrium, and by the
complementary slackness property in Advanced Material, we know that their
link capacities must be fully utilized, i.e., links 1 and 4 are the bottleneckes.

14.5 Advanced Material

14.5.1 Decomposition of NUM

In this subsection, we derive the solution (14.4, 14.5) to the basic NUM problem
(14.3). The objective function is already decoupled across the sessions indexed

322 Why doesn’t the Internet collapse under congestion?

by i: each term Ui in the sum utility only depends on the rate xi for that session
i. So we just need to decouple the constraints. It is precisely this set of linear
capacity constraints that couples the sessions together through the given routing
matrix R.
The decomposition method we will use is called dual decomposition, since it

actually solves the Lagrange dual problem of NUM. Given any optimization
problem, we can derive a “mirror” problem called the dual problem. Sometimes
the dual problem’s optimized objective function value equals that of the original
primal problem. And at all times, it provides a performance bound to that of
the original problem. The dual problem can sometimes be solved much faster,
and in our case, solved in a distributed way.
The first step in deriving the Lagrange dual problem is to write down the

Lagrangian: the sum of the original objective function and a weighted sum of
the constraints (cl �

P
i2S(l) xi � 0). The positive weights are called Lagrange

multipliers p, interpreted as the link prices:

L(x,p) =
X

i

Ui(xi) +
X

l

pl

0

@cl �
X

i2S(l)

xi

1

A .

The intuition is that we change a constrained optimization to a much easier,
unconstrained one, by moving the constraints up to augment the objective func-
tion. The hope is that if we set the right weights p, we can still get the original
problem’s solution.
Next, we group everything related to the variables x together, in order to try

to extract some structure in the Lagrangian:

L(x,p) =
X

i

Ui(xi)�
X

l

X

i2S(l)

plxi +
X

l

clpl.

Now suddenly something almost magical happens: we can rewrite the double
summation above by reversing the order of summation: first sum over l for a given
i and then sum over all i, which allows us to rewrite the part of L involving the
rate variables x as follows:

L(x,p) =
X

i

2

4Ui(xi)�

0

@
X

l2L(i)

pl

1

Axi

3

5+
X

l

clpl.

For example, for the network in Figure 14.6, we have L(xA, xB , xC , p1, p2, p3, p4) =

UA(xA)�(p1+p
3

+p
4

)xA+UB(xB)�(p1+p
2

)xB+UC(xC)�p4xC+c
1

p
1

+c
2

p
2

+c
3

p
3

+c
4

p
4

.

We denote the path price (the sum of prices along the links used by session i) as
qi, so qi =

P
l2L(i) pl. Then we have a decomposed Lagrangian: the maximization

over x can be independently carried out by each source i (see the square bracket
within

P
i below):

L(x,p) =
X

i

[Ui(xi)� qixi] +
X

l

clpl.

14.5 Advanced Material 323

Primal Problem

Duality Gap

Dual Problem

Upper
bounds

d*

p*

Figure 14.10 Suppose we have a maximization problem, which we will call the primal
problem, with an optimized objective function’s value p

⇤. There is a corresponding
Lagrange dual problem, which is a minimization problem, with an optimized
objective function’s value d

⇤. Any feasible solution in the dual problem generates an
upper bound on the primal problem’s p⇤. That is called weak duality. The tightest
bound is d⇤, which may still have a gap from p

⇤. If there is no gap, as is the case
when the primal problem is convex optimization and satisifes some technical
conditions, we say the strong duality property holds.

Suppose now we maximize the Lagrangian over the original variables x. This
was our plan in the first place: to turn a constrained optimization into an un-
constrained one. Of course the maximizer and the maximized L value depend on
what Lagrange multipliers p we used. So, we have to denote the resulting value
as a function of p:

g(p) = max
x

L(x,p).

This function g(p) is called the Lagrange dual function.

It turns out that no matter what p we use (as long as they are non-negative),
g(p) is always a performance bound. It is an upper bound on the maximum
U⇤ =

P
i Ui(x⇤i) of the original NUM problem. This is easy to see. Consider

the maximizer of the NUM problem x⇤. It must be a feasible vector, and p is
non-negative. So the Lagrangian L must be larger than U⇤ when x = x⇤. Since
the Lagrange dual function g is the largest Lagrangian over all x, it must also be
larger than U⇤. This is called the weak duality property, which actually holds
for all optimization problems.

How about we tighten this bound g(p), by picking the best p? We call the
resulting problem the Lagrange dual problem, and give the name Lagrange dual
variables to p now:

minimize
p

g(p),

324 Why doesn’t the Internet collapse under congestion?

As illustrated in Figure 14.10, if this tightening generates the exact answer
to the original optimization, we say the optimal duality gap is zero, and the
property of strong duality holds. Together with some technical conditions, the
original problem being a convex optimization problem is a su�cient condition
for strong duality to hold. This is another reason why convex optimization is
easy.
Applying the above dual decompositionmethod of breaking up one problem

into many smaller problems to NUM, we see that the first step is maximizing
over x for a given p. This is nothing but net utility maximization we saw in
Chapter 11, selfishly and distributedly carried out at each source now:

x⇤i (p) = argmax[Ui(xi)� qixi].

We obtain exactly (14.4).
The second step, minimizing the Lagrange dual problem’s objective function

g(p) = L(x⇤(p),p), over p, can be carried out by the gradient method. Go down
along the direction of the negative gradient with a stepsize �, as illustrated in
Figure 14.11:

p[t+ 1] = p[t]� � (Gradient of g(p) at p[t]) .

It turns out that for a linearly constrained, concave maximization problems
like NUM, the constraint function itself cl �

P
i2S(l) xi = cl � yl is the gradient

for each pl. So all we need to do is to multiply the gradient with a stepsize �
(and then make sure it is never negative):

pl[t] =

8
<

:pl[t� 1]� �

0

@cl �
X

i2S(l)

x⇤i (p)

1

A

9
=

;

+

,

which is exactly (14.5).
Since strong duality holds for NUM, solving the Lagrange dual problem is

equivalent to solving the original problem. This concludes the derivation of
(14.4,14.5) as a distributed solution algorithm to (14.3).
These optimized primal variables (the rate vector x⇤) and dual variables (the

link price vector p⇤) also satisfy other useful properties, including the following
complementary slackness property. If primal constraint l is slack:

P
i2l x

⇤
i <

cl, the corresponding optimal dual variable p⇤l (the optimal link congestion price)
must be 0, i.e., the non-negativity constraint in the dual problem is not slack.
Conversely, if the optimal link congestion price p⇤l > 0 for some link l, we must
have

P
i2l x

⇤
i = cl, i.e., link l is a bottleneck link at equilibrium.

14.5.2 Reverse engineering

We mentioned earlier that if you give me a TCP congestion control protocol, I
can return to you a NUM problem implicitly solved by it, with the utility function
completely specified, where the source rates (or window sizes) are the variables,

14.5 Advanced Material 325

negative
gradient

(X1, X2)
β

Figure 14.11 Suppose we want to minimize a function of two variables shown here.
The gradient algorithm moves from the current point along the direction of the
negative gradient of the function, with a certain stepsize �. Sometimes, the gradient
can be computed distributively.

and the pricing signals are the Lagrange dual variables. We now illustrate the
main steps in this reverse engineering approach for TCP Reno.
The first step in the derivation is to write down the evolution of cwnd size

w as specified by the given protocol. Each time an in-order acknowledgement
is received at the source, the window size grows by 1/w above its current size.
Therefore, if every packet is properly received, the window size increases by 1
after one RTT. But each time a packet loss is detected, the window size is halved.
Therefore, the net change to the window size w[t] is:

x[t](1� q[t])
1

w[t]
� x[t]q[t]

w[t]

2
, (14.9)

where we omitted the subscript i for notational simplicity.
Now let RTT be d and assume it is constant (even though it obviously varies

in time depending on the congestion condition). Since x = w/d, (14.9) leads to
the following di↵erence equation:

x[t+ 1] = x[t] +
1� q[t]

d2
� 1

2
q[t]x2[t].

By definition of equilibrium, x does not change anymore at an equilibrium,
which means 1�q

d2 = 1

2

qx2. This equilibrium condition gives us an equation con-
necting q with x:

q =
2

x2d2 + 2
.

From the demand function definition, we know U 0i(xi) = qi. So, if we integrate

326 Why doesn’t the Internet collapse under congestion?

the above expression in x, we recover the utility function:

U(x) =

p
2

d
arctan(

p
1/2xid). (14.10)

In summary, TCP Reno’s equilibrium solves NUM with arctan utility, with
the help of packet loss as the Lagrange variables. We can also verify that com-
plementary slackness is satisfied: if a primal constraint is slack, i.e., the demand
is strictly less than the capacity on a link at equilibrium, there will be neither
loss nor queuing delay. Conversely, if a dual constraint is slack, i.e., there is loss
or queuing delay on a link, its capacity must be fully utilized.
Now, the packet loss rate q along a path is not actually equal to the sum of

loss rates on the links along the path. It is 1 �
Q

l(1 � pl), i.e., 1 minus the
probability that no packet is lost on any link. But when the loss rate is small,P

l2L(i) pl ⇡ qi holds pretty well as an approximation. More seriously, TCP
Reno might not converge. Its equilibrium behavior may be desirable, but an
equilibrium may never be reached.
We have made quite a few other assumptions implicitly along the way:

• focusing only on equilibrium behavior,

• ignoring the actual queuing dynamics inside the queues,

• forgetting about the propagation delay it takes for packets and acknowledge-
ments to travel through the network,

• assuming that there is a fixed set of sessions sharing the network capacities,
each going on forever.

Many of these assumptions have been taken away and stronger results obtained
over the years. What is somewhat surprising is that, even with some of these
assumptions, the theory prediction from the NUM analysis works quite well
when compared to actual TCP operations.
Further, the optimization model of congestion control has lead to forward en-

gineering of new TCP variants that are provably stable. Stability here means
that the trajectory of a protocol’s variables converges to the desired equilib-
rium, such as the solution to a NUM with a properly chosen utility function. In
fact, some of these variants have been demonstrated in real-life experiments and
then commercialized, including FAST TCP for long-distance and large-volume
transmissions, and CUBIC, the default TCP in the Linux kernel.

Further Reading

Congestion control models and design have been an active research area in net-
working for more than 20 years.

1. A standard reference book on TCP/IP is:
[Ste94] W. R. Stevens, TCP/IP Illustrated, Vol. 1: The Protocols, Addison

14.5 Advanced Material 327

Wesley, 1994.

2. The control dynamic system viewpoint, the optimization model, and the
pricing interpretation of TCP were pioneered by Kelly in the late 1990s:
[KMT98] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communica-

tion networks: Shadow prices, proportional fairness, and stability,” Journal of
the Operational Research Society, vol. 49, pp. 237-252, 1998.

3. Reverse engineering TCP protocols into NUM models has been summarized
in the following article:
[Low03] S. H. Low, “A duality model of TCP and queue management system,”

IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp. 525-536, 2003.

4. The following monograph summarized the major results in congestion con-
trol modeling up to 2004, including stochastic session arrivals and departures:
[Sri04] R. Srikant, The Mathematics of Internet Congestion Control, Berkhauser,

2004.

5. Generalizing the modeling approach we saw in this chapter to “layering as
optimization decomposition” was surveyed in the following article:
[Chi+07] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering

as optimization decomposition: A mathematical theory of network architecture,”
Proceedings of the IEEE, vol. 95, no. 1, pp. 255-312, 2007.

Problems

14.1 A numerical example of NUM ??

Suppose we have the network shown in Figure 14.1, with links labeled and two
sessions as shown.

A

B C

D

3

4

2

1

session 1

session 2

Figure 14.12 A small network for a numerical example of NUM.

328 Why doesn’t the Internet collapse under congestion?

(a) Write down the routing matrix A.

(b) Run a simulation for 10 time steps to solve the NUM using the link price
and source rate updates in (14.4) and (14.5). The utility function is a logarithmic
function of the source rate. Initialize the link prices to 1, and run the source rate
update step first. Set the step size � = 1. Plot the source rates over time and
the link prices over time. What are the equilibrium values?

(c) Change the step size � and observe the impact on convergence of the al-
gorithm.

14.2 TCP slow start ?

We learned about the primary mode of operation of TCP Reno, where cwnd
increases by 1 for each RTT. Equivalently, cwnd increases by 1

cwnd for each ACK
received. This operational mode is called congestion avoidance.

However, this results in linear increase of cwnd over time. At the beginning of
a TCP connection, we would like to quickly ramp up cwnd before transitioning
to congestion avoidance mode. Most TCP protocols have a (somewhat confus-
ingly named) slow start phase that accomplishes exactly this. In this mode, cwnd
increases by 1 for each ACK received.

(a) If we plot cwnd versus time, instead of having a linear increase as in con-
gestion avoidance, what is the rate of increase in slow start?

(b) Draw a space-time diagram for the slow start phase, for 4 RTTs. Assume
cwnd starts at 1.

14.3 TCP Reno congestion window ??

Recall that the congestion window length changes with time as follows during
TCP Reno’s congestion avoidance phase:

• If an ACK is received, then increase cwnd by 1

cwnd .

• If congestion is detected, then decrease cwnd by cwnd
2

.

Suppose the probability of failed transmission is p; the probability of a suc-
cessful transmission is then 1� p. The transmission rate x = cwnd

RTT .

(a) Write down the equation for the expected change of cwnd per time step.

(b) At equilibrium, the expected change is 0. Using (a), show that xr =
1

RTT

q
2(1�p)

p .

14.5 Advanced Material 329

14.4 TCP Vegas ??

TCP Vegas attempts to anticipate congestion by estimating delay. In this
scheme, the congestion window size is changed based on the timings of the ACKs
it has received. Specifically, we have:

cwnd[t+ 1] =

8
>><

>>:

cwnd[t] + 1 if cwnd[t]
d � cwnd[t]

D[t] < �

cwnd[t]� 1 if cwnd[t]
d � cwnd[t]

D > �

cwnd[t] otherwise,

where d is the minimum RTT observed historically, D[t] is the RTT observed at
time t, and � is a parameter. So, cwnd

d is the expected rate and cwnd
D is the ob-

served rate, so cwnd decreases (increases) if the expected rate is greater (smaller)
than the actual rate by �.

Suppose D[t] =

(
t if t 4

4 otherwise
, and cwnd[1] = 4,↵ = 3 and d = 1. Plot the

evolution of cwnd versus time and D versus time for 10 time steps.

14.5 Reverse engineering TCP Vegas ? ? ?

It can be shown that TCP Vegas approximately solves the following weighted
logarithmic utility maximization problem:

maximize
X

i

�idi log(xi)

subject to
X

i2S(l)

xi cl 8l

variables xi � 0, 8i,

(14.11)

where the links update their prices as follows:

pl[t+ 1] = {pl[t] + �l (yl[t]� cl)}+ , (14.12)

and, as before,

L(i) = set of links used by session i,

S(l) = set of sessions present on link l,

yl[t] =
X

i2S(l)

xi[t],

qi[t] =
X

l2L(i)

pl[t].

(14.13)

We will show this through several steps.

(a) Define the total backlog on link l from all sessions as bl[t]. Then each link

330 Why doesn’t the Internet collapse under congestion?

updates its backlog at each time step by bl[t+1] = {bl[t] + �(yl[t]� cl)}+. Show
that if we define pl[t] =

b
l

[t]
c
l

, the links update their prices as in (14.12). What is
�l?

(b) If a network is trying to solve (14.11), what should the source update rule
be? Recall that xi[t] = U 0�1i (qi[t]).

(c) Recall that the session rates in TCP Vegas are updated by:

cwnds[t+ 1] =

8
>><

>>:

cwndi[t] +
1

D
i

[t] if cwnd
i

[t]
d
i

� cwnd
i

[t]
D

i

[t] < �

cwndi[t]� 1

D
i

[t] if cwnd
i

[t]
d
i

� cwnd
i

[t]
D

i

[t] > �

cwndi[t] otherwise

We also know that the backlog on link l from session i is x
i

[t]
c
l

bl[t]. The conges-
tion window size, cwndi, is the sum of the total backlog in the path of i and the
bandwidth-delay product, i.e., cwndi[t] =

P
l2L(i)

x
i

[t]
c
l

bl[t] + dixi[t]. Show that
the source rate update rule matches the answer to part (b).

15 How can Skype and BitTorrent be
free?

We just went through some of the key concepts behind the TCP/IP thin-waist
of the Internet protocol stack. We will now go through five more chapters on
technology networks, focusing on two major trends: massive amounts of content
distribution and the prevalent adoption of mobile wireless technologies.
Scaling up the distribution of content, including video content, can be carried

out either through the help of peers or large data centers. These two approaches,
P2P and cloud, are described in this and the next chapters, respectively. In
particular, P2P illustrates a key principle behind the success of the Internet:
under-specify protocols governing the operation of a network so that an over-
lay network can be readily built on top of it for future applications unforeseen
by today’s experts. It also illustrates the importance of backward compatibil-
ity, incremental deployability, and incentive alignment in the evolution of the
Internet.

15.1 A Short Answer

Skype allows phone calls between IP-based devices (like laptops, tablets, smart
phones) or between IP devices and normal phones. It is free for IP to IP calls.
How could that be? Part of the answer is that it uses a peer-to-peer (P2P)
protocol riding on top of IP networks.
P2P started becoming popular around 1999. For example, Kazaa and Gnutella

were widely-used P2P file and music sharing systems back in the late 1990s.
However, incentives were not properly designed in those first generation P2P
systems; there were a lot of free riders who did not contribute nearly as much
as they consumed.
Skype started in 2001 from Kazaa, and was acquired by eBay for $2.6 billion

in 2006 and then by Microsoft for $8 billion in 2011. As of 2010, there were 663
million Skype users worldwide, and on any given day, there were, on average, 567
million minutes of Skype calls. Skype is also popular as it encrypts messages with
a 256 bit AES key. Some think that it is therefore completely secure, but actually
it is not. Oppressive regimes have been able to tap into Skype conversations or
filter them.
BitTorrent started in 2001 as well, and is heavily used for file sharing including

332 How can Skype and BitTorrent be free?

movie sharing. Like Skype, it is free and uses P2P technologies. At one point,
P2P was more than half of Internet tra�c, and BitTorrent alone in the mid
2000s was 30% of Internet tra�c. P2P sharing of multimedia content is still very
popular today, with 100 million users just in BitTorrent.
P2P showcases a major success of the evolution of the Internet: make the basic

design simple and allow overlay constructions. The architecture of the Internet
focuses on providing simple, ubiquitous, stable, economical connectivities, and
leaves the rest of the innovations to overlays to be constructed in the future
for unforeseeable applications. Di↵erent types of applications, unicast as well
as multicast, have been built using P2P overlays, including file sharing, video
streaming, and on-demand multimedia distribution.
Both Skype and BitTorrent are free (of course the Internet connection from

your device may not be free):

• Skype is free in part because it leverages peer capability to locate each other
and establish connections. P2P is used for signaling in Skype.

• BitTorrent is free in part because it leverages peer uplink capacities to send
chunks of files to each other, without deploying many media servers. (And it
is free in part because the content shared sometimes does not incur royalty
fees). P2P is used for sharing bites of content in BitTorrent.

Both Skype and BitTorrent are scalable. They illustrate a positive side of
the “networking e↵ect:” where each additional node in the network contributes
to many other nodes. We can therefore add many more nodes as the network
scales up without creating a bottleneck. Of course this assumes the nodes can
e↵ectively contribute, and that requires some smart engineering design. This
P2P law is a refinement of our intuition about the networking e↵ect codified
in the Metcalfe’s law: the benefit of joining a network grows as the square of
the number of nodes. Metcalfe’s law takes a generic assumption that each node
is basically connected to all the other nodes, or at least the number of neighbors
per node grows as a linear function of the network size. In contrast, P2P law
does not require that, and shows that the benefit of scalability can be achieved
even when each node has only a small number of neighbors at any given time,
as long as these are carefully chosen.
Skype’s operational details is a commercial secret. BitTorrent is much more

transparent, with papers written by the founder explaining its operation. So our
treatment of Skype P2P connection management will be thinner than that of
BitTorrent’s P2P content sharing.

15.1.1 Skype basics

To understand how the technology behind Skype works, we need to understand
two major topics: voice over IP (VoIP) and P2P. We postpone the discussion
of VoIP to Chapter 17 together with multimedia networking in general. This
chapter’s focus is on P2P.

15.1 A Short Answer 333

Server

Figure 15.1 A typical topology of Skype. There is a mesh of super nodes (the bigger
circles) and a shallow tree of ordinary nodes (smaller circles) rooted at each super
node. There is also an authentication server (the rectangle) that each node exchanges
control messages with first.

Phone calls are intrinsically P2P: a peer calls another peer (as opposed to
a server). What is interesting is that Skype uses P2P to discover peers and to
traverse firewalls (software and hardware that blocks incoming data connections).
As shown in Figure 15.1, Skype’s central directory allows a caller to discover
the IP address of the callee and then establish an Internet connection. These
directories are replicated and distributed in super nodes (SN).
The problem is that sometimes both the caller and the callee are behind fire-

walls, with a NAT box (see Chapter 13) in between. So the actual IP address
is not known to the caller. Those outside of a firewall cannot initiate a call into
the firewall.
What happens then is that super nodes have public IP addresses, serving as

anchors to be reached by anyone and collectively acting as a network of publicly
visible relays. The caller first initiates a connection with an SN, and the callee
initiates a connection with another SN. Once a connection is established, two way
communication can happen. The caller then calls her SN, who calls the callee’s
SN, who then calls the callee. Once a connection between the caller and the callee
is established through these two SNs, they can also mutually agree to use just
a single SN that they both can connect to, thus shortening the communication
path.

15.1.2 BitTorrent basics

BitTorrent uses P2P for resource sharing: sharing upload capacities of each peer
and the content stored in each peer, so that (file and multimedia) content sharing

334 How can Skype and BitTorrent be free?

Web
Server

Tracker

Figure 15.2 A typical topology of BitTorrent. There are actually three topologies: (a)
a graph of physical connections among peers and routers, (b) a graph of overlay
neighbor relationships among peers, and (c) a graph of peering relationships among
peers. (c) is an overlay on (b), which is in turn an overlay on (a). This figure shows
graph (c). It changes regularly depending on the list of peers provided by the tracker
to, say, peer A (in black), as well as the subset of those peers chosen by peer A.

can scale itself. It is designed primarily formulticasting: many users all demand
the same file. With P2P, they share what they have with each other.

In BitTorrent, each file is divided into small pieces called chunks, typically
256 kB, so that pieces of a file can be shared simultaneously. Each peer polls
a centralized directory called the Tracker, which tells a peer a set of 50 (or so)
peers with chunks of the file it needs. Then the peer picks 5 peers to exchange
file chunks. This set of 5 peering neighbors is refreshed at the beginning of every
time slot, based in part on how much a neighbor is helping this peer and in part
on randomization.

As shown in Figure 15.3, each individual chunk traverses a tree of peers, al-
though the overall peering relationship is a general graph that evolves in time.
A tree is an undirected graph with only one path from one node to any other
node, and there are no cycles in a tree. We usually draw a tree with the root
node on top and the leaf nodes on the bottom.

We see that the control plane for signaling is somewhat centralized in both
Skype and BitTorrent, but the data plane for the actual data transmission is
distributed, indeed peer to peer. This is in sharp contrast to the traditional
client-server architecture, where each of the receivers request data from a cen-
tralized server and do not help each other.

15.2 A Long Answer 335

A

B C

D E F

A

B

C D

E

F

(a) (b)

Figure 15.3 (a) Each chunk traverses a tree (with the chunk represented by the
rectangle and the data transmission in dotted lines), even though (b) the peering
relationships form a general graph (where the solid lines represent the current peering
relationships and dotted lines represent possible peering relationships in the next
timeslot).

15.2 A Long Answer

Before we go into some details of the smart ideas behind Skype and BitTorrent,
we highlight two interesting observations:

• P2P is an overlay network, as illustrated in Figure 15.4. Given a graph with
a node set V and a link set E, G = (V,E), which we call the underlay, if
we select a subset of the nodes in V and call that the new node set Ṽ , and
we take some of the paths connecting nodes in Ṽ as links and call that the
new link sete Ẽ, we have an overlay graph G̃ = (Ṽ , Ẽ). The Internet itself
can be considered as an overlay on top of the PSTN, wireless, and other
networks, and online social networks are an overlay on top of the Internet
too. The idea of overlay is as powerful as that of layering in giving rise
to the success of the Internet. It is evolvable: as long as TCP/IP provides
the basic service of addressing, connectivity, and application interfaces,
people can build overlay networks on top of existing ones. For example,
multicasting could have been carried out in the network layer through IP
multicast. And there are indeed protocols for that. But other than within
a Local Area Network (see the homework problem in Chpater 13) and IPTV
for channelized content (see Chapter 17), IP multicast is rarely used. The
management of IP multicast tends to be too complicated, and P2P o↵ers
an alternative, overlay-based approach with less overhead.

• P2P is about scalability, and in BitTorrent’s case, scalability in multicasting.
If you consume, you also need to contribute. This upside of the networking

336 How can Skype and BitTorrent be free?

Figure 15.4 Building an overlay network of 4 nodes (the dark circles) on top of an
underlay network of 5 nodes (the light circles). In the overlay graph (b), the nodes are
a subset of the nodes in the underlay graph (a), and each link represents a path in the
underlay graph. The overlay graph in this example is simply two parallel lines.

e↵ect is the opposite of the wireless network interference problem, where
one user’s signal is other users’ interference. Of course, even in BitTorrent,
there is the problem of free rider: what if a user only consumes but does
not contribute? We will look at BitTorrent’s solution next. We will also see
in the next chapter another way to provide scalability to the server-client
architecture using small switches to build large ones as the data center
scales up.

15.2.1 More on Skype

There are two types of nodes in Skype: super nodes (SNs) and ordinary hosts. A
SN must have a public IP address, so that it can help traverse NATs and firewalls.
Preferably, it should also have abundant resources, including CPU, memory, and
capacities on ingress and egress links. An ordinary host must connect to a super
node. Some of your desktops may actually be super nodes on Skype networks.
SNs are useful because they act as relay nodes to bypass the firewall blocking

of calls as explained in the last section, and turn Skype into one of the most
successful distributed systems overlaying the Internet.
Skype uses an overlay P2P network with two tiers: a mesh of super nodes and

a shallow tree rooted at each super node. This two tier structure is mainly for
the purpose of firewall traversal in Skype, although we will encounter it again in
Advanced Material for performance optimization in P2P file sharing.
When a Skype client, whether on an ordinary host or a super node, wants to

initiate a call, it must first authenticate itself with the Skype login server, which
stores all the usernames and passwords. If the call is between an IP device and a
PSTN phone, additional servers and procedures are required (and it is not free
anymore).

15.2 A Long Answer 337

Each ordinary host maintains and updates a Host Cache, which contains the
IP addresses and port numbers of super nodes. During login, a host advertises
its presence to other hosts, determines if it is behind a firewall, and discovers
which super node to connect to and which public IP address to use. Compared
to BitTorrent, the P2P topology is much more stable in Skype after login is
finished.

Once logged in, a user search can be carried out through Skype’s global index
database. A TCP connection needs to be established for signaling between the
caller and callee, and a UDP (or a TCP, if the firewall needs to be traversed)
connection established for the actual voice tra�c. For conferencing, more steps
are needed for connection establishment.

15.2.2 More on BitTorrent

The first smart idea in BitTorrent file sharing is to use smaller granularity than
the whole file. In this way, each chunk can traverse di↵erent trees, and the trans-
mission can be spatially pipelined. The advantage of multi-tree transmission is
similar to the advantage of multi-path routing in packet switching, which di-
vides a given message into smaller granularity (called packets), and lets them
go through possibly di↵erent paths. In fact, the richness of the tree topology
compared to the path topology, and the heavy usage of multiple trees make P2P
tree selection more robust than IP routing: one can pick peers without too much
optimization and still achieve very high overall e�ciency for the network. We
will see more of this in Advanced Material.

When we discuss content distribution networks in Chapter 17, we will see that
they are similar to deploying peers with large upload and storage capacities.
Indeed, the term “peer” in BitTorrent refers to the fact that the node is both
a sender and a receiver of content, and when it acts as a sender, it is a (small)
server. In content distribution networks, deciding which content to place on which
servers is a key design step. In P2P, this content placement is optimized through
the strategy of rarest chunk first. When a peer looks at the bitmap and chooses
which chunks to download, it should start with the chunks that very few peers
have. By equalizing the availability of chunks, this strategy mitigates the problem
where most of the peers have most of the chunks, but all must wait for the few
rare chunks.

Yet another smart idea in BitTorrent is its peering construction method. The
first step is for the Tracker to suggest a set of 50 or so potential peers to a new
peer. These potential “friends” are recommended based on the content they have
and other performance-driven factors like the distance to the new peer. They are
also driven by peer churns: which peers are still sending “I am here” messages to
the Tracker. A list of 50 provides a larger degree of freedom than actually used
by each peer.

The second step is to let the new peer pick, at each time, her actual “friends”.

338 How can Skype and BitTorrent be free?

These are the peers to exchange chunks with. Usually 5 peers are picked, and
the upload bandwidth is evenly distributed among these 5 in the next timeslot:

• 4 of them are the top 4 peers in terms of the amount of content received
from them by this node in the last time slot. This is called the tit-for-tat
strategy.

• The remaining peer is selected at random from the set of 50.

The first feature mitigates the free rider problem, where a node could contribute
but decides not to. The second feature avoids unfairness to those nodes with
little upload capacity. Randomization is also generally a good idea to avoid get-
ting trapped in a locally optimal solution. This is similar to Google’s pagerank
calculation in Chapter 3: 85% topology driven and 15% randomization.
Now we can summarize the BitTorrent operation, knowing why each step is

designed as it is:

1. A new peer A receives a .torrent file from one of the BitTorrent web servers,
including the name, size and number of chunks of a particular file, together
with the IP address and port number of the corresponding Tracker.

2. It then registers with the right Tracker. It will also periodically send keep-alive
messages to the Tracker.

3. The Tracker sends to peer A a list of potential peers.
4. Peer A selects a subset and establishes connections with these 5 peers.
5. They exchange bitmaps to indicate which chunks of the content they each

have.
6. With chunks selected, they start exchanging chunks among themselves, start-

ing with the rarest chunks.
7. Every now and then, each peer updates its peer list.

15.3 Examples

15.3.1 Back-of-the-envelope bounds

To illustrate the P2P networking e↵ect, and how P2P changes the scalability
property of file distribution, we run a simple back-of-the-envelope calculation:
First consider N clients requesting a file of size F bits from a server with

upload capacity us bps. Each of these clients has a download capacity of di bps.
This is illustrated in Figure 15.5.

• The server needs to send out NF bits, so it takes at least NF/us seconds.
• All the clients need to receive the file, including the slowest one with a down-

load capacity of dmin, and that takes at least F/dmin seconds.

So the total download time is the larger of the two numbers above:

T = max

⇢
F

dmin
,
NF

us

�
. (15.1)

15.3 Examples 339

2

3
1

d1 d2

d3

us

Figure 15.5 A typical server-client star topology. The upload speed of the server is us

bps, and the download speeds of the clients are {di} bps.

This could be fine, if we can increase us as N becomes larger. But scaling the
upload capacity of a server becomes technologically and financially di�cult as
N becomes very large. So the alternative is to deploy more servers. Well, these
N clients can also become servers themselves, and we call them peers. A hybrid
peer and server deployment is what actually happens, but it is the P2P part of
the network that scales itself as the number of peers increases.
Suppose each peer i has an upload capacity ui, in addition to a download ca-

pacity di as before. These upload capacities may be much smaller than download
capacities, because the traditional design assumes that the Internet tra�c is pri-
marily unidirectional. With user-generated content on the rise and P2P protocols
heavily used, this assumption is no longer valid. In many cases, {ui} are quite
large, at least for some of the peers. Peers with larger upload capacities can help
distribute the files by sitting closer to the root of the multicast distribution tree
in Figure 15.3.
Suppose these distribution trees can be perfectly designed to fully utilize all

the upload capacities. Then we can say that for the total number of bits to
be shared: NF , the total upload bandwidth available to the whole network is
us +

PN
i=1

ui. So the time it takes is NF/(us +
PN

i=1

ui) seconds.
Of course, the server still needs to send out each bit at least once to some peer,

taking F/us seconds, and the slowest peer still needs to receive each bit, taking
F/dmin seconds. Therefore, the time it takes to distribute the file throughout
the network is now:

T = max

(
F

us
,

F

dmin
,

NF

(us +
PN

i=1

ui)

)
. (15.2)

In comparing (15.1) with (15.2), the key point is that, among the terms in

340 How can Skype and BitTorrent be free?

A

D

B

C

A

D

B

C

(a) (b)

Figure 15.6 Two peering relationship trees. If only one of them is used, it is impossible
to avoid wasting some nodes’ uplink capacities: the tree on the left wastes C’s and D’s
uplink capacities, while the tree on the right wastes A’s and B’s. This problem can be
mitigated if we use both tree (a) and tree (b) for the same multicast session.

(15.2), only the third term has a numerator that scales with N , the number of
peers, but that is divided by the summation of ui over all N nodes, so T itself
no longer scales with N . The network performance scales itself with the network
size.

15.3.2 Constructing trees

The above back-of-the-envelope calculation assumes that all the peer upload
capacities can be fully utilized. That is hard to do, and sometimes downright
impossible, especially when you only have one distribution tree. As shown in
Figure 15.6: in Tree 1, peers C and D’s upload capacities are not used. In Tree
2, peers A and B’s upload capacities are not used.

How about we use both trees at the same time? This is called the multi-tree
construction of peering relationships. That helps, but it is still not clear what is
the best way to construct all the trees needed to utilize the upload capacities. The
basic idea, however, is clear: those peers with a lot of leftover upload capacities
should be placed higher up in the newly constructed trees. Exactly how to do
that involves solving a di�cult combinatorial optimization problem; embedding
even one tree in a general graph is hard, let alone multiple trees. That is the
subject in Advanced Material.

But first, here is a special case that is easy to solve. Assume that the download
capacities of peers are not the bottlenecks, e.g., di’s are large enough. Now we

15.3 Examples 341

want to prove

T = max

(
F

us
,

NF

us +
PN

i=1

ui

)
.

To show this, we need to construct a multi-tree, i.e., a set of multicast trees that
collectively achieve the desired rates among N peers. Clearly, it su�ces to show
that the maximum broadcast rate of the multi-tree is

rmax = min

(
us,

us +
PN

i=1

ui

N

)
.

To see this, we reason through two cases.
Case 1: If us (us +

PN
i=1

ui)/N , then the maximum broadcast rate of
rmax = us should be supported. The server upload capacity is too small. So we
consider a multi-tree that consists of N trees, such that each i-th tree is two-hop,
e.g., the server takes peer i as its child and peer i takes the other N � 1 peers
as its children. Collectively these trees should deplete the upload capacity of the
server. Furthermore, trees with more capable peers near the root should stream
at a higher rate. Let each tree i carry a rate proportional to ui:

ri =

uiPN
j=1

uj

!
us, i = 1, . . . , N,

as illustrated in Figure 15.7.
This rate assignment is possible because the total upload required for the

server is within its capacity:
NX

i=1

ri = us.

So is the total upload capacity required for peer i:

(N � 1)ri = (N � 1)
uiPN
j=1

uj

us ui,

since Nus us +
PN

j=1

uj by the assumption of this case, which implies that

Nus

uiP
j uj

!
 usuiP

j uj
+ ui,

which further implies that

(N � 1)
uiPN
j=1

uj

us ui.

Now each peer receives a data stream directly from the server and also receives
N � 1 additional data streams from the other N � 1 peers. So the aggregate
broadcast rate at which any peer i receives is

rmax = ri +
X

j 6=i

rj =
NX

i=1

ri = us.

342 How can Skype and BitTorrent be free?

S

2 3 N

1

...

S

1 3 N

2

...

S

1 2

N

... N-1

…..…..…..…..

…..…..

Tree 1 Tree 2 Tree N

1 2 N

S

... 3

Tree N+1

Figure 15.7 Multi-tree construction to maximize the multicast rate among N peers. In
case 1, the server upload capacity is relatively small, and we use trees 1 to N . In case
2, the server upload capacity is su�ciently large, and we use trees 1 to N + 1, with a
di↵erent assignment of rates on the first N trees. In both cases, we only need shallow
trees for this simple problem, and the multi-tree depth is 2.

Hence, it takes F/us time to transfer the whole file.
Case 2: If us > (us +

PN
i=1

ui)/N , then we need to show that the maximum
broadcast rate of rmax = (us +

PN
i=1

ui)/N can be supported. In this case, the
server upload capacity is large enough for a di↵erent set of trees, including one
tree where the server directly connects to all the peers, (a server-client tree), so
as to fully utilize its upload capacity.
Consider a multi-tree that consists of N + 1 trees, such that the i-th tree is

two-hop and carries a rate of

ri =
ui

N � 1
,

i.e., equal distribution of each peer’s uplink capacity among the other peers. And
the (N + 1)-th tree is one-hop directly from the server, which carries a rate of

rN+1

=
us �

P
N

i=1 u
i

N�1
N

.

This is the leftover uplink capacity from the server (after sustaining the first N
trees) evenly distributed among all the N peers.
On i-th tree, for i = 1, 2, . . . , N , the server has peer i as its child and peer i

has the other N � 1 peers as its children. In contrast, on the (N + 1)-th tree,
the server has all peers as its direct children. The tree construction is shown in
Figure 15.7. This is possible because the total upload capacity required for peer

15.4 Advanced Material 343

i is exactly

(N � 1)ri = ui,

and the total upload capacity required for the server is exactly us:

NX

i=1

ri +N · rN+1

=
NX

i=1

ui

N � 1
+N

us �
P

N

i=1 u
i

N�1
N

= us.

Of course, the above two equalities are true by the way we design the rates on
these N + 1 trees.
Now each peer receives two data streams directly from the server and also

receives N � 1 additional data streams from the other N � 1 peers. So the
aggregate broadcast rate at which any peer i receives is

ri + rN+1

+
X

j 6=i

rj =
ui

N � 1
+

us �
P

N

i=1 u
i

N�1
N

+
X

j 6=i

uj

N � 1
=

us +
PN

i=1

ui

N
.

Hence, it takes NF/(us +
PN

i=1

ui) time to transfer the whole file.
Combining the two cases above produces our desired results.

15.4 Advanced Material

15.4.1 P2P streaming capacity

In the example above, we have assumed many ideal conditions in the above
calculation. Peering relationship construction in a general, large-scale network
is much more challenging. Structured P2P overlay carefully designs the peering
relationships based on criteria such as throughput, latency, and robustness. Some
of these topologies are inspired by what we saw in Chapters 9 and 10, e.g., the
Watts Strogatz graph. This leads us to a graph-theoretic optimization problem.
Consider the following problem: given a directed graph with a source node and

a set of receiver nodes, how do we embed a set of trees spanning the receivers
and determine the amount of flow in each tree, such that the sum of flows over
these trees is maximized? Constraints of this problem include an upper bound
on the amount of flow from each node to its children, the maximum degree of a
node allowed in each tree, and other topological constraints on the given graph.
This is the general problem of P2P streaming capacity computation.
What is the P2P streaming capacity and what is an optimal peering config-

uration to achieve the capacity? Here, “capacity” is defined as the largest rate
that can be achieved for all receivers in a multicast session, with a given source,
a set of receivers, and possibly a set of helper (non-receiver relay) nodes.
There are in fact at least sixteen formulations of this question, depending on

whether there is a single P2P session or multiple concurrent sessions, whether the
given topology is a full mesh graph or an arbitrary graph, whether the number

344 How can Skype and BitTorrent be free?

of peers a node can have is bounded or not, and whether there are helper nodes
or not. In each formulation, computing P2P streaming capacity requires (1) the
determination of how to embed an optimal set of multicast trees, and (2) what
should the rate be in each tree.
We outline a family of algorithms that can compute or approximate the P2P

streaming capacity and the associated multicast trees. In general this problem
is intractable; it is di�cult to find polynomial time algorithms that solve the
problem exactly. The algorithm we summarize below can solve, in polynomial
time, seven of the sixteen formulations arbitrarily accurately, and eight other
formulations to some constant factor approximations.
We will be reformulating the optimization to turn the combinatorial problems

into linear programs with an exponential number of variables. The algorithms
combine a primal-dual update outer loop (similar to what we saw in Chapter
14) with an inner loop of “smallest price tree construction” (similar to what we
just saw in the last section), driven by the update of Lagrange dual variables in
the outer loop. Graph-theoretic solutions to various cases of the smallest price
tree problem can then be leveraged, although that is beyond the scope here.
Our focus will be on formulating this problem of embedding multiple trees in a
graph, and the generalization of congestion control’s primal-dual solution to a
more complicated case where each inner loop is not just a simple rate or price
update equation.
Consider a multicast streaming session. It originates from one source, and is

distributed to a given set of receivers. For example, in video conferencing, there
are multiple participants; each may initiate a session and distribute her video
to others, and each participant can subscribe to others’ videos. In an IPTV
network, di↵erent channels may originate from di↵erent servers, with di↵erent
sets of subscribers. Denote by s the original source, by R the set of receivers,
and by H the set of helpers. We say that the session has rate r bps if all the
receivers in this session receive the streaming packets at a rate of r or above.
As illustrated in Figure 15.8, we consider a P2P network as a graphG = (V,E),

where each node v 2 V represents a peer, and each edge e = (u, v) 2 E represents
a neighboring relationship between vertices (u, v). A peer may be the source, or
a receiver, or a helper that serves only as a relay. A helper does not need to get
all packets but only the ones that it relays.

• This graph is an overlay on top of the given underlay graph representing the
physical connections among users. The underlay graph may constrain the
design of peering relationships: if two nodes u and v are not physically
connected by some path of reasonable length, they cannot be neighbors in
the overlay graph, and do not stand a chance to become peers either.

• Neighbors do not have to become peers. Neighboring relationship is given,
while peering relationship is to be designed as part of the P2P streaming
capacity computation.

• The graph G may or may not be full mesh. Typically, full mesh is only possible

15.4 Advanced Material 345

y

Figure 15.8 An overlay network where each node represents a peer, and each link (in
solid line) represents a neighboring relationship. The job of computing P2P streaming
capacity is to construct multiple trees so that their rates add up to the largest
possible for a multicast session. A particular tree is shown in dotted lines, which
represents peering relationships designed under the constraint of the given
neighboring relationships.

in a small network with a small number of users, while a large network has
a sparse topology.

Consider one chunck of a given stream. It starts from the source s, and tra-
verses over all nodes in R, and some nodes in H. The traversed paths form a
Steiner tree in the overlay graph G(V,E), a tree that spans all the nodes in
only a given subset of V . In this case, the subset is R. You can view this as a
generalization of the spanning tree homework problem in Chapter 13.

Di↵erent packets may traverse di↵erent trees. We call the superposition of all
the trees belonging to the same session a multi-tree. For each tree t, denote yt
as the sub-stream rate supported by this tree. Here, t is not a time index, but a
complicated data structure: a tree.

The use of a P2P protocol imposes certain constraints on sub-trees. The most
frequently encountered one is the node degree constraint. For example, in Bit-
Torrent, although a node may have 50 neighbors in G, it can upload to at most
5 of them as peers. This gives an outgoing degree bound for each node and con-
strains the construction of the trees. We can examine the case of degree bound
for each node per tree. Let mv,t be the number of outgoing edges of node v in
tree t, and the bound be Mv. This gives an inequality constraint on allowed trees:
mv,t Mv, 8t. The more general case of degree bound for each node across all
the trees is even harder.

We denote by T the set of all allowed sub-trees. Obviously, the multicast rate

346 How can Skype and BitTorrent be free?

r is the sum of all the rates on the trees:

r =
X

t2T
yt. (15.3)

We will make the following assumptions for streaming applications: there is a
static set of stationary users and all desired chunks of packets are available at
each node. We also assume that data rate bottlenecks only appear at user uplinks.
This assumption is widely adopted because in today’s Internet access links are
the bottlenecks rather than backbone links, and uplink capacity is several times
smaller than downlink capacity in typical access networks. Denote by Cv the
uplink capacity of node v. We have the following bound on the total uplink rate
Uv for each node v:

Uv =
X

t2T
mv,tyt Cv.

A rate is called achievable if there is a multi-tree in which all trees satisfy
the topology constraint (t 2 T) and transmission rates satisfy the uplink capac-
ity constraint (Uv Cv). We define P2P streaming capacity as the largest
achievable rate.

15.4.2 A combinatorial optimization

Now we can represent the single-session streaming capacity problem as the fol-
lowing optimization problem:

maximize
P

t2T yt
subject to

P
t2T mv,tyt Cv 8v 2 V

variables yt � 0, 8t 2 T.

This representation of the problem is deceptively simple: the di�culty lies in
searching through all combinations of trees t in the set of allowed trees T . For
those trees not selected in the optimizer, their rates yt are simply 0. Compared
to all the other optimization problems in previous chapters, this one is much
more di�cult. It has a combinatorial component and is not convex optimization.
It has coupling across trees and cannot be readily decomposed.
Still we can try to derive the Lagrange dual problem. From Lagrange duality,

solving the above problem is equivalent to solving its dual problem, and an opti-
mizer of the dual problem readily leads to an optimizer of the primal algorithm.
The dual problem associates a non-negative variable pv interpreted as the price
with each node. The Lagrange dual problem turns out to be as follows:

minimize
P

v2V Cvpv
subject to

P
v2V mv,tpv � 1, 8t 2 T

variables pv � 0, 8v 2 V.

We can interpret the dual problem similar to the dual congestion control prob-
lem in Chapter 14: pv is the (per unit flow) price for any edge outgoing from v.

15.4 Advanced Material 347

If node v uploads with full capacity, the incurred cost is pvCv. There are mv,t

connections outgoing from node v in tree t, and thus the total tree price for tree
t is simply

P
v2V mv,tpv. Therefore, the dual problem is to minimize the total

full capacity tree cost given the tree price is at least 1, and the minimization
is over all possible price vectors p. This is a generalization of link (and path)
prices used in solving the Network Utility Maximization problem for distributed
capacity allocation and TCP congestion control.
In general, the number of trees we need to search when computing the right

multi-tree grows exponentially with the size of the network. This dimensionality
increase is the consequence of turning a di�cult graph-theoretic, discrete prob-
lem into a continuous optimization problem. Hence, the primal problem has too
many variables and its dual problem has too many constraints, neither of which
is suitable for direct solution. However, the above representations turn out to be
very useful to allow a primal-dual update outer loop, which converts the com-
binatorial problem of multi-tree construction into a much simpler problem of
“smallest price tree” construction.

15.4.3 Garg-Konemann iterations

We adopt the Garg-Konemann technique, where flows are augmented in the
primal solution and dual variables are updated iteratively. The algorithm con-
structs peering multi-trees that achieve an objective function value within (1+✏)-
factor of the optimum.
For a given tree t and prices p, let Q(t,p) denote the left-hand-side of con-

straint (15.4.2), which we call the price of tree t. A set of prices p is a feasible
solution for the Lagrange dual problem if and only if

min
t2T

Q(t,p) � 1.

The algorithm works as follows. Start with initial weights pv = �
C

v

for all
v 2 V . Parameter � depends on the accuracy target ✏. Repeat the following
steps until the dual objective function value becomes greater than 1:

1. Compute a tree t⇤ for which Q(t,p) is minimum. We call t⇤ a smallest price
tree.

2. Send the maximum flow on this tree t⇤ such that the uplink capacity of at
least one internal node (neither the root nor the leaf nodes of the tree) is
saturated. Let I(t) be the set of internal nodes in tree t. The flow sent on this
tree can only be as large as

y = min
v2I(t⇤)

Cv

mv,t⇤
. (15.4)

3. Update the prices pv as

pv pv

✓
1 +

�mv,t⇤y

Cv

◆
, 8v 2 I(t⇤),

348 How can Skype and BitTorrent be free?

where the stepsize � depends on ✏.

4. Increment the flow Y sent so far by y.

The optimality gap can be estimated by computing the ratio of the primal
and dual objective function values in each step of the iteration above, which
can be terminated after the desired proximity to optimality is achieved. When
the iteration terminates, primal capacity constraints on each uplink may be
violated, because we were working with the original (and not the residual) uplink
capacities at each stage. To remedy this, we can scale down the flows uniformly
so that uplink capacity constraints are satisfied.

For any given target accuracy ✏ > 0, the algorithm above computes a solu-
tion with an objective function value within (1 + ✏)-factor of the optimum, for
appropriately chosen algorithmic parameters. It runs in polynomial time in the
network size and 1

� :

O

✓
N logN

�2

Tspt

◆
,

where N is the number of peers, and Tspt is the time to compute a smallest price
tree.

The core issue now lies with the inner loop of smallest price tree computation:
can this be accomplished in polynomial time for a given price vector? This graph-
theoretic problem is much more tractable than the original problem of searching
for a multi-tree that maximizes the achievable rate. However, when the given
graph G is not full mesh, or when there are degree bounds on nodes in each tree,
or when there are helper nodes, computing a smallest price tree is still di�cult.

Moreover, how to approach the P2P streaming capacity with distributed and
low complexity algorithms is another challenge, even when the capacity can be
easily computed with a centralized optimization of peering multi-trees. Part of
this challenge is the control signaling and part of the solution is spatial hierarchy.

Control signaling in P2P can rely on either a centralized tracker, or on broad-
casting, the so-called query flooding, so that each peer has a local copy of the
topology and network states. In between these two options is hierarchical over-
lay. It turns out a two-level hierarchy is often used in both theory and practice,
and for both control signaling and the actual data sharing. For example, research
papers on P2P have proposed a hierarchical architecture with a separation of the
peers into groups of peers clustered by geographic proximity. Across the clusters,
super peers, e.g., servers or peers with high uplink capacities, form a shallow tree
and communicate with one another. These super peers also serve as source nodes
for peers inside each cluster and follow a densely connected mesh network. Since
the number of super peers is much smaller than that of peers, careful optimiza-
tion can be performed to ensure the core achieves close-to-optimal performance.
Inside each cluster, peers are organized into streaming trees rooted at super peers
that are close to them. These trees are usually “shallow”: they take the form of

15.4 Advanced Material 349

one-hop or two-hop multicast trees. They also follow the intuition that peers
with low capacity should be placed close to leaf nodes of a multicast tree.

Further Reading

There have been many measurement, modeling, and design papers written about
P2P systems since the early 2000s.

1. The founder of BitTorrent, Bram Cohen, wrote the following widely cited
paper explaining some of the design choices in BitTorrent’s incentive mecha-
nisms:
[Coh03] B. Cohen, “Incentives build robustness in Bit Torrent,” Proceedings

of Workshop on Economics of Peer-to-Peer Systems, 2003.

2. The following paper provided a comprehensive survey of P2P-based IP tele-
phony systems, including reverse engineering some of the Skype details:
[SS06] A. B. Salman and H. Schulzrinne, “An analysis of the Skype peer-to-

peer Internet telephony protocol,” Proceedings of IEEE Infocom, 2006.

3. The following is a seminal paper on modeling P2P streaming applications:
[KLR07] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory for P2P

streaming systems,” Proceedings of IEEE Infocom, 2007.

4. A large-scale peering topology measurement project can be found at:
[WLZ08] C. Wu, B. Li, and S. Zhao, “Exploring large-scale peer-to-peer live

streaming topologies,” ACM Transactions on Multimedia, vol. 4, no. 3, 2008.

5. The approach of P2P streaming capacity computation was developed in the
following paper:
[Sen+11] S. Sengupta, S. Liu, M. Chen, M. Chiang, J. Li, and P. A. Chou,

“P2P streaming capacity,” IEEE Transactions on Information Theory, vol. 57,
no. 8, pp. 5072-5087, 2011.

Problems

15.1 Embedding trees ?

Consider a network of one server and N = 3 peers, given that (1) us = 2,
u
1

= 3, u
2

= 2, u
1

= 1 (all in Mbps), (2) all nodes have unlimited download
capacity, and (3) each peer in a multicast tree can upload to any number of peers.

(a) Find the maximum multicast rate rmax.

350 How can Skype and BitTorrent be free?

(b) Draw a multi-tree that achieves this maximum.

(c) Find the rate ri of the i-th multicast tree, for all i = 1, . . . , T , where T is
the number of multicast trees from part (a).

Now consider a network with one server and N = 3 peers, with us = 3, u
1

= 3,
u
2

= 2, u
1

= 1 (in Mbps). We now constrain that each peer in a multicast tree
can only upload to at most one peer, so as to limit the overhead in maintaining
the states of the peers.

(d) Draw the resulting multi-tree that achieves the maximum multicast rate.

(e) Compute the per-tree rates ri.

15.2 Delay components in P2P streaming ??

Consider a P2P streaming tree that consists ofN nodes. Suppose the streaming
tree is balanced (e.g., the depths of leaf nodes never di↵er by more than 1), and
the tree fanout is M (e.g., every internal node has M children). Every node has
the same upload capacity C, and every link connecting two nodes has the same
latency L. Let B be the chunk size used in the streaming system.
(a) Suppose the streaming delay consists of two components: node (transmis-

sion) delay, and link (propagation) delay, what is the maximum streaming delay
over all nodes in this tree?
(b) Let N = 1000, C = 1Mbps, B = 20KB, L = 50ms, and M = 5. Which

delay component is more significant?
(c) Suppose the less significant delay component can be ignored, what is the

optimal fanout M to choose in order to minimize delay?

15.3 Stable marriage matching ? ? ?

The stable marriage matching problem is a long-studied problem and has
many applications, from matching medical students to hospitals to analyzing
voting systems and auctions. Figure 15.9 illustrates a matching in a bipartite
graph.
Suppose a set of partners can be split into two equal-sized subsets A and B.

Given each element a 2 A has a strict ranking of potential partners b 2 B (and
vice versa). The ranking can be determined in terms of bandwidth, latency etc.
A stable matching assigns each a 2 A to some b 2 B and each b 2 B to some
a 2 A, such that there does not exist a pair (a, b) 2 A⇥B with a preferring b to
the b0 2 B that a is currently assigned to, and b preferring a to the a0 2 A that
b is currently assigned to.
A standard solution to solve the stable marriage matching problem is the

Gale-Shapley algorithm. It follows a simple, iterative procedure. A man (a

15.4 Advanced Material 351

1

2

3

4

5

6

Figure 15.9 An example of a matching on a bipartite graph, where nodes 1, 2 and 3
are assigned to nodes 6, 4 and 5, respectively.

node in set A), or a woman (a node in set B), can be unengaged, engaged,
or married. At each round, an unengaged man proposes to the most preferred
woman among those that he has not yet proposed in previous rounds, and each
woman chooses to engage to the suitor whom she prefers most and rejects the
rest. As the iteration continues, engagements may be broken. When there is no
more unengaged man, the iteration stops, and the engaged pairs at that point
are married.
(a) Run the algorithm to find a stable matching between the two sets A =

{a, b, c} and B = {d, e, f} with the following rankings:

a : d > e > f,

b : d > e > f,

c : d > f > e,

d : c > b > a,

e : c > a > b,

f : a > c > b.

(b) Argue that at the conclusion of the algorithm, one of the stable marriage
matchings must have been found.

15.4 BitTorrent as a game ? ? ?

BitTorrent’s upload-incentive mechanism can be analyzed with game theory.
Let there be N peers indexed as 1, 2, . . . N , and ci, ui and di be peer i’s upload
capacity, upload speed, and download speed respectively (all in Mbps). The
speeds ui and di can vary with time). Furthermore, we assume peers to have
unlimited download capacities.
Each peer i can directly control its ui (constrained by ui ci) but not its di,

and its aim is to (1) maximize di, (2) while minimizing ui. There is a tradeo↵
between the two objectives: if peer i makes ui small, other peers will realize that

352 How can Skype and BitTorrent be free?

peer i is selfish, and refuse to upload to it, resulting in a small di. BitTorrent’s
peer selection mechanism aims to enforce this tradeo↵ so as to make ui large and
to encourage uploads.
Now consider the following set of rules, which are a simplified version of Bit-

Torrent’s peer selection mechanism:
(i) Peers take turns to update ui in the ascending order of i and then wrap

around.
(ii) After peer i updates its ui, all other peers see this change, and choose to

upload to the top nu (an integral parameter) peers j in terms of uj values (and
break ties by choosing randomly). The upload speeds are shared evenly among
the nu peers.
(iii) Peer i chooses ui by anticipating the di it receives according to rule (ii):

ui is chosen to maximize the expected di. If multiple ui values result in the same
di, choose the smallest one, plus a small constant ✏.

Here comes your two tasks in this homework problem. Let there be N = 4
peers with each peer uploading to nu = 2 peers, and set ✏ = 0.1.

(a) Suppose c
1

= 1, c
2

= c
3

= c
4

= 2. Initially it is peer 1’s turn to update u
1

with u
2

= u
3

= u
4

= 1.1. Then we have the following line of reasoning:
(1) Regardless of the value of u

1

, no peer will upload to peer 1 (d
1

= 0) because
0 u

1

 c
1

< u
2

, u
3

, u
4

, so peer 1 sets u
1

= 0 + ✏ = 0.1 by rule (iii);
(2) In the next time slot, it is peer 2’s turn to update u

2

, which becomes u
1

+✏
because u

2

needs to be the third largest, i.e., greater than u
1

, so that peers 3
and 4 will upload to it.
Continue this line of reasoning to show that the ui values never converge to

fixed values.

(b) Suppose c
1

= c
2

= c
3

= c
4

= 2. Show that setting u
1

= u
2

= u
3

= u
4

= 2
constitutes a Nash equilibrium.
(Hint: show that if it is peer i’s turn to set ui, setting ui to be any value other

than ci = 2 will not improve di.)
(For more detail, see D. Qiu and R. Srikant, “Modeling and performance anal-

ysis of BitTorrent-like peer-to-peer networks,” Proc. ACM Sigcomm, 2004.)

15.5 Private BitTorrent games ? ? ?

We have been discussing the public BitTorrent. There are also many private
torrents that create their own rules of rewarding seeders and encouraging up-
loads beyond the simple tit-for-tat in BitTorrent. More than 800 such private
communities were found in 2009. In this homework problem, we explore one pos-
sible rule of proportional reward, again through the modeling language of game
theory and utility functions.
Let di and ui be the actual download and upload volumns, meausred in bytes,

15.4 Advanced Material 353

for peer i in a fixed population of peers. A standard incentive mechanism in
private BitTorrents is the following ratio incentive:

di f(ui),

i.e., the download volumn cannot be bigger than some function of the upload
volumn, and an a�ne parameterization of this function is

f(ui) =
ui

✓
+�.

Here, similar to leacky bucket admission control that we will see in Chapter 17,
✓ is the upload-download ratio targeted, and � is the slack: the amount of data
a peer can download outside of the ratio rule.
Each peer’s utility function Vi can be parameterized by

Vi(di, ui) = B(di)� C(ui) + �(f(ui)� di),

as long as f(ui)�di � 0. It becomes �1 (it will be evicted out of the community)
otherwise. Here, B and C are some utility and cost functions.
Suppose the strategy for peer i is the two-tuple of target download and tar-

get upload (per unit time): (�i,�i), over the strategy spaces of �i 2 [0, D] and
�i 2 [0, U].

(a) How can we express the actual upload and download amounts {ui, di} as
functions of the strategies {�i,�i} chosen by all the peers? This would be very
di�cult, but if we make an assumption that all the downloads add up to be ex-
actly the same as the sum of all the uploads, then there is a closed-form answer.
What is that answer?

(b) Now we want the Nash equilibrium to be e�cient: each peer chooses the
target download and upload to be just D and U . Can you prove that (�i,�i) =
(D,U), 8i, is indeed a Nash equilibrium if f(u) > u and f 0(u) > C 0(u)/�?

(c) As a corollary to part (b), show that if the ratio incentive parameters (✓,�)
are such that u/✓ + � > u and � > ✓C 0(u) for all u 2 [0, U], then using ratio
incentive implies that (�i,�i) = (D,U), 8i, is the unique Nash equilibrium.

(For more details, see Z. Liu, P. Dhungel, D. Wu, C. Zhang, and K. W. Ross,
“Understanding and improving incentives in private P2P communities,” Proc.
IEEE International Conference on Distributed Computing Systems, 2010.)

16 What’s inside the cloud of iCloud?

16.1 A Short Answer

In June 2011, Apple announced its iCloud service. Part of the eye-catching fea-
tures is its digital rights management of music content. The other part is its
ability to essentially carry your entire computer hard drive with you anywhere
and stream music to any device.

Cloud is more than just storage. For example, in the same month, Google in-
troduced ChromeBook, a “cloud laptop” that is basically just a web browser with
Internet connectivity, and all the processing, storage, and software are somewhere
in Google servers that you access remotely.

These new services and electronics intensify the trends that started with web-
based emails (e.g., Gmail), software (e.g., Microsoft O�ce 365), and documents
(e.g., Google Docs and Dropbox), where consumers use the network as their
computers, the ultimate version of online computing.

In the enterprise market, many application providers and corporations have
also shifted to cloud services, running their applications and software in rented
and shared resources in data centers, rather than building their own server
farms. Data centers are facilities hosting many servers and connecting them via
many switches. Large data centers today can typically be over 300,000 square
feet, house half a million servers, and cost hundreds of millions of dollars to build.

There are three major cloud providers: Amazon’s EC2, Microsoft’s Azure, and
Google’s AppEngine. A pioneering player in cloud services is actually Amazon,
even though to most consumers Amazon stands for an online retail store. In
Amazon’s S3 cloud service today, you can rent slices of the cloud for $0.12 per
GB per month and $0.10 per GB of data transfer.

For many years, it has been a goal in the computing and networking industries
that one day users could readily rent resources inside the network (the “cloud”
on a typical network illustration), in a way that makes economic sense for all the
parties involved. That day is today. Thanks to both technological advances and
new business cases, cloud services are taking o↵ and evolving fast.

Many features of cloud services are not new, some are in fact decades-old.
Several related terms have been used in the media somewhat confusingly too:
cloud computing, utility computing, clustered computing, software as a service,

16.1 A Short Answer 355

c oud

Cloud Users

Service Providers

Cloud Providers Data
Centers

Software

Figure 16.1 Three segments of the cloud service industry. Cloud providers operate
data centers that house the hardware, including interconnected processors, storage
and network capacity. Service providers run cloud services through their software.
Cloud users include both consumer and enterprise customers for cloud services
provided collectively by the service providers and cloud providers.

etc. To clarify the terminology, we refer to the graph in Figure 16.1. There are
three key components of the “food chain:”

Cloud providers build and manage the hardware platform, consisting of com-
puting resources (servers), networking resources (switches), and storage resources
(memory devices) organized inside data centers. There is a network within each
data center where the nodes are servers and switches, and each data center in
turn becomes a node in the entire Internet.

Service providers o↵er software and applications that run in data centers,
and interface with users. For example, an iPad application developer may use the
computing and storage resources in Amazon’s EC2 cloud to deliver its services.
Sometimes, the service provider is the same as the cloud provider. For example,
the iCloud music storage and streaming service from Apple runs on Apple’s own
data centers.

Cloud users are consumers and enterprises that use services running in data
centers. Users can get the content they want (e.g., documents, books, music,
video) or software (e.g., O�ce software, an iPhone application, or in the cloud
laptop’s case, pretty much every software you need) on demand, anytime, any-
where, and on any device with an Internet connection.

16.1.1 What features uniquely define cloud services?

To make the overall cloud service food chain work, we need all of the following
ingredients:

356 What’s inside the cloud of iCloud?

1. Large-scale computing and storage systems, often leveraging virtualization
techniques in sharing a given hardware resource among many processes as
if they each had a slice of a dedicated and isolated resource.

2. Networking within a data center, across the data centers, and to the end
users (often with a wireless hop like WiFi or 4G). This networking dimension
naturally will be the main focus of this chapter, especially networking within
a data center.

3. Software that provides Graphic User Interface, Digital Rights Management,
security and privacy, billing and charging, etc.

If I open up my home desktop’s CPU and hard drive to renters, does that
constitute a cloud service? Probably not. So, what are the defining characteristics
of a cloud service? The keyword is on demand, along two dimensions: time and
scale.

• On demand in timing: a cloud service allows its users to change their requests
of resources on a short notice, and possibly only for a short period of time.

• On demand in scale: a cloud service allows its users to start at a very small
minimum level of resource request (e.g., 1.7 GB of RAM and 160GB of
memory on Amazon’s EC2 today), and yet can go to really large scale
(e.g., Target, the second largest retail store chain in the US, runs its web
and inventory control in a rented cloud).

16.1.2 Why do people hesitate with cloud services?

Cloud services face many challenges, even though they are increasingly out-
weighed by the benefits. Let us briefly bring them up before moving on.
Similar to the pros-cons comparison between packet switching and circuit

switching, once you are in a shared facility, performance guarantee is compro-
mised and so are security and privacy. If you ride a bus instead of a taxi, you pay
less but you might not have a seat and you will be seen by the fellow bus riders.
That is the price you pay to enjoy the benefits of cloud services. There are many
technologies that mitigate cloud’s downsides for various market segments, but
riding a bus will never be exactly the same as taking a taxi.
As illustrated by the Amazon cloud outage in April 2011, availability of service

in the first place is one of the top performance concerns. Main root causes for
unavailability are network misconfigurations, firmware bugs, and faulty compo-
nents. The best way to enhance availability is redundancy : spread your tra�c
across multiple cloud providers (assuming it is easy enough to split and merge
this tra�c), and across di↵erent reliability zones in each of the providers.

16.1.3 Why do people like cloud services?

Why does it make sense to provide and to use cloud services? The answers are
similar to many other wholesale rental businesses, such as libraries and rental car

16.1 A Short Answer 357

p g

+ +

Figure 16.2 Statistical multiplexing smoothes out burstiness of individual users.
Suppose there are three users with their transmission rates over time charted above.
Their aggregate transmission rate, shown in the lower graph, is much smoother.
Cloud providers benefit from such burstiness reduction, as long as the users’ demands
do not peak together.

companies. We summarize the arguments below and will go through an example
in a homework problem.

To the cloud users, the key benefit is resource pooling. The cost of building
and provisioning resources is now shared by many other users. This is called the
“CapEx to OpEx conversion”: instead of spending money in capital expenditure
to build out dedicated facilities, a user pays rent as part of its operational expen-
diture to share facilities. This is similar to going from circuit switching to packet
switching in the design of the Internet. The risk of miscalculating resource need
shifts to cloud providers, a significant advantage if the resource demand varies a
lot or is just hard to predict. But why would cloud providers be interested?

A main reason is the economy-of-scale advantages on both the supply and
demand sides of the business. On the supply side, a cloud provider can pro-
cure the servers, switches, labor, land, and electricity at significantly discounted
price because of its large scale and bargaining power. Even when compared to
a medium size data center with thousands of servers, a large scale data center
with a hundred thousand servers can often achieve a factor 5-7 advantage in cost
per GB of data stored or processed.

On the demand side, scale helps again, through statistical multiplexing. Fluc-
tuations of demand for each user are absorbed into a large pool of users, as
shown in Figure 16.2. This is the same principle behind ISPs oversubscribing at
each aggregation point of their access networks: aggregating many bursty users
reduces the burstiness. Of course, the overall pool may still exhibit time-of-day
peak-valley patterns. The average utilization of servers in a data center is often

358 What’s inside the cloud of iCloud?

below 20% today. These peak-valley patterns can be further smoothed out by
time dependent pricing as discussed in Chapter 12.

Cloud is all about scale. Today’s large scale data centers are indeed huge, so
big that electricity and cooling costs sometimes represent more than half of the
total cost. If iPhone is one of the smallest computers we use, each data center is
one of the largest. We have made an important assumption, that it is actually
feasible to scale up a data center. Otherwise, we would have to truncate all the
benefits associated with scaling up. But as we saw in Chapter 10, scale can also
be a disadvantage when each (reasonably priced) network element can only have
a small number of high performance ports. Unless you have the right network
topology, building a 100,000-server data center can be much more expensive, in
unit price of capacity (or bandwidth in this field’s common terminology), than
building a 10,000-server data center. This echoes Chapter 10: (high throughput)
connectivity per node does not scale up beyond a certain point in either tech-
nology or human networks. Yet we want (high throughput) connectivity for the
whole network to keep scaling up. That is the subject of the next section: how
to achieve the advantages of scale for a network without su↵ering the limitation
of scale per node.

16.2 A Long Answer

16.2.1 Building a big network from small switches

We need a network within a data center. Many applications hosted in a data
center require transfer of data and control packets across the servers at di↵erent
locations in that big building. A natural, but inferior solution, is to build a tree
like Figure 16.3(a), where the leaf nodes are the servers, and the other nodes
are the routers. The low level links are often 1 Gbps Ethernet, and upper level
ones 10 Gbps Ethernet links. The top-of-the-tree switches are big ones, each with
many 10 Gbps links. It is expensive to build these big switches. As the number of
leaf nodes increases to 100,000 and more, it becomes technologically impossible
to build the root switch. A high end switch today can only support 1280 servers.

So we need to start over-subscribing as we climb up the tree. Sometimes the
oversubscription ratio runs as high as 1:200 in a large data center. What if all
the leaf node servers want to fully utilize their port bandwidths to communicate
with other servers at the same time? Then you have a 200-factor congestion.
The whole point of resource pooling is defeated as we fragment the resources:
idle servers cannot be utilized because the capacity between them cannot be used
in an oversubscribed tree. No matter how you cut it, a tree is not scalable. Many
trees would have been better, as in P2P in Chapter 15, but we cannot swap the
leaf nodes upstream in multi-trees here, because the leaf nodes are servers and
the upstream nodes are switches.

16.2 A Long Answer 359

Figure 16.3 From tree to fat tree. (a) shows a tree supporting 8 servers (the leaf nodes
represented by circles, with 4 switches with two inputs and two outputs, 2 switches
with four inputs and four outputs, and 1 switch with eight inputs and eight outputs.
It is expensive to build the larger switches. When the root switch is too big, it
becomes impossible to build one, and oversubscription has to take place as we go up
the tree. In contrast, in (b), 2 small switches (each with two inputs and two outputs)
collectively serve the role of the 4 by 4 switch, and 4 small switches collectively serve
the role of the 8 by 8 switch.

Is it still possible to build a large network with small switches, just like building
a reliable network out of unreliable components?
The answer is yes, if you are smart enough with the network topology, and

go from a tree to a multi-stage switched network. Instead of building a
large scale network by scaling up the number of ports per router and hitting the
economic and technology ceilings, we scale out the topology and can do that as
much as we want. We use many small switches to make a large switch, with the
same number of links per switch at each level.
This branch of networking has long been studied in the old days of circuit

switching, when it became impossible to build a large enough single switch to
handle all phone calls. Then interconnection networks were studied for mul-
ticore processors and parallel computation. Now the study of interconnection
networks has revived in the context of data center networking for cloud services.
The key message here is that connectivity itself is a resource that we can build
and need to build carefully.
There are many ways to quantify how good an interconnection topology is.

We focus on throughput rather than latency.

• The worst case pairwise end-to-end capacity (e.g., from one leaf node to an-
other in a tree) is one possibility.

• Bisection bandwidth is another: similar to social graph partitioning in
Chapter 8, the capacity on all the links between two equal-sized halves
of the network is called a bisection cut, and the worst case of that over

360 What’s inside the cloud of iCloud?

3x3 3x34x4

Input Middle Output

Figure 16.4 An example of a Clos network. This is a 3-stage, (3, 3, 4) Clos network,
supporting 12 inputs and 12 outputs using only 3 by 3 and 4 by 4 switches. There are
4 of these 3 by 3 switches on the input stage, 4 of them on the output stage, and 3 of
these 4 by 4 switches in the middle stage. Each input switch is connected to each of
the middle switches. Each output switch is also connected to each of the middle
switches.

all possible combinations of halves of the network is called bisection band-
width.

• A third metric is a classic one often used in circuit switching: a network is
called nonblocking if any pair of (unused) input and (unused) output can
be connected as each tra�c session (a switching request) arrives and is
switched. It is called rearrangeably nonblocking if some existing pairs’
connection needs to be rearranged in order to achieve the nonblocking
property.

In 1953, the most famous interconnection network topology, called the Clos
network, was invented. An example is shown in Figure 16.4. The general def-
inition of a Clos network is as follows. Each Clos network is specified by three
integers: (n,m, r). Each input switch is n⇥m, and there are r of them. Symmet-
rically, each output switch is m ⇥ n, and there are also r of them. The middle
stage switches of course must be r ⇥ r, and there are m of them. Each of the
input and output switches is connected to each of the middle stage switches.
This is a rich connectivity, using only small switches to support rn input-output
pairs of ports, as illustrated in Figure 16.4.

Assuming a centralized controller is picking the switching patterns, it can be
readily seen that if m � 2n � 1, then a Clos network is nonblocking. Consider
a new switching request arriving at a particular input port of an input switch
A, to be switched to an output port of an output switch B. In the worst case,
each of the other n � 1 ports on A is already occupied, each of the other n � 1

16.2 A Long Answer 361

A

B

C

A

B

A

B

O
1

2
3

O
1

2
3

Figure 16.5 An example illustrating that when m � 2n� 1, the Clos network is
nonblocking. The key point is that with a su�ciently large m, there are enough
middle stage switches even under the worst case tra�c pattern and wiring. In this
example, n = 2, m = 3, and r = 2. Wiring within each switch, which determines the
switching pattern, is shown in blue. Wiring among the switches, which is fixed a
priori, is shown in black. The tra�c pattern is that input port 1 needs to be
connected to output port 0, input port 2 to output port 1, input port 3 to output
port 0, and input port 0 to output port 3. At this point, three input-output port pairs
have already been connected as shown. We need to connect input port 0 to output
port 3. The other input port sharing the same input stage switch A connects through
middle stage switch B. The other output port sharing the same output stage switch B
connects through middle stage switch C. Had there not been another middle stage
switch, A in this case, there would have been no way to connect input port 0 and
output port 3 without rearranging existing connections. But with the presence of
switch A, the Clos network becomes non-blocking.

ports on B is already occupied, and most importantly, these 2n� 2 connections
each goes through a di↵erent middle stage switch. This means we need to have
an additional middle stage switch in such a worst case scenario. That means if
there are m � 2n� 1 middle switches, we have the non-blocking property. This
is illustrated in Figure 16.5.

It is also interesting to see that r does not factor into the non-blocking con-
dition. But of course, if r is too big, the middle stage switches will have large
port counts. Bigger r means there are more input and output stage switches, and
larger middle stage switches, which can be recursively built from 3-stage Clos
networks using only small switches.

It takes a little longer to show that if m � n, then a Clos network is rear-
rangeably nonblocking. We will go through this proof in a homework problem.

A Clos network can have its input part and output part folded. A folded Clos
network is often called a fat tree. Not to be confused by this terminology, a
fat tree enjoys scalability beyond what a tree can. It can achieve the maximum

362 What’s inside the cloud of iCloud?

Figure 16.6 From Clos network to fat tree. Due to symmetry around the middle stage
of this 5-stage Clos network, the right two stages can be folded to the left two stages.
We call a folded Clos network a fat tree. Now each link is bidirectional in the fat tree.

bisection bandwidth without having to oversubscribe tra�c as we go up the tree
levels. This is shown in Figure 16.6. Fat trees have been implemented in many
data centers as the standard way to scale up.
There are several alternatives to Clos networks, such as hybercube, mesh,

bu↵erfly, etc. A variant called VL2 builds small trees while trees are still scalable,
and then a Clos network among the roots of these trees, as illustrated in Figure
16.7.
Given a topology, we still need to run routing, congestion control, and schedul-

ing of tra�c on it. Some of these topics will be touched upon in Advanced Ma-
terial. When the connectivity in Clos network is su�ciently rich, even simple,
randomized routing can load balance the tra�c well enough to achieve near
optimal bisection bandwidth. In some proprietary systems such as Infiniband,
deterministic routing, an even simpler approach, is used.

16.2.2 Comparing network topologies: Internet, data center, and P2P

Before we move on to illustrative examples of data center topologies, we pause to
reflect upon three ways of drawing and sizing topologies, one for each key type
of wireline technology network. We also explore the root causes behind these
di↵erent design choices.

1. The Internet backbone: Overprovision link capacities and then carefully run
IP routing, possibly multipath routing. Since routing is not responsive to link
load in real time, that job of congestion control is given to the transport layer,
and end hosts react to varying loads on a fast timescale by TCP.

2. Data center networks : Overprovision connectivity by increasing the number

16.2 A Long Answer 363

Clos Network

Figure 16.7 The “Virtual Layer 2” (VL2) design leverages spatial hierarchy in data
centers. Many servers are connected by trees, and then the trees are connected to
each other through a Clos network.

of paths available, and then run massive amounts of multipath routing, either
carefully or randomly. Why not do this for the Internet backbone too? Because
overprovision connectivity is even more expensive than overprovision capacity
in the Internet’s spatial scale, unless you overlay, like in P2P.

3. P2P multicast overlay network : Overprovision connectivity rather than ca-
pacity, by increasing both the number of paths and the number of source
nodes, and then run massive amounts of multi-tree construction by picking
not just routing paths but source-destination relationships, either carefully
or randomly. More than just creating a richly connected topology and then
picking many paths, this creates many concurrent multicast trees.

The progression of the above three designs can be summarized as follows: (1)
Fix a topology, make pipes fatter and use the pipes intelligently. (2) Enrich the
topology by increasing connectivity. (3) Create many topologies to choose from
at the same time.
In the end, (2) and (3) can get close to their bisection bandwidth limit and

peer upload capacity limit, respectively, but (1) cannot get to full utilization of
backbone bandwidth. Furthermore, if there is enough overprovisioning of con-
nectivity, you even get to choose among the connections randomly (like in VL2
and BitTorrent) and be pretty close to the limit. Overprovisioning connectivity
pays o↵ better than overprovisioning capacity, if you can a↵ord it.
Choice of network design also depends on the dominant cost drivers. In the

Internet backbone, digging trenches is the dominant cost for the ISPs. And links
are long haul, covering thousands of miles, constrained by the presence of fibers
and population. It is very expensive to create connectivity. In a data center,
the network inside a large building is a relatively small fraction of the cost,

364 What’s inside the cloud of iCloud?

compared to the server, electricity and cooling costs. So overprovisioning con-
nectivity makes economic sense. P2P is an overlay network, so connectivity is
a logical rather than physical concept and even cheaper to overprovision. P2P
connectivity can also be dynamically managed through control signals without
digging any trenches.
In addition to cost structures, tra�c demand’s predictability and flexibility

are other root causes for these fundamentally di↵erent choices in network de-
sign. In the Internet, tra�c matrices are relatively predictable. Tra�c matrix
fluctuation on the Internet is over time rather than space, thus can be mitigated
by either capacity overprovisioning or time-dependent pricing. In data centers,
tra�c demands are quite volatile and not yet well understood, another reason to
overprovision connectivity. In P2P, you have the option of changing the tra�c
matrix, by picking di↵erent peers. So, leveraging that flexibility gives the biggest
“bang for the buck.”

16.3 Examples

16.3.1 Expanding and folding a Clos network

In this example, we demonstrate how to expand a Clos network from 3 stages to
5 stages, and then rearrange for symmetry before folding into a fat tree.
As illustrated in Figure 16.8, we follow a sequence of five steps:

• Step 1: We start with a particular 3-stage Clos network where n = 2,m =
2, r = 4. We would like to replace the middle stage larger switches with
small, 2 by 2 switches.

• Step 2: We construct a new 3-stage Clos network where n = 2,m = 2, r = 2.
Each of these Clos networks can act as a 4 by 4 switch.

• Step 3: We now replace each center stage switch in step (1) with the new
3-stage Clos network in step (2). This recursive operation expands the
original 3-stage Clos network into a 5-stage one. There are more switches,
but they are all small ones (2 by 2) now.

• Step 4: We conform to the standard input stage connection pattern by appro-
priately rearranging the positions of switches in stage 2 and stage 4.

• Step 5: Finally, we can fold the 5-stage Clos into a 3-stage fat tree, each link
being bidirectional now.

16.3.2 Max flow and min cut

Bisection bandwidth is a special case of the cut size of a network. There is a
celebrated result connecting the sizes of cuts in a graph with the the maximum
amount of flow that can be routed through the network.
Consider a directed graph with edge capacities illustrated in Figure 16.9(a). We

want to find out the maximum flow from source s to destination t. Figure 16.9(b)

16.3 Examples 365

(1)

(2)

(3)

(4)

(5)

Figure 16.8 Convert a 3-stage (2,2,4) Clos network into a 3-stage fat-tree with only 2
by 2 switches. Each of the middle stage switches in the original Clos network is
replaced by a 3-stage (2,2,2) Clos network. Then the switches are rearranged in stages
2 and 4 to create symmetry around the middle stage. Finally fold the network into a
more compact one with bidirectional links.

366 What’s inside the cloud of iCloud?

gives a solution of maximum flow computed using the Ford Fulkerson algorithm
that we went through in a homework problem in Chapter 13.
In general, a cut (S, T) of the network G = (V,E) is defined with respect to

a given source-destination pair s, t. It is a partition of the node set V into two
subsets: S and T = V � S (nodes in set V other than those in set S), such that
s 2 S and t 2 T . The capacity of the cut (S, T), or its cut size, is the sum
of the capacities on the links from S to T . A minimum cut of a network is a
cut whose capacity is the minimum over all cuts of the network. Figure 16.9(c)
shows a minimum cut in the network.
The max-flow min-cut theorem states that the maximum amount of flow

passing from the source to the destination is equal to the minimum cut of the net-
work with respect to that source-destination pair. In this example, both numbers
equal 23 units. The largest possible is clearly 24 units since that is the capacity
of the cut that leaves the destination node as T and all the other nodes in S.
But that is not the minimum cut here. Instead, the min cut divides the network
into the left 4 nodes and the right 2 nodes as shown.

16.4 Advanced Material

Data centers host a multitude of services, which range from financial, security,
websearch, and data mining, to email, gaming, content distribution, and social
networking. These services live over varying time scales and belong to di↵erent
tra�c classes with diverse Quality of Service (QoS) needs. For instance, inter-
active services such as gaming, video streaming, and voice-over-IP are delay-
sensitive, whereas other services such as large file transfers and data mining ap-
plications are throughput-sensitive. In addition, for e�cient sharing of workload,
components of a single application can be distributed, processed, and assembled
on multiple servers that are located at di↵erent data centers. All these result
in interesting tra�c patterns, both within a data center and over the backbone
network that interconnects multiple data centers over a large geographical span.
We focus on tra�c management within a data center here, especially on four
degrees of freedom: topology, placement, routing, and scheduling.
Scalable data center topology. Topology of the connected servers is a key design

issue as discussed in this chapter. Figure 16.10 shows some typical data center
topologies by interconnecting switches. Most data centers, e.g., tree, VL2, fat tree
and DCell, follow a 3-tier architecture. At the bottom is the access tier, where
each server connects to one (or two) access switches. Each access switch connects
to one (or two) switches at the aggregation tier, and finally, each aggregation
switch connects to multiple switches at the core tier. In BCube, servers are
assumed to have multiple input and output ports, so that they can be part of
the network infrastructure and forward packets on behalf of other servers.
Localizing tra�c by flexible VM placement. Cloud customers usually rent mul-

tiple machine instances with di↵erent capabilities as needed and pay at per-

16.4 Advanced Material 367

s t

16

13

4

12

9

14

7

20

4

(a) Network topology and capacity.

s t

11/16

12/13

1/4

12/12

9

11/14

7/7

19/20

4/4

(b) The maximum flow from s to t is 23.

s t

16

13

4

12

9

14

7

20

4

(c) The minimum cut c(S, T), where s 2 S and t 2 T , is 12 + 7 + 4 = 23.

Figure 16.9 Maximum flow equals minimum cut. In the middle graph, a/b means that
a units of capacity, out of a total of b units available, is used on a link. Algorithms
such as the Ford Fulkerson algorithm can compute the maximum flow from source s

to destination t. That must be equal to the minimum size of the cut where s belongs
to one side of the cut and t the other.

machine hour billing rate. Virtualization based data centers are becoming the
mainstream hosting platform for a wide spectrum of application mixtures. The
virtualization technique provides flexible and cost-e↵ective resource sharing in
data centers. For example, both Amazon EC2 and GoGrid use Xen virtualiza-
tion to support multiple Virtual Machine (VM) instances on a single physical
server. An application job usually subscribes a handful of VMs placed at di↵er-
ent hosts that communicate with each other, with di↵erent amounts of resource
requirements for CPU and memory.

368 What’s inside the cloud of iCloud?

Clique Fat-Tree

VL2 BCube

Figure 16.10 There are many topologies possible to scale up a data center. We have
seen fat-tree as a folded Clos network, VL2 as trees combined with a Clos network,
and there are other options like cliques and cubes. Circles are servers and squares are
switches.

A number of proposals have been made to improve the agility inside a data
center, i.e., any server can be dynamically assigned to any host anywhere in
the data center, while maintaining proper security and performance isolation
between services. Maximizing the network bisection bandwidth could be viewed
as a global optimization problem — servers from all applications must be placed
to ensure the sum of their tra�c does not saturate any link.

Route selection by exploiting multipath capability. Data centers rely on the
path multiplicity to achieve scaling of host connectivity. Data center topologies
often take the form of multi-rooted spanning trees with one or multiple paths
between hosts. Route selection can then be congestion-adaptive to bandwidth
availability between di↵erent parts of the network.

Scheduling is yet another degree of freedom in managing tra�c in a data center.
The basic problem of job scheduling is essential to a wide variety of systems, from
an operating system of a smart phone to an interconnection network on a factory
floor. We assume for now that there is a centralized computer to collect all the
inputs and computes the output. In Chapter 18, we will encounter the challenge
of distributed scheduling in WiFi.

16.4 Advanced Material 369

• The input to the scheduling problem is a list of jobs, each with some attributes:
the job size (or more generally, the amount of resource required for each
type of resources), a strict deadline or a cost of exceeding the deadline, and
a quality of service expected, e.g., the minimum throughput. Sometimes
there are also dependencies among the jobs, which can be visualized as a
graph where each node is a job and each directional link is a dependence
between two jobs.

• The output is a schedule: which job occupies which parts of each resource
during each time slot.

• Some criteria to judge how good a schedule is, e.g., the distribution of response
times (the time it takes to start serving a job), the distribution of job
completion times, the e�ciency of using all the resources, and the fairness
of allocating the resources.

Scheduling has been extensively researched in queuing theory, dynamic pro-
gramming, algorithm theory, graph theory, etc. There are too many variants to
list in this brief summary. Some major scheduling policies include the following,
with self-explanatory names:

• First come first serve: whenever there is a available resource, the first job to
arrive claims it.

• Smallest job first : When there are multiple jobs waiting to be scheduled, the
smaller jobs get served first. This helps reduce response times, if we just
count the number of jobs without weighting them by the job sizes.

• First to finish first : This helps reduce completion times by the count of the
number of jobs.

• Longest queue first : If we group the jobs by the type of resource they request,
and each group has its queue to hold jobs waiting to be scheduled. This
scheduling policy helps avoid long queues building up as more jobs arrive
at the queues.

Joint optimization: Topology, VM placement, routing, and job scheduling are
four of the degrees of freedom in managing tra�c inside a data center. Optimizing
on any one of these alone can be quite ine�cient:

• Ill-designed network topology limits the bisectional bandwidth and the path
diversity between communicating nodes.

• Suboptimal VM placement introduces unnecessary cross tra�c.

• Oblivious routing even in well-designed topologies can under-utilize the net-
work resource by several factors.

• Ine�cient scheduling may be constrained by routes available among the servers,
which in turn reduces the e�ciency of routing.

Having joint control over all the “knobs” provides an opportunity to fully
utilize the data center resources. For example, the operators have control over

370 What’s inside the cloud of iCloud?

both where to place the VMs that meet the resource demand, and how to route
the tra�c between VMs.

Further Reading

The subject of building large networks from small switches is both old and new.
Its root goes back to the telephone network design and its current driving appli-
cation is one of the “hottest” buzz words in networking industry today.

1. The classic paper by Clos in 1953 started the field of switched network
design:
[Clo53] C. Clos, “A study of non-blocking switching networks,” Bell System

Technical Journal, vol. 32, no. 2, pp. 406-424, 1953.

2. The following is a standard graduate level textbook on interconnection
networking:
[DT04] W. J. Dally and B. P. Towles, Principles and Practices of Intercon-

nection Networks, Morgan Kaufmann, 2004.

3. A down-to-earth introduction to key elements in cloud computing, with
much detail on the practical side, is the following book:
[Sos11] B. Sosinsky, Cloud Computing Bible, Wiley, 2011.

4. The following is a readily accessible, general overviews of cloud research
problems:
[GHMP09] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of

a cloud: Research problems in data center networks,” ACM Sigcomm Computer
Communication Review, vol. 39, no. 1, pp. 68-73, 2009.

5. Here is a comprehensive book on the mathematical foundation of distributed
computation:
[BT97] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-

tation: Numerical Methods, Athena Scientific, 1997.

Problems

16.1 To cloud or not to cloud ?

The Bumbershoot Corporation’s biology research center produces 600 GB of
new data for every wet lab experiment. Assume the data generated can be easily
parallelized, with a negligible overhead.

(a) Suppose the Amazon Web Services (AWS) sells CPU hours at the price
of $0.10/hr per Elastic Compute Cloud (EC2) instance, where each instance

16.4 Advanced Material 371

takes 2 hours to process 1 GB of the experimental data. The data transfer fee
is $0.15/GB. What is the price Bumbershoot will need to pay for processing the
experiment using the EC2 service?

(b) Suppose the data transfer rate from the research center to AWS is 20
Mbps. What is the total time required to transmit and process the experiment
data using the EC2 service?

(c) The Bumbershoot Corperation has 24 computers itself, each taking 2 hours
to process a GB of data. Suppose the maintenance fee (including electricity,
software, hardware, etc) is $15 per computer per experiment. What is the total
amount of time and cost required to process the experiment? Will Bumbershoot
Corperation be willing to use the EC2 service?

(d) We see in (b)(c) that transmission time is a problem in cloud computing.
Can you think of a way to overcome this obstacle, so that Bumbershoot can still
process the experiment using EC2 service within a day?

16.2 Rearrangably nonblocking Clos networks ? ? ?

(a) Give an algorithm for routing unicast tra�c on an (m,n, r) Clos network
with m � n.
(Hint: Suppose the new unicast tra�c to be routed is from input port a to

output port b. Arbitrarily select middle switches ↵,� not being used by a, b,
respectively. Assign the new call with middle switch ↵ and rearrange only the
calls that use middle switches ↵,�.)

(b) Consider an (3, 3, 4) Clos network along with its tra�c illustrated in Fig-
ure 16.11(a). In Figure16.11(b) each node represents an input/output switch,
and links with 3 di↵erent dotted styles represent the middle switches assigned:
the calls (I2, O4), (I3, O1), (I4, O2) are routed through middle switch 1; the
calls (I1, O4), (I2, O1), (I3, O3) are routed through middle switch 2; the calls
(I1, O2), (I3, O4), (I4, O1) are routed through middle switch 3.
Now, route a new call (I4, O3) based on your algorithm in (a).

16.3 Ideal throughput ??

Consider an interconnection network on a microprocessor chip, represented by
a directed graph G = (V,E), where V = {vi : i = 1, · · · , |V |} is the set of nodes
representing the terminals and routers on the chip, E = {ec : c = 1, · · · , |E|} is
the set of links called “channels.” Define the following symbols:
�s,d: The tra�c from input port s to destination d, given a unit of throughput.
xd,c: The tra�c with destination d on channel c, given a unit of throughput.

372 What’s inside the cloud of iCloud?

Input
switch 1

3x3

Input
switch 2

3x3

Input
switch 3

3x3

Input
switch 4

3x3

Output
switch 1

3x3

Output
switch 2

3x3

Output
switch 3

3x3

Output
switch 4

3x3

Middle
switch 1

4x4

Middle
switch 2

4x4

Middle
switch 3

4x4

1.2

1.3

2.2

2.3

2.1

3.2

3.3

3.1

4.2

4.3

4.1

1.2

1.3

1.1

2.2

2.3

2.1

3.2

3.3

3.1

4.2

4.3

4.1

1.1

(a) (3,3,4) Clos network

I1

I2

I3

I4

O1

O2

O3

O4

(b) Network Tra�c

Figure 16.11 An example of unicast tra�c rearrangement. In (b) the left/right nodes
represent input/output switches, and the links with three di↵erent types of dotted
styles represent the assignment of the middle switches.

bc: The bandwidth of channel c.
�c: The load of channel c, given a unit of throughput.
A: The node-channel incidence matrix, where

Aic =

8
<

:

+1 if c is an outgoing channel from node i
�1 if c is an incoming channel to node i
0 otherwise

(a) What is the incidence matrix of the network in Fig.16.12?

1 5

4 6

3

1

2

3 4

5 6

7

8

9 10

11 12

13

14

2

Figure 16.12 A simple network represented by a directed graph.

(b) Define

fd,i =

⇢
�i,d if i 6= d

�
P

j 6=d �j,d if i = d

What is the relationship between fd,i and xd,i under unit throughput?

(c) Express �c in terms of xd,c and bc.

16.4 Advanced Material 373

0

1

2

3

4

5

6

7

R00

R01

R02

R03

R10

R11

R12

R13

R20

R21

R22

R23

0

1

2

3

4

5

6

7

Figure 16.13 An example of butterfly networks.

(d) The ideal throughput ⇥⇤ is the maximum throughput achievable in the
network. What is the ideal throughput in terms of �c?

(e) Formulate the optimization problem of maximizing the ideal throughput
via flow control, for a given tra�c pattern �s,d and network topology A.

16.4 Alternatives to Clos networks ? ? ?

(a) Consider the butterfly network as shown in Figure 16.13, where each
channel has unit bandwidth, and the packets are sent from the input ports (de-
noted by the left circles) to the output ports (denoted by the right circles).

What is the ideal throughput assuming the random tra�c pattern, i.e., each
input port s sends 1

8

unit of tra�c to each output port d under unit throughput?

What is the ideal throughput assuming the “bit rotation permutation” traf-
fic pattern? That is, the input port with the address (in binary) a

2

a
1

a
0

sends
packets to the output port with the address a

1

a
0

a
2

. For example input port
5 = (101)

2

sends packets only to output port (011)
2

= 3.

(b) Repeat (a) for the cube network as shown in Figure 16.14, where each
channel has unit bandwidth and each node being both the input and output port.

16.5 Packaging optimization ??

The nodes and links (channels) of an on-chip interconnection networks are

374 What’s inside the cloud of iCloud?

12

8

4

0

13

 9

 5

 1

14

10

 6

 2

15

11

 7

 3

Figure 16.14 An example of cube networks.

constructed on packaging modules. The network topology along with the pack-
aging technology determines the constraints on the chennal’s bandwidth. In this
question we aim to derive an upper bound on the smallest channel width wmin.
Consider a network where channels are composed of unidirectional wires, each

having a bandwidth of f units. For an arbitrary node vn, suppose it has Wn

pins available, along with �+n outgoing channels and ��n ingoing channels. Since
all �n = �+n + ��n channels connecting to node vn need to share the Wn pins, we
have

wmin f
Wn

�n

Furthermore, consider an arbitrary bipartition C of the network, where there
are BC channels in between the two sets of nodes. In a practical packaging
technology, because of the limited space in between the two sets of nodes, the
number of wires in-between is bounded by some number WC as well. So we have
the following constraint

wmin f
WC

BC

Consider a Cayley graph, along with a bipartition, as shown in Figure 16.15.
Suppose each wire has bandwidth f = 1 Gb, each node has Wn = 140 pins,
and there can be at most WC = 200 wires in between bipartition C. Give an
upperbound of the minimum channel bandwidth wmin of this network.

16.4 Advanced Material 375

0

5

4

3

1

2

Bipartition C

Figure 16.15 A bisection of Cayley graph with 6 nodes. Each link represents two
unidirectional channels going in opposite directions.

17 IPTV and Netflix: How can the
Internet Support Video?

The Internet provides a “best e↵ort”, i.e., “no e↵ort” service. So, how can it
support video distribution that often have stringent demands on throughput
and delay?

17.1 A Short Answer

17.1.1 Viewing models

Watching video is a significant part of many people’s daily life, and it is in-
creasingly dependent on the Internet and wireless networks. Movies, TV shows,
and home videos flow from the cloud through the IP network to mobile devices.
This trend is changing both the networking and entertainment industries. As of
2011, there were more than 100 million IPTV users in the U.S., and Youtube
and Netflix together takes about half of the Internet capacity usage.
This trend is bringing about a revolution in our viewing habits:

• Content type: Both user generated and licensed content have become preva-
lent. Clearly, more user generated content implies an increasing need of
upload capacity, which is traditionally designed to be much smaller than
download capacity.

• When: For many types of video content, we can watch them anytime we want,
with the help of devices like Digital Video Recorder (DVR) on IPTV or
services like HBO Go.

• Where: We can watch any video content almost anywhere, at least anywhere
with a su�ciently fast Internet connection.

• How : Instead of just the TV and desktop computers, we can watch it on
our phones, tablets, and any device with a networking interface and a
reasonable screen.

• How much: We are watching more video, thanks to applications like Net-
flix, Hulu, Deja, and embedded videos on many websites. For example, 27
million unique viewers watched 645 million videos on Hulu in a month in
summer 2011. Similarly, NBC had 30 million unique viewers watching 96
million videos. Some of these are free, some are free but with intrusive ad-
vertisement, some require a monthly subscription, some are pay per view,

17.1 A Short Answer 377

and some are part of a bundled service, such as the triple play of IPTV,
Internet access, and VoIP. If the Internet connection charge is usage-based,
there is also the transportation cost per GB as in Chapter 11.

We can categorize viewing models along four dimensions. Each combination
presents di↵erent implications to the network design in support of the specific
viewing model:

• Real time vs. precoded : Some videos are watched as they are generated in
real time, e.g., sports, news, weather videos. However, the vast majority is
precoded: the content is already encoded and stored somewhere. In some
cases, each video is stored with hundreds of di↵erent versions, each with a
di↵erent playback format or bit rate. Real time videos are more sensitive
to delay, while precoded videos have more room to be properly prepared.
Some other video-based services are not only real time, but also two-way
interactive, e.g., video calls, video conferencing, and online gaming. Clearly,
interactive video has even more stringent requirements on delay and jitter
(i.e., variance of delay over time).

• Streaming or download : Some videos, like those on Netflix and YouTube, are
streamed to you, meaning that your device does not keep a local copy
of the video file (although Netflix movies sometimes can be stored in a
local cache, and YouTube has started a movie rental business). In other
cases, the entire video is downloaded first before played back at some later
point, e.g., in iTunes. Of course the content itself may be automatically
erased from local storage if its digital rights are properly managed, like in
movie rentals. In between these two modes is also the possibility of partial
download and playback. As shown in Advanced Material, this reduces the
chance of jitter, and is followed in practice almost all the time except for
interactive or extremely real time content.

• Channelized or on demand : Some contents are organized into channels, and
you have to follow the schedule of each channel accordingly. This is the
typical TV experience we have had for decades. Even with DVR, you still
cannot jump the schedule in real time. In contrast, Video on Demand (VoD)
allows you to get the content when you want it. Both YouTube and Netflix
are VoD. There are also VoD services on TV, usually charging a premium.
Sometimes the content owner changes the model, e.g., in 2011 HBO in the
US changed to VoD model with its HBO Go services on computers and
mobile devices. In between the two extremes, there is NVoD, Near Video
on Demand, which staggers the same channel every few minutes, so that
within a latency tolerance of that few minutes, you get the experience of
VoD.

• Unicast or multicast : Unicast means transmission from one source to one des-
tination. Multicast means from one source to many destinations, possibly
millions, that belong to a multicast group. An extreme form of multicast

378 IPTV and Netflix: How can the Internet Support Video?

Local Antenna

Super
Head End

Video
Serving

Head End

Satellite
Dish

PON
Access

DSL
Access

Backbone
Network Cable

Access

Access Network

Modem Wi
Fi

STB

ONU Wi
Fi

STB

CPE Wi
Fi

STB

Figure 17.1 A typical architecture of IPTV. The content is collected at the super
head-end and distributed to di↵erent local video serving head-ends across the country,
which also collect local content. Then it is further distributed to access networks
running on copper, fiber, or cable, before reaching the homes. This is often carried
out in private networks owned and managed by a single operator.

is broadcast : everyone is in the multicast group. If you do not want cer-
tain content, you do not have to watch it, but it is sent to you anyway.
TV is traditionally multicast, sometimes through physical media that are
intrinsically multicast too, such as satellite. The Internet is traditionally
unicast. Now the two ends are getting closer. We see unicast capabilities
in IP-based video distribution, but also multicast in IP networks (carried
out either in network layer through IP multicast routing or in application
layer through P2P).

It seems that there are 24 = 16 combinations using the above taxonomy of
video viewing modes. Obviously some combinations do not make sense, for ex-
ample, real time video must be streaming based and cannot be download based.
But precoded video can be either streaming or download based. Or, true VoD
cannot be multicast since each individual asks for the content at di↵erent times,
but channelized content can be either unicast or multicast.

17.1.2 IP video

The term “IP video” actually encompasses two styles: IPTV and VoI.
The first is IPTV, often included as part of the triple or quadruple play

service bundle provided by an ISP. It is delivered over a private and managed
network, with a set top box on the customer’s premise. This private network uses
IP as a control protocol, but many parts of it are deployed and operated by a
single ISP, e.g., a telephone or cable company o↵ering the Internet access. This

17.1 A Short Answer 379

Video
Server

Cache and
Playout
Server

Internet

Internet

Internet

Video Source

Video Viewing

Figure 17.2 A typical architecture of video over the Internet. Video sources, ranging
from iPhones to professional video cameras, upload content to video servers, which
then distribute them through local caches to the viewers around the world who
download the video to their devices. This is all carried out in the public Internet.

makes it easier to control the quality of service. The content is often channelized,
multicast, and streaming-based but with recording capability by DVR.
Before TV turned to the Internet access networks, it was delivered primarily

through one of the following three modes: broadcast over the air, via satellites,
or through cables. So why is the IPTV revolution happening now? There are a
few key reasons:

• Convergence: almost everything else is converging on IP, including voice.
Putting video on IP makes it a unified platform to manage.

• Cost : Having a uniform platform reduces the costs of maintaining separate
networks.

• Flexibility : IP has demonstrated that one of its greatest strengths is the ability
to support diverse applications arising in the future.

• Compression gets better and access network capacity increases su�ciently
that it has become possible to send HD TV channels.

The second is Video over the Internet (VoI). It is delivered entirely over
public networks, often via unicast, and to a variety of consumer devices. Given the
current evolution of business models, VoI is increasingly taking over the IPTV
business as consumers access video content over the IP pipes without subscribing
to TV services. There are three main types of VoI:

• The content owner sends videos through server-client architectures without a
fee, e.g., YouTube, ABC, and BBC.

• The content owner sends videos through server-client architectures with a fee,
e.g., Netflix, Amazon Prime, Hulu Plus, HBO Go.

380 IPTV and Netflix: How can the Internet Support Video?

• Free P2P sharing of movies, e.g., Bit Torrent, PPLive.

Whether it is IPTV or VoI, the quality measures depend on bit rate, delay, and
variation of delay called jitter. What kind of bit rates do we need for videos? It
depends on a few factors, e.g., the amount of motion in the video, the e�ciency of
the compression methods, the screen resolution, and the ratio of viewing distance
and screen size. But generally speaking, the minimum requirement today is about
300 kbps. Below that the visual quality is just too poor even on small screens.
For standard definition movies we need about 1Mbps, and a typical movie takes
1-2 GB. For high definition movies we need at least 6-8 Mbps, and a typical
movie takes 5 GB. Truly HD video needs 19-25 Mbps to be delivered.
We touched upon the revenue models for IPTV and VoI. As to the cost models,

they often consist of the following items:

• Content : The purchase of content distribution rights. Popular and recent
movies and TV series naturally charge more.

• Servers: The installation and maintenance of storage and computing devices.
• Network capacity : The deployment or rental of networking capacities to move

content around and eventually deliver to consumers.
• Customer premise equipment, such as set top boxes or game consoles.
• Software: The software systems that manage all of the above and interface

with consumers.

17.2 A Long Answer

As shown in Figure 17.3, the overall protocol stack for IP video includes the
following: MPEG over HTTP/SIP/IGMP/RTSP, over RTP/UDP/TCP, over IP,
over ATM or Ethernet, over wireless/fiber/DSL/cable. In this section, we go into
some detail of the top 3 layers: compression, application, and transport, trying to
highlight interesting networking principles beyond the alphabet soup of protocol
acronyms.

17.2.1 Compression

A video is a sequence of frames moving at a particular speed. Each frame is
a still picture consisting of pixels. Each pixel is described by its colors and
luminance digitally encoded in bits. The number of bits per frame times the
number of frames per second gives us the bit rate of a video file. Typical frame
rates are 25 or 29.97 frames per second for standard definition, 50 or 60 frames
per second for high definition. Typical pixels per frame for high definition video
are 1280⇥ 720 = 921, 600 or 1920⇥ 1080 = 2, 073, 6004.
In order to put more content into a given pipe, we need compression. It is

the process of taking out redundancies in signals. If the resulting file can be later
recovered, say at the consumer device, to be exactly the same as the original

17.2 A Long Answer 381

y

MPEG, etc.

HTTP / SIP / IGMP / RTSP

RTP / UDP / TCP

IP

ATM / Ethernet

Wireless / Fiber / DSL / Cable

Compression

Application

Transport

Network

Link

Physical

Figure 17.3 Layered network architecture in support of video tra�c. Compression
standards such as MPEG use various application layer protocols, which in turn rely
on combinations of transport and network layer protocols. The focus of this section is
on a few key ideas in the top three layers.

D

R

Better
Compression

Figure 17.4 Rate distortion curves for two di↵erent lossy compression schemes.
Distortion can be measured by objective metrics or subjective tests. Higher rate leads
to lower distortion. The closer to the origin the tradeo↵ curve, the better the tradeo↵.

one, that is called lossless compression, e.g., Lempel Ziv compression used in
zipping files. Otherwise, it is called lossy compression, and there is a tradeo↵
between the compression ratio (the size of the file after compression relative to
that before compression) and the resulting fidelity. This is called rate distortion
tradeo↵, as shown in Figure 17.4.

There are many techniques to help achieve the best and largest range of such

382 IPTV and Netflix: How can the Internet Support Video?

a tradeo↵ by taking out redundancies in the bits, e.g., transform coding (seek
structures in the frequency domain of the signals), Hu↵man coding (reduce the
expected length of the compressed signal by making frequently appearing codes
shorter, like what we saw in Chapter 10), and perceptual coding for video (let
people’s perceptual process guide the choice of which pixels and which frames to
compress). Many frames also looks alike. After all, that is how a perception of
continuous motion can be registered in our brain. So video compressors often only
need to keep track of the di↵erences between the frames, leading to a significant
saving in the number of bits needed to represent a group of pictures.
Video compression has made significant gains over the past two decades:

• MPEG1 standard in 1992: this was used in VCD (which uses 1Mbps bit
rate).

• MPEG2 (or H.262 by a di↵erent standardization body called ITU-T) stan-
dard in 1996: this was used in DVD (which uses about 10Mbps bit rate).

• MP3 is the layer 3 of MPEG2 standard (there is no MPEG3, that was ab-
sorbed into MPEG2): this popular standard for the online music industry
is for encoding just audio, and can achieve a 12:1 compression ratio.

• MPEG4 standard in 2000: this is the current video compression standard
family.

• MPEG4 Part 10 (also called AVC or H.264) in 2004: with 16 profiles, it o↵ers
substantial flexibility. It is also at least twice as good as MPEG2’s compres-
sion capability. It is used in HDTV (with 15-20 Mbps bit rate) and Blu-ray
(with 40 Mbps bit rate). It can readily achieve a compression factor of 100.

• There are also other non-MPEG formats: H.261 was popular in IP video in
the early days, and Quick Time by Apple is merging into MPEG4. There
are also Windows Media Player by Microsoft, Flash by Adobe, and Real
Media Viewer by Real Networks.

A key idea in MPEG compression is to exploit the redundancy across frames
when the motion is not rich. This is called motion compensation with inter-frame
prediction. There are three types of frames, and collectively a set of them form
a Group of Pictures (GoP):

• I frame: this is an independent frame. Its encoding does not depend on the
frames before or after it.

• P frame: this type of frame depends on the previous I (or P) frame, but not
the one after it.

• B frame: this type of frame depends on both the I (or P) frames before and
after it.

Each GoP must start with an I frame, followed by a sequence of P and B
frames, as shown in Figure 17.5. The I frame is the most important one, while
P and B frame losses are much more tolerable. At the same time, I frames are
harder to compress than P and B frames, which use motion prediction to assist
in compression.

17.2 A Long Answer 383

Frame Size

I B B P P PB B B B

GoP

Figure 17.5 A typical structure of a Group of Pictures (GoP). Each GoP starts with
an I frame, followed by a sequence of B and P frames. I frame is independent and the
most important one in each GoP. P frame depends on the previous I/P frame. B
frame depends on both the previous and following I/P frames. Some of these
dependence relationships are shown in arrows. Choosing the length and structure of a
GoP a↵ects the bit rate, error resiliency, and delay in channel change.

The length of a GoP influences the following metrics:

• Bitrate e�ciency : If GoP is longer, there are more P and B frames (the more
easily compressible ones). The bit rate becomes lower.

• Error resilience: If an I frame is lost and, consequently, the entire GoP needs
to retransmitted, a longer GoP means that more frames need to be retrans-
mitted. There is a tradeo↵ between e�ciency and resilience, as we will see
in a homework problem.

• Instant channel change: for channelized video content, the ability to change
channels fast is important if the traditional TV viewing experience is to be
replicated on IPTV. Since GoP represents the logical basic unit for play-
back, longer GoP means that the viewer needs to wait longer in changing
channels. There are also other factors at play for channel change, such as
multicast group operations explained next.

17.2.2 Application layer

In addition to the ability to do multicast routing, we also need Internet Group
Management Protocol (IGMP). It runs the multicast group management and
tells the router that a client (an end user device) wants to join a particular
multicast group. There are only two essential message types: the router asks a
membership-query to clients, and each client replies with a membership-report
telling the router which groups it belongs to. There is an optional message

384 IPTV and Netflix: How can the Internet Support Video?

Web
Server

Media
Server

Web
Browser

Media
Player

Content
Source

End User
Device

HTTP

Content Description

Setup

Media Stream

Figure 17.6 Real Time Streaming Protocol (RTSP) at work. An HTTP session first
enables control information to be exchanged between the client web browser and the
web server. This is followed by the actual media stream from the media server to the
media player software on the end user device.

leave-group from clients to routers. This message is optional because by the
principle of soft state explained in Chapter 19: if the membership report in-
formation does not periodically refresh the groups, it is assumed to leave the
group.

Joining and leaving multicast groups incur propagation and processing delays.
Instant channel change may become frozen. To accelerate a channel change, ISPs
may send some unicast GoP to the end user when she first requests a channel
change. It goes into multicast mode once the “join group” request is processed.
There is clearly a tradeo↵ between network e�ciency and user experience. We
will see more tradeo↵s involved in optimizing the networked delivery of video.

For streaming application, we often use Real Time Streaming Protocol (RTSP).
It allows a media player to control the transmission of a media stream, e.g., fast
forward, rewind, pause, play. It is independent of compression standard or trans-
port protocol.

A typical procedure is shown in Figure 17.6. The request for content first
runs over HTTP from a web browser to a web server. Then, knowing the type
of media and compression used by reading the response received from the web
server, the client can open the right media player, which then uses RTSP to
carry out message passing between the client and the media server that actually
holds the video file. Unlike HTTP, RTSP must keep track of the current state
of the file at the client media player so that it can operate functionalities like
pause and play. You must have realized there is a lot of overhead associated with
managing video tra�c, and we will see more of such overhead in Chapter 19.

Another protocol often used for IP multimedia transmission is Session Initia-

17.2 A Long Answer 385

tion Protocol (SIP) from IETF. It establishes a call between a caller and callee
over an IP network, determines the IP address, and manages the call, e.g., adds
callers, transfers or holds calls, or changes voice encoding. Together with video
standards, SIP can also provide a mechanism for video conferencing.
Yet another commonly used protocol is H.323 from ITU. It is actually a large

suite of protocols involving many components discussed in this section.
You probably have realized that there are many standardization bodies: IETF

for many Internet related protocols, ITU and IEEE have many standardization
bodies, and some major standards have their own governing bodies, e.g., 3GPP
and 3GPP2 for cellular, WiMax Forum for WiMax, DSL Forum for DSL, MPEG
for video compression, etc. The way they operate is a mix of technology, business,
and political factors, but they all share a common goal of inter-operability among
devices so that the networking e↵ect of technology adoption can be achieved.

17.2.3 Transport layer

We have seen the connection-oriented transport protocol of TCP in Chapter
14. But much multimedia tra�c, especially real time or interactive ones, runs
instead over User Datagram Protocol (UDP) in the transport layer. UDP is
connectionless, meaning that it does not try to maintain end-to-end reliability
or even sorting packets in the right order. It works with IP to deliver packets to
the destination, but if the packets do not get there, it will not try to solve that
problem. For example, Skype uses UDP unless the client sits behind a firewall
that only allows TCP flows to pass through.
UDP is fundamentally di↵erent from TCP in the end-to-end control of the

Internet. Why would applications with tight deadlines prefer UDP? It boils down
to the tradeo↵ between timeliness and reliability:

• TCP uses 3-way handshake (explained in Chapter 19) to establish a session,
whereas UDP does not introduce that latency. TCP uses congestion control
to regulate the rate of sending, whereas UDP sends out the packet as soon
as it is generated by the application layer.

• TCP ensures reliability through packet retransmission, but many multimedia
applications have their own built-in error resilience, for example, losing
a B frame in a GoP can often be concealed in a media player so that the
viewers cannot tell. Moreover, a lost and retransmitted packet will likely be
too late to be useful in playback by the time it arrives at the destination. It
is instead more important to avoid holding back playback and just proceed.

In addition to real time or interactive multimedia, many network management
or signaling protocols, like SNMP in Chapter 19 and RIP in Chapter 13, also
run on top of UDP. For these signaling protocols, there are two more reasons to
prefer UDP:

• TCP maintains too many states for each session compared to UDP. So UDP
can support many more parallel sessions at the same time.

386 IPTV and Netflix: How can the Internet Support Video?

• TCP header is 20 bytes and UDP is 8 bytes. For small control packets, this
di↵erence in overhead matters.

A protocol on top of UDP is Real Time transport Protocol (RTP), heavily
used in many IP multimedia applications including VoIP. It specifies a format
to carry multimedia streams. The key challenge here is to support many types
of media formats, including new ones coming up. And the key solution idea is
to specify a range of profiles and payload formats, specific to each media type,
without making the header dependent on the media type. RTP runs on the
data plane, and its companion RTP Control Protocol (RTCP) runs the control
plane. RTCP keeps track of the RTP stream’s information, such as the number
of packets, the number of bytes, and the time stamp information. It monitors
the statistics and synchronizes multiple streams.

17.3 Examples

17.3.1 Video quality and I/P/B frames

In this example, we will explore the e↵ect of dropped I, P, and B frames on
video quality. Let each grayscale value of the pixel at position (x, y) in frame i
be represented by pi(x, y). The transmitted frame is p̄i and the received frame
is pi. For our metric of video quality, we use l � 1 norm, the sum of absolute
di↵erences, i.e., error =

P
x,y,i |pi(x, y)� p̄i(x, y)|.

Consider a pixel resolution of 2 by 2. For simplicity, assume all pixel values in a
given frame are the same (this is a very boring video). An entire GoP is indexed
by i = 1, 2, 3, 4. We will drop each frame of the GoP in turn, and quantify the
e↵ect on our error metric. Assume that frame 0 and frame 5 (belonging to the
preceding and following GoPs, respectively) are always successfully received.

0 0

0 0

i = 0
Last GoP B

frame

1 1

1 1

i = 1
I frame

2 2

2 2

i = 2
P frame

3 3

3 3

i = 3
B frame

4 4

4 4

i = 4
B frame

5 5

5 5

i = 5
Next GoP I

frame

Recall that an I frame has no reference frame, a P frame uses the last I or P
frame as the reference frame, and a B frame uses the last I or P frame and the

17.3 Examples 387

next I or P frame as reference frames. An “error” in frame i means that either
(i) frame i is missing, or (ii) frame i had to perform error concealment because
frame i’s reference is missing. We can set up a few error-concealment rules at
the receiver:

• If the receiver misses any frame, it instead displays the last available frame.

• If the receiver detects an error in the reference frame of a P frame, it also
displays the last available frame in place of the P frame.

• If a receiver detects an error in a reference frame of a B frame, it displays the
other reference frame.

If the I frame of this GoP is dropped, the receiver displays what is summarized
in Table tab:gop1:

p̄(1, 1) p̄(1, 2) p̄(2, 1) p̄(2, 2)

i = 0 0 0 0 0

i = 1 0 0 0 0

i = 2 0 0 0 0

i = 3 5 5 5 5

i = 4 5 5 5 5

i = 5 5 5 5 5

Table 17.1 Frame 1: Dropped, so repeat frame 0. Frame 2: Error in reference frame 1, so
repeat frame 1. Frame 3: Error in reference frame 2, so display frame 5. Frame 4: Error in
reference frame 2, so display frame 5.

Then the error between the transmitted and the received picture is:

error = |p
1

(1, 1)� p̄
1

(1, 1)|+ |p
1

(1, 2)� p̄
1

(1, 2)|+ |p
1

(2, 1)� p̄
1

(2, 1)|+ |p
1

(2, 2)� p̄
1

(2, 2)|
+ |p

2

(1, 1)� p̄
2

(1, 1)|+ |p
2

(1, 2)� p̄
2

(1, 2)|+ |p
2

(2, 1)� p̄
2

(2, 1)|+ |p
2

(2, 2)� p̄
2

(2, 2)|
+ |p

3

(1, 1)� p̄
3

(1, 1)|+ |p
3

(1, 2)� p̄
3

(1, 2)|+ |p
3

(2, 1)� p̄
3

(2, 1)|+ |p
3

(2, 2)� p̄
3

(2, 2)|
+ |p

4

(1, 1)� p̄
4

(1, 1)|+ |p
4

(1, 2)� p̄
4

(1, 2)|+ |p
4

(2, 1)� p̄
4

(2, 1)|+ |p
4

(2, 2)� p̄
4

(2, 2)|
= 4|p

1

(1, 1)� p̄
1

(1, 1)|+ 4|p
2

(1, 1)� p̄
2

(1, 1)|+ 4|p
3

(1, 1)� p̄
3

(1, 1)|+ 4|p
4

(1, 1)� p̄
4

(1, 1)|
= 4|1� 0|+ 4|2� 0|+ 4|3� 5|+ 4|4� 5|
= 24.

(17.1)

If instead the P frame is dropped, the receiver displays what is summarized in
Table 17.2.

The error between the transmitted and the received picture is:

388 IPTV and Netflix: How can the Internet Support Video?

p̄(1, 1) p̄(1, 2) p̄(2, 1) p̄(2, 2)

i = 0 0 0 0 0

i = 1 1 1 1 1

i = 2 1 1 1 1

i = 3 5 5 5 5

i = 4 5 5 5 5

i = 5 5 5 5 5

Table 17.2 Frame 2: Dropped, so repeat frame 1. Frame 3: Error in reference frame 2, so
display frame 5. Frame 4: Error in reference frame 2, so display frame 5.

error = 4|p
1

(1, 1)� p̄
1

(1, 1)|+ 4|p
2

(1, 1)� p̄
2

(1, 1)|+ 4|p
3

(1, 1)� p̄
3

(1, 1)|+ 4|p
4

(1, 1)� p̄
4

(1, 1)|
= 4|1� 1|+ 4|2� 1|+ 4|3� 5|+ 4|4� 5|
= 20.

(17.2)
If the first B frame, frame 3, is dropped, the receiver displays what is summa-

rized in Table 17.3.

p̄(1, 1) p̄(1, 2) p̄(2, 1) p̄(2, 2)

i = 0 0 0 0 0

i = 1 1 1 1 1

i = 2 2 2 2 2

i = 3 2 2 2 2

i = 4 4 4 4 4

i = 5 5 5 5 5

Table 17.3 Frame 3: Dropped, so repeat frame 2.

The error between the transmitted and the received picture is:

error = 4|p
1

(1, 1)� p̄
1

(1, 1)|+ 4|p
2

(1, 1)� p̄
2

(1, 1)|+ 4|p
3

(1, 1)� p̄
3

(1, 1)|+ 4|p
4

(1, 1)� p̄
4

(1, 1)|
= 4|1� 1|+ 4|2� 2|+ 4|3� 2|+ 4|4� 4|
= 4.

(17.3)
If the second B frame, frame 4, is dropped, the receiver displays what is sum-

marized in Table 17.4.

17.3 Examples 389

p̄(1, 1) p̄(1, 2) p̄(2, 1) p̄(2, 2)

i = 0 0 0 0 0

i = 1 1 1 1 1

i = 2 2 2 2 2

i = 3 3 3 3 3

i = 4 3 3 3 3

i = 5 5 5 5 5

Table 17.4 Frame 4: Dropped, so repeat frame 3.

The error between the transmitted and the received picture is:

error = 4|p
1

(1, 1)� p̄
1

(1, 1)|+ 4|p
2

(1, 1)� p̄
2

(1, 1)|+ 4|p
3

(1, 1)� p̄
3

(1, 1)|+ 4|p
4

(1, 1)� p̄
4

(1, 1)|
= 4|1� 1|+ 4|2� 2|+ 4|3� 3|+ 4|4� 3|
= 4.

(17.4)
The greatest error resulted from dropping the I-frame, followed by the P-frame,

and finally the B-frames. More important frames cause more error in the GoP
when dropped, causing a bigger drop in the visual quality.

17.3.2 Latency-jitter tradeo↵

In this example, we look at the e↵ect of bu↵ering on video playback. We will see
what the playback delay should be to provide a smooth viewing experience.
Assume there is one frame per packet. Figure 17.7 shows the transmitted,

arrived (at the receiver), and played frames over time. We refer to these as the
timing curves, abbreviated as the V, A, and P curves. V and A curves are given
by the source and the network, and our job is to design the best P curve.
The source transmits at a constant rate, so V is a superposition of unit step

functions. Let Vi denote the time at which packet i is transmitted, Ai the time
at which packet i is received, and Pi the time at which packet i is displayed
to the user. The delay between the transmitted and received packet is given by
di = Ai � Vi. Then, abusing the notation a little to use vectors to represent the
discrete jumps on the curves, we have

V =

2

664

1
2
3
4

3

775 , A =

2

664

5.8
7.5
8
9.4

3

775 , d = A�V =

2

664

4.8
5.5
5
5.4

3

775 . (17.5)

In reality, we cannot know A ahead of time and have to either estimate it or

390 IPTV and Netflix: How can the Internet Support Video?

adapt in real-time, like in a homework problem. For now, we assume it is known.
P must be a unit step function since frames need to be displayed at a constant
rate. When should playback begin, i.e., what is the value of P

1

? The goal is to
minimize the total delay experienced by the user:

minimize
X

i

(Pi � Vi)

subject to Pi+1

= Pi + 1, 8i
Pi � Ai, 8i

variables {Pi}.

The first constraint in the above optimization ensures that P is a unit step
function, and the second constraint says that playback of a packet can only
occur after the packet has been received. The objective function can be further
simplified; since P and V are both unit step functions, Pi�Vi is the same for all
i, so the objective function is equivalent to minimizing any single Pi � Vi.
This problem can be solved easily through visual inspection. This problem is

essentially shifting a unit step function P to the left, until Pk = Ak for some k,
and Pi � Ai 8i 6= k. So we want to make curve P as close to curve A as possible
but still rest below A.
From Figure 17.7, clearly k = 2. Since P ⇤

2

= A
2

= 7.5 s, we have P ⇤
1

= 6.5
s. This means playback should begin at 6.5 s, which in turn means delaying
playback by P

1

� A
1

= 6.5� 5.8 = 0.7 s, so as to avoid frozen video due to the
variation of packet arrivals through the network.

In general, for a constant rate source, the playback should begin at P ⇤
1

=
A

1

+D, where D = maxi(di� d
1

) and represents the maximum delay variation.
This formula applies to the above example. Since D = d

2

� d
1

= 5.5� 4.8 = 0.7
s, we have P ⇤

1

= A
1

+D = 5.8 + 0.7 = 6.5 s.
In a homework problem, we will explore how to control jitter if the arrival

times are not known, as is almost always the case in reality.

17.4 Advanced Material

There are three general approaches in managing Quality of Service (QoS) on
top of the simple connectivity services, in the best e↵ort style, o↵ered by the
thin waist of TCP/IP:

• Treat di↵erent sessions di↵erently during resource allocation.
• Regulate which clients can be admitted.
• Distribute servers to strategic locations.

As an analogy, think of a highway’s tra�c control. Di↵erentiating resource allo-
cation is like reserving a lane for certain vehicles, like a car-pool lane. Regulating
admission is like using the on-ramp tra�c lights during congestion hours. Dis-
tributing servers is like constructing new exits of popular destinations like grocery

17.4 Advanced Material 391

0 5 10 15
0

1

2

3

4

Time (s)

P
a
ck

e
ts

Transmitted packets (V)

Received packets (A)

Played packets (P)

Figure 17.7 Playback bu↵er smoothes video playback. This graph shows V the timing
curves at the source: how packets are transmitted with a constant rate; A at the
receiver: how the packets arrival times vary as they traverse the network, and P at
playback: how playback latency can smooth the arrival jitter. V and A curves are
given, and the P curve needs to be designed to make sure it is a superposition of unit
step functions, lies below the A curve, and yet is as far to the left as possible.

stores, which is clearly a much longer timescale operation compared to the other
two.

17.4.1 Di↵erent queue service policies

Di↵erent sessions can be treated di↵erently, inside a node or along a link in a net-
work. For example, there are several standard queuing disciplines in a router. As
shown in Figure 17.8, the following three methods will create di↵erent sequences
of service timing among the incoming sessions:

• Round robin: each class of tra�c takes turns.

• Weighted fair queuing : while taking turns, one class can receive a higher rate
than another.

• Priority queuing : higher priority class packets are processed before lower prior-
ity ones, which have to wait until there are no more higher priority packets
in the queue.

What constitutes a fair allocation among competing sessions? This is yet
another instance where we touch upon the notion of fairness. We will see in
Chapter 20 a systematic treatment of the subject.

Of course, di↵erential treatment methods as above do not provide a guarantee
on quality of service. For that, we need resource reservation methods. There are
dynamic versions of establishing end to end circuits in the network layer and
reserving adequate resources (such as capacity, timeslot, processing power) so
that the end user experience is guaranteed to be good enough. Hando↵ in mobile
networks in Chapter 19 will o↵er such an example.

392 IPTV and Netflix: How can the Internet Support Video?

Arrival

RR

WFQ

PQ

Figure 17.8 Three queuing disciplines give di↵erent orders of packet service. There are
two classes arriving over the time slots denoted by dotted lines. Each class has two
packets. In round robin scheduling, the square packets and circle packets are served in
turn, one packet in each timeslot. In weighted fair queuing, the two classes take turns,
but square packets get a higher service rate. In priority queuing, square packets have
strict priority, and circle packets only get their chances when all square packets have
been sent.

17.4.2 Admission control

An alternative approach to managing resource competition is to regulate the
demand. In some sense, TCP congestion control does that in a feedback loop,
on the timescale of RTT. Policing or throttling further shapes the rate of tra�c
injection into the network.

For an open loop control, we can use admission control: deciding whether
a session should be allowed to start transmitting at any given timeslot. Such
admission control is usually carried out at the edge of the network, often at the
first network element facing the end user devices. In fact, even time dependent
pricing can be viewed as a generalization of admission control right on users’
devices.

One possible admission control is to control the peak rate, over some timescale,
of tra�c injection. This is like the ramp light that regulates cars getting onto
a highway and smoothes the tra�c injection into the highway network during
congested hours. By changing the rate of showing green lights at the ramp, we
can control the rate of adding tra�c onto the highway (the backbone network),
at the expense of causing congestion at the ramp (the access network).

An example of admission control is leaky bucket, shown in Figure 17.9. In
order for each packet to be admitted, there must be a token dripping from a
(conceptual) leaky bucket. The bucket drips tokens at a rate of r, and has a
volume of B tokens. In a homework problem, we will see that weighted fair

17.4 Advanced Material 393

y

Arrival Departure
Buffer Enough

Tokens?

B tokens at max

tokens / secr

Figure 17.9 Leaky bucket for admission control. Each bucket can hold at most B
tokens, and r tokens are added to the bucket per second. Each transmitted packet
consumes one token. In order for a packet in the bu↵er to be transmitted on the
egress link, there must be a token available in the bucket.

queuing and leaky bucket can together shape any arrival patterns to a desirable
one.

17.4.3 Content distribution

Yet another approach, in addition to di↵erentiating resource allocation and con-
trolling user admission, is to change the location of the source of content, so
that the content is brought closer to the users, as shown in Figure 17.10. This
leverages the drop of storage cost and the popularity of certain content to create
spatially pipelined distribution of content.
The idea of changing the location of source has long been practiced in web

proxy servers. ISPs cache popular web content at local storage closer to end
users. A whole industry sector has also been generated, operators of a Content
Distribution Network (CDN). They serve either ISPs or content owners, and
manage the following processes:

• Deploy many servers, sometimes in private server farms and sometimes in
shared data centers. These are often called mirror sites.

• Replicate content and place them in di↵erent servers. This involves optimiza-
tion based on the availability of high speed links and high capacity storage,
as well as prediction of content popularity in di↵erent geographic areas.

• For each content request, select the right server to serve as the content source.
This server selection optimization minimizes the user perceived delay, for
a given routing, and is run by the CDN. It may also have unintended

394 IPTV and Netflix: How can the Internet Support Video?

S2

S3

S4

S1

Figure 17.10 Content distribution network operation. The content originally placed in
server S1 is replicated in three other locations, S2, S3, and S4, sent through fiber links
in dotted lines. When a client requests a piece of content, a particular server is
selected as the source to serve that demand.

interactions with tra�c engineering by the ISP that selects routes based
on a given source-destination relationship.

The convergence of content owner and content transporters is creating inter-
esting dynamics. Proper operation of CDNs can create a win-win: consumers
get better quality of service as delay is reduced and throughput increased, and
content owners or ISPs reduce the cost of deploying large capacity servers and
pipes (as the congestion in the network and around the servers is reduced).

Further Reading

The subject matter of this chapter spans both analytic models of quality of ser-
vice and systems design of protocols.

1. The fundamentals of video signal processing can be found in many graduate
textbooks on the subject, including the following recent one:
[Bov09] A. C. Bovik, The Essential Guide to Video Processing, Academic

Press, 2009.

2. The following book provides a concise summary of all the major video over
IP systems, including IPTV and Video over the Internet:
[Sim08] W. Simpson, Video over IP, 2nd Ed., Focal Press, 2008.

3. The following computer networking textbook provides much more detail

17.4 Advanced Material 395

about the application and transport layer protocols like IGMP, RTSP, SIP, UDP,
and RTP:

[KR09] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach,
5th Ed., Addison Wesley 2009.

4. The following classic paper combines leaky bucket admission control and
generalized processor sharing to provide quality guarantee:

[PG93] A. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated services networks: The single-node case,”
IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp. 344-357, June 1993.

5. The following book provides a concise survey of both the deterministic,
algebraic approach and stochastic, e↵ective bandwidth approach to the design
of quality guarantee in a network:

[Cha00] C. S. Chang, Performance Guarantees in Communication Networks,
Springer Verlag, 2000.

Problems

17.1 Video viewing models ?

Fill in the table below indicating which video watching models are infeasible,
or provide examples of companies that follow the model. Some rows have been
filled out as an example.

396 IPTV and Netflix: How can the Internet Support Video?

Real-time or
precoded

Streaming or
download

Channelized
or on-
demand

Unicast or
multicast

Companies

Real-time Streaming Channelized Unicast

Real-time Streaming Channelized Multicast

Real-time Streaming On-demand Unicast

Real-time Streaming On-demand Multicast

Real-time Download Channelized Unicast

Real-time Download Channelized Multicast

Real-time Download On-demand Unicast

Real-time Download On-demand Multicast

Precoded Streaming Channelized Unicast

Precoded Streaming Channelized Multicast

Precoded Streaming On-demand Unicast YouTube,
Hulu, NBC,
HBO Go

Precoded Streaming On-demand Multicast Infeasible
(on-demand
multicast)

Precoded Download Channelized Unicast

Precoded Download Channelized Multicast

Precoded Download On-demand Unicast

Precoded Download On-demand Multicast

17.2 Compression-reliability tradeo↵ ?

In this question, we will examine the tradeo↵ between compression and error
resilience through a back-of-the-envelope calculation. Suppose we have 15 frames
to transmit and two possible GoP structures: (A) IPB and (B) IPBBB. Suppose
an I frame costs 7 kB, a P frame costs 3 kB, and a B frame costs 1 kB.

If an entire GoP is not received correctly, we assume that the GoP must be
sent again. As our metric of error resilience, consider the expected number of
bits that must be retransmitted at least once. The probability of dropping a
frame is 1% and assumed to be independent. (These assumptions are made to
simplify this homework problem. In a realistic setting, if a P or B frame in a

17.4 Advanced Material 397

GoP is lost, the entire GoP does not need to be retransmitted. Loss is not inde-
pendent and usually much less than 1%. And there should be many more frames.)

(a) In case A, the video frame structure is IPB/IPB/IPB/IPB/IPB. What is
the total cost of the video in kB? What is the cost per GoP?

(b) What is the probability that an entire GoP is transmitted successfully in
case A? What is the expected number of GOPs that are successful on the first
transmission attempt of the entire video? What is the expected number of GoPs
that must be retransmitted at least once? How much does the first retransmis-
sion cost in kB?

(c) Repeat (a) for case B, where the video frame structure is now IPBBB/IPBBB/IPBBB.

(d) Repeat (b) for case B.

(e) Compare you results from (a),(b),(c),(d) in terms of compressibility and
cost of retransmission. What can you conclude?

17.3 Playback bu↵er with random arrival time ??

We will look at a question similar to the example in Section 17.3.2 examining
the latency-jitter tradeo↵, but with a probabilistic packet arrival time. Suppose
V
1

= 0, V
2

= 1, V
3

= 2, i.e., a step function. Now the packets arrive indepen-
dently at time A

1

, A
2

, A
3

, where Ai is drawn randomly between Āi � 1 and
Āi + 1. Ā

1

= 3, Ā
2

= 4.2, Ā
3

= 4.6. What is the optimal playback time of the
first packet p⇤ that minimizes latency but ensures that all packets were received
with at least 95% probability?

17.4 Round robin, weighted fair queuing, and priority queuing ??

Let us compare three resource allocation policies. Recall that

• Round robin simply gives each queue a turn to transmit a packet.

• Priority queuing allows the queue with the highest priority to be continuously
serviced until it is empty.

• A particular implementation f weighted fair queuing looks at the head of each
queue and transmits the packet that would finish transmission quickest
under the Generalized Processor Sharing (GPS) scheme. GPS is an
ideal fluid flow scheduler, and is defined as: if we have n queues with priority
p
1

, p
2

, . . . , pn, then the bandwidth allocated to queue j per time step is
pj/

P
i pi.

Suppose we have queue A and queue B with packets arriving:

398 IPTV and Netflix: How can the Internet Support Video?

Time (s) Queue A arrived packet size (MB) Queue B arrived packet size (MB)

t = 0 3

t = 1 1

t = 2 1

t = 3 2

t = 4

t = 5 4

Queue A has priority 1 and Queue B has priority 3 (higher number indicating
higher priority). The outgoing link has bandwidth 1 MBps. Once a packet begins
transmitting, it cannot be pre-empted by other packets. Fill in the following table
for round robin scheduling, priority queuing, and weighted fair queuing.

Time (s) Queue A departed packet size (MB) Queue B departed packet size (MB)

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

17.5 Leaky bucket and GPS ? ? ?

A link becomes congested when packets arrive at a faster rate than the link
can support, or packets arrive in large bursts. The leaky bucket queuing model
is one way to solve this problem. In this model, there is a bucket that contains
tokens. For tra�c class k, the bucket has size Bk and tokens refill the bucket at
a rate ak. Packets wait in the queue and can only be released with a token from
the bucket. Therefore, the maximum number of packets that leave the queue
during time interval [u, t] is Bk + ak(t� u). This is illustrated in Fig. 17.11.
Several leaky buckets drain into the same bu↵er. This bu↵er follows the Gen-

eralized Processor Sharing (GPS) model. In this model, each tra�c class k has
weight wk. And ⇢k = w

k

CP
j

w
j

is the instantaneous rate at which packets of tra�c

class k leave the GPS bu↵er, where C is the rate supported by the link out of
the bu↵er, in bps. This is illustrated in Fig. 17.12.

17.4 Advanced Material 399

buffer

bucket

Figure 17.11 An illustration of a leaky bucket for admission control.

GPS buffer

Figure 17.12 An illustration of Generalized Processor Sharing.

(a) During the time interval [u, t], at least ⇢k(t � u) packets leave the GPS
bu↵er. With some abuse of notation, let Bt be the backlog of tra�c class k in
the GPS bu↵er at time t. Prove that the backlog of class k tra�c in the bu↵er
cannot exceed Bk if ⇢k � ak. To start, assume that there is a time t when the
backlog Bt � Bk. Consider the largest u < t such that Bu = 0, and write the
inequality relating the change in backlog size from time u to t.

(b) Prove that the delay experienced by a bit in class k in Fig. 17.12 cannot

400 IPTV and Netflix: How can the Internet Support Video?

exceed B
k

⇢
k

if ⇢k � ak.

Now we compare the performance of GPS and WFQ. Let Fk denote the trans-
mission time of packet k (the time packet k leaves the bu↵er) under WFQ.
Similarly define Gk for GPS. Let Lk denote the size (in bits) of packet k. We
will show that

Fk Gk +
Lmax

C
, 8k. (17.6)

GPS and WFQ both process packets at the same rate, so the total amount
of bits in the system remains the same. Therefore, their busy and idle periods
are the same, and we only need to show that the result holds for a single busy
period. Assume F

1

< F
2

< . . . < FK correspond to packets in one busy period
of WFQ.

(c) Pick any k 2 {1, 2, . . . ,K} and find the maximum m < k such that
Gm > Gk. (If there is no such m, let m = 0.) This implies that Gn Gk <
Gm, n 2 P = {m+ 1,m+ 2, . . . , k � 1}. Now consider the time Sm = Fm � Tm,
when WFQ chose to transmit packet m. Show that the packets in set P must
have arrived after Sm.

(d) Now consider the time interval [Sm, Gk]. Packets P arrived and departed
during this interval. In addition, packet k was transmitted during this inter-
val. Recall that the system is work conserving. Write an inequality relating the
[Sm, Gk] to the transmission times of packets in set P and use this to show the
main result (??).

(e) Suppose that multiple leaky bucket queues are multiplexed to a single WFQ
bu↵er, similar to Fig. 17.12. Combine (b) and (d) to show that the maximum
delay experienced by a packet of class k in this scenario is B

k

⇢
k

+ L
max

C .

18 Why is WiFi faster at home than at
a hotspot?

A crude answer is that the interference management method in WiFi does not
scale well beyond several devices sharing one access point. When the crowd is big,
the “tragedy of the commons” e↵ect, due to mutual interference in the unlicensed
band, is not e�ciently mitigated by WiFi. To see why, we have to go into the
details of WiFi’s medium access control in the link layer of the layered protocol
stack.

18.1 A Short Answer

18.1.1 How is WiFi di↵erent from cellular

Since its first major deployment in the the late 1990s, WiFi hotspots have become
an essential feature of our wireless lifestyle. There were already more than 1
billion WiFi devices around the world by 2010, and hundreds of millions added
each year. We use WiFi at home, in o�ce, and around public hot spots like those
at airports, in co↵ee shops, or even around street corners.
We all know WiFi is often faster than 3G cellular, but you cannot move around

too fast on WiFi service or be more than 100m away from an Access Point
(AP). We have seen many letters attached to 802.11, like 802.11a,b,g,n, shown
on the WiFi AP boxes you can buy from all the electronic stores, but may
not appreciate why we are cooking an alphabet soup. We have all used hotspot
services at airports, restaurants, hotels, and perhaps our neighbor’s WiFi (if it
does not require a password), and yet have all been frustrated by the little lock
symbol next to many WiFi network names that our iPads can see but not use.
When Steve Jobs presented iPhone 4 in a large auditorium, that demo iPhone

could not get on the WiFi. Jobs had to ask all the attendants to get o↵ the WiFi,
and his iPhone managed to get on the WiFi afterwards. Is there some kind of
limit as to how many users a given WiFi hotspot can support?
In June 2011, the Korean government announced a plan to cover the entire

city of Seoul, including every corner of every street, with WiFi service by 2015. If
many WiFi users aggregate around one popular street corner, how many hotspots
need to be created to take care of that demand? And more importantly, how can
this tra�c be backhauled from the WiFi air-interface to the rest of the Internet?
At home, a residential gateway of the Internet access is often connected to a

402 Why is WiFi faster at home than at a hotspot?

WiFi AP, which provides the in-home wireless connectivities to desktops, laptops,
game consoles, phones, tablets, and even TV’s set-top boxes using the latest high
speed WiFi variant. As each home adds more WiFi devices, will the quality of
connection be degraded, especially in high-rise multi-tenant buildings?

The exact answers to these questions are not available, although we do know
quite a bit about WiFi architecture and performance. O�cially, WiFi should be
called the IEEE 802.11 standard. It is part of the 802 family of standards on
Local Area Networks (LAN) prescribed by IEEE. The .11 part of the family
focuses on wireless LAN using the unlicensed spectrum.

You must have a license from the government to transmit in the frequency
bands used in all generations of cellular networks. For 3G and 4G, governments
around the world sold these spectral resources in the air for tens of billions
of dollars, sometimes through auction as we saw in a homework problem in
Chapter 2. It tries to avoid too many transmitters crowding and jamming into
those frequency bands.

In contrast, governments around the world also leave some bands as unlicensed
and free, as long as you do not operate at too high a transmit power. For example,
the Industry, Science, and Medical (ISM) frequency ranges in the S-band around
2.4-2.5 GHz and in the C band around 5.8 GHz. It was originally designed for
use in the three fields as suggested by the name ISM. But the most widely used
appliance in the ISM S-band, other than WiFi, is actually the microwave oven.
That band works well to excite water molecules. There are also other wireless
communication devices running on bluetooth, zigbee, etc. sharing the same ISM
band. Handling interference on an unlicensed spectrum is a major challenge.

In the mid 1990s, as the 2G cellular industry took o↵, people started wondering
if they could create an alternative in wireless networks: use the small amount
of power allowed in ISM and short-range communication (around 100 meters
outdoors, one order of magnitude smaller transmission radius than cellular) for
mostly stationary devices. Because this is not a single provider network, there
needed to be an industry forum to test inter-operability of all the devices. It was
established in 1999 as Wi-Fi Alliance, where Wi-Fi stands for “Wireless Fidelity”
and is a catchier name than “IEEE 802.11b”.

There have been many versions of WiFi standards, created by the IEEE 802
organization, starting with 802.11b that uses the 2.4 GHz band and can trans-
mit up to 11 Mbps. This was followed by two other main versions: 802.11g that
uses a more advanced physical layer coding and modulation to get to 54 Mbps
in the 2.4 GHz band, and 802.11a that can also achieve up to 54 Mbps in the
5.8 GHz band. Some of these standards divide the frequency band into smaller
blocks in Orthogonal Frequency Division Multiplexing (OFDM). In contrast to
anti-resource-pooling in Paris Metro Pricing in Chapter 12, this resource frag-
mentation is motivated by better spectral e�ciency as signals on smaller chunks
of frequency bands can be more e↵ectively processed. More recently, 802.11n uses
multiple antennas on the radios to push transmission rate to over 100 Mbps. Aug-

18.1 A Short Answer 403

p gy

InternetAccess

Ethernet

AP

BSS

AP AP

BSS

BSS

ESS

Figure 18.1 A typical topology of WiFi deployment. The air interface provides
bidirectional links between the APs and end user devices. Each BSS has an AP. A
collection of BSS that can readily support hando↵ is called an ESS. The air interface
is connected to a wireline backhaul, often an Ethernet, which is in turn connected to
the rest of the access network and further to the rest of the Internet.

menting the channel width to 40 MHz also helped increase the data rate. We
will discuss OFDM and multiple antenna systems in Advanced Material.
There have also been many supplements that improve specific areas of WiFi

operation. For example, 802.11e improved the quality of service in its medium
access control, a topic we will focus on in this chapter. 802.11h improved encryp-
tion and security, a major issue in the early days of WiFi. 802.11r improved the
roaming capability in WiFi to support, to some degree, the mobility of people
holding WiFi devices.
Even though the nature of spectral operation is di↵erent, WiFi does share a

similar topology (Figure 18.1) with cellular networks, except this time it is not
called a cell (since there is often no detailed radio frequency planning before
deployment), but a Basic Service Set (BSS). In each BSS there is an AP rather
than a Base Station. A collection of neighboring BSSs may also form an Extended
Service Set (ESS).
When your laptop or phone searches for WiFi connectivity, it sends probe

messages to discover which APs are out there in its transmission range, and
shows you the names of the BSSs. You might want to connect to the BSS, but
if it is password protected, that means your device can only associate with the
AP if you have the password to authenticate your status, e.g., a resident in the
building if the AP is run by the building owner, an employee of the company if
the AP is run by the corporation, or a paying customer if the AP is part of the
WiFi paid service o↵ered by a wireless provider. Increasingly you see more WiFi
deployment, but free WiFi’s availability may be on the decline.
These APs are tethered to a backhauling system, often a wireline Ethernet

404 Why is WiFi faster at home than at a hotspot?

(another, and much older, IEEE 802 family member) that connects them further
to the rest of the Internet. This is conceptually similar to the core network behind
the base stations in cellular networks, although the details of mobility support,
billing, and inter-BSS coordination are often much simpler in WiFi.
If the channel conditions are good, e.g., you are sitting right next to the WiFi

enabled residential gateway at your home and no one else’s signal interferes with
yours, the data rate can be very impressive, especially if you are using 802.11n.
It is faster than 3G, and probably even faster than the DSL or fiber access link
that connects the residential gateway to the rest of the Internet. But if you sit
outside the limited range of the AP or you start moving across boundaries of an
ESS, you can easily get disconnected. And if you share the air with 10 or so other
WiFi devices, the speed can drop substantially as you may have experienced in
a crowded public WiFi hotspot.
There is actually also a peer-to-peer mode in 802.11 standards, the infrastruc-

tureless, ad hoc mode. WiFi devices can directly communicate with each other
without passing through any fixed infrastructure like APs. You see this option
when you configure the WiFi capability on your computers. But very few people
use this mode today, and we will only talk about the infrastructure mode with
APs.

18.1.2 Interference management in WiFi

Summarizing what we have talked about so far: WiFi is an evolving family of
standards that enables short-range wireless communication over the ISM un-
licensed bands for largely stationary devices. In contrast to cellular networks,
WiFi networks are often deployed with very limited planning and managed only
lightly, if at all.
It is quite a di↵erent type of wireless networking compared to cellular, and its

performance optimization requires some di↵erent approaches. Whether a WiFi
hotspot works well or not really depends on how e↵ectively such optimizations
are carried out. We focus on the air-interface part between the AP and the
devices (the terminology station covers both), even though the backhaul part
could also become a bottleneck (e.g., when the DHCP server has a bug and
cannot keep track of the IP addresses assigned to the devices, or simply because
the backhauling capacity is limited.)
The first set of performance tuning involves the correct selection of the AP, of

the channel, and of the physical layer transmission rate:

• AP association: A WiFi device has to regularly scan the air and then associate
with the right AP, e.g., the one that o↵ers the best SIR (and, of course,
authenticates the device).

• Channel selection: The overall ISM frequency band is divided into channels. In
802.11b in the U.S., for example, each channel is 22 MHz wide and 5 MHz
apart from the neighboring channels. As shown in Figure 18.2, only those

18.1 A Short Answer 405

1 2 6 11

2.412 2.437 2.4625MHz
GHz

22MHz

Figure 18.2 The 802.11b spectrum and channels. There are 11 channels in the U.S.
Each channel is 22 MHz wide, and 5MHz apart from the neighboring channels.
Therefore, only 3 channels, Channel 1, Channel 6, and Channel 11, are
non-overlapping.

channels that are 5 channels apart are truly non-overlapping. So if you want
to have three devices on non-overlapping channels, the only configuration
is for each of them to choose a di↵erent channel from among Channels 1,
6, and 11. Many WiFi deployments just used the default channel in each
AP. If they are all on channel 6, interference is created right there.

• Rate selection: We mentioned that each of 802.11abgn can transmit up to a
certain data rate. That is assuming a really good channel, with no interfer-
ence, and no mobility. In many WiFi hotspots, channel condition fluctuates
and interferers come and go. The maximum rate is rarely achieved, and the
AP will tell the devices to backo↵ to one of the lower rates specified, e.g.,
all the way down to 1 Mbps in 802.11b, so that the decoding is accurate
enough under the lower speed. A device knows it is time to fallback its rate
to the next lower level if its receiver’s SIR is too low for the current rate,
or if there have been too many lost frames.

Suppose your WiFi device gets the above three parameters right. We need to
take care of interference now. When two transmitters are in interference range
of each other, and they both transmit a frame at similar times (t

1

, t
2

), these two
frames collide. There are three possible outcomes of a collision:

• Both frames are lost: neither receiver can correctly decode the intended frame.

• The stronger frame is properly received, but the weaker frame is lost: here,
“strength” refers to SIR. This is called capture.

• Both frames are properly received. This is called double capture.

Now, which outcome will prevail depends, quite sensitively, on the following
factors:

• How long the frames overlap (based on their timing di↵erence t
1

� t
2

, frame
sizes, and transmission rates).

406 Why is WiFi faster at home than at a hotspot?

te e e ce_deta

SIR

Time

SIR
Differential

Overlap in time

Figure 18.3 An energy-time diagram of two colliding frames. If collision is defined as
two frames overlapping in their transmission time, the outcome of a collision depends
quite sensitively on several factors: how long is the overlap, how big is the di↵erential
in the received SIRs, and how large an SIR is needed for proper decoding at each
receiver.

• How big the di↵erential in SIR between the two frames is (based on channel
conditions and transmit powers). This is illustrated in Figure 18.3.

• How large an SIR is required for proper decoding at the receiver (based on
transmission rates, coding and modulations, and receiver electronics).

It is an unpleasant fact that wireless transmissions may interfere, since wireless
transmission is energy propagating in the air. It is a particularly challenging set
of physics to model, since collision is not just one type of event. In the rest of
the chapter, we will simply assume that when collision happens, both frames are
lost.
We have been discussing interference’s impact on two frames in quite some

detail. Compared to power control in Chapter 1 for cellular networks, WiFi
also uses a fundamentally di↵erent approach to manage interference, due to
its much smaller cell size, the typical indoor propagation environment, a much
smaller maximum transmit power allowed and more uncontrolled interferences
in an unlicensed band. Instead of adjusting transmit powers to configure the
right SIRs, WiFi tries to avoid collision altogether, through the mechanisms of
medium access control.
Think of a cocktail party again like in Chapter 1, where guests’ voices overlap

in the air. With enough interference you cannot understand what your friend is
trying to say. Cellular network power control is like asking each guest to adjust
her volume without running into an arms race. WiFi medium access control is
like arranging the guests to talk at di↵erent times.
You can either have a centralized coordinator to assign di↵erent timeslots for

18.1 A Short Answer 407

Station
A Data

B

C

ACK
Wait and Listen Collision

No ACK

Time

TS

SIFS

DIFS

Wait and Listen

Data

Figure 18.4 A timing diagram of basic WiFi transmissions. A station can be either a
user device or an AP. First the transmitter of a session, station A, sends a data frame
to its intended receiver, station B. Then after a very short period of time with a
predetermined length called SIFS, B sends an acknowledgment frame back to A.
After waiting for another slightly longer period of time called DIFS, other nodes like
station C can start sending new data frames. In the above example, node C’s packet
collides with some other packet transmitted by, say, station D.

each guest to talk (scheduling), or you can ask each of them to obey a certain
procedure in deciding locally when to talk and how long to talk (random access).
We call these the Point Coordination Function (PCF) and the Distributed Co-
ordination Function (DCF), respectively, in WiFi. PCF, like token ring in the
wireline Ethernet protocol, represents centralized control (and for dedicated re-
source allocation). It is complicated to operate and rarely used in practice. DCF,
in contrast, enables shared resource allocation. As you might suspect of any dis-
tributed algorithm, it can be less e�cient, but is easier to run. In practice, DCF
is used most of the time. We will discuss WiFi’s DCF, which is a particular
implementation of the Carrier Sensing Multiple Access (CSMA) random access
protocol.

The basic operation of CSMA is quite simple and very intuitive. Suppose you
are a transmitter. Before you send any frame, you regularly listen to the air (the
part of the spectrum where your communication channel lies). This is called
carrier sensing. As Figure 18.4 illustrates, every transmitter must obey a wait-
and-listen period before it can attempt transmission. If the channel is sensed
as busy (someone is using the medium to transmit her frames), you just stay
silent. But if it is idle (no one is using it), you can go ahead and send a sequence
of frames. You might want to send a lot of frames in a row, so you can send
a control message declaring how long you intend to use the channel. Of course
channel holding time has some upper bounds, just like treadmill sharing in the
gym.

408 Why is WiFi faster at home than at a hotspot?

Initial
Attempt

Previous Frame
24 - 1 = 15 slots = min contention window

Randomly picked time inside contention window

Retry 1
25 - 1 = 31 slots

Retry 2
26 - 1 = 63 slots

TimeRetry 3
27 - 1 = 127 slots = max contention

Figure 18.5 Exponential backo↵ in DCF. There are two key ideas. First, when two
frames collide, both need to back o↵. In order to avoid both picking the same time to
retransmit, each picks a random point over the contention window to retransmit.
Second, if collisions continue, each sender needs to back o↵ more. Doubling the
contention window is a reasonable way to increase the degree of backing o↵. A
homework problem will explore this further. The minimum window size is Wmin, and
the maximum number of backo↵s allowed (before the frame is discarded) is B.

But if your frame collides with some other frames when you try to send it, your
receiver will not get it (since we assumed a collision kills both frames). You will
not get her acknowledgement. So you know you su↵ered a collision, and you need
to backo↵. This WiFi backo↵ is similar to TCP backo↵ by halving the congestion
window in Chapter 14: you double the contention window in WiFi. And then
you draw a random number between now and the end time of the contention
window. That will be your next chance of sending the lost frame.
The protocol description above might sound unmotivated at first. But there

are actually two clever ideas of distributed coordination here: randomization and
exponential backo↵.
First, if stations A and B have their frames collide at one time, you do not

want them to backo↵ to a common time in the future: there will be just another
collision. They need to randomly backo↵ to minimize the chance of hitting each
other again. Of course, they may so happen pick exactly the same timeslot again,
but that is the price you pay for a distributed coordination.
Second, if frames keep colliding, you know the interference condition is very

bad, and you, as well as all those stations experiencing persistent collisions of
their frames, should start backing o↵ more. Linearly increasing the contention
window size is one option, but people thought that would not be aggressive
enough. Instead, WiFi mandates multiplicatively backing-o↵. Since the multi-
plicative factor is 2, we call it binary exponential backo↵. This is similar to
the multiplicative decrease of the congestion window size in TCP. As illustrated

18.2 A Long Answer 409

in Figure 18.5, when your contention window exceeds a maximum value, i.e.,
you have been backing o↵ through too many stages, you should just discard that
frame altogether and report the loss to upper layer protocols so that they can
try to fix it. The contention window may also have a minimum value, in which
case a sender has to wait before its first attempt to send a frame.

So far so good. But it is another unpleasant fact of wireless transmission that
sensing range is not the same as interference range: stations A and B might
collide but they cannot hear each other, like in Figure 18.6. This is the famous
hidden node problem, one of the performance bottlenecks of WiFi hotspots.
This problem does not arise in TCP congestion control.

But there is a clever solution, using a little explicit message passing this
time, to help navigate through this challenging interference problem. It is called
RTS/CTS. When station A wants to send a frame, it first sends a short control
message called Request To Send (RTS). All stations within the sensing range of
A receive that message, and each of them in turn sends a short control message
called Clear To Send (CTS). All stations within sensing range of them receive
the CTS and refrain from transmitting any frames in the near future. Of course
station A itself also gets the CTS message back, and when it sees that CTS, it
knows all those hidden nodes have also received the CTS and thus will not send
any frames now. At that point, station A sends the actual frames.

As Figure 18.7 illustrates, the brief period of idle time in between an RTS
and the CTS is shorter than the wait-and-listen time between data transmission.
This is yet another clever idea in distributed coordination over wireless channels.
By creating multiple types of wait-and-listen intervals, those transmissions that
only need to obey a shorter wait-and-listen interval are essentially given higher
priority. They will be allowed to send before those who must obey a longer
wait-and-listen period.

RTS/CTS is not a perfect solution either, e.g., RTS and CTS frames them-
selves may collide with other frames. But still, with the RTS/CTS message pass-
ing protocol, together with prioritization through di↵erent wait-and-listen in-
tervals, distributed transmission through randomized transmit timing, and con-
tention resolution through exponentially backed-o↵ content window, we have a
quite distributed MAC protocol that enables the success of WiFi hotspots as
they scale up.

We will see several other wireless peculiarities and their e↵ects on both e�-
ciency and fairness in Advanced Material. But first let us work out the through-
put performance of WiFi devices in a hotspot running DCF.

18.2 A Long Answer

Random access o↵ers a complementary approach to power control as an inter-
ference management method. To be exact, there is a power control functionality

410 Why is WiFi faster at home than at a hotspot?

A B C

RTS

CTS

Figure 18.6 The hidden node problem: Stations A and C’s transmissions to station B
interfere with each other, but cannot sense each other. Dotted lines denote
sensing/transmission range. RTS/CTS is a message passing protocol to help resolve
the hidden node problem. Node A first sends an RTS. Upon hearing the RTS, all
nodes (including node B) send a CTS. Upong hearing the CTS, all nodes (including
node C) remain silent for a period of time, except node A itself who initiated the RTS
in the first place. Node A now knows it is safe to send the actual data frames without
worrying about hidden nodes.

in WiFi too, but it is mostly for conforming to unlicensed band energy limit and
for saving battery energy, rather than to manage interference.
While power control can be analyzed through linear algebra (and some game

theory and optimization theory) as presented in Chapter 1, random access in-
volves probabilistic actions by the radios and its performance analysis evaluation
requires some probability theory.
CSMA in WiFi DCF is not particularly easy to model either: collision of frames

depends on the actions by each radio, and the history of binary exponential back-
o↵ couples with the transmission decision at each timeslot. A well-known perfor-
mance analysis model uses a two-dimensional Markov chain, which exceeds our
prerequisite of basic probability concepts and becomes too complicated for this
chapter. There is a simplified version that uses very simple arguments in basic
probability and a little bit of handwaving to get the gist out of the complicated
derivation. And that is the approach we will follow.

18.2.1 Expressing S as a function of ⌧

The expected throughput S bps for CSMA random access in WiFi DCF is defined
as:

S =
average number of bits transmitted successfully in a timeslot

average length of a timeslot
. (18.1)

18.2 A Long Answer 411

RTS DATA

CTS ACK

Sender

Receiver Time

Figure 18.7 A timing diagram of RTS/CTS in WiFi DCF to help mitigate the hidden
node problem. The durations of time between RTS and CTS, and between CTS and
Data frames, are smaller than the period of time that other nodes need to wait for a
clear channel before transmitting. This timing di↵erence e↵ectively provides the
priority of CTS and the following Data tra�c over competing tra�c.

(1) First we examine the average number of bits transmitted successfully in a
timeslot. It can be expressed as the product of three numbers:

PtPsL,

where Pt is the probability that there is at least one (could be more) transmission
going on, Ps is the probability that a transmission is successful, and L is the
average payload length (measured in bytes or bits).
Let ⌧ be the probability that a station transmits at a given timeslot. Then we

know

Pt = 1� (1� ⌧)N , (18.2)

since Pt equals 1 minus the probability that no station transmits, which is in turn
the product of the probabilities that each station does not transmit: 1� ⌧ , over
all the N stations. This assumes that the stations make transmission decisions
independently. This is another example of the diversity gain of network e↵ect:
except now it is about the probability of a good event (a transmission gets
through without collision) rather than a bad event (some link fails).
We also know that

PsPt = N⌧(1� ⌧)N�1, (18.3)

since the left hand side is the probability that there is a successful transmission
at a given timeslot. For each station, that should be the probability that it
transmits (⌧) but none of the other stations does (1 � ⌧)N�1. For the whole
network, it is N⌧(1� ⌧)N�1.

412 Why is WiFi faster at home than at a hotspot?

(2) Now we examine the average length of a timeslot. That depends on what
happens at that timeslot. There are three possibilities, as illustrated in Figure
18.4:

• If there is no transmission at all, the probability of which is 1�Pt, the timeslot
is a backo↵ slot with length Tb.

• If there is a transmission but it is not successful, the probability of which is
Pt(1� Ps), the timeslot is a collision slot with length Tc.

• If there is a transmission and it is successful, the probability of which is PtPs,
the timeslot is a successful slot with length Ts.

In summary, if we know how to compute ⌧ , we can compute Pt as well as Ps,
thus the expected throughput S:

S =
PtPsL

(1� Pt)Tb + Pt(1� Ps)Tc + PtPsTs
. (18.4)

Among the quantities shown above, N,L, Tb, Tc and Ts are constants. So we just
need to compute ⌧ .

18.2.2 Computing ⌧

First, we can express c, the probability that a frame transmitted (by a particular
station, say station A) collides with frames from other stations, as a function of
⌧ . Assuming that collision probability is independent of backo↵ stage, we have

c = 1� (1� ⌧)N�1, (18.5)

since c is simply the probability that at least one (could be more) of the other
N � 1 stations transmits in addition to station A. So (18.5) follows the same
argument behind the Pt expression in (18.2).
Suppose we can also do the reverse: express ⌧ as a function of c. In that case,

we can substitute c as a function of ⌧ (18.5) and numerically solve for ⌧ . So
now everything boils down to the following: Find ⌧ (the probability a station
transmits) in terms of c (the probability that a transmitted frame collides).
Since there are many backo↵ stages indexed by i, each with a contention

window doubling the previous stage’s, we look at the joint probability that a
station transmits while at backo↵ stage i. We can express this joint probability
in two ways:

Prob(transmit)Prob(in backo↵ stage i|transmit)

and

Prob(in backo↵ stage i)Prob(transmit|in backo↵ stage i),

and the two expressions above must be the same. We give shorthand notation

18.2 A Long Answer 413

to the above expressions: ⌧P (i|T) and P (i)P (T |i). So we have the following
Bayesian expression:

⌧
P (i|T)
P (T |i) = P (i).

Summing over all the i from 0 (no backo↵) to B (the maximum number of
backo↵s allowed) on both sides, we have

⌧
BX

i=0

P (i|T)
P (T |i) =

BX

i=0

P (i) = 1. (18.6)

If we can express P (i|T) and P (T |i) in terms of c, we have an expression for ⌧
in terms of c, which completes our derivation for S.
Computing P (i|T) is easy: if a station transmits at the backo↵ stage i, it must

have su↵ered i collisions in the past and 1 non-collision now. We can just write
down that probability, making sure that it is normalized:

P (i|T) = ci(1� c)

1� cB+1

.

Computing P (T |i) is also easy (with a little handwaving): the transmit slot is
one slot on its own, so the lifetime of backo↵ stage i, on average, is 1 + Ti slots.
Here, Ti is the average value of backo↵ counter at stage i:

Ti =
1

2
(0 + 2iWmin),

where Wmin is the minimum contention window size. Obvious from the above,
we assumed that the timeslot to transmit is picked randomly between “right
now” and “the upper limit of binary exponential backo↵”. The actual contention
window size W is 2 raised to some integral power then minus 1. We ignore the
‘minus 1’ part for simplicity. Now we have

P (T |i) = 1

1 + Ti
.

Finally, we can put everything back together into (18.6), and have the following
expression of ⌧ in terms of c:

⌧ =
1

1 + 1�c
1�cB+1

P
i c

iTi

. (18.7)

Therefore, just plug (18.5) into (18.7). We can solve for ⌧ numerically, as a
function of number of backo↵ stages B and the minimum contention window
size Wmin.

18.2.3 Putting everything together

Once ⌧ is found, by (18.2, 18.3) we have Pt, Ps as well, and can in turn compute
S (18.4) in terms of the WiFi DCF protocol parameters: L,B,Wmin, the length
of the three types of timeslots Tb, Tc, Ts, and the number of stations N .

414 Why is WiFi faster at home than at a hotspot?

18.3 Examples

18.3.1 Parameters and timeslots

Before doing any calculations, we need to specify the DCF protocol parameters
L, B, Wmin and the timeslot lengths Tb, Ts, Tc.
We consider DCF being used in 802.11g at 54Mbps. By the protocol specifi-

cations, the relevant timing parameters are

slot time = 9µs

SIFS = 10µs

DIFS = SIFS + (2⇥ slot time) = 28µs

By the specifications Wmin = 15. Also, we set L = 8192 bits and B = 3 as the
default values. We will also later sweep their values to explore the impact.
Duration of Tb. It is simply the length of DIFS, i.e., Tb = 28 µs.
Duration of Ts. A successful transmission consists of the transmission of a data

frame from the sender and the transmission of an ACK frame from the receiver,
together with appropriate spacing: [data frame] + SIFS + [ACK frame] + DIFS.
A data frame consists of a 16µs PHY layer preamble, a 40-bit PHY header,

a 240-bit MAC header, the L-bit payload and a 32-bit CRC code. The protocol
specifications state the PHY header is further split and sent at two di↵erent rates:
the first 24 bits at 6 Mbps to be more robust to signal errors at the expense of
a lower rate, and the remaining 16 bits at 54 Mbps. Hence the time to send a
data frame is

16 +
24

6
+

16 + 240 + 32

54
+

L

54
= 25.33 +

L

54
µs

Similarly, an ACK frame consists of a 16µs PHY layer preamble, a 40-bit PHY
header (again split and sent at di↵erent rates) and a 112-bit MAC layer frame
(header and CRC). Therefore, the time to send an ACK frame is

16 +
24

6
+

16 + 112

54
= 22.37 µs

and we have Ts = 25.33 + L/54 + 10 + 22.37 + 28 = 85.70 + L/54 µs.
Duration of Tc. When there is a collision, the sender has to wait for the full

duration of the ACK frame before deciding there is a collision (by absence of an
ACK), so Tc = Ts = 85.70 + L/54 µs.

18.3.2 Throughput

First, plugging in Ti = (0+ 2iWmin)/2 into (18.7), we solve numerically for ⌧ in

⌧ =
1

1 + 1�c
1�cB+1

PB
i=0

ci2i�1Wmin

, (18.8)

where c = 1� (1� ⌧)N�1.

18.3 Examples 415

Then we plug the solution of ⌧ into the formula of S:

S =
N⌧(1� ⌧)N�1L

(1� ⌧)NTb + [(1� (1� ⌧)N)�N⌧(1� ⌧)N�1]Tc +N⌧(1� ⌧)N�1Ts

(18.9)

while varying the values of N , B, Wmin and L. Unless specified, their default
values are N = 5, B = 3, Wmin = 15, L = 8192.
Varying N (Figure 18.8). This is the key graph we have been looking for in

this chapter, quantifying the impact of the crowd size in the tragedy of the WiFi
commons.

• If N increases, the per station throughput S(N)/N decreases because more
stations are competing for the same channel. The drop is quite sharp from
N = 2 to N = 15, and the throughput value becomes quite low, below 2
Mbps, once N becomes 10. This highlights the inscalability of CSMA.

• The aggregate throughput S(N) initially increases for small N because sta-
tions are fundamentally limited by their exponential backo↵ mechanism.
Even when a station has no competitors for the channel, it still picks a
transmit slot uniformly at random between 0 and Wmin, and this leads to
ine�ciency. Adding stations helps in utilizing the channel, given there is
not much contention (when N is small).

• Despite the advertised throughput of 54 Mbps, the actual maximum through-
put is around 25 Mbps. This is because only the payload is sent at 54 Mbps,
and there is a significant overhead in the PHY layer (e.g., preamble and
header being sent at 6Mbps).

Varying Wmin (Figure 18.9). A smaller Wmin leads to higher aggressiveness
of a station in using the channel.

• When the channel is not congested (N = 5), it helps to be more aggressive.
• When the channel is congested (N = 20), being aggressive leads to more

collisions, so it is better to choose a larger Wmin (to be less aggressive).

Varing B (Figure 18.10). A larger B tends to increase the average contention
window size (i.e., become less aggressive). Hence the observation is similar to
that of Wmin.

• When N = 5, increasing B does not help at all.
• When N = 20, being less aggressive (increasing B) helps a lot.

Varying L (Figure 18.11). Payload size relative to the overhead size also mat-
ters.

• Increasing the payload size helps because less overhead is incurred.
• But this model does not capture the e↵ect of a frame with a larger payload

having a larger collision probability. In reality we expect the throughput
to increase until it reaches an optimum value, and then decrease.

416 Why is WiFi faster at home than at a hotspot?

0 10 20 30 40 50
0

5

10

15

20

N

Th
ro

ug
hp

ut
 (M

bp
s)

Throughput vs no. of stations

Aggregate: S(N)
Per station: S(N)/N

Figure 18.8 As the number of users increases, the total throughput drops. Per-user
average throughput drops to small values around 2Mbps when there are 10 or more
users. The rapid drop of the per-user average throughput even for small N highlights
the inscalability of CSMA.

18.4 Advanced Material

18.4.1 Impact of interference topology

We saw that the DCF deploys several smart ideas to enable a reasonable medium
access control with a small amount of message passing overhead. But it is also
well-known that the DCF can sometimes be ine�cient and is often unfair, as
shown in a homework problem. We have encountered quantification of fairness
many times by now, and in Chapter 20 we will go to great length just on fairness.

Part of the reason behind DCF’s ine�ciency and unfairness stems from the
tough reality of sensing and interference in wireless networks. The hidden node
problem arises from the di↵erence between sensing range and interference range,
as we saw. Sensing range is also asymmetric: one (transmitter, receiver) pair
might be able to sense and interfere with another, but not the other way around.

An example is the flow-in-the-middle topology in Figure 18.12(a). The session
in the middle can sense the other two sessions on each side, and has to be polite
in waiting-and-listening to both. In contrast, either of the side sessions can only
sense the middle session, and has less wait-and-listen to do. A proportionally fair
solution should give the two side sessions the same throughput and the middle
session half of that. But WiFi DCF almost certainly will starve the middle session
to near zero throughput.

18.4 Advanced Material 417

0 10 20 30 40 50 60 70
0

5

10

15

20

25

Wmin

S(
W

m
in

) (
M

bp
s)

Aggregate throughput vs min contention window

N=5
N=10
N=20

Figure 18.9 Increasing the minimum contention window size initially has a positive
e↵ect on average throughput, as contention is less aggressive. Past some threshold
value, making the minimum window size larger hurts throughput (via its overhead in
waiting) more than it helps. The more users there are, the higher this threshold value.

1 2 3 4 5 6
0

5

10

15

20

B

S(
B)

 (M
bp

s)

Aggregate throughput vs no. of backoff stages

N=5
N=10
N=20

Figure 18.10 As B increases, more backo↵ stages are allowed, and the average backo↵
rises. More conservative contention increases average throughput (but also would
increase latency).

418 Why is WiFi faster at home than at a hotspot?

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

5

10

15

20

25

30

L (bits)

S(
L)

 (M
bp

s)

Aggregate throughput vs payload size

Figure 18.11 Larger payload means smaller percentage of overhead. Throughput
naturally increases. If the model had incorporated the fact that a larger payload also
increases the chance of collision, the curve would not have been monotonically
increasing.

Another example is the asymmetric sensing and interference topology in Fig-
ure 18.12(b). Session A cannot sense session B, and consequently they often
collide. In a proportionally fair allocation, both sessions should have the same
throughput. But in WiFi DCF, session A’s throughput will be substantially less
than that of session B.

There have been hundreds of papers on improving WiFi DCF, mostly because
it is much more feasible to experiment in unlicensed band than licensed band
in university labs. One of the more recent improvements of DCF comes from an
optimization model of CSMA parameter adaptation: each transmitter changing
aggressiveness of contention and of channel holding duration by observing its re-
cent throughput, balancing between demand of capacity and supply of allocated
capacity (over the recent timeslots), similar to similar balancing acts in TCP
congestion control or in cellular power control. Researchers then study if the dis-
tributed action without any message passing (beyond RTS/CTS) can converge
to the optimal throughput for all. Hidden node, flow-in-the-middle, and asym-
metric sensing are three of the atomic topologies that one needs to test for any
of these alternatives to CSMA used in today’s WiFi. The complicated nature of
sensing (imperfect and asymmetric) and of interference (Figure 18.3) also need
to be carefully incorporated in the evaluation.

18.4 Advanced Material 419

(a) (b)

A

B

Figure 18.12 Two more atomic topologies: (a) flow in the middle and (b) asymmetric
sensing. In (a), the middle session has to wait for both the left and right flows to be
silent, and is often starved to near zero throughput in practice. In (b), session A is
interfered with session B, but not the other way around. Session A sees much less
throughput as a result.

18.4.2 WiFi management

There are many protocol parameters in WiFi. It is not easy to tune these pa-
rameters. Based on some noisy reporting of passive measurement data or active
probing data, we need to carry out analysis through correlation over di↵erent
timescales and physical locations, and even across di↵erent protocol layers, in
order to discover the root cause of the observed ine�ciency or unfairness. Then
some of these WiFi parameters need to be adjusted, either in real time right
on the spot, or on a much slower timescale remotely. Among these parameter
adjustments are:

• Dynamic adjustment of rate-reliability tradeo↵ by using di↵erent modulation
and codes, thus di↵erent transmission speed and decoding error probabili-
ties for a given network condition.

• Dynamic adjustment of channel assignments (e.g., out of the 11 channels
available in 802.11b) and transmit power levels to load-balance the stations
among neighboring APs.

• Scan frequency determines how frequently a WiFi device can have an oppor-
tunity to reassociate itself with a di↵erent AP. Too frequent a scanning
causes unnecessary interruption of ongoing transmissions. Too infrequent
a scanning creates undesirable transmitter-receiver pair configurations.

• There is an upper bound B on the number of retries a frame’s transmission
can go through. After the retry timer runs out, the frame is declared lost
and the recovery is handed over to upper layers. Too early a retry timeout
means lost opportunity of recovering the frame, and too late a retry timeout

420 Why is WiFi faster at home than at a hotspot?

OFDM
Block

individual
carrier

frequency

Figure 18.13 A conceptual summary of OFDM, where the frequency band is chopped
up into blocks and each block is further divided into a set of carriers. Signals are
modulated onto each carrier for transmission, and signal processing across the blocks
helps reduce signal distortion.

means upper layers, such as TCP and its congestion control, might invoke
their own timeout timers.

• RTS/CTS is a smart idea but it introduces overhead. Only when the payload
L is large enough will using RTS/CTS make sense. We will see an example
in a homework problem.

18.4.3 OFDM and MIMO

Given the limited basic resource (i.e., the spectrum “crunch”) and the interference-
limited nature (i.e., negative externality) of wireless communications, people
have given a lot of thought into designing both cellular and WiFi network. We
want to avoid tragedy of the commons. There are several dimensions along which
we can orient our thinking.
Time: e.g., CSMA is a distributed protocol that enables time sharing among

WiFi stations and APs without either dedicated resource allocation or centralized
control.
Frequency : We have seen dividing frequency duplex: dividing the frequency

band into two parts, one for uplink and another for downlink. Another idea,
illustrated in Figure 18.13, is to divide each of these parts further into many small
frequency chunks, sometimes called carriers. In addition to Paris metro pricing,
this is the second time we have seen the use of anti-resource-pooling. This time
the justification behind anti-resource-pooling is signal processing rather than
revenue maximization. There are e�cient ways to process the signals transmitted
on narrow frequency bands so that high spectral e�ciency, measured in bits per
second per Hz, can be maintained. Naturally, those carriers with a high channel

18.4 Advanced Material 421

Figure 18.14 Multiple antennas can be used to deliver diversity gain or multiplexing
gain in wireless networks. These two types of gains in the wisdom of crowds can also
be found in social networks.

quality will be used more, e.g., by spending more of the total power budget there.
A common name for this idea is OFDM, and is used in WiFi 802.11a and 802.11g
that can have a physical layer speed of up to 54 Mbps. Similar methods are also
used in cellular 4G and in DSL technologies.
Space: In wireless networks, as in social networks and P2P networks, the very

concept of a “link” is tricky. There are no pipes in the air, just an electromagnetic
field with energy propagating in it.

• Since the early days of wireless communications, a first step in utilizing the
spatial dimension is to install multiple antennas at the receiver, so that
energies bouncing o↵ from di↵erent paths can all be collected. These signals
are then processed, e.g., by quantifying how similar two signals are using
correlation coe�cients that we saw in Netflix recommendation in Chapter
4, and by combining them with a weighted sum similar to a round of
AdaBoost in Chapter 6. This realizes the diversity gain (Figure 18.14(a))
in the wisdom of crowds, symbolically captured by 1� (1� p)N .

• For over two decades, people have also studied how to install and then leverage
multiple antennas on the transmitter side, sending di↵erent versions of the
signal out from each of these antennas. These are called antenna-arrays
or smart antennas. Some cellular standards even used smart antennas to
create Space Division Multiple Access.

• Since the late 1990s, Multiple Input Multiple Output (MIMO) systems have
gone from academic research to widespread usage. For example, the new
802.11n WiFi systems are MIMO based, with up to 4 transmit antennas
and 4 receive antennas, a 4⇥ 4 configuration. MIMO is one of the reasons
they can provide a physical layer speed on the order of 100 Mbps. In the-

422 Why is WiFi faster at home than at a hotspot?

ory, if there is enough diversity in the channels and su�cient knowledge
about the channel conditions at the transmitter or the receiver, we have a
factor of N increase in speed for an N ⇥N MIMO system. This is thanks
to the multiplexing gain in the wisdom of crowds, as these signals sent
along di↵erent channels created by MIMO collectively “add up” to create
a high speed pipe. It realizes the multiplexing gain (Figure 18.14(b)). It
also reminds us of the factor of 1/N reduction in averaging of independent
guesses in Chapter 5.

We now take OFDM, MIMO, and physical layer speeds to the next chapter
and examine the throughput as observed by the end users.

Further Reading

There are literally thousands of research papers on all aspects of WiFi, from
performance to security, from new protocols to hardware experimentation. This
is in part due to the availability of simulation and experimentation platforms for
unlicensed band transmissions. Almost every research group on wireless commu-
nications and networking in the world has published some papers on WiFi.

1. The primary source of the past and ongoing standards can be found on the
IEEE website:
[802] IEEE 802.11 Wireless Local Area Networks Working Group
www.ieee802.org/11

2. A well written and comprehensive book on WiFi protocol details can be
found at:
[Gas05] M. S. Gast, 802.11 Wireless Networks, 2nd Ed., O’Reilly, 2005.

3. The following textbook on wireless communications has extensive coverage
of the physical layer technologies, including OFDM and MIMO, in the latest
802.11 standards:
[Mol11] A. F. Molish, Wireless Communications, 2nd Edition, Wiley, 2011.

4. A shorter derivation of a widely cited model on modeling of DCF perfor-
mance can be found in the following paper, which we also have followed in the
example in chis Chapter:
[BT05] G. Bianchi and I. Tinnirello, “Remarks on IEEE 802.11 DCF perfor-

mance evaluation,” IEEE Communication Letters, vol. 9, no. 8, pp. 765-767,
August 2005.

5. Part of the discussions in Advanced Material were motivated from a recent
experimental evaluation of CSMA enhancement:

18.4 Advanced Material 423

[Nar11] B. Nardelli, J. Lee, K. Lee, Y. Yi, S. Chong, E. W. Knightly, and
M. Chiang, “Experimental evaluation of optimal CSMA,” Proceedings of IEEE
INFOCOM, April 2011.

Problems

18.1 Hidden nodes ?

1
2

3
4

5

Figure 18.15 A simple network to illustrate hidden nodes. A dashed edge between two
stations indicate the stations can transmit to and interfere with each other.

Consider the network in Figure 18.15.

(a) Suppose station 1 is transmitting to station 2. Which station(s) can cause
the hidden node problem?

(b) What about station 1 transmitting to station 4?

(c) What about station 1 transmitting to station 5?

18.2 Flow in the middle ?

Consider the “flow in the middle” topology in Figure 18.12(a), which has three
sessions A, B, and C.

(a) Figure 18.16 shows the activity of sessions A and C in time. Draw on the
figure the range of time when session B can transmit without colliding with the
other sessions.

(b) Figure 18.17 shows the activity of sessions B and C in time. Draw on the
figure the range of time when session A can transmit without colliding with the
other sessions.

(c) Explain why session B is disadvantaged.

18.3 Information asymmetry ?

424 Why is WiFi faster at home than at a hotspot?

t

t

t

A

B

C

Figure 18.16 Session activity. Grey areas indicate the time when a session is
transmitting a frame.

t

t

t

A

B

C

Figure 18.17 Session activity. Grey areas indicate the time when a session is
transmitting a frame. Note the transmissions of B and C do not overlap in time.

Consider the “asymmetric sensing” topology in Figure 18.12(b), assuming
RTS/CTS is enabled.

(a) Figure 18.18 shows the activity of session B. At time t
1

station 1 senses
the channel to be idle and sends an RTS frame to station 2 in an attempt to
transmit data. What will happen?

(b) Suppose station 1 sends RTS frames at times t
2

, t
3

and t
4

. What will hap-
pen? Roughly speaking, what is the relationship between the time di↵erences
t
2

� t
1

, t
3

� t
2

and t
4

� t
3

?

(c) Explain why it is di�cult for session A to transmit successfully.

(d) Suppose we reverse the positions of sessions A and B, i.e., session A is
transmitting and station 3 sends an RTS frame to initiate data transfer in ses-
sion B. Explain why the problem in part (c) disappears.

t
B

t
1

t
2

t
3

t
4

Figure 18.18 Session activity. Grey areas indicate the time when a session is
transmitting a frame.

18.4 Advanced Material 425

18.4 Aloha ??

There is a simpler random access protocol than CSMA. It is called Aloha, as
it was invented in Hawaii in the early 1970s, and further lead to the development
of packet radio technologies from ARPA. The operation of (the slotted time ver-
sion of) Aloha is easy to describe. During each time slot, each of a given set of N
users chooses to transmit a packet with probability p. We assume that if two or
more users transmit at the same time slot, all packets are lost. Each lost packet
is retransmitted with probability p too. We assume this process continues until
a packet is eventually transmitted successfully.

(a) Assume the channel supports 1 unit of capacity (measured in Mbps), when
there is a successful transmission. What is the throughput S as a function of N
and p?

(b) What is the optimal p, as a function of N , to maximize the throughput?

(c) As the network becomes large andN !1, what is the maximized through-
put? You will see it is not a big number, which is intuitive since slotted Aloha
described above has neither the listen-and-wait nor exponential backo↵ features.
Aloha takes the least amount of communication and coordination and it does
not even use carrier sensing. It also has a low throughput. CSMA leverages im-
plicit message passing through carrier sensing but requires no further explicit
coordination. Its throughput can be high for a very small number of users but
drops as the crowd gets larger. A centralized scheduler would have taken the
most coordination overhead, and in turn provide the best performance. But in
many networks, it is infeasible to a↵ord a centralized scheduler.

18.5 Alternative backo↵ rules ? ? ?

Suppose there are two stations in a CSMA network attempting to transmit
a data frame. The two stations start at stage 1 with some contention window
size w

1

, and each station chooses a time slot, within the contention window,
uniformly at random. If the chosen time slots collide, then the stations proceed
to stage 2 with an updated contention window size w

2

, and so on. Transmission
completes at some stage i, if during this stage the two stations choose di↵erent
time slots. We are interested in the expected number of time slots elapsed before
transmission completion. This expected number is a measure of how e�cient the
transmission is (the smaller the better).

To simplify the upcoming analysis, we assume there is no limit to the number
of stages, i.e., the contention window size is unbounded from above.

(a) Suppose the two stations are in stage i with contention window size wi.

426 Why is WiFi faster at home than at a hotspot?

What is the probability that the stations choose the same time slot? Condition-
ing on the two stations having chosen the same time slot, what is the expected
value of the time slot chosen, given they are indexed from 1 to wi?

(b) What is the probability that the transmission completes at stage i?

(c) Given the transmission completes at stage i, what is the expected number
of time slots elapsed?
(Hint: it is the sum of the expected values of time slots chosen in previous

stages (see part (a)), plus the expected value of the maximum of the two (di↵er-
ent) time slots chosen at stage i, which is 2(wi + 1)/3.)

(d) What is the expected number of time slots elapsed before transmission
completion?
(Hint: apply the law of total expectation.)

(e) Now we plug in di↵erent contention window update rules. Consider the
following three rules:
(i) Binary exponential backo↵: wi = 2i;
(ii) Additive backo↵: wi = i;
(iii) Super-binary exponential backo↵: wi = 22i.
Compute the expected number of time slots in part (d) for the three cases.

What do you observe? How does that match the intuition that the best backo↵
policy should be neither too slow nor too aggressive?

19 Why am I only getting a few % of
advertised 4G speed?

By the end of this chapter, you will count yourself lucky to get as much as a few
% of the advertised speed. Where did the rest go?

19.1 A Short Answer

First of all, the term 3G is confusing: there is one track following the standard-
ization body 3GPP called UMTS or WCDMA, and another track in 3GPP2
called cdma2000. Each also has several versions in-between 2G and 3G, often
called 2.5G, such as EDGE, EVDO, etc. Then 4G has an even more confus-
ing terminology: the main track is called LTE, with variants such as LTE light
and LTE advanced. Another competing track is called WiMAX. Some refer to
evolved versions of 3G, such as HSPA+ as 4G too. All these have created quite a
bit of confusion on a consumer’s mind as to what really is a 3G technology and
what really is a 4G technology.
You might have read that 3G downlink speed for stationary users should be

7.2 Mbps. But when you try to download an email attachment of 3 MB, it often
takes as long as one and half minutes. You get around 267 kbps, 3.7% of what
you might expect.
Many countries are moving towards 4G wireless called Long Term Evolution

(LTE) networks now. They use a range of techniques to increase the spectral
e�ciency, defined as the number of bits per second that each Hz of bandwidth
can support. It uses methods like OFDM mentioned at the end of Chapter 18,
multiple antennas capturing di↵erent signals from di↵erent paths in the air, and
splitting a large cell into smaller ones.
But the user observed throughput, while much higher than 3G, still falls short

of the advertised numbers we often hear in the neighborhood of 300 Mbps. Why
is that? There are two main reasons: non-ideal network conditions and overheads.
Many parts of the wireless network exhibit non-ideal conditions, including both

the air interface and the backhaul network. Furthermore, networks, like our lives,
are dominated by overheads, such as the overhead of network management in
the form of control bits in packets or control sequences in protocols.
This chapter is in some sense the “overhead” of this book: there are no further

“deep” messages other than the importance of overhead: networking is not just

428 Why am I only getting a few % of advertised 4G speed?

about maximizing performance metrics like throughput, but also the necessary
“evils” of managing the network.
Let us go into a little bit of detail on three major sources of “speed reduction,”

or more accurately, reduction in useful throughput in a session from a sender
to the receiver, defined as the number of bits of actual application data received,
divided by the time it takes to get the data through. This is what you “feel” you
are getting in your service, but may not be what advertisements talk about or
what speed tests measure.

19.1.1 Air-interface

1. Propagation channel : The wireless channels su↵er from various types of degra-
dation, including path loss (signal strength drops as the distance of propaga-
tion increases), shadowing (obstruction by objects), and multipath fading
(each signal bounces o↵ of many objects and is collected at the receiver from
multiple paths). A user standing at the cell edge, far away from the base sta-
tion and blocked by many buildings, will receive a lower rate than another
user standing right under a base station. These factors come into play even if
there is only one user in the whole world.

2. Interference: There are also many users, and they interfere with each other. As
mentioned in Chapter 1, if there are few strong interferers, or if the interferers
are weak but there are many of them, the received Signal-Interference-Ratio
(SIR) will be low. At some point, it will be so low that the order of modulation
needs to be toned down and transmission rate reduced so that the receiver can
accurately decode. A typical instance of the problem is the near far problem.
Even power control in Chapter 1 cannot completely resolve this problem.

19.1.2 Backhaul

There can be more than 10 links traversed from the base station to the actual
destination on the other side of a wireless session of, say, YouTube. The session
first goes through the radio access network, then the cellular core network also
owned by the cellular provider, then possibly some long distance providers’ links,
then possibly multiple other ISPs composing the rest of the Internet, and finally
to Google’s data center network.

1. Links: Users’ tra�c competes with each other on the links behind the air
interface in the cellular network. As explained in more detail in the next
section, many wireless networks actually have most of their links in wireline
networks. Congestion happens on these links and the resulting queuing delay
reduces throughput. Plus there is also propagation delay simply due to the
distance traversed. An increase in delay reduces throughput, since it is defined
as the number of bits that can be communicated from the source to the
destination per second.

19.1 A Short Answer 429

Connect
A B

t t
(a)

ACK

ACK

Finish

Finis
h

A B

t t
(b)

ACK

ACK

Figure 19.1 (a) Three way session establishment and (b) four way session tear down in
TCP. (a) After A initiates a connection with B, B sends an acknowledgement, and A
acknowledges the acknowledgement, so that B knows that A knows there is now a
connection established. (b) After A initiates a session tear-down, B first acknowledges
that. Then B sends a tear-down message right afterwards, since TCP connections are
bidirectional: A having no more messages for B does not mean B has no more
messages for A.

2. Nodes: These links are connected through nodes: gateways, switches, routers,
servers, etc. Some of these, like routers, store packets while waiting for the
egress links to be ready, increasing packet delay. Others, like servers, have
processing power limitations, and can become heavily congested when they
are in popular demand. For example, a popular web server or video server
may become so congested that it cannot process all the requests. This has
nothing to do with the rest of the network, just a server that cannot handle
the demand. Yet it does reduce the throughput for the session.

19.1.3 Protocols

1. Protocol semantics : Many functionalities require sequences of message pass-
ing. For example, in TCP, each session needs to be set up and torn down,
through a 3-way handshake and a 4-way tear down, respectively. This process
is illustrated in Figure 19.1. Why does the network protocol designer bother
to create such a complicated procedure just for setting up and terminating a
session? Well, because in this way, for session establishment, both the sender
and receiver know that there is a session and that the other knows it too. And
for session tear down, 4-way handshake ensures there is no dangling state of
connection in either direction of a full-duplex connection (i.e., a bidirectional
path where both ways can be carried out at the same time). Obviously, for

430 Why am I only getting a few % of advertised 4G speed?

shorter sessions, these overheads occupy a larger fraction of the capacity used,
leaving less for the application data.

2. Packet headers: As explained in Chapter 13, each layer adds a header to
carry control information, such as address, protocol version number, quality
of service, error check, etc. These headers also leave some space for flexible
future use too. These headers add up, especially if the packet payload is
small and the fraction of header becomes larger. Some protocols also specify
a packet fragmentation threshold, so bigger packets are divided into smaller
ones, adding to the fraction of header overhead.

3. Control plane signaling : Think about an air transportation network. The ac-
tual tra�c of people and cargo is carried out by airplanes between airports
following some routes. But the routing decision and many other control sig-
nals traverse entirely di↵erent networks, possibly the Internet or the telephone
network. The data plane is separated from the control plane. On the Inter-
net, the actual data tra�c flows on data channels (a logical concept, rather
than physical channels), while control signals travel on control channels.
These signaling channels take portions of the available data rate and reserve
them for control purposes. While most people realize the importance of data
channels, control channel is just as critical. In 3G and 4G standards, a great
deal of e↵ort is put into designing control channels. Sometimes they are not
sized right, causing extra delay and reducing throughput further.

In general, there are five main functionalities of network management:

• Performance: monitor, collect, and analyze performance metrics.

• Configuration: update configuration of the control knobs in di↵erent protocols.

• Charging : maintain the data needed to identify how to charge each user, e.g.,
when a user uses the network in time dependent pricing.

• Fault-management : monitor to see if any link or node is down, and then
contain, repair and root-cause diagnose the fault.

• Security : run authentication, maintain integrity, and check confidentiality.

The messages of these functionalities sometimes run on channels shared with the
actual data (in-band control), and sometimes run on dedicated control channels
(out-of-band control). Collectively, they form the control plane. Protocols run-
ning network management include examples like Simple Network Management
Protocol (SNMP) for the Internet.

19.2 A Long Answer

The speed of your wireless (or wireline) Internet connection is not one number,
but many numbers, depending on the answers to the following four questions.
First, speed as measured in which layer? This is often a primary reason for

the confusion on speed test results. For example, wireless standardization bodies

19.2 A Long Answer 431

often quote physical layer speeds, but users only experience application layer
speed directly. Depending on which layer we are talking about, it also changes
which parts of backhaul and protocols are involved. The more links traversed
in the backhaul network, the more chances to run into congestion. The more
protocols involved, the more overheads.
In Chapter 17, we saw a few key protocols often used in each of the layers.

As another example, in LTE, just the link layer (layer 2) consists of 3 sublayers,
each with its own overhead:

• MAC layer : medium access control. It controls the multiplexing of data in
di↵erent logical channels, and decides the scheduling of the packets.

• RLC layer : radio link control. It controls the segmentation and reassembly of
packets to fit the size that can be readily transmitted on the radio link. It
also locally handles the retransmission of the lost packets.

• PDCP layer : packet data convergence protocol. It processes header compres-
sion, security, and handover.

Second, speed as measured where? Depending on the locations of the two end
points of the speed measurement, di↵erent parts of the backhaul networks and
di↵erent protocols are involved. It is the weakest link that matters when it comes
to a speed test. For example, speed is often measured between a mobile device
and the base station in the cellular industry. But as shown in Figure 19.2, the
base station is followed by a mobile switching center and a couple of gateways
before reaching the IP Internet backbone and eventually reaching the other end,
e.g., another mobile device or a server. The speed measured will be di↵erent
as we put the destination at each of these possible points along the path. If the
speed test is between the smart phone and the base station, only the air-interface
and physical and link layers’ protocols are involved. If the speed test is between
the smart phone and the content server, then the cellular backhaul, the backbone
IP network, and the content server’s congestion conditions will be relevant. So
will network layer, transport layer, and application layer protocols.
Third, speed as measured when? At di↵erent times of the day, we see di↵erent

amounts of congestion in the air interface and in the backhaul. Tra�c intensity
during di↵erent hours of the day often exhibits a repetitive pattern, especially
at higher aggregation levels. More user activity translates into more bits to be
transmitted, causing

• interference (a multiplicative behavior) as we saw in Chapter 1: x/y � s where
s is some target SIR,

• congestion (an additive behavior) in Chapter 14: x + y c where c is some
capacity limit,

• and collision (a binary behavior) in Chapter 18: x, y 2 {0, 1} if sessions x and
y cannot transmit at the same time without colliding.

Fourth, speed as measured for what application? This matters for two reasons.
Di↵erent tra�c runs di↵erent sets of protocols, some with more overhead than

432 Why am I only getting a few % of advertised 4G speed?

others. For example, texting may only take a little capacity on the data channel
tra�c but it does require a lot of control channel tra�c. Email download and
web tra�c can be less overhead-heavy compared to voice over IP or video con-
ferencing. User utility and expectation also di↵er a lot in di↵erent applications.
Interactive gaming has very stringent demands on delay and jitter, while file
download does not. Some applications can tolerate a longer initialization latency
if the throughput is consistently high once it starts. Other applications are more
sensitive to time shifts but can accommodate throughput fluctuations gracefully.
Any objective measure of speed eventually must translate into subjective user
experience.

19.3 Examples

We will now walk through some numerical examples of non-ideal network con-
dition, before turning to a further discussion of protocol overhead in Advanced
Material.

19.3.1 An air interface example

Here is an example for 4G LTE. The throughput, at the physical layer and over
the air-interface only, can be estimated as follows.
For each subframe of data (one unit of time lasting 1 ms), we count how many

bits are sent. LTE physical layer uses OFDM, dividing the spectrum into blocks
and running signal processing on each of them. The number of bits transmitted
equals (a) the number of symbols per frequency block multiplies (b) the number
of frequency blocks, multiplies (c) bits per symbol per frequency block, multiplies
(d) coding and multi-antenna gain.
For part (a) above, the number of symbols is (a1) the number of symbols per

frequency carrier, times (a2) the number of carriers per frequency block, with
(a3) control overhead deducted.
Therefore, we have the following formula to count bits sent in a subframe:
[(symbols/carrier - control overhead) ⇥ number of carriers per frequency block

- channel estimation overhead] ⇥ bits/symbol ⇥ number of frequency blocks ⇥
coding and multi-antenna gain.
So, what are these factors’s numerical values?

• Symbols/carrier: this is typically 12-14 as used in LTE.

• Control overhead/carrier: at least 1 but sometimes 2 or 3 symbols per carrier
in a subframe is for control signaling.

• Carriers/frequency block: usually 12 carriers per frequency block of 180 kHz.

• Channel estimation overhead per frequency block: the overhead spent on send-
ing pilot symbols to estimate the channel is usually 20 symbols for 4 by 4
multi-antenna systems.

19.3 Examples 433

• Bits/symbol: this depends on the modulation, the received SIR, and the de-
coder capability. Ideally it can be 6 for LTE, using 26 = 64 QAM modula-
tion. But often it is 4, using the lower order of 24 = 16 QAM modulation,
when the channel condition is not good enough (e.g., when there is too
much shadowing, fading, or the distance to the base station is long). If the
channel is even worse, it can become 2.

• Number of frequency blocks: Suppose we can use the entire 20 MHz frequency
band for an LTE channel, with 1 MHz guard band on each side. Since each
frequency block in OFDM is 180 kHz, we have 100 blocks. But in reality the
two way communication is carried out by either frequency division duplex
(FDD), and we only get 10 MHz, i.e., 50 blocks, or time division duplex
(TDD), and we get 40% of the time using the frequency for uplink and 60%
of the time for downlink.

• Coding rate: Coding rate is the overhead due to channel coding, which adds
redundancy to protect the transmitted bits against channel distortion. The
higher the coding rate, the less redundancy is added. Ideally we want it to
be close to 1, but it can be lower for certain codes. The higher protection
required and the less e�cient a code, the lower this factor becomes.

• Multi-antenna gain: ideally for 4 by 4 multi-antenna systems, it should be a
factor of 4. But due to the limitation of devices (sometimes only 2 antennas
can be installed) and the channel correlation in space (when antennas are
too close to each other, they do not experience very di↵erent channels), it
will be more like a factor of 2.

Therefore, the number of bits transmitted over a 1 ms subframe timeslot, in
the best case, will be

[(14� 1)⇥ 12� 10]⇥ 6⇥ 100⇥ 0.9⇥ 4 = 315, 360 bits,

which translates into 315, 360/0.001 = 315 Mbps.
But in reality it is more likely going to be

[(12� 2)⇥ 12� 20]⇥ 4⇥ 50⇥ 0.7⇥ 2 = 28, 000 bits,

which translates into 28000/0.001 = 28 Mbps, i.e., 8.8% of the original expecta-
tion.
If the MAC layer retransmission and overhead is counted: PDCP has 3.5 bytes

of header plus sequence number, RLC has 5.5 bytes of header plus sequence
number, MAC has 1 byte and CRC 3 bytes, and there is at least another factor
of 0.9 loss, dropping the rate to about 25 Mbps.
This is only the PHY layer channel degradation and the MAC layer overhead.

It is already less than 8% of the ideal number. If we count interference among
users, and the upper layer protocols, and the backhaul network congestion, the
throughput number can easily drop by another factor of 2-5.
Now, 5-10 Mbps on a mobile device is still quite impressive and can enable a

lot of applications, especially when most people’s home WiFi experience is about

434 Why am I only getting a few % of advertised 4G speed?

5-20 Mbps (as constrained by either the 802.11b speed or the residential gateway
backhaul speed). But you should not be surprised if you do not see 300 Mbps on
your LTE smart phone.

19.3.2 Backhaul examples

The cellular backhaul consists of some links (e.g., microwave links, free space
optical links, satellite links) that connect the air-interface with the rest of the
end-to-end path in Figure 19.2 , and then the cellular core network, and finally
the public IP network.
Here is another example for transport protocol, e.g., TCP, on wireline net-

works. The TCP throughput can be estimated as follows:

TCP throughput = TCP-Window-Size/RTT,

where RTT denotes the Round Trip Time. The maximum window size is 216�1 =
65, 535 bytes, due to the receiver window’s 16-bit field in the TCP header. The
purpose of the receiver window is to prevent a fast sender from overwhelming a
slow receiver.
Suppose you are connected to a 1 Gbps Ethernet link and transmit a file to a

destination with a round trip latency of 100ms. In this case, the maximum TCP
throughput that can be achieved is

65535 ⇤ 8/0.1 ⇡ 5.24 Mbps.

Therefore, even if you are connected to a 1Gbps Ethernet link, you should not ex-
pect any more than 5.24Mbps when transferring the file, given the TCP window
size and the round trip time.
In practice, TCP may not even attain the maximum window size because of

the congestion control mechanism which prevents the sender from overloading
the network. The TCP window is min{congestion window, receiver window}.
The congestion window is reduced when congestion is detected inside the net-

work, e.g., a packet loss. The TCP throughput for long distance WAN links can
be estimated below, as shown in a homework problem in Chapter 14:

TCP throughput MSS/(RTT ⇤ pp),

where MSS is the Maximum Segment Size (fixed for TCP/IP protocol, typically
1460 bytes), and p is the packet loss rate. Consider a packet loss rate of 0.1%,
which gives the following throughput upper bound:

1460 ⇤ 8/(0.1 ⇤
p
0.001) ⇡ 3.63 Mbps.

Finally, consider the problem of flash crowds, i.e., a large number of visits to
a popular web server, all within a short amount of time. The server’s application
may not generate the data fast enough because of server bottlenecks (on CPU,
memory, or network bandwidth). For example, the sender may write a small
amount of data, triggering Nagle’s algorithm that delays sending the data: it

19.4 Advanced Material 435

combines small data together into large packets for better network utilization,
but the delay goes up. This is a typical tradeo↵ in managing overhead by ag-
gregating frames: you might be able to reduce the amount of overhead, but at
the expense of an increase in latency. A similar tradeo↵ shows up in aggregating
acknowledgements: if the aggregated acknowledgement is lost, the sender would
have to retransmit all the packets not acknowledged, an e↵ect that is similar to
losing an I frame in a GOP in Chapter 17.
Suppose that, due to the reasons above, it takes 4 RTTs for the server to send

out 1 MSS of data. The e↵ective throughput becomes extremely small:

1460 ⇤ 8/(0.1 ⇤ 4) ⇡ 29.2 kbps.

This may explain why you often have to wait a long time for a simple webpage
to show up on your browser. If the bottleneck is at the server as stated above, it
does not matter if your smart phone is on 4G LTE or the old 2G GSM.

19.4 Advanced Material

We delve deeper into control protocol overhead in this section, with three cases
on cellular core network management, mobility support, and local switching. In
a homework problem, we will also explore the overhead associated with network
security.

19.4.1 Cellular core network

A wireless network, cellular or WiFi, actually consists mostly of wired links.
Usually only the link between the end user device and the base station (or access
point in WiFi’s case) is wireless. So how does tra�c go from the base station
through the rest of the Internet and reach the destination? If the destination is
another wireless device, there will be another wireless leg there, but otherwise it
is all wired links now.
A packet traverses through two segments of wireline networks. One is the

cellular core network, backhauling the tra�c from the base station through a
set of servers and links carefully designed and managed by the cellular service
provider. Then there is the public IP network, run by either one or a federation
of ISPs. We have seen some features of the public IP network already, and now
we sketch the cellular core network. We only discuss a tiny fraction of the cellular
core that allows us to understand where the overheads might arise, and to lead
into the discussion of mobility management and network management.
Why do we even need a core network to support the radio air-interface of

a wireless network? That is because there are many tasks beyond sending and
receiving signals over the air. For example, some systems are needed to take
care of billing, to support mobility of users, to monitor tra�c, and to provision

436 Why am I only getting a few % of advertised 4G speed?

p

WirelineWireless

HLR / VLR

Phone BS MSC S-GW P-GW

MME PCRF

IP
Network

Figure 19.2 Main components of the Evolvable Packet Core in LTE: the air interface
(between a phone and the BS), the public IP network, and the rest of the wireline
network in between called the cellular core network. The solid lines represent physical
connections, with the one between the phone and the BS the only wireless link. The
dotted lines represent control plane channels. The BS passes through stages of
gateways in the cellular core network before reaching the public IP network.

quality of service, and to ensure inter-operability between di↵erent types and
generations of networks.
Each generation of cellular standards has a di↵erent design of the core network.

For 4G LTE, it is called the Evolvable Packet Core (EPC) network. The starting
point of the EPC is the base station, also called the eNB, the evolvable Node
B, and the associated Mobile Switching Center (MSC), each controlling a set of
base stations. The end point is an IP router. In-between there are a few things
going on:

• Hardware: There are multiple gateways filled with servers and switches. The
two main ones are the Serving Gateway and the PDN Gateway.

• Software: There is a suite of software in charge of accounting and billing, mon-
itoring and configuration, multimedia signal processing, mobility support,
security and privacy, quality of service control, IP address allocation, etc.

• Control channels: The control signaling is sometimes carried out in-band:
together with the actual data, and sometimes out-of-band: over special
channels dedicated to control signals.

As shown in Figure 19.2, the main logical components of the EPC include the
following:

• PCRF : Policy Control and charging Rules Function. It is responsible for policy
control decision making, e.g., authorization to di↵erentiate the quality of
service.

19.4 Advanced Material 437

• MME : Mobility Management Entity. It controls the signaling between user
devices and the EPC.

• HLR: Home Location Register. This is a database to support mobility, to be
explained next.

• S-GW : Server GateWay. It counts the number of bytes for charging purposes.
It serves as the local mobility anchor, bu↵ering data while the MME ini-
tiates a hando↵. It also interfaces with some 3G cellular standards like
UMTS and GPRS for a smooth integration. It processes at the link layer.

• P-GW : PDN GateWay. It allocates IP addresses, controls quality of service,
and enforces other rules from the PCRF. It also interfaces with other 3G
or 4G standards like cdma2000 and WiMax. It processes at the network
layer running the IP.

19.4.2 Mobility management: mobile IP and cellular hando↵

Your device’s IP address, or your phone number, is a type of unique ID. But
for mobile devices, the problem is that the ID must be decoupled from a fixed
location. When your laptop moves in a building, you may be communicating with
a di↵erent AP. When you drive around, the base station serving you changes
whenever the channel between a new base station and you is better than that
between the current one and you. When your plane lands at the airport and you
turn your iPhone back on, all your emails and voicemails must locate where you
are now.
The above cases have di↵erent velocities of mobility and di↵erent spatial spans

of change in location, but they all need to take care of mobility management. The
key point in all solutions is to have an anchor, a point where others can reach
you no matter where you are, and that point keeps track of you, or who can find
you. This is similar to the scenario when an elementary schoolmate wants to find
you after you go to a di↵erent city for college. She may contact your parents’
home, the “home agent,” trusting that your parents will know how to contact
your college dorm, the “foreign agent,” and in turn reach you.
Consider a device A with a fixed IP address and a home network. There is a

home agent in the home network. As the device moves into a foreign network
as a visitor, it contacts an agent there in charge of taking care of these visitors.
It tells that foreign agent its fixed IP address and home agent ID. Then the
foreign agent will inform the home agent that the device A is now residing in
its network.
Now when someone, say, Bob, wants to send a message to device A, the message

goes to the home agent. Bob does not know where device A might actually be,
but he knows that the home agent would know. The home agent looks up a
table that matches this device’s IP address with the current foreign agent’s ID,
contacts that agent, and forwards the message to it. The foreign agent then
forwards the message to the device. This process of indirect forwarding is

438 Why am I only getting a few % of advertised 4G speed?

Foreign NetworkHome Network

Home
Agent

Foreign
Agent

B

A A

Figure 19.3 Indirect forwarding for mobility support. Device A moved from the
location on the left in the homework network to a new location on the right in a
foreign network. The foreign agent informs the home agent. So when another device B
calls A, it first contacts the home agent who can forward the call to the foreign agent,
who in turn forwards the call to A. It is simpler for A to communicate back to B.

shown in Figure 19.3. If the device keeps moving, the first foreign agent becomes
the anchor foreign agent and keeps forwarding the packets onward.

Adding the foreign agent address to the message makes it clear how the mes-
sage has been handled. If you want to keep it completely transparent to device
A, the home agent can encapsulate the actual message and tunnel it through to
the foreign agent, who can then strip the encapsulation.

The principle of having a home agent as the permanent address anchor and
having a continuously updated foreign agent is the key idea behind both mobile
IP protocols and cellular hando↵ procedures.

Figure 19.4 shows the hando↵ procedure in mobile networks. Each cell phone
has an entry in the permanent address database, called Home Location Reg-
ister (HLR). As it moves to foreign networks, a care-of-address is entered into
the dynamic Visitor Location Register (VLR). The calling procedure then
follows the above indirect forwarding method in Figure 19.3.

As to the actual resource allocation for hando↵, it depends on whether the
phone is moving across boundaries of an MSC or not. If moving across to a
di↵erent BS but still with the same MSC, that MSC can manage the hando↵. If
it is also crossing to a new MSC, as shown in Figure 19.5, then the moment the
current base station detects that the SIR is low and a hando↵ is needed, it asks
its MSC to notify a nearby MSC, which in turn asks the right BS to prepare for
a hando↵ and to allocate the necessary radio resources. Then the “ready to go”
signal is sent all the way back to the current base station, which then tells the
phone to shift to the new BS.

19.4 Advanced Material 439

A A

HLR

MSC

VLR

MSC

B

Figure 19.4 Hando↵ in wireless cellular networks with indirect forwarding. The solid
undirected links indicate the connections between the MSC and the BSs. The dotted
line indicates the movement by phone A from one cell to another, controlled by a
di↵erent MSC. The solid arrowed lines represent the communication path from a
caller B, first to the MSC in A’s home network, then to the MSC in A’s visiting
network, and finally to A.

19.4.3 Protocol overhead in switching and routing

In Chapter 13, we discussed routing based on IP addresses. But each device’s
network adaptor actually recognizes only MAC addresses. Unlike the 32 bit,
sometimes dynamically assigned IPv4 address (e.g., 64.125.8.15), each MAC ad-
dress is a 48 bit, hard coded number, often expressed in the format of 6 segments
of 8 bits each (e.g., 00-09-8D-32-B2-21).

When we discussed the DHCP’s dynamic assignment of IP addresses in Chap-
ter 13, we skipped the detail of how that is done, when a device has neither the
source IP address (that is precisely what needs to be done via DHCP) nor the
destination address (it does not know where the local DHCP server is).

Now we briefly go through these to highlight that distributed protocols carry
a price of overhead.

First, the DHCP takes in a MAC address and returns an IP address, together
with other local network information such as the DNS server and gateway router.
The dynamic IP address is leased for a period of time before it must be renewed.
This is an example of soft state.

In soft state, a configuration needs to be periodically refreshed. If not, it is
erased, i.e., the state disappears unless instructed otherwise. In contrast, in hard
state, a configuration stays there forever until an explicit “tear down” command
is issued, i.e., the state remains the same unless instructed otherwise. Many
Internet protocols use soft state because of the risk of leaving dangling states
when control packets get lost in the network. This is similar to mobile devices

440 Why am I only getting a few % of advertised 4G speed?

BS2BS1

MSC1 MSC2

SIR
DifferenceNotify

Prepare

Ready

Handoff

A

Figure 19.5 Hando↵ in wireless cellular networks with resource reservation. As phone
A moves to some point between BS1 and BS2, and detects that the received SIR from
BS2 is starting to be better than that from BS1, it initiates a hando↵. MSC1 notifies
MSC2, which asks a right BS to prepare the necessary radio resources, then notifies
back to MSC1 that BS2 is ready to receive A. Finally, MSC1 tells BS1 to let A be
handed o↵ to BS2.

Device DHCP
Server

Discover
 (Broadcast)

Echo
 (Broadcast)

Offer

ACK

Figure 19.6 The basic protocol overhead associated with a device getting connected
with a DHCP server so that a dynamic IP address can be obtained from the server. It
illustrates the principle of “when in doubt, shout,” as the device cold-starts with a
broadcast message to discover the DHCP servers it can reach.

using soft state for keeping the screen on: unless you use the phone before the
timer is up, it will go to some type of sleep mode to conserve energy.

Back to the DHCP. But how does a new device on a local network know how
to contact the DHCP server? It does not. So it sends a broadcast message

19.4 Advanced Material 441

of “DHCP server discovery” to solve this bootstrapping problem. Some com-
munication media, like wireless, are also intrinsically broadcast in nature. Then
the DHCP servers hearing this message each send a “DCHP o↵er” (which in-
cludes an IP address, a DNS server ID, a gateway router ID, and the lease time).
The device then broadcasts an echo of the parameters from the DHCP server it
chooses. Finally, the chosen DHCP server realizes it has been chosen and sends
an acknowledgement. This four way handshake is illustrated in Figure 19.6.
Our second challenge is to determine how to deliver a message to the network

adaptor of the destination device. This requires the help of another translator:
Address Resolution Protocol (ARP). It is the opposite of DHCP: given an IP
address, the ARP provides the MAC address.
Suppose A (an iPhone) wants to communicate with B (e.g., a www.bbc.com

server). To simplify the flow, we assume B is connected to A via just the gateway
router.
First, A gets B’s IP address via the DNS as explained in Chapter 13. Now, A

needs to translate the destination IP address to the corresponding MAC address,
since that is what device drivers understand. To accomplish this, first A gets the
gateway router’s MAC address from the ARP. (It already knows that router’s
IP address from the DHCP server, as shown in Figure 19.6.) This establishes a
link layer communication path between A and the router. A encapsulates the IP
packet into a MAC frame. Upon receiving it, the router extracts the IP packet
from the MAC frame, and reads the destination IP address. Now the router gets
B’s MAC address from this IP address by another ARP, and can send it to B.
This process is illustrated in Figure 19.7.
Across Figures 19.6 and 19.7, 1 DHCP server, 1 DNS server, and 2 ARP servers

are used, and many rounds of control messages are signalled. All these overheads
take up capacity and introduce delay.
Both protocols above may sound excessively complicated. But if you want to

have distributed actions in a layered architecture, some message passing among
the network elements is a price you have to pay.

Further Reading

Non-ideal network conditions’ impact on speed and the overhead of network pro-
tocols are relatively under-explored subjects.

1. A famous debate in network management is on the end to end principle,
started with the following classic paper:
[SRC81] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End to end arguments

in system design,” Proceedings of IEEE International Conference on Distributed
Computing Systems, 1981.

2. On the wireless side, there are very few well written texts on the cellular

442 Why am I only getting a few % of advertised 4G speed?

S tc g

DNS
Server

ARP
Server

A B
Router

ARP
Server

Figure 19.7 The source device with a network adaptor A wants to reach the
destination device with a network adaptor B. It first needs to contact the DNS server
to get the IP address of B. Then it needs to translate the IP address to the
corresponding MAC address that the device driver can understand. Then, the
gateway router reads B’s IP address from A’s packet, gets B’s MAC address from
another ARP server, and finally finds a way to communicate with B directly.

core networks, relative to air-interface. The following recent book is one of the
few:
[Ols+09] M. Olsson, S. Sultanan, S. Rommer, L. Frid, and C. Mulligan, SAE

and the Evolved Packet Core, Academic Press, 2009.

3. A classic graduate textbook on data networks from twenty years ago still
contain some key message relevant in today’s study of networks:
[BG92] D. P. Bertsekas and R. Gallager, Data Networks, 2nd Ed., Prentice

Hall, 1992.

4. Here is an interesting book discussing the underlying reasons and historical
accidents behind why the Internet protocols operate the way they do today:
[Day08] J. Day, Patterns in network architecture: A return to fundamentals,

Prentice Hall, 2008.

5. Here is a unique, recent book in print on the actual practice of designing
and managing a global network:
[Cam12] G. K. Cambron, Engineering and Operation in Global Network, 2012.

Problems

19.1 RTS/CTS overhead ?

19.4 Advanced Material 443

In the Examples section, we estimated Ts of 802.11g for the case in which
RTS/CTS is disabled. Here we estimate Ts for the other case. Given RTS/CTS
is enabled, a successful transmission consists of the sequence: [RTS frame] + SIFS
+ [CTS frame] + SIFS + [data frame] + SIFS + [ACK frame] + DIFS. The only
addition is the RTS/CTS handshake that occurs before data transmission.

You are also given: (1) the time to transmit an RTS frame is 23.25µs, and (2)
the time to transmit a CTS frame is 22.37µs.

(a) If L = 8192 bits, calculate Ts for both the cases of RTS/CTS being enabled
and disabled. Calculate the e↵ective throughput as L/Ts.

(b) If L = 320 bits, calculate Ts and L/Ts for both cases.

(c) In most home networks, RTS/CTS is disabled. Can you see why?

19.2 Header overhead ?

A typical IEEE 802.3 Ethernet packet structure is illustrated in Figure 19.8,
with the terminologies described below:

• Preamble: Use 64 bits to synchronize with the signal’s frequency before trans-
mitting the real data.

• MAC Dest/Src: Record the destination and source MAC addresses of the
packet, each with 6 bytes.

• Length: Specify the length of the IP packet with 2 bytes.

• Frame check sequence(CRC): Contains 32-bit cyclic redundancy check which
enables detection of corrupted data within the packet.

• Interframe gap: After a packet has been sent, transmitters are required to
transmit a total of 96 bits of idle line state before transmitting the next
packet.

• IPv6 header: The header of IPv6 packet. 40 bytes in total.

• TCP header: The header of TCP packet. 20 bytes in total.

6 6 2 4

MAC Dest MAC Src Length Packet from IP layer

Variable (Typically 46~1500)

CRC

8 12

Ethernet packet

Preamble Interframe Gap

 40 20

IPv6 header TCP header

TCP packet

Packet from Session layer

Variable (At most 65536)

Figure 19.8 IEEE 802.3 packet structure.

444 Why am I only getting a few % of advertised 4G speed?

What is the percentage of payload data rate if we are to send a 250-byte packet
from session layer?

19.3 Slow start phase’s throughput ??

As mentioned in Chapter 14, TCP starts with a small congestion window,
which is initially set to 1 MSS (Maximum Segment Size, typically 1460 Bytes),
and go through the slow start phase. The congestion window increases multi-
plicatively, e.g., 2 MSS, 4 MSS, 8 MSS, ..., for every round trip time, until the
slow start threshold is reached and the congestion avoidance phase is entered.
Suppose you open a web browser and try to download a webpage of 70 kB.

(a) Assume there is no packet lost, how many RTTs are required to download
the webpage? Remember to add up 1 RTT of handshake to set up the TCP
connection.

(b) If RTT = 100 ms, what is the average throughput? Can you see the impact
of slow start on a short-duration session’s throughput?

19.4 Alternatives to indirect forwarding ??

Section 19.4.2 mentioned the process of indirect forwarding in mobility man-
agement. Can you think of an alternative forwarding process?

19.5 Overhead associated with security ? ? ?

We have not got a chance to talk about network security so far, a signifi-
cant subject with many books written about it. There are several meanings to
the word “security”, and many famous methods to ensure or to break security
in a network. We will simply walk through the main steps involved in ensur-
ing confidentiality in Secure Shell (SSH), an application-layer security protocol
heavily used in remote login to ensure that the server is the right one, the client
is who it claims to be, and the communication between this client and the server
is confidential. Along the way, we will see the amount of overhead involved in
providing SSH’s secure service.
There are numerous books and papers written about encrypting texts. We will

only need the following notion in this homework problem: public key cryptog-
raphy. This is based on mathematical operations that are easy to run one way
but very di�cult the other way around, e.g., multiplying two large prime num-
bers is easy, but factoring a large number into two large prime numbers is very
di�cult. This enables the creation of a pair of keys: a public encryption key
(known to anyone who wants to send a message to, say, Alice), and a private
decryption key (known only to those who are allowed to decrypt and read the
original message).

19.4 Advanced Material 445

Now consider a client trying to remotely login a server. If you are the inventor
of a secure remote login protocol using public key cryptography, what are the
steps you would design? What would the biggest vulnerability of your design?

20 Is it fair that my neighbors iPad
downloads faster?

We have come to the last chapter, on a touchy subject that we touched upon
many times in the previous chapters: quantifying fairness of resource allocation.

20.1 A Short Answer

20.1.1 Thinking the problem aloud

A naive (and problematic) view is “equality is fairness.” If you have to choose
from an allocation of [1, 1] (of some resource) between two users, and an alloca-
tion of [100, 101], many people would choose [100, 101] even though it deviates
from an equal allocation. Magnitude matters. Part of Rawls’ theory of justice is
the Di↵erence Principle that we will discuss in Advanced Material, which prefers
a less equal allocation where everyone’s allocation has a higher absolute value.
Of course, a more challenging choice would have been between [1, 1] and [1, 2].
Another objection to marking equal allocations as the most fair stems from

the di↵erences in the contributions by and the needs of di↵erent users. If a user
in a social network glues the entire network together, her contribution is higher
than that of a “leaf node” user. If one works twice as hard or twice as e�ciently
as another, these two people should not be treated as if they were the same. If
a professor assigns A grade to all students no matter their performance, that
will be neither providing the right incentive for learning nor deemed fair by an
objective person.
And yet most people would agree that a slower worker does not deserve to

starve to death simply because she works slower. There are some basic allocations
that should be provided to everyone. The debate surrounds the definition of
“basic.” Di↵erent notions of fairness define what is “basic” di↵erently.
Throughout this chapter, we will examine some approaches to debating the

above points in unambiguous ways.

20.1.2 Fairness measures from axioms

Given a vector x 2 Rn
+

, where xi is the resource allocated to user i, how fair is
it? This question is a special case of the general question on fairness.
Consider two feasible allocations, x and y, of iPhone download speeds among

20.1 A Short Answer 447

three users: x = [1, 2, 3] Mbps and y = [1, 10, 100] Mbps. Among the large
variety of choices we have in quantifying fairness, we can get fairness values, such
as 0.33 for x and 0.01 for y, or 0.86 for x and 0.41 for y: x is viewed as 33 times
more fair than y, or just twice as fair as y.
How many such “viewpoints” are there? What would disqualify a quantitative

metric of fairness? Can they all be constructed from a set of axioms: simple
statements taken as true for the sake of subsequent inference?
One existing approach to quantifying fairness of x is through a function f

that maps x into a real number. These fairness measures are sometimes referred
to as diversity indices in statistics. These range from simple ones, e.g., the
ratio between the smallest and the largest entries of x, to more sophisticated
functions, e.g., Jain’s index and the entropy function. Some of these fairness
measures map x to a normalized range between 0 and 1, where 0 denotes the
minimum fairness, 1 denotes the maximum fairness, and a larger value indicates
more fairness. How are these fairness measures related? Is one measure “better”
than any other? What other measures of fairness may be useful?
An alternative approach is the optimization-theoretic approach of ↵-fairness

and the associated utility maximization problem. Given a set of feasible allo-
cations, a maximizer of the ↵-fair (or, isoelastic) utility function satisfies the
definition of ↵-fairness. We have seen two well-known examples: a maximizer of
the log utility function (↵ = 1) is proportionally fair, and a maximizer of the
↵-fair utility function as ↵!1 is max-min fair. It is often believed that ↵!1
is more fair than ↵ = 1, which is in turn more fair than ↵ = 0. But it remains
unclear what it means to say, for example, that ↵ = 2.5 is more fair than ↵ = 2.4.
Clearly, these two approaches for quantifying fairness are di↵erent. One dif-

ference is the treatment of e�ciency, or magnitude, of resources. On the one
hand, ↵-fair utility functions are continuous and strictly increasing in each entry
of x, thus its maximization results in Pareto optimal resource allocations. On
the other hand, scale-invariant fairness measures (ones that map x to the same
fairness value as a normalized x) are una↵ected by the magnitude of x, and [1, 1]
is as fair as [100, 100]. Can the two approaches be unified?
To address the above questions, we discuss an axiomatic approach to fairness

measures. There is a set of five axioms, each of which is simple and intuitive,
thus accepted as true for the sake of subsequent inference. They lead to a useful
family of fairness measures. As explained in Advanced Material, the axioms
are: the axiom of continuity, of homogeneity, of saturation, of partition, and of
starvation. Starting with these five axioms, we can generate fairness measures.
We derive a unique family of fairness functions f� that include many known
ones as special cases, and reveals new fairness measures corresponding to other
ranges of �.
While we start with the approach of the fairness measure rather than the

optimization objective function, it turns out that the latter approach can also
be recovered from f� . For � � 0, ↵-fair utility functions can be factorized as
the product of two components: (a) our fairness measure with � = ↵, and (b) a

448 Is it fair that my neighbors iPad downloads faster?

function of the total throughput that captures the scale, or e�ciency, of x. Such
a factorization quantifies a tradeo↵ between fairness and e�ciency, addressing
questions like what is the maximum weight that can be given to fairness while still
maintaining Pareto e�ciency. It also facilitates an unambiguous understanding
of what it means to say that a larger ↵ is “more fair” for general ↵ 2 [0,1).

20.2 A Long Answer

20.2.1 Constructing the fairness function

We are again condensing a vector into a scalar, a task we faced in opinion ag-
gregation in Chapter 6. We first present a unified representation of the fairness
measures constructed from five axioms (in Advanced Material), and provably the
only family of fairness measures that can satisfy all the axioms. It is a family of
functions parameterized by a real number �:

f�(x) = sign(1� �) ·

2

4
nX

i=1

xiP
j xj

!
1��
3

5

1
�

. (20.1)

We see that only the distribution matters but not the magnitude of x. This is due
to one of the axioms, the Axiom of Homogeneity that says the fairness function
f should be a homogeneous function where scaling of the arguments does not
matter. In the rest of this section, we will show that this unified representation
leads to many implications.
We first summarize the special cases in Table 20.1, where � sweeps from �1

to 1 and H(·) denotes the entropy function:

H(x) = �
X

i

xi log xi.

For some values of �, known approaches to measure fairness are recovered, e.g.,
Jain’s index:

J(x) =
(
P

i xi)2

n
P

i x
2

i

.

For � 2 (0,�1) and � 2 (�1,�1), new fairness measures are also revealed.
As an illustration, for two resource allocation vectors x = [1, 2, 3, 5] and

y = [1, 1, 2.5, 5], we plot fairness f�(x) and f�(y) for di↵erent values of �
in Figure 20.1. It is not trivial to decide which of these two vectors is more
fair. Di↵erent values of � clearly change the fairness comparison ratio, and may
even result in di↵erent fairness orderings: f�(x) � f�(y) for � 2 (�1, 4.6], and
f�(x) f�(y) for � 2 [4.6,1).
A person’s fairness parameter � can be reverse-engineered, through a series

of questions asking the person to pick what she perceives as a fairer allocation
between two choices. Di↵erent people will have di↵erent � in their minds, but

20.2 A Long Answer 449

Value of � Fairness Measure Known Names

� ! 1 �maxi

nP
i

x
i

x
i

o

Max ratio

� 2 (1,1) �
h

(1� �)U↵=�

⇣

x

w(x)

⌘i

1
�

↵-fair utility

� 2 (0, 1)
h

(1� �)U↵=�

⇣

x

w(x)

⌘i

1
�

↵-fair utility

� ! 0 e

H
⇣

x

w(x)

⌘

Entropy

� 2 (0,�1)

Pn
i=1

⇣

x
i

w(x)

⌘1��r
�

1
�

No name

� = �1
(
P

i

x
i

)2P
i

x
i

2 = n · J(x) Jain’s index

� 2 (�1,�1)

Pn
i=1

⇣

x
i

w(x)

⌘1��r
�

1
�

No name

� ! �1 mini

nP
i

x
i

x
i

o

Min ratio

Table 20.1 Some known fairness metrics are recovered as special cases of an axiomatic
construction in (20.1). For � 2 (0,�1) and � 2 (�1,�1), new fairness measures of the
Generalized Jain’s Index are revealed. For � 2 [0,1] the fairness component of ↵-fair
utility function is recovered. In particular, proportional fairness at ↵ = � = 1 is obtained

from lim
�!1

|f�(x)|� � n

|1� �| , as we will verify in a homework problem.

we would hope that the same person will be self-consistent and keep the same �
whether she is evaluating fairness of allocation to friends or foes.
Majorization is a partial order over vectors to study if the elements of vector

x are less spread out than the elements of vector y. Vector x is majorized by y,
and we write x � y, if

Pn
i=1

xi =
Pn

i=1

yi, and

dX

i=1

x"i
dX

i=1

y"i , for d = 1, . . . , n, (20.2)

where x"i and y"i are the ith elements of x" and y", sorted in ascending order.
According to this definition, among the vectors with the same sum of elements,
the one with the equal elements is the most majorizing vector. For example,
[1, 2, 3, 4] � [1, 1, 2, 6].
Intuitively, x � y can be interpreted as y being a fairer allocation than x.

However, majorization alone cannot be used to define a fairness measure since
it is only a partial order and may fail to compare vectors. Still, if resource allo-
cation x is majorized by y, it is desirable to have a fairness measure f such that
f(x) f(y). A function satisfying this property is known as Schur-concave.
In statistics and economics, many measures of statistical dispersion or diversity

450 Is it fair that my neighbors iPad downloads faster?

�10 �8 �6 �4 �2 0 2 4 6 8 10
�10

�8

�6

�4

�2

0

2

4

Parameter �

Fa
irn

es
s f

�(x
)

x=[1,2,3,5]
y=[1,1,2.5,5]

�>=0
utility

�<1
index

Figure 20.1 An example of fairness evaluation for two vectors of resource allocation
over di↵erent �. It is not obvious which of these two four-user allocations x and y is
more fair than the other. Indeed, the order is di↵erent depending on the value of �
defining the exact shape of fairness measure.

are known to be Schur-concave, e.g., the Gini Coe�cient that we will see in a
homework problem. Fairness measure (20.1) also is Schur-concave.

There are many other properties that can be proved about this unique family
of axiomatically constructed fairness measures. One good use of axiomatic con-
struction is that if a conclusion is undesirable, we often have a guess as to which
axioms need to be perturbed. For example, it is obvious that equal allocation
maximizes our fairness measure. There are two ways to avoid this naive view of
fairness:

• Add user weights {q
1

, q
2

, . . . , qn} in the axiomatic construction, which leads to
another fairness measure that depends on both x and q. We will largely skip
this presentation, except in discussing Rawls’ theory in Advanced Material.

• Incorporate e�ciency into the picture, which can be carried out by deleting
the axiom that states fairness does not depend on magnitude of the resource
allocation vector. We will follow this path now.

20.2 A Long Answer 451

20.2.2 What Does “Larger ↵ is More Fair” Mean?

To answer this question, we first show a factorization of the ↵-fair utility function
U↵. Re-arranging the terms, we have

U↵=�(x) =
1

1� �
|f�(x)|�

X

i

xi

!
1��

= |f�(x)|� · U�

X

i

xi

!
, (20.3)

where U� (
P

i xi) is the uni-variate version of the ↵-fair utility function with
↵ = � 2 [0,1).

Equation (20.3) demonstrates that the ↵-fair utility functions can be factorized
as the product of two components:

• A fairness measure, |f�(x)|�

• An e�ciency measure, U� (
P

i xi).

The fairness measure |f�(x)|� only depends on the normalized distribution,
x/(
P

i xi), of resources, while the e�ciency measure is a function of only the
sum resource

P
i xi.

Allocation: x

. &
Factorize: x/

P

i xi

P

i xi

#
Measure: f�

�

x/

P

i xi

�

U�

�

P

i xi

�

& .
Combine: U↵=�(x)

Table 20.2 An illustration of the factorization of the ↵-fair utility functions into a
fairness component of the normalized resource distribution and an e�ciency component
of the sum resource.

The factorization of ↵-fair utility functions is illustrated in Table 20.2. De-
coupling into these two components helps understand issues such as fairness-
e�ciency tradeo↵ and the feasibility of x under a given constraint set. For ex-
ample, an allocation vector that maximizes the ↵-fair utility with a larger ↵ may
not be less e�cient, because the ↵-fair utility incorporates both fairness and
e�ciency at the same time.

Guided by the product form of (20.3), we consider the following welfare
function: a scalarization of the maximization of two objectives: fairness and

452 Is it fair that my neighbors iPad downloads faster?

e�ciency:

��(x) = �` (f� (x)) + `

X

i

xi

!
, (20.4)

where � 2 [0,1) is fixed, and � 2 [0,1) absorbs the exponent � in the fairness
component of (20.3) and is a weight specifying the relative emphasis placed on
the fairness. And ` is just a shorthand notation:

`(y) = sign(y) log(|y|). (20.5)

The use of the log function later recovers the product in the factorization of
(20.3) from the sum in (20.4).
Remember that an allocation vector x is said to be Pareto dominated by

y if xi yi for all i and xi < yi for at least some i. An allocation is called
Pareto optimal if it is not Pareto dominated by any other feasible allocations.
All the Pareto optimal points form a Pareto optimal tradeo↵ curve, a concept
we mentioned many times before and now defined in a rigorous way. To preserve
the meaning of Pareto optimality, we require that if y Pareto dominates x, then
��(y) > ��(x). If the relative emphasis on e�ciency is su�ciently high, Pareto
optimality of the solution can be maintained.
The necessary and su�cient condition on �, such that ��(y) > ��(x) if y

Pareto dominates x, is that � must be no larger than a threshold �̄, which turns
out to be:

�̄ =

����
�

1� �

���� . (20.6)

A di↵erent notion of fairness, i.e., a di↵erent �, leads to a di↵erent threshold �̄.
Consider the set of maximizers of (20.4) for � in the range of (20.6):

P =

⇢
x : x = argmax

x2R
��(x), 8�

����
�

1� �

����

�
. (20.7)

When weight � = 0, the corresponding points in P are the most e�cient. When

weight � =
��� �
1��

���, it turns out that the factorization in (20.3) becomes exactly

the same as (20.4).
What we have shown is the following: ↵-fairness corresponds to the solution

of an optimization that places the maximum emphasis on the fairness measure
parameterized by � = ↵ while preserving Pareto optimality. With this property,
it indeed makes sense to say that larger ↵ is more fair.

20.2.3 Fairness-e�ciency unification

Now we return to the Axiom of Homogeneity that says f needs to be a homo-
geneous function, e.g., f�([1, 1]) = f�([a, a]) for any a > 0. This axiom clearly
takes e�ciency out of the picture altogether. If fairness F (x) satisfies a new set

20.3 Examples 453

of axioms that removes the Axiom of Homogeneity, we can show that it must be
of the form

F�,�(x) = f�(x) ·

X

i

xi

! 1
�

, (20.8)

where 1

� 2 R is the “degree of homogeneity”, the same as weighting the fairness
component f�(x) by �, and f�(x) is the fairness function (20.1). There are now
two parameters for fairness measures: a real number � and a positive number �.
The new fairness measure F may not be Schur-concave, and equal allocation

may not be fairness-maximizing. For example, you can easily verify that F (1, 1) <
F (0.2, 10) for � = 2 and � = 0.1.
This family of fairness measures unifies a wide range of existing fairness indices

and utilities in diverse fields such as computer science, economics, sociology,
psychology, and philosophy, including

• Jain’s index
• Jasso index
• Theil index
• Atkinson index
• Shannon entropy
• Renyi entropy
• ↵ fairness
• Foster-Sen welfare function
• p-norm.

These are all fairness measures that are global (i.e., mapping a given allocation
vector in a system to a single scalar) and decomposable (i.e., subsystems’ fairness
values can be somehow collectively mapped into the overall system’s fairness
value).

20.3 Examples

20.3.1 Capacity allocation

Figure 20.2 A linear network with L links and n = L+ 1 sessions. All links have the
same capacity of 1 unit. The long session is indexed as session 0. The short sessions
are indexed by i = 1, 2, . . . , L. Allocating capacity between the long session and the
short sessions can strike di↵erent tradeo↵s between fairness and e�ciency, as driven
by the choice of objective function.

454 Is it fair that my neighbors iPad downloads faster?

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

Degree of homogeneity 1/�

Ra
te

 o
r F

ai
rn

es
s

Fairness component f
�

(x *)

Efficiency component �i x
*
i

Optimal rate for long flow x0
*

Optimal rate for short flows xi
*

x0
*

xi
*

Figure 20.3 An example of generalized objective for capacity allocation. As the degree
of homogeneity increases, � and the emphasis on fairness component drops while the
e�ciency component rises. The capacity allocated to the long session becomes smaller.

As discussed in Chapter 14, the typical optimization problem modeling capac-
ity allocation is as follows:

maximize U(x) =
Pn

i=1

U(xi)
subject to x 2 R
variables x,

(20.9)

where U is the utility function for each session, and R is a set of all feasible
resource allocation vectors.

We now consider the classic example of a linear network with L links, indexed
by l = 1, . . . , L, and n = L + 1 sessions, indexed by i = 0, 1, . . . , L, shown in
Figure 20.2. Session i = 0 goes through all the links and sources i � 1 go through
links l = i. All links have the same capacity of 1 unit. We denote by xi the rate
of session i.

We will illustrate two points: how a given x can be evaluated by di↵erent
fairness measures, and how F�,�(x) acting as the objective function broadens
the range of trade-o↵ between e�ciency and fairness than just U(x).

We formulate a generalized NUM problem in this linear network: maximization
of F�,�(x), a generalization of the ↵-fair utility function, under link capacity

20.3 Examples 455

constraints.

maximize F�,�(x) = f�(x) · (
P

i xi)
1
�

such that x
0

+ xi 1, 8i
variables xi � 0, 8i.

(20.10)

For � � 0 and � = (1� �)/�, the optimal rate allocation maximizing (20.10)
achieves ↵-fairness if we just take � in our fairness function to be ↵ in isoelastic
utility function. For 1/� � �/(1 � �), problem (20.10) is also concave after a
logarithm change of objective function, i.e., logF�,�(x).
Let us fix � = 1/2 and solve (20.10) for di↵erent values of 1/�. Figure 20.3

plots optimal rate allocations x⇤ (in terms of x⇤
0

and x⇤i for i � 1, since all x⇤i are
the same for i = 1, 2, . . . , L, by symmetry), their fairness components f�(x⇤), and
their e�ciency components

P
i x
⇤
i , all against 1/�. As 1/� (the weight on the

e�ciency component) grows, the e�ciency component’s value
P

i x
⇤
i increases

and skews the optimal rate allocation away from the equal allocation: the long
session x

0

in the linear network gets penalized, while short sessions xi are favored.
At the same time, the fairness component of the objective function decreases.

20.3.2 Taxation fairness

An interesting application of fairness is evaluating the fairness of taxation schemes.
Let us denote the pre-tax personal income in the population by vector x, and
the tax amount by vector c. We can evaluate taxation fairness in two ways. An
obvious one is by comparing the fairness of the after-tax income distribution to
that of the pre-tax income distribution:

f�(x� c(x))

f�(x)
. (20.11)

But this is not the only question of fairness involved. If a few people shoulder
most of the tax burden, and many people pays no tax at all, that can be unfair
too. This second view looks at the fairness of the tax distribution itself:

f(c(x))

f�(x)
. (20.12)

If you read the editorials of the The New York Times, it is often the first
metric that is mentioned: more redistribution of wealth is needed by taxing the
high income population more, for otherwise it is too far from equal distribution.
If you read the editorials in The Wall Street Journal, it is often the second
one mentioned: almost half of the U.S. population does not even pay any federal
income tax at all (and some pay negative amount through benefits checks), while
the top earners pay a disproportionately large share of the overall income tax.
To visualize the tradeo↵ between these (20.11) and (20.12), we can put them

on two axes and look at the impact of di↵erent personal income tax rates (on the
highest income bracket) on both. We use the US income and tax distributions
detailed in Tables 20.3 and 20.4. Of course, the tradeo↵ curves are di↵erent for

456 Is it fair that my neighbors iPad downloads faster?

Tax rate (%) Single Bracket ($) Married Bracket ($)

10 0-8375 0-16750
15 8376-34000 16751-68000
25 34001-82400 68001-137300
28 82401-171850 137301-209250
33 171851-373650 209251-373650
35 373651+ 373651+

Table 20.3 U.S. federal income tax rates in 2010.

Bracket ($) Users

0-4000 12214

4000-8375 270475

8376-34000 426869

34001-82400 221351

82401-171850 41703

171851-373650 16746

373651+ 10642

Total 1000000

Table 20.4 Distribution of incomes by tax bracket, based on 2007 U.S. income
distribution (source: IRS).

di↵erent �. We show a typical curve for � 2 [0, 1] in Figure 20.4, since most of
the common fairness metrics concentrate around that range of �.

The slope over the range of 25% – 50% for the highest tax bracket in Fig-
ure 20.4, i.e., the “exchange rate” between these two axes, is around 1. This
illustrates one reason why this debate is hard: for each 1% increase in income
distribution fairness, there is a 1% decrease in tax revenue distribution fairness.

Another reason is the scale of the two axes: the y-axis value is small: more
than half of the fairness in tax revenue contribution is lost, yet the x-axis value
is also small. It is di�cult to improve fairness in income distribution through
taxation.

Of course, this discussion is inadequate for the purpose of assessing taxation
fairness, for many reasons:

• There are other taxes intertwined with personal income tax’s impact, e.g.,
payroll tax, corporate tax, alternative minimum tax, sales tax, property
tax, estate tax, and the various deductions that can be taken. Some of
these are taxed multiple times too, e.g., investment income in corporations
is taxed twice at the federal level in the US. Some countries also impose

20.3 Examples 457

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.2

0.25

0.3

0.35

0.4

0.45

0.5

N
or

m
al

iz
ed

 T
ax

 F
ai

rn
es

s

Fairness Improvement

Highest Tax Rate = 25%

Highest Tax Rate = 50%

Highest Tax Rate = 75%

Figure 20.4 Fairness of tax vs. fairness of post-tax income for � = 0.4. The x-axis is
f
�

(x�c(x))

f
�

(x) . The y-axis is f(c(x))
f
�

(x) . Each point on the curve corresponds to a di↵erent

tax rate on the highest bracket. The slope between the point of 25% tax rate and that
of 50% tax rate is about 1, highlighting one of the challenges in this debate: for one
percent of income distribution fairness improvement, there needs to be one percent of
reduction in the taxation fairness. The small values on both axes further underscores
that the debate is touchy.

sales taxes of many kinds. For example, in parts of Canada, salted peanuts
are taxable food even though neither peanuts nor salts have sales tax.

• Fairness of taxation should be positioned in a feedback control loop with
people’s incentives and reactions considered. Raising the tax rate beyond
a certain point reduces the tax revenue.

• How the collected tax is spent is as important as how much can be collected,
including questions on the e↵ectiveness, e�ciency, accountability, and flex-
ibility of individual choices in the spendings by government bureaucrats.

• Fairness is often tied to the di↵erence (and the perception of such di↵erence)
in the society between income derived from merits and income derived from
corruption. It is tied to the upward mobility in the society by one’s own
e↵ort to realize each person’s di↵erent potential to the fullest.

• An even deeper debate is on the roles of government versus individuals (and
private institutions) in providing solutions to society’s problems. Tax dol-
lars increase the power of government decisions and reduce the self-reliance
of individuals.

458 Is it fair that my neighbors iPad downloads faster?

20.4 Advanced Material

Across many disciplines, fairness has been extensively studied by raising di↵er-
ent kinds of questions and answering them with di↵erent methodologies. For
example:

• Di↵erent indices, from the Atkinson index to the Gini index, have been studied
at the intersection of economics, statistics, and sociology.

• Bargaining has been studied at the intersection of economics, sociology, and
political philosophy.

• The ultimatum game, dictator game, divide a dollar game, and their exten-
sion of fair cake cutting has been studied at the intersection of economics,
computer science, and psychology. This subject, together with opinion ag-
gregation and voting theory form the field known as social choice theory.

• Fairness is not just about the outcome, but also the process. Procedural fair-
ness has been studied extensively in law and psychology. Dictatorship and
arbitrariness have long been practiced in the Orwellian name of fairness,
and individual choices limited by governments under the disguise of social
welfare maximization.

We will see some examples of the above list in homework problems. Below we
focus on a brief discussion of Rawls’ theory of justice as distributive fairness.

20.4.1 Rawls’ theory of justice and distributive fairness

In the 20th century political philosophy, Rawls’ work on fairness has been one of
the most influential since its original publication in 1971. It starts with the “orig-
inal position” behind the “veil of ignorance,” where each person does not know
where in the society she will land. This is similar to the approach of “one cuts
the cake, the other selects a slice first” in the problem of fair cake-cutting that
we will see in a homework problem. You can probably also sense the connection
of this assumption to the maxmin fairness already.
The arguments posed by Rawls are based on two fundamental principles (i.e.,

axioms stated in English rather than mathematics), as described in his 2001
restatement:

1. “Each person is to have an equal right to the most extensive scheme of equal
basic liberties compatible with a similar scheme of liberties for others.”

2. “Social and economic inequalities should be arranged so that they are both
(a) to the greatest benefit of the least advantaged persons, and (b) attached to
o�ces and positions open to all under conditions of equality of opportunity.”

The first principle governs the distribution of liberties and has priority over the
second principle. But suppose we interpret it as a principle of distributive fairness
in allocating limited resources among users. It can now be captured as a theorem
(rather than an axiom) that says any fairness measures satisfying Axioms 1-5

20.4 Advanced Material 459

will satisfy the following property: adding an equal amount of resource c to each
user will only increase the fairness value, i.e.,

f� (x+ c · 1n,q) � f� (x,q) , for qi =
1

n
, 8c � 0, 8�,

where equal weights qi =
1

n can be viewed as a quantification of “equal right” in
the first principle of Rawls’ theory. Of course, for a general weight vector q or
if the � weight between fairness and e�ciency is introduced, the above property
only holds for c up to some upper limit.
The second part is the celebrated di↵erence principle: “to the greatest ben-

efit” rather than “to the greatest relative benefit”. So [100, 101] is more fair
than [1, 1]. It is an approach di↵erent from strict egalitarianism (since it is on
the absolute value of the least advantaged user rather than the relative value)
and utilitarianism (when narrowly interpreted where the utility function does
not capture fairness).
Now the Di↵erence Principle can be axiomatically constructed as a special

case of a continuum of generalized notions trading o↵ fairness with e�ciency.
This is best illustrated by annotating Rawls’ own graph in Figure 20.5. The
point representing the di↵erence principle is the consequence of concatenating
two steps of pushing to the extremum on both � and � in (20.1): let � !1, and
make � as large as possible while retaining Pareto e�ciency, i.e., �! �̄. If either
� is finite (e.g., � = 1), or � is smaller than �̄ (more emphasis on e�ciency), we
will have a fairness notion that is not as strong as Rawls’ di↵erence principle.
Now, back to the introductory discussion at the beginning of this chapter.

What would be your threshold x above which [x, x+1] is more fair than [1, 1]?
Questions like this can help reverse engineer your � and �.

20.4.2 Axioms

Let x be a resource allocation vector with n non-negative elements. A fairness
measure is a sequence of mapping {fn(x), 8n 2 Zn} from n-dimensional vectors
x to real numbers, called fairness values, i.e., {fn : Rn

+

! R, 8n 2 Z
+

}. To
simplify the notation, we suppress n in {fn} and denote them simply as f . We
introduce the following set of axioms about f , whose explanations are provided
after the statement of each axiom.

1). Axiom of Continuity. Fairness measure f(x) is continuous on Rn
+

, for all
n 2 Z

+

.

Axiom 1 is intuitive: A slight change in resource allocation shows up as a slight
change in the fairness measure.

2). Axiom of Homogeneity. Fairness measure f(x) is a homogeneous function:

f(x) = f(t · x), 8 t > 0. (20.13)

460 Is it fair that my neighbors iPad downloads faster?

O

D
NBS

y

U

45

x

Figure 20.5 An annotated version of the only quantitative graph in Rawls 2001 book.
Since the e�ciency frontier between a “more advantaged group” user x and a “less
advantaged group” user y does not pass through 45 degree line, strict egalitarian
point is the origin. Di↵erence principle generates a point D on the e�cient frontier,
whereas sum utility maximization generates point U. Nash Bargaining Solution (as
discussed in Chapter 6) point N may lie between D and U. Fairness function
F�,�(x,q) can generate any point on the e�cient frontier when � �̄.

Without loss of generality, for n = 1, we take |f(x
1

)| = 1 for all x
1

> 0, i.e.,
fairness is a constant for a one-user system.
Axiom 2 says that the fairness measure is independent of the unit of mea-

surement or magnitude of the resource allocation. Therefore, for an optimization
formulation of resource allocation, the fairness measure f(x) alone cannot be
used as the objective function if e�ciency (which depends on magnitude

P
i xi)

is to be captured. As we saw in this chapter, this axiom can be readily removed.

3). Axiom of Saturation. Equal allocation’s fairness value is independent of num-
ber of users as the number of users becomes large, i.e.,

lim
n!1

f(1n+1

)

f(1n)
= 1. (20.14)

This axiom is a technical condition used to help ensure the uniqueness of the
fairness measure. Note that it is not stating that equal allocation is the most
fair.
A primary motivation for quantifying fairness is to allow a comparison of

fairness values. Therefore, we must ensure well-definedness of the ratio of fairness
measures, as the number of users in the system increases. Axiom 4 states that
fairness comparison is independent of the way the resource allocation vector is
reached as the system grows.

4). Axiom of Partition. Consider a partition of a system into two sub-systems.

20.4 Advanced Material 461

Let x =
⇥
x1,x2

⇤
and y =

⇥
y1,y2

⇤
be two resource allocation vectors, each

partitioned and satisfying
P

j x
i
j =

P
j y

i
j for i = 1, 2. There exists a mean

function h such that their fairness ratio is the mean of the fairness ratios of
the subsystems’ allocations, for all partitions such that the sum resources of
each subsystem are the same across x and y:

f(x)

f(y)
= h

✓
f(x1)

f(y1)
,
f(x2)

f(y2)

◆
. (20.15)

According to the axiomatic theory of mean function, a function h is a mean
function if and only if it can be expressed as follows:

h = g�1

2X

i=1

si · g
✓
f(xi)

f(yi)

◆!
, (20.16)

where g is any continuous and strictly monotonic function, referred to as the
Kolmogorov-Nagumo generator function, and {si} are the positive weights
such that

P
i si = 1.

5). Axiom of Starvation. For n = 2 users, we have f(1, 0) f(1
2

, 1

2

), i.e., starva-
tion is no more fair than equal allocation.

Axiom 5 is the only axiom that involves a value statement on fairness: starva-
tion is no more fair than equal distribution for two users. It specifies an increas-
ing direction of fairness and is used to ensure uniqueness of f(x). We could have
picked a di↵erent axiom to achieve similar e↵ects, but the above axiom for just
2 users and involving only starvation and equal allocation is the weakest such
statement, thus the “strongest axiom.”
With the five axioms presented, we now discuss some implications of Axiom 4.

This axiom can construct fairness measure f from lower dimensional spaces. If
we choose y = [w(x1), w(x2)] (where w(xi) =

P
j x

i
j is the sum of the resource

in sub-system i) in Axiom 4 and use the fact that |f(w(xi))| = 1 for scalar
inputs as implied by Axiom 2, we can show that Axiom 4 implies a hierarchical
construction of fairness. This in turn allows us to derive a fairness measure
f : Rn

+

! R of n users recursively (with respect to a generator function g(y))
from lower dimensions, f : Rk

+

! R and f : Rn�k
+

! R for integer 0 < k < n.
The functions g giving rise to the same fairness measures f may not be unique,

e.g., logarithm and power functions. The simplest case is when g is identity and
si = 1/n for all i. A natural parameterization of the weight si in (20.15) is to
choose the value proportional to the sum resource of sub-systems:

si =
w⇢(xi)P
j w

⇢(xj)
, 8i, (20.17)

where ⇢ � 0 is an arbitrary exponent. It turns out that the parameter ⇢ can be
chosen such that the hierarchical computation is independent of the partition as
mandated in Axiom 4.

462 Is it fair that my neighbors iPad downloads faster?

By definition, a set of axioms is true, as long as the axioms are consistent. As
we saw in this chapter, there exists a fairness measure f(x) satisfying Axioms 1–
5. Furthermore, uniqueness results contain two parts. First, we show that, from
any generator function g(y), there is a unique f(x) thus generated. Such an f(x)
is a well-defined fairness measure if it also satisfies Axioms 1–5. We can further
show that only logarithm and power functions are possible generator functions.
Therefore, we find, in closed-form, all possible fairness measures satisfying axioms
1-5, as shown in (20.1).

Further Readings

Perhaps no chapter in this book has as much intellectual diversity as this one.
There are literally tens of thousands of papers on the subject of fairness from
di↵erent disciplines.

1. In political philosophy, the classic and influential book by Rawls has a
second edition:

[Raw01] J. Rawls, Justice as Fairness: A Restatement, Harvard University
Press, 2001.

2. In computer science and economics, cake cutting has been the standard
problem in the study of fairness. A comprehensive survey, including connections
to auction and voting, is provided in the following book:

[BT96] S. J. Brams and A. D. Taylor, Fair Division: From Cake-cutting to
Dispute Resolution, Cambridge University Press, 1996.

3. More than just the outcome, fairness is also about the process. In psychology,
sociology, and legal study, a historical account and survey of procedural fairness
can be found in:

[LT88] E. A. Lind and T. R. Tyler, The Social Psychology of Procedural Jus-
tice, Springer, 1988.

4. On taxation and reaction to taxes as a dynamic system, the following paper
discusses the impact of social perception and presents a di↵erential equation
model of the feedback loop between taxation by the government and reaction by
the people:

[AA05] A. Alesina and G. M. Angeletos, “Fairness and redistribution,” Amer-
ican Economic Review, 2005.

5. The axiomatic development follows this paper, which also discusses the
connections with other branches on the study on fairness:

[LC11] T. Lan and M. Chiang, “An axiomatic theory of fairness,” Princeton

20.4 Advanced Material 463

University Technical Report, 2011.

Problems

20.1 Fairness-e�ciency unification ??

The definition of fairness measure is given in Section 20.2.1 as follows:

f�(x) =

8
<

:
sign(1� �)

⇣Pn
i=1

�
x
i

w(x)

�
1��
⌘ 1

�

, if � 6= 0

exp
⇣
�
Pn

i=1

x
i

w(x)

log x
i

w(x)

⌘
, if � = 0.

where w(x) ⌘
Pn

j=1

xj .

(a) Prove that lim�!0

f�(x) = f
0

(x).

(b) Consider two allocation vectors x = [0.1, 0.2, 0.3, 0.6],y = [0.2, 0.2, 0.8, 0.9].
Plot f�(x), f�(y) as functions of �10 � 10 in one figure.

(c) Fix � = 0.5, plot fairness-e�ciency measures F�,�(x), F�,�(y), as functions
of 0 1

� 1, in one figure.

20.2 Atkinson index and Gini coe�cient ?

According to U.S. census bureau, the distribution of income of households in
U.S in 2009 is as follows

Income of households

Income Percentage

$0 to $14, 999 10.6
$15, 000 to $24, 999 11.0
$25, 000 to $34, 999 10.3
$35, 000 to $49, 999 14.0
$50, 000 to $74, 999 18.8
$75, 000 to $99, 999 12.4
$100, 000 to $149, 999 13.4
$150, 000 to $199, 999 5.4
$200, 000 and over 4.4

Assume uniform distribution within each income interval, except for the interval
of income over $200,000, where we assume all houses in this interval have the
same income of $200, 000.

464 Is it fair that my neighbors iPad downloads faster?

(a) Plot the Atkinson index w.r.t. 0 ✏ 10. The Atkinson index of allocation
vector x = (x

1

, · · · , xN) is defined as follows:

A✏(x1

, · · · , xN) =

8
<

:
1� 1

µ

⇣
1

N

PN
i=1

x1�✏
i

⌘
1/(1�✏)

, if ✏ 2 [0, 1) [(1,1)

1� 1

µ

⇣QN
i=1

xi

⌘
, if ✏ = 1.

(b) Calculate the Gini coe�cient.

20.3 Multi resource fairness ? ? ?

The fairness-e�ciency functions introduced in the lecture notes have the form

F�,�(x) = sign(1� �)

0

@
nX

i=1

xiPn
j=1

xj

!
1��
1

A
1/�

nX

i=1

xi

!�

, (20.18)

where x is an n-dimensional resource allocation vector (i.e., each entry xi is the
amount of a resource given to person i, i = 1, 2, . . . , n). But in some contexts,
the allocation of one resource is not enough. For instance, consider a datacenter
utilized by two people. Each user runs one type of job, and the two types of
jobs have di↵erent resource needs. Both require memory and CPU (processing
power), but user A’s jobs require 1 GB of memory and 2 MIPS of CPUs per
job, while user B’s jobs require 3 GB of memory and 1.5 MIPS CPUs per job.
These resources are limited: there are 8 GB of available memory and 12 MIPS
of CPUs. Clearly, just allocating memory or just allocating CPUs is not enough:
we need to consider the fairness of both resource allocations.
This homework question introduces two di↵erent ways of measuring the fair-

ness of multi-resource allocations, as in the datacenter example above. First, one
could just measure the fairness of the number of jobs allocated to each user. Each
user is allocated enough resources to complete this number of jobs–for instance,
if user A is allocated 2 jobs, she receives 2 GB of memory and 4 MIPS of CPUs.
The resource allocation vector in (20.18) is just the number of jobs assigned to
each user–for instance, if user A is assigned 2 jobs and user B 3 jobs, the fairness
of this allocation is

sign(1� �)

 ✓
2

2 + 3

◆
1��

+

✓
3

2 + 3

◆
1��
!

1/�

(2 + 3)� . (20.19)

But this approach misses the heterogeneity of the resource requests among
the users. The second way of measuring multi-resource fairness involves domi-
nant shares. These are defined as the maximum fraction of each resource received
by the user. For instance, if user A gets 2 jobs, she receives 2 GB of memory
and 4 MIPS of CPUs. Then A receives 1/4 of the available memory but 1/3 of
the CPUs. User A’s dominant resource is CPUs, and her dominant share is 1/3.
These dominant shares are then taken as the resource allocation vector–if user

20.4 Advanced Material 465

A’s dominant share is 1/3 and user B’s is 2/3, the allocation vector x in (20.18)
is [1/3, 2/3].

(a). What is user B’s dominant resource? Calculate the dominant shares for users
A and B in terms of xA and xB , the number of jobs allocated to users A and
B respectively.

(b). Formulate the maximization problem for multi-resource fairness in the data-
center example above, using both fairness on jobs and fairness on dominant
shares (i.e., write down two formulations, one for fairness on jobs and one
for fairness on dominant shares). Use your answers to part (a) and (20.18)
to write down the objective function for maximizing fairness on dominant
shares. (Hint: The constraints in both optimization problems are resource
capacity constraints, and the optimization variables are xA and xB .)

(c). Numerically solve for the optimal resource allocation according to your
formulations in part (b), with the resource requirements given above and
� = 0.5 and � = 1. (Non-integer numbers of jobs are allowed). Are the opti-
mal allocations the same? Which do you think is more “fair”?

20.4 Cake-cutting fairness ? ? ?

“One cuts, the other selects” is a well-known procedure of dividing a cake for
two people such that both value their own share to be at least half of the whole
cake. Alice first cut the cake into two pieces with each piece having the same
value to her, and then Bob selects among the two pieces.

Can you come up with a procedure of dividing a cake for three participants
so that they all value their own share to be at least one third of the whole cake?

(Hint: First divide the cake into three pieces whose values are equal for one
participant.)

(More detail can be found at the following survey: S. J. Brams, M. A. Jones,
and C. Klamler, “Better ways to cut a cake”, Notice of the American Mathemat-
ics Society, vol. 53, no. 11, pp. 1314-1321, December 2006.)

20.5 The ultimatum game ??

The ultimatum game is a game where two players interact to decide how to
divide a sum of money between them. The first player proposes how to divide
and the second player can either accept or reject this proposal. If the second
player rejects, neither player receives anything; If the second player accepts, the
money is split according to the proposal. The game is played only once so that
reciprocation is not an issue.

Consider an ultimatum game where the proposer, Alice and the accepter, Bob,
are to divide a one-foot long sandwich. Alice knows that Bob will not accept o↵er
less than x foot, however she is not certain about x and only has the belief about

466 Is it fair that my neighbors iPad downloads faster?

the probability density function of x:

f(x) =

⇢
4x if x < 0.5
4(1� x) if x � 0.5

How will Alice propose to split the sandwich, and what is the expected share she
receives?

Notes

Index

base station, 1

cells, 1

cellular network, 1, 2

data applications, 1

	Preface
	Acknowledgements
	Roadmap
	What makes CDMA work for my smartphone?
	Problems
	How does Google sell ad spaces?
	Problems
	How does Google rank webpages?
	Problems
	How does Netflix recommend movies?
	Problems
	When can I trust an average rating on Amazon?
	Problems
	Why does Wikipedia even work?
	Problems
	How do I viralize a YouTube video and tip a Groupon deal?
	Problems
	How do I influence people on Facebook and Twitter?
	Problems
	Can I really reach anyone in 6 steps?
	Problems
	Does the Internet have an â•œAchilles' heelâ•š?
	Problems
	Why do AT&T and Verizon Wireless charge me $10 a GB?
	Problems
	How can I pay less for my Internet connection?
	Problems
	How does traffic get through the Internet?
	Problems
	Why doesn't the Internet collapse under congestion?
	Problems
	How can Skype and BitTorrent be free?
	Problems
	What's inside the cloud of iCloud?
	Problems
	IPTV and Netflix: How can the Internet Support Video?
	Problems
	Why is WiFi faster at home than at a hotspot?
	Problems
	Why am I only getting a few % of advertised 4G speed?
	Problems
	Is it fair that my neighborâ•Žs iPad downloads faster?
	Problems
	Notes
	Index

